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Chapter 1

Intruduction

1.1 General Remarks

In recent years there has been impressive progress in the

theoretical understanding of the structure, representation and

control of linear multivariable systems. In contrast,workers

in the field have paid very little attention to the computa-

tional aspects of systems problems. This does not mean that

algorithms for the solution of systems problems have not been

developed. But most of the algorithms that have been proposed

have never been seriously studied as far as stability, conver-

gence and similar issues are concerned.

In this thesis we undertake a study of solution methods

for Lyapunov's equation

PA + A'P = -Q (1.1)

using the methods of modern algebra. The emphasis is on the

use of finite algebraic procedures which are easily implemented

on a digital computer and which lead to an explicit solution

to the problem.

1.2 Importance of Equation

It is well known that this is an important equation in the

study of stability of linear finite dimensional time-invariant

systems. If Q is symmetric and positive definite and if A is a

stability matrix (real parts of eigen-values of A strictly

negative) then the unique positive definite solution to (1.1)

is given by the convergent integral.
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P = eA't.Q.eAtdt. (1.2)

0

F41

In Optimal Control it is frequently desired to evaluate

quadratic integrals of the form

J = f x'(t)Q-x(t)dt (1.3)

0

under the constraint that x(t) satisfies

k(t) = Ax(t) x(0) = c

If P is the solution of equation (1.1) we have that

J = c'-P.c. (1.4)

Stochastic control is another area of importance in the

evaluation of covariance matrices in filtering and estimation

for continuous systems.

The need for solving this equation also arises when one

uses Newton's Method to solve the Algebraic Riccati equation

PA +- A'P + c'c - PBR 1B'P = 0 (1.5)

where R is positive definite.

If (A,B) is a controllable pair and (A,C) an observable

pair then there exists a unique positive definite solution P to

(1.5).

In [10] it is shown that if P k, k=0, 1,2... is the

unique positive definite solution of the linear algebraic matrix

equation

AkPk + PkAk c c'c + LkRLk = 0 (1.6)

-- p-:k K-



where recursively,

Lk ' 1B'Pl k = 1,2,...

Ak = A -BLk

where L 0 is chosen such that the matrix AO -BLisa

stability matrix then

L) P L Pk+l _ Pk k 0, 1, 2,...

ii) lim Pk = P

k -

Equation (1.6) with k = 0, 1, 2, ... is a Lyapunov equation.

1.3 Methods of Solution

The Lyapunov equation has many areas of application and

therefore a great deal of effort has been put in both the theo-

retical as well as its computational aspects. There have been

devised several methods of solution which can broadly be charac-

terized as either Direct, Transformation or Numerical. An

exposition accompanied by error analysis of several such methods

is contained in [1, 2 1

The basic drawback with such methods is the fact that the

solution obtained is an approximate one. This becomes frustra-

ting when the problem is ill-conditioned. Furthermore if a

Riccati equation is to be solved which requires the solution of

several Lyapunov equations the matter becomes even more compli-

cated. Not only is the solution an approximate one but nothing

is said about the accuracy of the approximation.

The need for improvement is quite evident and in certain

cases demanded. In this thesis we have developed new algorithms

for obtaining the exact solution of the Lyapunov equation.



1.4 Summary of Thesis

Let A'P + PA = -Q be a Lypunov equation with A being a

stability matrix and both A and Q n dimensional matrices

with real entries. Let R[x,yl be the ring of polynomials in

x and y over the reals R, and Pl be the set of all nxn square

matrices over the reals. The solution P of this equation is

given by

P = fA(q(x,y),Q)

where q(x,y) in R [x,y]

and fA: R[x,y] x MJ---M defined as

fA(h(x,y) ,M) -= h (A')J4' (A)k

j,k

This method is based on an important paper by KALMAN

191 . Kalman's concern was the characterization of polynomials

whose zeros lie in certain algebraic domains (and the unification

of the ideas of Hermite and Lyapunov). In this thesis we clarify

and complete some ideas contained in the paper and extend the

results by showing that the same ideas lead to finite algorithms

for the solution of Linear Matrix Equations.

The thesis is divided into four chapters. In chapter 2 we

introduce the algebraic structure in which we will be working and

provide proofs of several theorems related to a linear matrix

equation. This chapter provides the basis for chapter 3 where

the computational algorithms are presented. In chapter 4 we list

the computer programs used in implementing the algorithms and

present several, numerical examples. In chapter 5 we present

some generalizations and extensions.



-10-

Chapter 2

Algebraic Structure

2.1 Introduction

This chapter provides the theoretical basis on which our

method for solving the Lyapunov Equation lies.

There are two main themes. The first one is the association

of a unique matrix with every polynomial in R[x,y] and the notion

of a positive polynomial. Lemmata (2.1),(2.2),(2.3)_ and-part

(iii) of Lemma (2.4) *refer to this idea. The above four Lemmata

are stated in section (2.2) but their proof is presented in

Appendix A.

The second theme is that of the action fA which is examined

in section (2.3).

The above two themes are used in proving the two theorems in

section (2.4), which are related to the Lyapunov Equation.

2.2 Four Lemmata from the Theory of Matrices and Polynomials

Let R be the field of real numbers R[x] the ring of polynomials

in x over R and R[x,y] the ring of polynomials in x and y over R.

The elements of R[x] are denoted as p(x) and the elements of

R[x,yl as h(x,y). R[x] is a subring of R[x,y].

Suppose that p(x,y) is in R[x,y] and l(z) is the column vec-

tor

l(z)=

Lzn-1 

where n is one plus the largest power of p(x,y), in either x or y.



Then we can write

p(x,y) = 1' (y) C (p) 1 (x)

for some unique nxn matrix C(p)=(aij). (The element aij is the

coefficient of the term x-l-yi l- 1 in p(x,y)). If n is allowed

to take a value larger than the one defined above for any par-

ticular p(x,y) the uniqueness of C(p) is lost.

We therefore can associate a unique matrix C(p) with any poly-

nomial p(x,y). The reason behind this association is the intent

of assigning polynomials to value classes.

Definition 2.1. A polynomial p(x,y) in R[x,yl is positive if

and only if C(p) is (i) symmetric and (ii) positive definite.

Let · denote the ideal (p(x), p(y)) in R[x,y].

= g(x,y) g(x,y) a(x,y)q(x)+b(x,y)p(y) for any
a(x,y),b(x,y) in R[x,y]

Let R[x,y]/O denote the associated quotient ring. The

elements of R[x,y]/O will be thought of as cosets or as equi-

valence classes (whichever is more advantageous at a given situa-

tion) denoted as O+ p(x,y) or [p(x,y)] respectively. We shall

denote by p(x,y)modO the polynomial of minimal degree in the equi-

valence class [p(x,y)].

Let Rm(x) denote the vector space over R of all polynomials

of degree less than m in R[x].

Lemma 2.1 . Let p(x,y) be a polynomial in R[x,y] with C(p) being

an mxm matrix . Then p(x,y) is positive if and only if there

exist polynomials r 1(x),....nm(x) such that

------ ·---- ·- ~~~ m(X such that--- --- '··------:7--
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m

p(x,y) = ti (x) i (Y)

1
where {~i(x)n are a basis for Rm(x)

Definition 2.2. Two polynomials a(x), b(x) in R[x] are

called relatively prime if there exist polynomials Tu(x) and

Au(x) such that Tu (x)a(x) + Au(x)b(x) = u where u is a

unit in R[x].

Lemma 2.2. Let n be the degree of p(x). If p(x,y)modO is

positive of degree n-l in both x and y then (o(x)o(y)p(x,y))mod'

is positive of degree n-l in x and y, if and only if o(x) and

.p(x) are relatively prime.

Lemma 2.3. Let X1,X 2, ... Xn be complex numbers which are

distinct and have positive real parts. Then the nxn matrix

An= (+ is hermitean (An = An where (*) the hermitean

adjoint) positive definite.

Definition 2.3. A polynomial g(x,y) is called symmetric if

C(g) is a symmetric matrix.

A polynomial g(x,y) is symmetric if g +(x,y) = g(x,y)

where g (x,y) is that polynomial obtained from g(x,y) by

interchanging x and y.

