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ABSTRACT

This research is concerned with the asymptotic properties of feedback sys-
tems containing uncertain parameters and subjected to stochastic pertur-
bations. The approach is functional analytic in flavor and thereby avoids
the use of Markov techniques and auxillary Lyapunov functionals character-
istic of the existing work in this area. The results are given for the
probability distributions of the accessible signals in the system and are
proved using the Prohorov theory of the convergence of measures and some
recent work on the preservation of convergence under operations. For gen-
eral nonlinear systems a result similar to the Small Loop-Gain Theorem of
deterministic stability theory is given that is sufficient to guarantee
that totally bounded stochastic inputs give rise to totally bounded out-
puts. Here boundedness is a property of the induced distributions of the
signals and not the usual notion of boundedness in norm. For the special
class of feedback systems formed by the cascade of a white noise, a sec-
tor nonlinearity, and a convolution operator conditions are given to in-
sure the total boundedness of the overall feedback system. These condi-
tions are expressed in terms of the Fourier transform of the convolution
kernel, the sector parameters of the nonlinearity, and the mean and the
variance parameters of the noise. Their form is reminiscient of the fam-
iliar Nyquist Criterion and the Circle Theorem for deterministic systems.
Applications of the criteria to analyze rounding errors in machine com-
putations and to study control systems containing human operators are
suggested.
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CHAPTER 1

INTRODUCTION

1.1 Stability of Dynamical Systems:

The study of dynamical systems has evolved along two paths essentially

distinct in mathematical formulation. The first, which is based in the

theory of differential equations, uses the concept of a dynamical system

as a semigroup of states and thus has an algebraic flavor. For autonomous

systems (no forcing function) this approach was already well formulated

fifty years ago [8]. For physical systems accurately described by a finite

dimensional set of states which have interpertations as physical variables

(electrical voltages and currents, for example) powerful and precise con-

clusions may be drawn about the properties of the system. However, when

the physical system admits no accurate finite dimensional model, the

general state theory is at this time rather formal and, except in specific

cases, the precision attained in the finite dimensional case is lost in

technical difficulties.

The use of dynamical systems as models for control processes has led

to a second method of analysis based simply on the input-output properties

of the system. In this formulation the input and output of a system are

considered as points in a set of functions and the system itself as an

operator on this function space. Thus, functional analysis replaces the

theory of differential equations as the source of analytic tools. Problems

associated with selecting a suitable representation for the internal

structure of a dynamical element are avoided and large classes of complex

systems may be treated qualitatively with simple techniques.



Originating only within the past decade, the operator theoretic

treatment of systems has been developed only for the easiest problem

associated with feedback systems-stability. Restricting the set of inputs

to be perturbations of the system, that is bounded in some sense, a sys-

tem is defined to be input-output stable if bounded inputs are mapped

into bounded outputs or equivalently if the system is represented as a

bounded operator. In this context boundedness of a signal may mean the

usual boundedness in amplitude or in some more sophisticated sense such

as total energy or power. In the state theory stability is defined as

asymptotic convergence of the system state to the zero state. Perturbations

are introducted by initial displacements of the state from zero. For those

systems permitting a simple state representation it is usually easy to

commute between the concepts of input-output stability and state stability

[63].

Stability theory in the state space setting relies on the use of

Lyapunov functionals, certain auxillary functions of the state. These

functionals completely specify the asymptotic behavior of the state when

they can be.found and determined to be positive definite and have negative

definite time derivatives in a neighborhood of an equilibrium state. As

there at present exists no constructive method of generating Lyapunov

functions, the general theory remains in a static condition at present.

By contrast the operator theoretic approach to stability casts the

problem into a very active area of mathematical research-the invertibility

of operators. To see that this is the case, consider the equation

x + KGx = u

as the description of a feedback system. Here K and G represent generally



nonlinear elements in the feedback loop, u is a perturbation input, and

the output x is to be studied. If u is an element of some normed, linear

space of functions, then x is bounded (an element of that space) if

I + KG has a bounded inverse on that space. Hence, the stability question

may be resolved using the mathematical theories relating to the invert-

ibility of operators on normed or metric spaces. Indeed many new as well

as some familiar results have been developed using spectral theory and

Banach algebras, two of the basic tools in invertibility studies.

It is the presence of an active and well-founded theory for the anal-

ysis of deterministic systems in operator form that motivates this research

which attempts to extend the theory in such a way as to preserve its

essential elements and yet account for stochastic signals and uncertain

parameters in the analysis.

