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ABSTRACT

The relationship between Shannon's Information Theory and filter-

ing and estimation is examined and the intrinsic limitations to applying

information and entropy analysis are discussed. Through the use of the

functions of entropy and information, a novel reduced-order filter design

procedure is presented.
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I. Introduction

The objective of this thesis is to investigate the relationship and

practical relevance of Shannon's Information Theory to linear system

theory and linear filtering. This relationship has long been questioned

but until now there has been no fully satisfactory answer. In fact, the

literature has often served to confuse rather than resolve the issues con-

cerned.

The focus for the investigation is the Reduced-Order Filter Problem.

This arises when some subset of the state of a linear dynamic system is to

be estimated from measurements corrupted by additive white Gaussian noise.

When there are no complexity constraints on the estimator, the optimal solu-

tion is the well-known Kalman filter ([1],[2]). In practice, however, the

Kalman filter may present unacceptable on-line computational requirements

or exhibit poor sensitivity to modeling errors and a suboptimal reduced-order

filter may be sought.

While the reduced-order filter design procedure may utilize one of

the approaches appearing in the literature (i.e. [3],[4],[5]), it usually

requires considerable trial and error or excessive computation. Although no

useful procedure is entirely automatic, a systematic design scheme is developed

in this paper using entropy and information analysis.

While concepts from dynamic systems theory have been used in modeling

elements of communication systems ([6]), little has been done in applying

information theory to filter design. The bulk of the work has dealt with

information properties of optimal least square (MSE) estimates ([7],[8],[91),

providing little insight into design or evaluation of practical estimators.



-6-

Zakai and Ziv [10] derive upper and lower bounds for the estimation

error for certain diffusion processes using linear filtering considerations

and information theoretic arguments. More recently, Bobrovsky and Zakai [11]

present new lower bounds based on Van Trees' [12] version for the Cramer-

Rao inequality. Weidemann and Stear [13] and Galdos-Gustafson [14] deal

more directly with the filtering problem and their papers will be discussed

in some detail in Section II.

The remainder of this thesis will be organized as follows. In Section

II the intrinsic limitations involved in applying a noncausal information

theory to dynamic problems are discussed. The pitfalls associated with a

failure to appreciate these limitations will be exposed. With these con-

siderations in mind, a novel procedure for reduced-order filter design is

developed using information theoretic concepts in Section III. The range of

applicability of the design procedure is discussed.

Because the concepts discussed here are basically quite simple, care

has been taken to avoid unnecessary complication. The appendices contain

the important relations used.
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II. Information Theory and the Reduced-Order Filter Problem

The purpose of this section is to examine the limitations in applying

information theory to the Reduced-Order Filtering Problem. The basic diffi-

culty is that Shannon's Information Theory is noncausal and must be severely

strained in order to have relevance to dynamic or causal problems.

The foundations of information theory were laid by C.E. Shannon in

his celebrated journal article [15], "A Mathematical Theory of Communica-

tion". The concepts of entropy and mutual information have been extremely

useful and effective in analysis of communication systems, but relatively

few conclusive results have been obtained in applying these concepts to

estimation or control problems. Of course, this is no surprise to those

familiar with these areas.

Two papers which have attempted to apply information theoretic concepts

to estimation are by Weidemann and Stear [13] (also Weidmann [16] and Galdos

and Gustafson [14]). Weidemann and Stear, based on the work of Goblick [17],

use entropy of the estimation error as a criterion function for analyzing

estimating systems. Unfortunately, the estimating system analyzed was not

causal and their results were existence theorems analogous to the coding

theorem. Although of little practical relevance, the paper is interesting

in that it proposes the use of entropy analysis, so successful for communica-

tion systems, in estimation. Although they point out certain advantages for

entropy over a mean square error criterion, in the linear Gaussian case the

advantages are not obvious. In fact, entropy reduces to MSE in the scalar

case. Entropy analysis will form a basis for the design procedure developed

in Section III.
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An analysis of the recent paper by Galdos and Gustafson reveals

some of the pitfalls in applying Information theory to filtering. They

attempt to show "how information theory concepts can be modified to real-

istically imbed the Reduced-Order Filter Problem into an information frame-

work which allows systematic filter design, evaluation, and comparison".

(Emphasis in original.)