1Lemmata 2.1, 2.2 and 2.3 correspond to Lemmata 2, 3 and

Main Lemma in [9] respectively, 2.1 and 2.3 being the same,

with the idea of 3 being borrowed from KALMAN [9], to arrive

at the statement of Lemma 2.2. Lemma 2.4 captures the essential

idea of the Theorem in [9]. In Kalman's paper only sketches of proofs
are given. Here we provide complete proofs.



ILemma 2.4. Let A be an nxn stability matrix with

(P2(X) det (Ix-A) and let -= (p2 (x), 2 (Y))' Define

(Pl(x) - P2 (-x) (2.1)

02 (x) ' 2(Y)-l ( X)l(y)
P (x,y) - (2.2)

x + y

i) Polynomials Ql(x), (P2(x) are relatively prime. That is there

exist Tu(x), Xu(x) in RCx,y] such that

Tu(x)pl(x) + Xu(x))Q2 (x) = u (2.3)

where u is a unit in R[x,y].

ii) Pc(x,y) is an element of R[x,y]

iii) Let qu(x,y) = Tu(x)Tu(y)Pp(x,y)modO (2.4)

Then qu(x,y) is positive of degree n-l in both x and y.

2.3 Defining the action fA

Let A be some nxn matrix over R with P(x) - det(Ix-A)

being its characteristic polynomial. Let Mi be the set of all

nxn matrices over R.

We define the action fA: R[xy]xM'*-M in the following

manner.

fA(h(x,y),M) - hjk(A')J' M(A)k (2.6)

j,k

These are some properties of this map.

i) fA(U,M) = uM (u a unit in R[x,y] )

ii) fA(g(x,y) + h(x,y),M) = fA(g(x,y),M) + fA(h(x,y),M)

iii) fA(g(x,y)q(x,y),M) = fA(g(x,y),fA(q(x,y),M))

= A rY qxy )/fA(g(x y), D') _



-14--

iv) fA(h(x,y),M) = fA(h mode, M)

V) fA(h(x,y),Ml+M2)= fA(h(x,y),M 1) + fA(h(x,y),M 2)

Property i) follows directly from the definition.

Property ii) is shown as follows:

Let p(x,y) - g(x,y) + h(x,y)

Pij = gij + hij

fA(P(X,y),M) = Pij (A')i- M *(A)J

ij

ij-- (gij + hij) ((A')i- M -(A)i)

g 4ij (A')i1. M · (A) J
ij

+ h. i (A')i- M (a)

1 1

fA(g(x,y) ,M) + fA(h(x,y),M)

Property iii) is shown as follows:

Let p(x,y) = g(x,y)q(x,y)

pk = 1 gihqlm
Jk

i+l=j
h+m=k

fA(p(xy),M) = Pjk (A')j- M (A) k
jk

jk i+l=j
h+m=k

fA(g(x,y),M) = gh (A') M (A) h



Now

i(g( xy), fA(q(xy),M) ' 2]i ( qlm(A') 1,K1 (A)m (A)h

ih lm

Ei h (lm gihlm (A')i+i'M' (A)m-h)

suppose that we write this sum differently

let j il k - m+h

Then

EA (g(xy),fA(q(xy),M)) = E ( 9ihqIm (A)I.(A)k
jk i+l=j

fA(p(x,y),M)

similarly fA(p(x,y),M) = fA(q(x,y),fA(g(x, y),M))

Property iv) is shown as follows:

Let h(x,y) = hl(x,y)w(x) + h 2 (x,y)q(y) + r(x,y)

This is obtained by first dividing h(x,y) by (p(x) and fol-

lowing that dividing the remainder by p(y). This means that

the degree of r(x,y) in both x and y is less than n. This

decomposition of h(x,y) is unique, and we also have that

r(x,y) = h mod C

fA (h(x,y), M) = fA(hl(x,y)p(x)+h2(xy)x (y)+r(xy) , M)

fA(hl(x, y),fA((x),M))+fA(h2(xy),ffA( ((y) M))

+fA(r(x,y),M)

fA(p(x)' M) = M-Q(A) = O

f (c:)(y), M) = p(A')-M = 0

by the Cayley-Hamilton Theorem.
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Therefore

f (h(x,y),M) = fA(h modo,M)

Property v) is shown as follows:

fa(h(x ,y), M 1+M 2) = hij (A')i(Ml+M2) AJ

ij

= hij (A')iMlAJ+hij(A')iM2A'

ij

fA(h(x,y),M1)+ fA(h(x,y),M 2)

The definition of fA paves the way for the construction

of a particular module. Define the product (*) between cosets

+ +- h(x,y) and nxn matrices M by:

(~+h(x,y))* M = h i (A') !MA]
ij J

with the outcome in M.

Property iv) ensures that the product is well defined since

it does not matter which element in O+h(x,y) we use.

Square nxn matrices under addition form an abelian group.

Property v) makes certain that

O+ h(x,y)* (A+B) = (,+h(x,y))*A+(D+h(x,y)*B.

Property iii) ensures that

(D-h(x,y))* [(D+g(x,y))*M]= [ (D+h(x,y)) (~+g(x,y))] *M.

And property ii) ensures that

[(D+h(x,y))+(,+g(x,y)) ] *M = (O+h(x,y))*M + (D+ g(x,y))*M.

The ring R[x,yl/D has a nuit element c+1 and we have from

property i) that

(o+1) *M =M.

The above can be summarized in
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Lemma 2.5. The set M of square nxn matrices is a module over

the quotient ring R[x,y]/O.

Even though Lemma 2.5 will not be explicitly called upon

in any of the subsequent proofs it none the less gives great

insight in what is essentially taking place and the rationale

behind this method of approach to the solution of

PA + A'P = -Q.

The matrix P is operated on by the matrix A. This can be

expressed as

(O + (x+y))* P = PA + A'P = -Q.

Suppose that a multiplicative inverse of element 'O+(x+y)

is found in R[x,y]/O denoted by 0+(x+y)l such that

(D +(x+y)) (D +(x+y)-1 ) = 0+1

We would then have the following:

(0+(x+y)-l)*[o +(x+y)*P] = (+-F(x+y)-l)*(-Q)

Because of the properties mentioned above this can be written

as

[ (c+(x+y)- 1 ). (D+(x+y) ]iP = (D+(x+y)-1 )*( - Q)

and therefore

P=(+ (x+y) -l)*Q

2.4 Algebraic proofs of two theorems related to a Linear Matrix

System.

We now have all the necessary algebraic construction to

prove the following two theorems.

Theorem 2.1. Let A be an nxn square matrix over the reals.

A is a stability matrix if and only if for any symmetric positive

definite matrix Q there exists a unique symmetric positive
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definite solution P to the matrix equation

PA + A'P =- -Q (2.7)

Theorem 2.2. Let A be an nxn square matrix over the reals.

If A is a stability matrix and (A,C) is an observable pair

then the matrix equation

PA + A'P = -C'C (C is pxn) (2.8)

has a unique symmetric positive definite solution P.

Proof of Theorem 2.1. Suppose that A is an nxn stability

matrix. We claim that for any Q1

p 21. fA(qu(x,Y)'Ql)

is the unique solution of PA + A'P = -Q1' where fA is defined

as in (2.6) and qu(x,y) as in (2.4). Using the properties of

action fA we have

PA + A'P = u2 (fA(qu(x1Y)Q1)'A + A''fA(q u((Y)' Q 1)

+ (fA(x,fA(qu(x,y),Ql))
u

+ fA(Y,fA(qu(xy),Q1) ) )

u ' (fA((x+y),fA(qu(x,y),Q1)))

u2 ' (fA((x+y)qu(x,y),Q1))

u 2 (fA( (x-y) q (xy)modOQ1) )

'(u 2 ('Q 1 )= Q1

Uniqueness follows by observing that the linear operator

L: Rn2 2 defined by

L(P) - PA +A'P
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i.s onto since no restriction was placed on Q1. This implies

that L is one-one.

We now show that P is positive definite.

Since qu(x,y) is positive (Lemma 2.4) this implies that

(Lemma 2.1) there exist polynomials {ni(x)} such that

qu(X'Y) = Wi(x) i (y )

where {iTi(x) is a iasis for Rn(x).