1.2 Stochastic Systems:

Efforts to model increasingly complex control systems have led to the

study of some systems which simply cannot be modelled accurately with

perfect certainty. Uncertainties are introduced either by phenomena that

are so complicated as to defy reduction to a tractable deterministic

model or are in essence random. As an example of the former consider the

generation of roundoff errors in a digital computation. Restricted by

finite register size the machine must of necessity round-off stored var-

iables at each stage in a computation. Being a design choice the rounding

mechanism is not uncertain, and in any given computation of limited com-

plexity the rounding errors could be monitored exactly. However, in a

computation of even moderate complexity the register size will be exceeded



at many points in the calculation and monitoring the errors may become

a more formidable task than the original computation. In such a case it

is reasonable to assume that the evolution of rounding errors is a statis-

tical process in order to appraise their average magnitude.

As an example of the introduction of essentially random phenomena into

a physical experiment consider the problem of maintaining the orientation

of a rigid body in orbit around the earth. Primary sources of error are

sensor errors and propulsion jet errors (in firing and cutoff times). A

secondary source of error,but a very important one in very precise appli-

cations, is the fluctuations in the earth's gravitational field along the

path of the orbit due to surface irregularities and local variations in

the density of the earth. Because the sensor errors make an exact deter-

mination of position impossible no model apart from a statistical one can

accurately (within the usually rigid specifications of these experiments)

account for other than the most prominant aberrations. This problem reduces

to design of a feedback control law capable of precisely orienting a

satellite in the presence of essentially random perturbations. Moreover,

the controllers (combining sensors and propulsion units) are themselves

subject to stochastic errors that cannot be deterministically approximated

within the tolerances fixed for these projects. It is therefore appro-

priate in a general analysis of systems subjected to uncertainties to con-

sider not only random external perturbations but to permit random parameter

variations as well.

One of the major problems faced at the outset of an analysis of a

stochastic system is to determine accurate probability distributions for



the quantities considered as random in the experiment. In general some

method of hypothesis testing must be applied to the available data and

distributions deduced from this procedure. Although the possibility of

several empirical distributions is permitted in the definitions of a

stochastic system in section 3.1 below, in the major portions of the

analysis to follow it is assumed that the process of likelihood test-

ing has been completed and that an optimal distribution has been selected.

For an interesting and important alternate approach for optimal control

problems see the papers and thesis of Witsenhausen [67),[68], and [69].

Following the pattern observed in deterministic systems theory, the

first problem to be considered for stochastic systems was stability. More-

over, the framework was that of a state space formulation using Lyapunov

like techniques. The reasons in both cases were compelling. First, problems

like optimal control of stochastic systems must proceed in two intimately

connected steps. Because the state of the system in most cases may be

observed only in the presence of uncertainties, it must first be estimated.

Only then may optimal controls be selected. See for instance the work of

Kushner [48], Wonham (70], Fleming [24],[25], and Benes [3],[4] for dis-

cussions of the problems arising from restricted information on the state.

The reason for studying stochastic systems with a state realization

is motivated by the powerful and comprehensive mathematical apparatus

available for the analysis of Markov processes (see for instance Dynkin

(19]). Assuming no more than causality, any system may be shown to have a

Markovian state decomposition (see Willems [63] for a similar theorem

which may be easily extended to permit stochastic variables), and for those



systems with a finite dimensional state space the analytic theory of

Markov processes combined with the theory of stochastic differential equa-

tions completely determines the system behavior. Using potential functions

of the state (like Lyapunov functionals), the stability of a stochastic

system with finite dimensional state may be completely determined. This

program is developed comprehedsively in Kushner's book [48].

However, in contrast to the deterministic case-there is a very real

confusion over the meaning of stability in a stochastic system. The con-

fusion stems largely from the numerous distinct varieties of probabilistic

convergence available. Thus, almost sure convergence, convergence in nth

moment, convergence in probability and others have been used to study the

asymptotic properties of perturbed stochastic systems. However, for systems

defined by stochastic differential equations it is straight forward to

commute between these equations for the trajectories (samples) of the

signals in the system and the Chapman-Kolmogorov equations for the distri-

butions of the state and the Fokker-Planck equation for its density function

(see Ito [40]).