Galdos and Gustafson develop some machinery related to the

1
rate distortion function , prove several theorems, and finally propose

a two step design procedure. The two step procedure involves first maxi-

mizing the information in the estimate (regardless of error) until the

information content is sufficient to guarantee a desired performance. The

second step is simply adjusting certain parameters (which do not effect in-

formation) to reduce error by using all the information in the estimate.

This decoupling is claimed to reduce the computational burden. The question

is: compared to what?

The problem that Galdos and Gustafson are solving is exactly a static

estimation problem at each time instant. That is, given estimates at time k

and measurements at time k+l, what is the best estimate at time k+l? This

procedure is only meaningful if there are either no dynamics or no informa-

tion loss. It is easy to construct examples where using static estimation

at each step results in a poor filter design. If there is no information

loss, the filter will be the full-dimension Kalman filter.

Furthermore, the answer may be found by simply computing E(xk+l[kyk+l)

using the appropriate convariance matrices, which are needed for Galdos-Gust-

afson's approach anyway. A two-step optimization represents an unnecessary

1. See Berger [18].
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complication and greatly increases the computational burden.

Even though Galdos-Gustafson's procedure is useless in a practical

sense, it appears initially to be interesting in that the problem can be

decomposed into information maximization followed by error minimization.

However, this property is a trivial consequence of the definitions of in-

formation and entropy. The relevant equations are developed in Appendix B

and used in the design procedure is Section III.

The limitations in the applicability of information theory to filter-

ing are far more fundamental than Weidemann-Stear or Galdos-Gustafson let

on. To see this, consider a source modeled as a discrete-time system

driven by noise. Suppose that a subset of the state of the system is to

be estimated from noisy measurements. Each measurement provides informa-

tion1 about the state of the system and the optimal filter will keep all

the information. For some systems (i.e. linear with Gaussian statistics)

the optimal filter may be realized with finite memory, but in general it

will require infinite memory. The problem is to selectively discard or

save the information to reduce the memory requirements.

Some information will be kept in order to achieve an accurate estimate

now, while some information will be saved that may be used for future esti-

mates. However, in order to make the decision as to what information will

be kept, a full knowledge is needed of what information will be available

in the future. This means that in order to apply information theoretic tools,

the joint probabilities of all future system states and measurements and

current filter states must be computed.2 Except in certain special cases

1. The term is being used very loosely here.
2. An example of this is in Berger [18], Chapter 4.
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this is impossible. Finding the optimal finite memory filter is intrin-

sically a two-point boundary value problem [19].

In order to apply the concepts of information and entropy to filter-

ing, the dynamic nature of the problem must be removed. Galdos and Gustaf-

son did this by solving a static estimation problem at each time step but

thereby made the solution not meaningful.

An important subclass of filtering problems occurs when the system

has reached a statistical steady-state. In the following section this

problem is treated in detail and a formulation developed which allows

the application of information and entropy.

It should be noted that the introduction of more advanced concepts

such as rate distortion theory will not change the noncausal nature of the

theory and generally only serve to complicate and cloud the issues.
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III. Steady-State Reduced-Order Filter Design

Consider the nth order Gauss-Markov process modeled by the dynamic

system

x(k+l) = 0 x(k) + w(k+l)

y(k+l) = H x(k+l) + v(k+l)

k = ,0,i,...
(1)

where:

dim{x} = dim{w} = n

dim{y} = dim{v} = n

and w and v are zero-mean uncorrelated Gaussian white sequences with co-

variances Q and R respectively.1

The problem is to design a linear time-invariant causal filter of the

form

z(k+l)

r(k+l)

e (k+l)

= Az(k) + By(k+l)

= Cz(k+l)

= Tx(k+l) - r(k+l)

(2)

where:

dim {z} = m

dim {r} = m2 < ml

C = m2 x mI matrix

T = m2 x n matrix

The quantities in the filter equations are the filter states z, the estimate r,

and the error E.

1. When no time-reference for a variable is given, it implies an arbitrary
time instant or steady-state condition. While this involves some nota-
tional sloppiness, no confusion should arise.
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Any filter of this type belongs to an equivalence class of filters

which have the same error statistics but differ by a nonsingular state

transformation. The performance measure for the filter is h(E), the error

entropy in the steady state.l There may be several design objectives, such

as minimizing h(s) for a given filter size, or minimizing filter order (ml)

given a maximum tolerable h(E). Of course, it may be that the filter de-

signer has no prespecified criteria but seeks to find a reasonable tradeoff

between filter order and error entropy.