Therefore

P 1 f (qu (x,y),Q)

=2 A u

- frA ')( Q Ei( ) Q )

i=1

Since Q is symmetric from the uniqueness of the solution

P we also have P being symmetric. Since Q >O we have from

the last expression that P is at least positive semi-definite.

Suppose therefore, that there exists an n-vector z7O

such that z'Pz-O. this implies that ni(A)'z-O for all 1< i <n.

The polynomials {ni(x)} form a basis for Rn(x). Therefore

there exist constants kl,k 2,...k n such that

n

k..(x) = 1
, i i(

i=l
n

=-> f.( kiTi( x), I)=I (I nxn identity matrix)

n

= kini (A) = I

i -l



=-> ki t i(A) 'z = I-z

i=l

Since ni(A) = 0 for all i, the left hand side of the

above equality is zero. This is a contradiction since I is

positive definite. Therefore P is positive definite.

Suppose now that for any symmetric positive definite

matrix Q there exixts a symmetric positive definite solution

P of (2.8).

Let z be some eigenvector corresponding to the eigenvalue X.

-z' Q.z <0 (z denotes complex conjugate)

z'(PA+A'P)z < O

X' p(Xz) + (XZ')]Pz < 0

=> (X+X) z'Pz < O

Since P > 0 this implies that X+X < 0 (ie that

Re(X) < 0). Therefore A is a stability matrix. This completes

the proof of Theorem 2.1.

Proof of Theorem 2.2.

Suppose that A is an nxn stability matrix. Using Lemma 2.4

this implies that

qu(x,y) = Tu (x)Tu(y) Pp(x,y) mod D

is positive. By Lemma 2.1 qu(x,y) can be written as:

qu(x,y) = i(x)ni(Y)

i-=l

with {Ti(x)J being a basis for Rn(x). In a way similar to

the proof of theorem 2.1 the solution P of (2.8) exists and can

be written as :
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P = u- fA(qu(xy) ,C'C)

12 - > i( A ') C'Cni(A).

u
i=l

Since C'C > 0 we have that for any n-vector z and 1 £i L n

z' i (A')C'Cri(A)z = ICi (A) z I> 0 

where ilzil =( zi 2 )½ . This means that P > 0.

i-l

Suppose then that there exists z3O such that z'-P-z = 0.

This implies that

ICrni(A)ZI = 0 for 1 < i < n

C-i (A)z = 0 for 1 < i < n

Since Ini(x)l are a basis for Rn(x) there exists an nxn

matrix K such that:

rt1(x) 1

1 2 (x) x

K'

n-i
Un (x) x

which is shorthand notation for the n equations

ki1 l (x) + ki 2n(x) +. * .+ kinn (X) = x i-

for 1 < i < n

with (kilki2 ... kin) being the ith row of K.

Now then

fA(kil.l(x) + ki2Tr2 (x) +... + kinrn(X), I )=A

n

Z kij C j(A) = CAi-l 1 < i <n

j=1

by multiplying both sides by C.
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Define the operator H : Rn -.. Rnp by:

C

CAH(w) =: CA2 · w

CAn-1

Since (A,C) is an observable pair the null space of H

is 0.

Since C * ni(A) = O 1 < i n ,this implies

n

k. C 0(A) = ° for all 1 4 i 4 n

j=1

> H(z) = 0

This is a contradiction since z f 0 and the null space

of H is 101 . This completes the proof of Theorem 2.2.

Theorem 2.2 is not an if and only if statement. But ad-

ding the condition that matrix C'C is invertible we have

Lemma 2.6. Let A be an nxn square matrix, over the reals.

Let P be the unique positive definite solution of the matrix

equation

PA + A'P = -C'C (2.9)

where C'C is invertible. Then A is a stability matrix and

(A,C) is an observable pair.

Proof: We have that the eigenvalues of C'C are non-negative.

Since C'C is non-singular this implies that none of them is

zero and threfore C'C is positive definite. It then follows

as in the proof of Theorem 2.1 that A is stability matrix.

We now show that (A,C) is observable.
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The solution P of (2.9) can be written as:

p 1 f (qu(x,y), C'C)

where q u(x,y) as in (2.4), is positive. From Lemma (2.1) we

have that there exists In (x)t which is a basis for Rn(x) and

qu(xy) 2 j (x) j (Y)

j=l

~> p,_ 2 1 f rTt; (x)TTj (y), C'C)

j=l1

.-. ] fA(nj (x)Tj (y) C'C)

U 
-1

j=l

j=i-

Since P >0 we have that

z'Pz r 1. j (A) 'CCT (A) Z - Cj (A) zil >o 

Thereforeif z / 0 we must have II Cj (A) z > 0 for at least one

j in the range 1 L jL n. Suppose that IICnk(A)zll>o which

implies that CTk(A)z / 0.

Now rtj (x) } is a basis for Rn(x) ,therefore there exists

an invertible nxn matrix K such that;

n1 (x)

TL2 (x)

n (x) n -l
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The above represents n equationsof the form

kilnl(X) + ki2 n2(x) +...+ k in n(x)= 
'in

with (kil, ki2,...kin) being the ith row of K.

Therefore:

fA(kilnl(X)+...+kinnn(X)II) = A

kilrl(A) + ki2 n 2(A) +...+ kinnn (A) =A

Multiply both sides by C.

- ---> kilC-il(A) +ki 2C'. 2(A)+...+ kinC-nn(A) CAi

for 1 < i < n

Let A be the matrix

k 1IP k 12Ip ... klnIp
k2lIp k 2 2 IP k2nIP

A=.

knlIP kn 2.Ip ... knnIp

where Ip is the pxp identity matrix.( Matrix C is pxn).

We then can write the above set of equations as:

Cr 1 (A) C

Cn2(A) CA L

Cn (A) CA i

We can think of matrix L as a linear operator from Rn to

RnP. We wish to show that L is one- one, (i.e. that the

null space of L is O I).

By construction matrix A is invertible since K is in-

vertible, which means that if w / 0 an n-pxl vector then

A-w 5 O.



Let w be the vector:

Crt1 (A) z
Crt2 (A) z

W=

Cnn(A) z

where z z 0 is an nxl vector. We do have that w f 0 and

therefore Aw f 0. But

C *Z
CA z

A'W= .L-z

CAn-l.Z

which implies that the null space of L is {Otand that (A,C)

is an observable pair.
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Chapter 3

Computational Algorithms

3.1 Introduction

The proof of Theorem 2.1 is constructive and purely

algebraic. It therefore gives great insight into how a com-

putational algorithm should be constructed, for obtaining the

solution P of an equation of the form

PA + A'P = -Q (3.1)

where A is an nxn stability matrix. The algorithm so con-

structed, basically involves obtaining P2 (x) the character-

istic polynomial of A. Using the Extended Euclidean algorithm

a polynomial Tu(x) as in (2.3) can be obtained. Having these

polynomials, the polynomial P (x,y), qu(x,y) and the solution

P are formed.

By restricting the field of interest R, to that of the

rational numbers F, the procedure for obtaining the exact

solution of (3.1) is fully implementable, using the remark-

able facilities provided by the computer programming system

MACSYMA available at M.I.T.

Three algorithms are presented here, the Rational, Integer,

and Modular, which are based on the constructive proof of

Theorem (2.1).

MACSYMA (Project MAC's SYmbolic MAnipulation System) is

a large computer programming system used for performing sym-

bolic as well as numerical mathematical computations. This

would easily allow us to make parametric studies.
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3.2 r'The Rational Algorithm

This algorithm is a mere implementation of the steps

outlined in the proof of Theorem (2.1).

R1) Obtain p2(x), the characteristic polynomial of A.

?2 (x)P 2 (y) - (Pl(X)(Pl(y)
R2) Set P p(x,y) x + y

R3) Using the Extended Euclidean Algorithm obtain Tu(x) and u.

R4) Set qu(x,y) - T (x)T u (y ) P ( x , y ) m o d O

R5 ) Form Pu = fA(qu(x,y),Q)

R6) Set P -2 ' Pu

3.3 The Integer Algorithm

Multiplying A and Q in (3.1) by a suitable positive integer

an equivalent Lyapunov equation

PA + AP =-Q1 (3.2)

is obtained with Al, Q1 having integer entries. Suppose

that (p(x) is the characteristic polynomial of Al. It is clear

that (p'(x) has integer coefficients and it can therefore be

considered as an element of Z[x,y] (the ring of polynomials

in > and y over the Integers).