By examining the asymptotic properies of the solution of the Fokker-

Planck equation, those of the state may be completely determined. It is

in fact entirely appropriate to regard the density function as the state

of the system and to describe the behavior of the system in terms of its

evolution. In this manner Markovian stochastic systems form an important

class of distributed parameter systems (systems whose state satisfies a

partial differential equation)-a class somewhat more amenable to analysis

than most because of its special nature (particularly the boundary conditions)

and the additional interpertation afforded by probabilistic considerations



and the differential equation representation. Important work within this

interpertation has been dome by Kushner [47], Dym [17], Elliot (22], Il'in

and Khas'minskii [38] on stability and Fleming [25] on control.

In the setting provided by a state realization of a stochastic system

the natural way to examine the asymptotic properties of the state is to

introduce Lyapunov functionals of the state and consider their properties.

This has been the approach adopted in almost all of the references men-

tioned above. Because of bertain relationships between Markov processes

and potential theory (Meyer [51], Hunt [37], Doob [13]) which seem to

account for the restrictions imposed on Lyapunov functionals, the subject

is deserving of further study. For example stochastic Lyapunov functions

were observed by Kushner [49] and Bucy [10] to be positive supermartingales

(51]. However, a supermartingale is a potential subject to certain restric-

tions [51]. See Dynkin [20] for a discussion of the position of harmonic

functions and potentials in the analytic theory of Markov processes and

comments on the construction of harmonic functions for a process.

What one hopes would come of an investigation of these relationships

is a procedure for generating Lyapunov functionals for interesting systems.

At present the obstacle encountered in the deterministic Lyapunov theory

is present in the stochastic setting: thatlis, there exists no systematic

method in general of constructing the functionals. Moreover, in specific

cases the construction process is far more difficult in the latter case

(stochastic systems) because of certain technical aspects of the Markovian

structure [48]. For instance deterministic Lyapunov functions must satisfy

a first order partial differential inequality constraining the time der-

ivative of the functional to be negative definite. In the stochastic case



this inequality involves a second order operator [48,p.39].

Clearly an alternative approach for the analysis of the asymptotic

properties of stochastic systems is desireable. The development of such

an alternative along the lines of the operator theoretic stability theory

is the subject of this research.

Continuing the analogy with the deterministic theory it would seem

desireable to have available a kind of "probabilistic functional analysis"

so that the input-output results of the deterministic theory may be easily

rederived in a probabilistic setting. Such a mathematical theory is avail-

able, due largely to a group of Czechoslovak mathematicians headed by

Spacek and Hans (31], (32], (33]. The concepts of random operators equa-

tions defined in those papers are presented here in section 2.3 and used

in section 3.1 to prove some moment bounds for the signals in a general

stochastic system. It is important to note that these bounds are obtained

for signals which need not be Markov processes.

However, it is only in combination with another recent collection of

work in the general theory of probabifity that this formulation of a

stochastic system as a random operator is able to yield results in terms

of the distributions of the processes involved. This work is concerned

with topologies for random processes.

Though introduced by Kolmogorov over thirty years ago, the study of the

convergence of probability distributions has only recently returned to

popularity. The papers of Prohorov [53] and Skorokhod [56] in 1956 were

instrumental in generating this revival of interest. Since that time the

study of topologies for random processes has evolved in a series of papers



summarized and extended in the books of Billingsly [7], Parthasarathy [52],

and Tops~e [60], The basic ideas are the following: for any metric space

(X,d) let PM(X) be the set of prdbhility measures on X, then PM(X) may be

regarded as a subset of the dual space of BC(X), the bounded, continuous

functionals on X [16]. A natural weak topology is thenuinduced on PM(X),

and it is this topology that is suitable for determining the distributions

of functions of a random process (see section 3.1 for further motivational

discussions of this point and [29, Chapter IX]).

A key point in the olyis of convergence of distributions is a des-

cription of the compact subsets of PM(X). Under certain conditions on the

basic space X a set of distributions is relatively sequentially compact

(has sequentially compact closure) if and only if there exists a compact

subset of X on which the distributions are concentrated. That is, let

A c PM(X) be the subset under consideration, then A is relatively

compact if for every a c (0,1) there-exists acompactsubset K() of X

such that p[K(a)] > 1 - a for every y C A . If X is a space of functions,

suitably metrized, the result says that the distributions of the stochastic

process taking its values in this set of functions are relatively compact

if and only if the values of the process are in a compact set almost

surely. This recurrence condition is familiar in ergodic theory and in a

sense indicates the possibility of interpertations in that setting.

By assuming X to be the space of continuous functions or piecewise

continuous functions, the compact subsets of X may be easily characterized.