Without loss of generality, suppose

T = [I m2 Xm2 0 m2 x(n-m2)]

and

x = , dim (x) = m2, dim (x) = n-m2 .

That is, some subset x of the full state x is to be estimated.

Suppose some system (1) is in the statistical steady-state with some

filter(2) . Recognizing

h(e,z) = h(x-r,z) = h(x,z) (3)

gives

h(M) = -h(z) +h(c,z) + I(c;z)

= h(x) - h(x) - h(z) + h(x,z) + I(s;z) (4)

= h(x) - I(x;z) + I(E;z)

If r = E(xlz) then I(E;z) = 0 and h(c) = h(x) - I(x;z). 3  (5)

1. See Appendix A for definition of entropy and information.
2. See Appendix B for details of following derivations.
3. The same result may be found using rate distoriton theory (see Berger [18]),

but the added complication is unnecessary. It should be noted that (5)
implies that the Shannon Lower Bound may be achieved for the sensor plus
filter.
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Since h(x) is fixed by (1), the error entropy depends only on I(x;z).

So in order to minimize error entropy we:

(1) Maximize I(x;z) by choice of A and B

(2) Pick C such that r = C z = E[xjz] so that I(e;z) = 0. This assures

that all the information about x in z is used.

Step (2) is a straightforward static estimation problem, so attention may

be focused on step (1). From Appendix A

-1 IAzI IA I
I(x;z) = log

2 A_- A.
x xz

TA.. A
xz z

1 IA I
= - log

2 1 AT I
z xz x xz

1 I A,
= - log2 IA- A -1 A t . (6)

x xz z xZ

Here A = E(zz T ) and A. = E(z T ), and A_ and A are positive definite.
z xz x z

If the filter order is specified, minimizing h(e) is equivalent to

selecting A and B in (4) to minimize

A- - A- A-'A1
X xZ Z xz

where A- is known fromx

A - A - = 0 (7)
x x

and

(8)
I I I

A - Ax A = (I+A x ) H BXZ X

I I I I I I I

A = AA A = BH A H B + (BHA A + AA H B ) (9)
z z x xz xz

The matrices A- and A- may be found by taking the appropriate submatrices
x xz



-14-

from A and A
x xz

An optimization of this type may be very difficult computationally.

Since this is not in general a convex problem, it is important to begin

with an initial guess which is stable and near the optimum. Furthermore,

there may not be a prespecified desired filter order.

In view of these considerations, it would be desirable to have a design

procedure for reducing the order of the filter without involving such a

computational burden. Suppose the steady-state Kalman filter has been

computed:

xk+l = A xk + B Yk+l (10)

States may not simply be removed since generally there is coupling

between the states. This coupling prevents isolation of the information

contribution from each component. In order to apply information theoretic

concepts the problem must be made noncausal. This may be achieved by non-

singular transformation of the filter states so that they are mutually

1
decoupled. For simplicity, suppose the eigenvalues of A are distinct.1

Then let

z = Px

so
^ -1 ^Zk+ 1 = P AP Zk + P By k+l

= A zk + B Yk+l

^ -1
where A = P A P is diagonalized.

1. If there are multiple roots, the Jordan form must be used throughout.
While this involves minor additional complexity, it does not change
the basic approach.
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Since each mode, a component of z (or pair of components for complex

eigenvalues), is decoupled from the other components, the information con-

tained in each mode is restricted dynamically to that mode. Modal reduc-

tion of the filter may be performed with a clear measure of information

loss.

From (6), note that once the matrices

A
z

and A = A - I A-
zlI  z xz x xz

have been computed, it is a simple matter to compute the mutual informa-

tion I(R;z) for any subvector 2 of z, since

I(x;z) = -log2 IA2W

The matrices A- and A21 x are found from Az and A.zlx by deleting the

th
rows and columns corresponding to the deleted modes. The m order sub-

vector 2 of z which maximizes I(R;2) (and consequently minimizes h(s)) is

that which maximizes the ratios of the corresponding principle minors of

Az and Azl .

While this method should be most helpful for large systems, because

of the dimension of the covariance matrices involved, it may be impossible

to compute all minors of a given order. To avoid this, filter states may

be removed individually or multiply until the desired order versus infor-

mation tradeoff is achieved. Of course, removal of m states one at a time

where each one deleted minimizes the one--state information loss will not

in general result in the removal of the m least important states. While no

a priori bounds are available, degradation due to state-by-state reduction
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should be small provided the information loss for each state removed is small.