Let

(X) =(P (-x)

(x) (Y)) - i W(x)Pi(y) (3.3)

x + Y

We clair!m that P~(x,y) is an element of Z[x,y]. Suppose

that n is odd. it is clear that for n=l or n=3

x + y xn + yn
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and that the quotient is an element of Z[x,y] . Suppose

then that for all m <n-l we have that x+y x2m+l y2m+l

and that the quotient is an element of Z[x,y]. Show that

hypothesis is true for m=n.

x2 n+l+y2n+l = (x2+y2) (x2n-l+y2n-1 ) - x2 y 2 (x2n-3 + y2n-3)

From the induction hypothesis we therefore have that

x + y | x 2 n +l + y2n+l and that the quotient is an element

of Z[x,yl. For the case when n is even we have that

x + y xn - yn

and that quotient is an element of Z[x,y]. Following the proof

of Lemma 2.4 ii) we have that P (x,y) is an element of Z[x,yl.

It is also clear that there exist polynomials T (x), X'(x)

and integer u' such that

T u(x)pi(x) + Xu(x))p(x) = u' (3.4)

with TU(x) X (x) hav~ing integer coefficients.

Since the leading coefficient of qp(x) is unity division

by '2(x) is possible. If we then let 0' be the ideal

(cp(x), (p(y)) in Z[x,y] we have

qu(x,y) = T (x)T' (y) P (x, y)modl'

being an element of Z[x,yl. Consequently

P = f A(q'(xy) Q1) (3.5)

has integer entries with the solution of (3.1) now being

expressed as:

1 · p
(u')

In (3.4) it is required that polynomials T u(, Xu(x) and

integer u' be found such that (3.3) is satisfied. Existence
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can be shown in the following manner.

Let

(p'(x) = a0xn + alxn-l+...+ an. Define S to be the

'nxn matrix.

al ao 0 0 0 0 ... O
a3 a2 a1 a0 0 0 ... 

= a5 a 4 a3 a2 a1 a0 (3.6)
S (3.6)

a2n-1 a2n-2 .. .... ... ... ... a

where ak = 0 for k;n and a0 = 1. Since cP(x) is a stability

polynomial,S is positive definite ( cf. BROCKETT). Since

det S .> 0 it is clear that for each allowable integer value

of u' there exist unique polynomials Tu(x) A (x) of degree

less than n such that

Tu (x) (x) + X(X) 4(x) = u'

If T' (x) = dlxn- + d2xn-2 +...+ dn then

d = M1 u' i L ni 2 det S

where Mni=det Sni with Sni the (n-l)x(n-l) matrix obtained from

S by deleting the nth row and it h column.

By letting u'=k-(2 det S), with k an integer greater than zero

we have u' in Z and T u(x), XA(x) in Z[x,y].

The Integer algorithm proceeds as follows.

I1) Obtain A1, Q1

12) Find ¢2(x) the characteristic polynomial of Al

13) Set P' (x,y) = (p (x)P, (y) - P (X)PI (y)

x + y
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14) Find T' (x) and u'

15) Set q~(x,y) = Tu(x)Tu(y)P (x,y)mod0'

16) P = fA 1 (q(xy), Q1)

17) Set P = 1 pu
(u')2

Doing all calculations in integer arithmetic may save

time since greatest common divisor computations will not be

performed in intermediate steps.

3.4 The Modular Algorithm

The integer algorithm paves the way for a modular approach

to the solution. Suppose that p is a prime that does not di-

vide 2-det S with S defined in (3.6). If Al = (aij) and

Q1 = (qij) let

pA = (aij mod p)

pQ = (qij mod p)

both A and pQ being considered as matrices over Zp, the field

of integers modulo p. Let Zp[:x,y] be the ring of polynomials

in x and y over Zp.

Let

pP2(x) = det(Ix-pA) p02(x) in Zp[x,y]

and pl (x) = p2 (-x)

It can be easily shown that

p2(Xx) = (P(x) mod p

pl (X) = (p(x) mod p

where the notation (p'(x) mod p means: reduce each coefficient of

202(x) modulo p considering the derived polynomial as an element

of Zp x,y].
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Let

p('y)2(X)pP2 (5Y) - pPl(X)pI l (PY)
P q(xy) 

x + y

where x+y is now thought as an element in Zp[x,y] , the div-

ision done modulo p and pP (x,y) being an element of Z [x,y].
P

It follows that there exist polynomials pTu(x),p u( x ) in

Zp Ix, ]v' .nd pu in Zp such that:

pTU(x)p(Pl(x ) + p WU(X ) p) P 2 (x) pU

where:

pT u (x) = T'(x) mod p
P u U

p u (X) = , U(x) mod p

pu u' mod p

!'~et pc be the ideal (p~ 2(X),p( 2 (y)) in Zp[x,y]

and

pq (x,y) T (x) T (y) (x,y) mod pD
u

= e0 0 + e 1 0 y+ e0 1 x +...+ e(n-) (n-l)xn- 

we have that

pqu(xy) - q' (x,y) mod p

Let

Pu =k ekj((pA')k pQ (pA)J

with all operations done modulo p.

If

P* - (gij) in (3.5) then

pP = (gij mod p).
Pu ij P

Now if P , pu are obtained Fo(r a sufficient number of
p u, P

primes, the Chinese Remainder Theorem (cf. Knuth) can be

used to find P* and u' making it possible to obtain the solution
U
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P_ 1 *.
- 2 u

(u')2

The Chinese Remainder Theorem is used in the following

manner. Let ml and m 2 be relatively prime so that

ml> m2. Let ul=u mod m 1 and u 2=u mod m2 where 0_ u.<mlm2.

If c,k are integers such that

c- m l+k m 2 = 1

then

u = ml ( [Cc(u2 -u1 )]mod m 2) + u1.

Suppose now that 1 = Pl'P2 --Pn-l, m2=pn where Pn is the nth

prime used. If u is some integer for which we have u 1 and u 2

then we may obtain u mod ml-m 2 by the above procedure .

The way by which we ensure that P* has been constructed

is, by checking element wise at each iteration whether

P*-A + A'P* = -Q
u u

The reason why the selected primes p must not divide

2'det S is because this guarantees that pl(X), p~2(x) are

relatively prime over Z px,y].

Since considerable coefficient growth-. takes place in

intermediate computations of the Integer Algorithm it may be

advantageous to implement the Modular Algorithm.

The Modular Algortithm

M 1) Obtain pA,pQ

M2) Let p(P2(x) = det (Ix-pA)

M 3) Set P (x,y) = p)2(X)p~2(y) -p l(x)pl(y)

x + y
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M4) Obtain pTu(x) pU

M5 ) Set pqU(x,Y) pTu(X)pT (y) P mod p'

M6) Obtain pP

M7) Repeat steps A11-M 6 for a sufficient number of primes

and by use of the Chinese Remainder Theorem find P*, u'.

M8) Set 1

(u2 u
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Chapter 4

Computer Programs and Numerical Results

4.1 Introduction

The three algorithms presented in chapter 3 have been pro-

grammed on the extremely versatile computer programming sys-

tem MACSYMA available here at M. I. T. Each algorithm has

been programmed as a FUNCTION on MACSYMA. The function

SLEAMR(N, PA, PQ) corresponds to the Rational Algorithm, the

function SLEAMI (N, PA, PQ) corresponds to the Integer Algorithm

and function SLEAMM (A,Q,PR,N,PA,PQ) to the Modular Algorthm.

Evaluating each function at some arbitrary values of their

arguements one obtains the solution of the corresponding

Lyapunov Equation. We proceed now to explain this in more

detail. (SLEAM stands for, Solution of Lyapunov Equation using

Algebraic Methods.)
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4.2 The Function SLEAMR

Purpose:

The value of this function is the solution of the

Lyapunov Equation

PA +A'P = Q (4.1)

where A and Q have rational entries, with A being a stability

matrix and Q symmetric.

The arguements of the function

N = the dimension of the A matrix

PA = the A matrix

PQ = the Q matrix

By evaluating SLEAMR at N,PA=A and PQ=Q (ie SLEAMR(N, A, Q))

one obtains as the value of this function the solution of (4.1).

This is done using the Rational Algorithm.

The definition of function SLEAMR(N, PA, PQ)

is shown in Table(4.1)

Figure 4.1· 

Figure 4.1
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4.3 The Function SLEAMI

Purpose:

The value of this function is the solution of the

Lyapunov Equation

PA + A'P = Q (4.2)

where A and Q have integer entries, with A being a stability

matrix and Q symmetric.

The arguements of the function.

N = the dimension of the A matrix

PA = the A matrix

PQ = the Q matrix

By evaluating SLEAMI at N, PA=A,PQ=Q (ie SLEAMI(N, A, Q))

one obtains the solution of (4.1). This is done using

the Integer Algorithm.

The definition of function SLEAMI (N, PA, PQ) is given

in Table (4.2).
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4.4 The Function SLEAMM

Purpose:

The value of this funcion is the solution of the

Lyapunov Equation

PA + A'P = Q (4.3)

where A and Q have integer entries, with A being a stability

matrix and Q symmetric.

The arguements of the function

N = the dimension of the A matrix

PA= A = the A matrix

PQ= Q = the Q matrix

PR = A LIST containing primes.

By evaluating SLEAMM at N, A, Q PR (ie SLEAMM (A, Q,PR,

N, PA, PQ)) the solution of (4.3) is obtained as the value of

the function. This is done using the Modular Algorithm.

As the computation progresses an integer is printed out show-

ing the number of primes used so far. One should make sure

that PR contains enough primes for the computation.

A List of primes is given in Table(4.3). The definition

of the function is given in Table (4.4).
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4.5 A Numerical Example

The example corresponds to the evaluation of

G = x'(t)' Q *(t)dt

where x(t) is a solution of

x(t) = Ax(t) x(O) = c (4.4)

The system modeled by (4.4) is given in Figure (4.1)

The A matrix of a system with five blocks evaluated at

r=1, E=l and M=10000 (a vaue assignment which forces the system

to have characteristic roots close to the imaginary axis) the

matrix Q, and the solution P of the equation PA + A'P = Q

are given in Tables (4.5), (4.5), (4.6), respectively.
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4.6 The Parametric Case

With some minor alterations to the function SLEAM(N, PA, PQ),

the function PRMTRC (N, PA, PQ) was defined for the purpose of

obtaining a parametric solution to equation PA + A'P = -Q.

The definition of PRMTRC (N, PA, PQ) is given in Table (4.7).

The following example corresponds to the evaluation of

G = f x' (t) · Q · x(t)dt

0

where x(t) is a solution of

x(t) = A x(t) x(O) = c

The A matrix for a system as in Figure (4.1) with two

blocks, the matrix Q and the parametric solution P are given

in Table (4.8).
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Chapter 5

Generalizations and Extentions

5.1. Trlhe Matrix Equation PA+BP=-C

We now employ the ideas developed in Chapter 2 to show

Lemma 5..1. Let A be an nxn matrix over the reals and B an mxm

matrix over the reals, and C an mxn matrix over the reals. Let

¢P2(x) -- det(Ix-A)

~2(x) = det(Ix-B)

jl(x) = Q2(-x)

Ql(x) -= 2(-x)

Suppose that ~l(x) and p2(x) are relatively prime such that

ku(x)4l(x) + VLu(x) 2(x) = u

Xu(x) 2(x) - vu(x))l(x) = u

for Xu(x),Vu(x),Xu(x),46(x) polynomials in R[x,y] and u in R.

And let

c 2(x) 2(Y)- -Pl(Y) $l(X)
PL/jp(xy) x + y

i) P~ (x,y) is an element of R[x,y]

ii) Let fBA : R[x,y] x MN- MN be the action defined by

fsA(g(x,y),M) =- Bi M Ak

where MN is the space of all mxn matrices over the reals.

Let

qu (x,'Y) = Xu (x) u(y)pq(x,y)modT

where T is the ideal (Q2 (x),I 2 (y)) in R[x,yl

Then

PA + BP = -C (5.1)

has a unique solution given by

1
P - fBA(qu(x,y) ,C)
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Proof of i). Let

~2(x ) = anxn + an-lxn x' + al = f0xn + flx n - l+ + fn

,1 (y ) = (-1)mbmy m -lb+ (-lm-l+ +

= eym - el y m l+**+ em

In a similar manner to the proof of Lemma 2.4 , let

g(x,y) = p2 (x)42 (y) 
= gjk x k y j

jk

h(x,y) = 4pl(y)4l(x) = . hilxlyi
il

It is clear that gjk = akbj ' hil = (-1) aibi

Let b(x,y) = g(x,y) - h(x,y) which can be written as

b(x,y) gjk xkyi - hkj Xjyk

O°<1S5 m
_<k < n

- akbn j xkyj - (-l)k+jakbj xjyk (5.2)

Now if k-j is even then the corresponding term in the above sum

becomes:

if k = min(j,k)

akbjxkyk (yj-k - xj-k)

if j = min(j,k)

akbjxjyi(x k- _ yk-j)

And if k+j is odd then the corresponding term in the above sum

becomes:

if k = min(j,k)

akbjxkyk (yj-k + xj-k)

----------- ~~~~~~~~~~~~~~~~~~"~"t""""~";" '~-~ ~ '~
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if j = min(j,k)

ukbjxJy j (xk-j + yk-j)

But in any case x+y will divide each term (as in Lemma 2.4)

and the quotient of b(x,y) divided by x+y will be the sum of

the quotiern ts obtained by dividing each term in the sum (5.2)

by x+y.

Proof of ii). The proof will proceed in three steps.

Step 1. We list some properties of action fBA

i) fBA(U,M) = uM where u is a unit in R[x,y]

ii) fBA(g(x,y) + h(x,y) , n ) = fBA(g(x,y),M)+fBA(h(x,y) ,M)

ii. ) f1 A (g(x,y)h(x,y) ,M) = fBA(g(x,y) ,fBA(h(x,y) ,M))

fBA(h(x,Y),fBA(g(x,y) ,M))

iv) fBA(g(x,y), M) -f fBA(g(x,y)mod',M)

v) fBA(g(x,y),M±+N) fgA(g(x,y),M) + fBA(g(x,y),N)

All the above are analogous to the properties of the action

fA and in the case when B = A' then

fBA (g(xy'M)=E-A(g(x,y),M)

for all g(x,y) in R[x,y] and M in M.

Properties i),ii) and v) are quite clear. We now show

that property iii) holds.

Let
g(x,y) -- gjkx ky - ) h(xy)ilx y

jk il

q(x,y) = g(x,y)h(x,y) = C qstxtys

st

- I ( C gjkhil)xty
st i+ =s

k+l=t



fBA (q(x,y),M) =C qstBSMAt

st

E ( E gjkhil) BSMAt

st i--j =s
k+ll-t

fBA (g(x 'y),M) = gjkBjMAk

jk

fBA (h(x,y),fBA(g(x,y),M)) = hilBi( gjkB Jlu\k)A
i.i. jk

= C hilgjk B i +jMAkI
il jk

let s=i+j , t=k+l

= - ( hilgjk)BSMAt'

st i+j=s
k+l=t

=fBA(q(x,y),M)

We now show property iv).

Any polynomial h(x,y) in Rlx,y] can be uniquely written as:

h(x,y) = a(x,y)q02(x) + b(x,y) 2(y) + r(x,y)

where the degree of r(x,y) is less than m in y and less than n

in x , by first dividing h(x,y) by 2()(x)and then dividing the

remainder by QJ2(x).Therefore

fBA (h(x,y),M) = fBA(a(x,y)(P2 (x),M) + fBA(b(x,y)$2(y),M)

+ fBA(r(x,y) ,M)

fBA(a (xy) fBA(2(x) ,M))

+ fBA(b(x,Y),fBA(2(Y) ,M))+fBA(r(x,y) ,M)

fBA(a(x,y)v,4(p2(A)) + fBA(b(x,y),4D2(B)M)

+:BA(r(x,y),M)

- fBA(r(x,Y),PI) = fBA(h(xy)modTM)



-52-

because of the Cayley-Hammilton Theorem.