To reiterate, given a diagonalized filter as in (11), the suggested

procedure involves three techniques:

(i) Modal reduction by deleting filter states while minimizing

information loss.

(ii) Adjustment of filter parameters by performing optimization

using result from (1) as initial guess.

Steps (i) and (ii) may be repeated until a satisfactory design is

achieved. Step (ii) may not be necessary if step (i) is successful.

(iii) Pick C in (2) so that r = Cz = E(xlz) where z is the vector

of filter states and r is the estimate of x. A nonsingular trans-

formation of filter states may be performed if desired such that the

first m2 filter states are exactly the estimates for x.

Certain remarks may be made at this point:

(1) This design procedure has a pleasing interpretation in terms of

familiar frequency domain concepts. The modal reduction involves deleting

poles which have, in some sense, a small effect on the filter shape. Step

(iii) involves picking the zeroes such that the resulting filter is as

close a fit as possible to the original filter. The optimization in step

(ii) adjusts the reduced order filter poles to further improve the fit.

The suggested procedure may be thought of as a generalized pole-zero cancel-

lation. In this light, it is interesting to note the complete decoupling

of the procedure into steps (i) and (ii), followed by step (iii).

1. Recall dim(x) = m2 .
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(2) The measurement vector y may be used nondynamically to improve the

error entropy without changing the design procedure significantly. Then

the output of the filter is given by

r = Cz + C 2y = E(xly,z).

Details are given in Appendix C.

(3) The concepts of entropy and information were useful in developing

the suggested procedure because the dynamic and causal nature of the esti-

mation problem was suppressed.

(4) Equation (5) implies the notion of relative equality of information.

That is, it does not matter how the information about x is gotten, from

past, current or even future measurements. It may initially seem sur-

prising that (5) holds when the sensor is unavailable for design. However,

eq. 5 is merely a relation between covariance matrices for what amounts to

static variables. It is equivalent to

log 1A = log I A - log
SI z

which is, of course, true for any nonsingular matrices A_ and A_ . Because
x x z

the problem is nondynamic, the issue of fixed sensors is circumvented.

(5) Since the problem treated is in the steady-state, the entire procedure

applies directly to continuous-time problems. Only equations (7), (8), and

(9) need be changed (along with the system and filter equations). In fact,

the procedure is applicable to any Gaussian steady-state or static estimation

problem where a reduced filter is sought.

(6) There are serious questions concerning the appropriateness of entropy

as a performance measure. In the case considered here, error entropy h(E)



-18-

reduces to the determinant of the error covariance matrix A , whereas

MSE involves minimizing a trace function of A . There previously have

been no design procedures developed using a determinant measure so it is

difficult a priori to determine the impact of this new approach. It is

interesting to note, however, that Bucy [7] has shown that a necessary

condition for optimality of a MSE estimator is that it maximize the mutual

information between the system and filter states. This is equivalent to

minimizing error entropy.

(7) It must be emphasized that the development in this section had very

little to do with information theory as it is generally applied to communi-

cation systems. Only the entropy and information functions were borrowed.

(8) The apparent success found from using the information and entropy

functions in estimation might suggest their applicability to control prob-

lems. Weidemann [6], using entropy of the state vector as a performance

criteria, derived an equation for the control problem analogous to (4).

However, as he pointed out, the equations for the control problem required

a measure of mutual information between open and closed loop quantities,

which is impossible.

Furthermore, the technique of modal reduction is inapplicable because

due to feedback, the modes of the filter cannot be decoupled. The concepts

of entropy and information seem applicable only to the situation where some

linear function of the state is to be estimated for a system in the steady-

state. This linear function could be a control signal and modal reduction

of the compensator could be performed open-loop. This would give no

guarantee of closed-loop stability, but the procedure might be useful in

some instances.
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Appendix A1

The most often used information quantity is the entropy function

h(X), which, for the n-dimensional random vector X with continuous density

function Px(X) is defined as

h(X) - dX Px(X) loge p (X)

The entropy function gives a measure of the "randomness" or spread

of the random vector X and is analogous to variance. In fact, for the

vector X having the Gaussian probability density

p(X) = [(2) n  R - 1 / 2 exp(- 1/2 X R -Ix)

where R is the covariance matrix, the total entropy is directly related to

the variance, i.e.,

1 n
h(X) = 2 log [(27re)n IRI].