Step 2. Since

qu(x,y) = Xu(x)1u(y)P,(x,y)modTP

we will have

(x+A(Xu(x) u(y)P (x,y)) = X u(x)w!(y) ( 2(2x)2(y )-)l(Y)-l(X))

Xu (x) U (y) 2 (x) 2 (y)

- u (x)u V (Y)1i (Y) 1 (x)

= u(x) (y) P2 (x) 2 ( y)

- (u-I uI (x) 2 (x)) (u-Xu ((Y ) 2
( y) )

= u(x)XU)(y)P2 (x) 2 (y)-u2+uX (y)42 (y)

+ lu u(x) (x) -42(x) -u (x ) (y)2 (x) 2 (y)

which implies that

(x-y)qu(x,y))mod -u2.

Step 3. We now show that

P 12 fBA(qu(xY),C)
U

is the unique solution of (5.1).

PA + BP = u2 (fBA(qu(x,y),C)A + BfBA(q (x,y),C))

1

u2 (fBA(X'fBA(qu(X' y),C)) + fBA(YfBA(qu(xy) , C)))

1

u2 (fBA(X+Y fBA(qu( x,y),C)))

u2 (fBA( (x+y)qu(x,y),C))u2 u

U2 (fBA((x+y)qu (x,y)mod, ,C))

1 2
- (-u C) = -C
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Uniqueness follows by observing that the linear operator

L: Rmn -- Rmn defined by

L(P) = PA + BP

is onto since no restriction was placed on C. This implies

that L is one-one. This completes the proof of Lemma 5.1.

We have shown that PA + BP = -C has a unique solution if

4l(x) and p2(x) are relatively prime where

q2(x) = det(Ix-B)

p2(x) = det(Ix-A)

LJ (x) = ~2(-x)

The usual statement of this theorem [cf. Bellman]

is as follows.

The equation PA + BP = -C has a unique solution for all

C if /i+uj 3 0 where Xi are the characteristic roots of A

and vi the characteristic roots of B.

We end this section by showing that these two statements

are equivalent.

Assume that ~l(x) and p2(x) are relatively prime.

Suppose then that there exist i,j such that X.+L = 0. This

means that X. -j which implies that tl(x) and P2(x) have at

least one rootincommon. This in turn implies that 'l(x) and

Q2(x) have a nontrivial common divisor which is a contradiction.

Assume on the other hand that Xi+I±j f 0 for all i,j.

Suppose then that there exists a k(x) of degree greater than

or equal to one, such that k(x) l1(x) and k(x) j p2 (x).
This would imply that l1(x) and P2(x) have at least one root

in common which contradicts our initial assumption.

--~ ~~~~~~~~~~~ -. ---. r.. ;.1 _.'----rr-..-.- ·- I-..I ------.--.--------- ""-;;"~'~;'"~"""l~"
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The above suggests an algorithm for obtaining the sol-

ution of equation (5.1). As in the case of the Lyapunov

equation (3.1) Rational, Integer and Modular versions of

the algorithm can be constructed in a similar manner.

Algorithm for solving equation PA + BP =-C.

A1 ) Obtain P2 (x), q2(x) the characteristic polynomials of

A and B respectively.

Y2W2(x 4J () - 2l(Y) -(X)A 2) Set P~ (x,y) -

x + y

A3) Using the Extended Euclidean Algorithm obtain

Xu (x), Xu(x), Lu(X), IU(X) and u.

A4) Set qu(x,y) = Xu(X)(y)p P(xy) mod 

A5) Form Pu = fBA(qu(xy),c)

A 6) Set P 1 P
P2 u
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5.2 Conclusions

In closing we wish to comment on what has been accom-

lished by this thesis, point out some disadvantages associated

with the method used in solving the Lyapunov equation and dis-

cuss several possibilities that can be persued in the future.

We have constructed purely algebraic algorithms for obtain-

ing the exact solution of the Lyapunov equation. The algebraic

structure on which the methods are based is quite rich and can

further be exploited. The algorithms are quite simple requiring

no obscure algebraic constructions, (the Extended Euclidean

Algorithm providing a basis building block) and as demonstrated

fully implementable on existing computers.

The price we had to pay for an exact solution takes the

form of coefficient growth, creating space requirements. The

critical parameters which dictate the amount of storage required,

are: dimension of the A matrix as well as the size of the entries

in both the A and the Q matrices. The problem of space has

quite adequately been dealt with by the introduction of the

Modular algorithm. But in doing so the excecution time is in-

creased. In this thesis no serious time complexity evaluation

is presented.

In most engineering situations an exact solution is not

required, but merely a five or ten digit approximation. Exist-

ing methods completely neglect the question of accuracy in the

approximation to the solution of the Lyapunov equation. Because

of the nature of the method presented, which results in an exact
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solution, it is quite possible that a closer examination may

reveal a scheme by which some control can be exercised on the

accuracy of the approximation. As exhibited by the parametric

example included in chapter 4 our method offers great possibil-

ities for parametric studies.

We have extended the results and suggested algebraic methods

of solution for the more general matrix equation

PA + BP =--. 

The Riccati equation did come under consideration and some

less important 2x2 examples were soved by Newton's Method with

our me.thod being employed in the solution of the intermediate

Lyapunov equations. The problem encountered hindering further

progress was again that of coefficient growth. It was felt

that that in order to attempt more realistic examples it would

be wise to either first devise a method for obtaining appoxi-

mate solutions with controlled accuracy o:r re-examine the

Riccati equation under the light of the present work.

Finally we have gained great insight from all this work.

We feel that this is only the begining of a more serious study

on the computational aspects of Control Theory.
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APPENDIX

This Appendix contains the proofs of Lemmata (2.1), (2.2),

(2.3) and (2.4) found in section (2.2).

Lemma 2.1. Let p(x,y) be a polynomial in RCx,yl with C(p)

being an mxm matrix. Then p(x,y) is positive if and only if

there exist polynomials T(x),...,rm(x) such that

m
p(x,y) = ri (x) i (Y)

i=1

where l{ni(x) w are a basis for Rm(x).

proof: Suppose that p(x,y) is positive. This implies that

C(p) is positive definite and symmetric. From linear algebra

[7] we have that

C(p) = V · V'

for some real mxm matrix V=(vij). This implies that det V O0

and therefore V is invertible.

since p(x,y) = l'(y)C(p)l(x)

= (1' (y) V)- (V'. (x))

let nl (Y ) = + v21 + vv3 1y + vy 2 .. l v ym-l

and ni(y) = Vli+ v2iY + ''' + Vmiym -1

1L iLm

and we have
rn

p(x,y) = E i ( Y ) i ( x )

i=1
Let g(x) be a polynomial in Rm(x).

g (x) = gl + g2 x +.' gmxm- 1l

Since V is inverible it has m linearly independent columns

J v 1 }which form a basis for all vectors of length m.



Wc' thorefore have real numbers al2a..1.m such that

q]
g2

X 111 + ( 2V 2 *.. + a.mV
m

gm

and that

1 x x2 ... xm-1 1 [1 x X2. xm-ll Y1[1xx2 .x

g2

gm il

which equivalently is written as:

g(x) = a1'l (x) + a2rT2 (x) +... *m-'rm(x)

*E %aini (x)

therefore Tti (x) t form a basis of Rm(x).

Suppose now that there exist polynomials mi(x),'2(x),... m(x)

forming a basis for Rm(x) such that
m

i- l

= [1 y y...-1 [il il'.. im] 1

where rci(x) = Til + Ii2x + ... imxm-1 11 i2l
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We can therefore write p(x,y) as:

p(x,y) =[1, y ... ym-l1] n · H 1
x

xm-l

where the ith column of 1= (n is

til
11i2

TI.
im

Since lni(x)} form a basis we must have{nij being linearly

independent and detH ~ 0.

I also claim that the largest power of p(x,y) in x or y

is m-1. Since if we assume that there are no terms in p(x,y)

which are of degree m-l in either x or y we must have

m

E im ' ni = 0
-i=l

implyi.nq that .i =0 , 1 L i - m and therefore a contradiction
im

to the hypothesis that rim are linearly independent.

This ensures that C(p) = f · II' and that it is symmetric

and positive semidefinit.e.

Assume now that there exists some vector z / 0 such. that

z'n'z = -

Since n is inverible this cannot happen and therefore C(p) = n.n'

is positive definite.
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Lemma 2.2. Let n be the degree of cP(x). if p(x,y) modO

is positive of degree n-l in both x and y then o(x)a(y)p(x,y)modO

is positive of degree n-l in x and y , if and only if p(x)

and 0(x) are relatively prime.

proof: The proof will proceed in three steps.

ste p 1. We first show that there exists a vector space iso-

morphism between Rn(x) (the vector space over R of polynomials

of degree less than n under addition) and the quotient space

RFx]J/((where p= (w0(x)) considered as a vector space over R

under addition. (R[x]/p.is actually an algebra if we also include

multiplicity.)

Let t: R (x) - R[x]/cp be defined by

t(g(x)) = ~+g(x)

It is a vector space homomorphism since

t( lgl, (X) + a(2 g 2 (x)) = aclt(gl(x) + a 2t(g 2 (x))

Let <+ g(x) be an element of R[x]/p. if g modqp denotes the

polynomial in (+g(x) of minimal degree (which must be less

than n) we have

t(g mod cp) = p + g mod p =-p + g(x)

Let gl(x) 4 g2(x) be elements in Rn(x). Then it is clear that

p + gl(x) P + g2(x) and this shows that t is an isomorphism.

step 2. We now show that if rni(x)l 1 < i < n is a basis

for Rn(x) then {(ox)ni(x)I is also a basis for Rn(x) if and

only if O(x), 'P(x) are relatively prime.

If { ni(x) I is a basis for Rn(x) then p + ni(x)

is a basis for R[x]/P.
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Suppose that o(x), s(x) are relatively prime . This

implies that there exists X(x) in Rn(x) such that

((P + A(x) ) ('(P + 0(x)) = P -+ 1

where (+l denotes the multiplicative indentity in R[xlJ/(

For any coset ~ + a(x)there exist k i in R such that
n

(( + X(x))' (P + a(x)) = ~ ki (( + ri(x))
i=l

n
= (~ + 1) ( ki + i(x)))

i=l

n
= (( + X(X))'( J ki(P+a(x)rti(x)))

i-l

n

((p + (x)) = k ki (P + o(x) i (x))
i=1

and thereforelp + o(x)ni(x) i is a basis for R[x]/( . By

step 1 we have that

i(a(x)rni(x))mod cp is basis for Rn(x)

Suppose that a(x), (P(x) have a nontrivial factor in common,

ic there exists T(x) in Rn(x), ((+T(x))y 0 such that

(P + IT(x))'(P + a(x)) =P + 0

where cp+0 is the additive identity in R[x]/p.

Suppose then that {o(x)ni(x) mod qlis a basis for Rn(x).

(( + T(x)) = (( + x )((P + 1)
n

(P +t(x))- k ki ( p + o(x)Tti(x) mod cp)
i-l

n
~. ki (( + t (x) (x) ri (x))
i=l

= + o

'~" ` ~;'~; "'~~ -i'~"-~f"""""Ir ""--r ~ ~ ~ '`~~



which is a contradiction. This proves step 2.

Step 3. We now prove the lenmma. If pmods is positive then
n

pmod = i i ( Y )ni(x)

i= n
> 4- pnlodc =D+ ( E wi (Y) yi (x))

i-l n

D + o(x)a(y) (pmodD) = O + E (a(y)Ti (Y)) (C(x)Tti ( x))

i=l
n

+ -o- a(x)a(y)p(x,y) =- + E (o(y) i(y )) (a(x) i (X))
i-: 1

n

(o(x)a(y)p(x,y))modO = ((aY)(y)) x )y ) ) ((X)n i (x )) ) m odO
i=l

n
a(x)a(y)p(x,y)modO = E o(y)ni(y)mod oa(x)Tni (x)modD

i=1l

From Lemma 2.1 and step 2 o(x)a(y)p(x,y)modO will be

positive of degree n-l in x and y if and only if o(x)ni(x)modl

form a basis of Rn(x). This completes the proof of Lemma 2.2.

Lemma 2.3. Let X 1,X 2" ..Xn be complex numbers which are distinct

and have positive real parts. Then the nxn matrix An

is hermitean (An = A* where (*) the hermitean adjoint) positive

definite.

proof' We first show that if the mxm matrix Am = i+x X )is

positive definite so is the mxm matrix Sm - ( c is j provided

\i+x j

that each ci / 0.

Let S1 be defined as:

C1 ° [ .. °o] C1 ° O ... c

0 C2 ... 0 0 C2 0 ... 
S1 =0 ° C3 -- 1 0 C 3 ... O

0 0n . 0 00 !a

-- ~ ~ ~ ~~~l
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where 1 l m. In order for Sm to be positive definite we must

have detS 1 > 0 for ll5 m (Sylvester Criterion).

1 1
detS1 = ( n ci)detAl( ci)

i=l i-=l

Since Icil O0 and Am is positive definite we have that

detS 1 > 0 for 1< 1<m

This therfore ensures that if An-l is positive definite

so is the matrix

_i-n (Xn n
, _-1 =n+ n 'i n' \%j+hn

Knl =(Xi+j (Xi+Xn)(Xj+Xn) (Xi+Xj)

We now prove the Lemma by induction on n.

It is true that An=A* for all n since

1 1
An = (cij) = ( ( = (aij) An

Xj+xi Xi+xj

where cij = aji . It is clear that A1 > 0 since

1 O

Suppose that Am> 0 for all mSn-l. Applying the Sylvester

Criterion on An we see that all determinants of intermediate

minors are positive, by the induction hypothesis. We just have

to show that detAn >O. By observing the structure of Kn_l and

using elementary properties of determinants we now show that



1 ))detKn_1 = detAn

Let

1- (X n+ ) 

Xl+X i (XI+Xn) (Xi+Xn)

1 -.(Xn+X) 1

b i " 2+Xi ci = (X2+Xn) (Xi+Xn) an +Xn

Xnll (Xn-_l+n) (Xi+Xn)_ Xn-l+Xn

Then

Kn_ 1 - [bl+cl, b2 +c 2 , - -. bn-l+Cn-l1

and

det Kn_ 1 -det [bl, b2, .. bn-1] +det [clb 2,b 3b -1... b

+... +[det bl,b 2 ,... bn- ]

= det [blb 2,... bn-1]

xn+Xn
+ det [-an , b 2 ,b3.. bn- 1

xl+Xn

+ xn+ n det [bl, -an,b3,.bn-1]

Xl+xn

n+ n
+ n+ n-det [bl, b2 .bn_ 2 , -a n ]

Xn-l '+Xn
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det Kn det bl, b2, b3, ·.bn1]

+ 1 det C[-an, b 2 ,..bn_1 ]
Xl+XnX 1+x n

+ 1 det [b1, -an,.. b n -1
2. n

+ ! det [b1, b 2,-- bn-2, -a 

n- l+n n

(_1)n - l 1 det [b2, b 31 .. bn-1, an]

tl+n

n-2 1+(_-1) (det [b1 , b3...bn-1, an ]
k2+Xn

+ _ 1 det [bl, b2 ... nl

Xn+Xn

Expanding det A by the last row gives:n

det A = ()n+l 1 det [b2, b3 ,. .bn- a n]
A 1 + k n

,1n+2 1[+-(_1)n+2 _ det [bl, b 3 .. b n 1, a 

+ (_l) 2 n 1 det [b 1 , b2,...bn]
Xn'Xn

and therefore 1 det Kn_ 1 = det An
Xn+n
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Since Kn_l is positive definite and Xn has positive

real part we have that

det An> 0

and that An > 0.

We can also note as a consequence of this lemma that if

l 2... n are complex numbers with negative real parts then

the matrix T = ( ) where u O is a real number is also

pi d n Xi+xj
positive definite. This completes the proof of the Lemma.
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1Jemma 2.4. Let A be an nxn stability matrix with

'P2(x) det ([x - A) and let I - (P2(x), 2(Y)). Define

(Pl(X) :- (P2(-x) (2.1

( 2 X)x)2(Y) - (Pl(x)(Pl(y)

, (p Y) x + y

i) Polynomials 1pl(x),(p2(x) are relatively prime. That is

there exist Tu(x),Xu(x) in R[x,y] such that

T (x)q 1(x) + X (x) 2(x) =- (2.3)
U 1 u

where u is a unit in R[x,y].

ii) P (x,y) is an element of R[x,y].
(P

iii) Let qu(x,y) = Tu(x)Tu(y)P (x,y) mod · (2.4)

Then qu(x,y) is positive of degree n-l in both x and y.