Of course, entropy is a relative measure depending on the coordinate

system, but this does not restrict its usefulness since results always

depend on the difference between two entropies. The terms related to coor-

dinate system thus will cancel.

Other related entropy and information functions associated with a pair

of vectors X and Y which posses continuous joint and marginal densities are

(1) the joint entropy

h(XY) - dXf dY p(X,Y) log p(X,Y)

(2) the conditional entropy

h(X~Y) dX -d Y p (X,Y) log p(X[Y)00 f-00

1. This discussion is drawn from [16], [20], and [21].
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(3) the mutual information

I(X;Y) = dX WdY p(X,Y) log p(X,Y)
- Px (X) py (Y)

Some useful properties of these functions are:

(1) I(X;Y) = h(X) + h(Y) - h(X,Y)

= h(X) - h(XIY) = h(Y) - h(YIX)

> 0

(2) I(X;Y) > I(X;AY)

where A is a linear transformation. Equality holds when A is non-

singular.

(3) If X and Y are jointly normal with covariance

A B1

BT C

where A = E[XXT ] , B = E[XY T ]

1
I(X;Y) log

1

2= log

1
= - log

2

and C = E[YYT ] , then

IAI IBI
A B

B C

IAI

IC - BTA1B

IA -BC-lBT

(4) The information I(X;Y) is mutual. It is equally a measure of

the information about X in Y and about Y in X.

I(X;Y) = I(Y;X).

m
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Appendix B

There are certain relationships between entropy and information

which play a fundamental role in the application of these concepts to

estimation. The most important of these will be developed and discussed

below.

Consider two continuous random vectors X and Z with joint density

pxz(X,Z). Suppose an estimate X = F(z) of x given z is desired, where the

performance measure to be minimized is the entropy of the error vector

S = x - x.

Since

pxz(X,Z) = P C(X - F(Z),Z)

=P (X - XZ)

and therefore, from the definition of joint entropy

h(E,z) = h(x,z).

From the identity between entropy and information

I(E;Z) = h(S) + h(z) - h(E,z)

= h(E) - h(x) + h(x) + h(z) - h(x,z)

= h(e) - h(x) + I(x;z)

Rearranging,

h(E) = h(x) - I(x;z) + I(E;z)

Now, suppose that the joint density

pxz(X,Z) = pzIX(ZX) p y(X)

is not entirely specified; that px is fixed but that pz x is variable.

This is analogous to building an estimator where the conditional density

pz x of the random vector from which the estimate x = F(z) is to be generated
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is available for design. (Within constraints imposed by the particular

problem.)

Equation (1) holds for any choice of pz x and F and can be used to pro-

vide insight into their selection. The first term on the right hand side

is just the a priori entropy of x.

The other terms indicate that the error entropy is proportionally

reduced by the amount of information contained in z about x and increased

by the amount contained in z about E. This implies that pzIx and F may

be designed separately. That is, pzlx is chosen so as to maximize I(U;z).

Then F is chosen so that all the information in z about x is used in the

estimate. When E and z are independent

I(E;z) = 0.

For jointly Gaussian variables this simply means letting x = E(xlz).

This decoupling of the "estimation" problem is a natural consequence

of the definitions of entropy and information.1 It will not generally be

too helpful since the problem can usually be solved directly much more

easily.2 However, as shown in Section III, in some cases this decoupling

leads to a useful design procedure.

Note that this develoment has dealt only with random vectors and no

references were made to sources or dynamical systems.

1. Weidemann [16] and Weidemann-Stear [13] derive a similar equation.
2. As in the case of Galdos-Gustafson [14].
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Appendix C

The measurement vector y may be used nondynamically to reduce

the error entropy without changing significantly the design procedure

developed in Section III. The relevant equation is

h(-) = h(R) - I((y,z);E) + I((y,z);E)

The last term may be made zero by letting

r = clZ + c 2 y = E(xly,z).

The second term is found from

I((y,z) ;R)

A A
y yz

IAlx AT A
1 x yz z

= -log
2

S Cxy xz

Aý A, AyA

S log y z yz y yz
2 lyl 0 e e l

y z yz y yz

where

S -1o = A - A_ A-
y y xy x xy

=-1
6yz Ayz A A-  A-

A' ~ 1

0 = A - A- A A-
z z xZ x XZ.

So the procedure developed in Section III will carry through exactly

with only the numerical matrices involved being changed.
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