Proof of i). Suppose that there exists a k(x) of degree

greater than or equal to 1 such that

k(X)Ipl(x) , k(x) I 2(x)

l(x) -: 1 l(x)k(x) ( 2(x) = 1 2(x)k(x)

this implies that pl(x) and (02 (x) have at least one common

root. This cannot happen since (pl(x) i:- (p2 (-x) and q~2(x)

is a stability polynomial. Therefore no such k(x) exists and

LP (x),'2 (x) are relatively prime.

P)roof of ii).

Let

2(x) a + a lx + ... + anxn

(p l( ) = ao + (-l)alx + ... + (-l)a nxn

Let

g(x,y) = 2 (x) 2 (y) = gjk xk y

jk
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il

b(x,y) - g(x,y) - h(x,y) =- bstxtyS
st

where b 9st - st hst atas (-1)tat (-l)Sa,

t+s
-= aa- ata - atas(-1)

Let s=t=nm 0 L m L n

bmm = amam -(1)2 mamam 0 O for all m.

Let sm ,t=k ,0 < m n , 0 < k < n , mk

b mk= aa k -(-l)m+ka aka 0 if m+k even

2amak if m+k odd

It can be shown by induction that

i) x+y xm+y m if m is odd

ii) x+¥+Y xm_ym if m is even.

Wi.th this in mind and that b(x,y) is symmetric the

division of b(x,y) by x+y is performed by summing the quotients

obtained from the divisions of all terms of the form

cmkxkym + qkmxmyk by x-ly.

Proof of iii).

The proof will proceed in three steps.

step 1: Assume that the eigen-values of A A 1 x 2 .1' .2 . n

are all distinct. Show that qu(x,y) is of degree n-l in

both x and y and that it is positive.

Since P (x,y) is symmetric so is

qu(x,y) = 'Tu(x)Tu(y)P((x,y)) mod 0
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On the other hand

(x4y)' (Tu (x)Tu(Y)P (xy)) Tu(x)T(y) Tu((X)T2(Y) [ 2(x)P2(Y)-1 ( x ) ( (y ) ]

= T u(x)T u( (x)2 (y ) - T u (x) T u (y)(X

= (Tu(x)T (Y) - Xu(x) (y)) 2(x) 2 (y )

+ uX (x) P2(x) + uX (y) (y) - u2

which implies that

((x+y)-qu(x,y)) mod ' = -u 2 (2.5)

In order for this to happen the degree of qu(x,Y) in both

x and y which is less than or equal to n-l, must actually be

n-1.

On the other hand

(hi ) qu(hi , j) = -U2

and therefore
2u

qu(Xi' Xj) -
h.+h.

i j

Since we have assumed that the Xi's are distinct then

1(X1), l(X2)I,. ,Fl(Xn) by the Van-dermonde determinant

theorem must be linearly independent vectors.

We now wish to show that C(qu(x,y)) is positive definite.

Let z 3 0
n n

z' ((q ) z -( kl' (i)) k( Cjl(j))
~u i- l~1 j=1

n n

= kikj 1' (x i ) C(qu)l(hj)
i=l j=l

n n

- X kRikjq ( h i j)
i=--l j=l
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= [kl, k2'.. .n nK k

kn

2
with Kn = (q(Ai' A)) = -u

ni+Xj

Since z / 0 not all of the k.'s are zero. Lemma 2.3

ensures us that Knis positive definite and therefore

z'C(qu)z> O if z30

making C(q ) positive definite.
u

step 2. Since (x) 1 (y)T (Y)T(X)T (y)P( (x,y mod = ) mod(

we also have P(9(x,y) mod O = PQ(x,y) being positive as a

consequence of Lemma 2.2.

step 3. Suppose now that the eigen-values of A are not distinct.

Show that qu(x,y) is positive.

In order to simplify the notation we let

Q(x) = (P2(x)

@+(x) = ol(x)

All we have to do in showing that qu(x,y) is positive is

to show that PQ(x,y) is positive. Then by Lemma 2.2 it is

assured that qu(x,y) is positive.

We prove that P,(xy) is positive by showing that it

can be expresses as:
n

PQ,(x,y) = ri (x)Ti (y)

where h{i(x)l is a basis for R (x).
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Write

@(x) = l(X)s2(x) ... s ( x)

where each . (x) has distinct zeros and
1

Ws 1 %-i %-] s- 1l s-2 ... 
We then have

P (x, y) =-_Lxk_~~-- + (x)-+(y) .
x + y

We know that the degree of P (x,y) is less than n in both

x and y.

Let nj(x) -= (4 )(x) ... Q t l(x) 'j-(x).. (x)
~l~n~ry31 2'

for 1 < j < s.

Tf we let

~P.~ (xy) . . , 1·~.. .Pj ( (y) s- ~(x) i(y)

j x -+ y

it can be shown that

s

P (x,y) - E j (x)nj (y)Ps (x,y)
j- 1:l

by substituting in the expression what nj (x) and Ps (x,y)

are and cancelling terms.

From step 2 we know that each P. (x,y) is positive and

therefore by Lemma 2.1

PQj(x,y) jk (x )j k(y )

k=l

where njis the degree of rj(x) and {njk(x)l are a basis for

Rnr (X ) .
.J



Therefore

s n

p(D(x,y) C 1 n(x)j k(x) 'qj(y)njk(y)
j=l- k=l

We show that{nj(x)n jk(x) is a basis for Rn(x).

Suppose that there exists zeal numbers rhjk not all zero

such' that

s nj

2 mrjkn j (x) ljk(x) 0
j=1 k=l

We can write this as

s-l nj ns

E mik jr(x) nk(x) = 2 msks(X)R)T$k(x)
j=l k=-l k=1

if all msk 1 < k < i are zero we can proceed by writing

s-2 n. ns-l

2 Cmjkq j( X)rTjk (x) = ~ ms-lkns- l(x) Es-lk(x)

j=l k=l k=l

and continue. Suppose then that j=s' is the first time that

we encounter non zero elements in {ms,kJ 1 < k < ns. Then

s'-l ns' ns

(*) ~ ~ m jk1j(x)njk(x) = ms,k s' (x)Tsk(x).
j=1 k=l k=l

Multiply both sides by b s (x) = ql(X) 2(x)...s-l(x).

The right hand side of (*) can then be written as:

p(x) -p(x)
for some p(x)

and
ns ,

b,(x) E m s IkOs (x)Tslk(x) = p(x)-(p(x)
k=l
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if p(x) - O we then have that

nS,

s, (x)b s, (x) -( msekTts'k(x) = 0
k=l

But since {rswk(x)} are a basis for Rn (x) this would

imply that msk = 1 < k < n s, contradicting the assump-

tion that j=s' is the first such j for which notall ms,k=0.

Suppose then that p(x) / 0.

This would mean that

n s,

cp(x) I b s (x) E mskrls (X)ns,k(x)
k=l

or that
n s ,

+ +
s'( (X) | ( (x)...s. l(X) E ms'kqs'k ( x )

k=l

But s , (x) and (l (x)Qj(x)... 4+,_l(x) are relatively

prime threfore

nsw

's,(x) | SEks'k (x)
k-ls k k·k

n s,

Since the degree of i ms,kistk(x) is less than n s ,

k-=l

ns,
this can only happen if E mskOrslk(x) = 0 or

k=l

equivalently, when msk = O for 1 < k ns,.

This again leads to a contradiction since we have assumed

that j=s' is the first time we have ms,k , 1 < k < n s , not all

being zero.
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The process is repeated until all m are shown to be
Jk

zero contradicting our original assumption.

Therefore . W(x) nj(x)

is a basis for Rn(x), and P (x,y) is positive. Since

n=nl+n2+...+n s we also have that P (x,y) is of degree n-l in

both x and y.

This completes the proof of step 3 and the proof of

Lemma 2.4.
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