Sufficient conditions may then be established to assure relative compact-

ness of a set of distributions defined on X. These are summarized in sec-

tion 2.4 for continuous functions and in section 3.3 for piecewise



continuous functions. These conditions are used in sections 3.2 and 3.3

to prove that feedback systems subjected to inputs with relatively com-

pact distributions give rise to outputs which also have relatively com-

pact distributions. In section 3.4 these results are used to analyse the

behavior of systems described by stochastic differential equations sub-

jected to input processes in this class.

Implicit in these proofs (3.2 and 3.3) and explicit in section 3.1

is the transformation of weakly convergent sequences of distributions by

operators. That is, a key point in the analysis is contained in the question:

if a convergent sequence of distributions is mapped by an operator (in some

well-defined manner) into another sequence under what conditions on the

operator is the latter sequence convergent as well? Finding these conditions

forms the heart of the arguments in Chapter 3. The general results that

indicate the line of proof were developed by Billingsly [7] and Topsde [61]

among others. These conditions are essentially continuity of the operator

on the underlying space X; and in this sense relate back to the operator

stability theory of deterministic systems where continuity of the system

as a map on a function space is a central concept of stability. It is

further in this way , since the feedback equation defines the variable of

interest implicitly, that the mathematical theory relating to invertibility

of operators is once again identified as a crucial aspect of the frame-

work for the analysis of the asymptotic properties of systemsin this

instance stochastic in nature.



CHAPTER 2

MATHEMATICAL PRELIMINARIES AND BACKGROUND MATERIAL

2.1 Remarks and Some Notation:

The purpose of this chapter is to recall some of the basic

notions in the operator theoretic treatment of feedback systems

and to summarize those aspects of the theory of the convergence

of probability measures used in Chapter 3. Although the summaries

here are rather concise, appropriate references are given where more

thorough treatments may be found. As used here, only the most basic

results from each of these theories is required and in this sense

the background material necessary for the derivations in Chapter 3

is minimal. The only new results in this chapter are a modification

of the usual definition of a random operator and a result on the

effect of such operators on convergent probability distributions

(section 2.4).

Though most of the notation and definitions from mathematics

used here are standard, a few conventions may be unfamiliar. Symbols

such as R = (-co,co), R+ = [0,c0), and Z for the set of integers are

standard and are freely used. The notation C(R ;R) indicates the

set of real-valued continuous functions on R+ and is typical of the

form used to designate function spaces. Other common notations are:

(i) (L p(R+ ), f-Ip ) the Lebesgue spaces on R ;

(ii) (n, 1, P) a basic probability space;

(iii) (X, 1-11) a normed, linear space;



(iv) (x, 19(x)) a Borel measureable space, -B(x) the Borel

a-algebra of x;

(v) F(A;X) the set of X-valued random variables on 9;

(vi) PM(X) the set of probability measures on X;

(vii) BC(X) the set of bounded, continuous (real-valued)

functionals on X;

(viii) - (X) the set operators mapping X -- X, and

(ix) (Wt tcR+ the set of truncation operators on some function

space.

Operators on sets of functions are usually denoted by F, G, H or

some other upper case letter. These points are representative of

the standard conventions used here.

As a consequence of the mixture of engineering material and

some mathematics a few compromises in notation have been necessary.

For example the symbol P is reserved for the basic probability

measure on Q, and so {w } is used to denote a set of truncation
t

operators on functions - usually denoted by {P } in the engineering

literature (see for instance Willems [64]).

The terms "stochastic process," "random process," and "function

valued random variable" are to be considered equivalent here. The

concept of a random variable as a measureable function is used, and

when the random variable takes its values in some set of functions,

one of the above terms is used to indicate this case. The concept-

of a stochastic process as an "indexed set of random variables " [29]

is not used. The words distribution and probability measure are



used interchangeably and should be considered equivalent. Thus, the

more common meaning of the former term is never employed here.

Finally, real-valued functions are used almost exclusively

in this work, though it is acknowledged that nearly all the results

are true for Rn-valued processes. The methods used in the paper [66]

to extend the theorems there to the multi-dimensional case may be

applied to the results here at the cost of some complication of the

notation. The only exception to this voluntary restriction to real-

valued functions occurs in section 3.4 where some earlier work is sum-

marized and compared to that given here. The concept of state is

fundamental in the differential equation formulation used in the

earlier work, and so multi-dimensional wapr1&abd.essanstobetesedsfoxr the state

to thoroughly illustrate the theorems.

2.2 Input-Output Stability of Deterministic Feedback Systems:

In this section a brief summary of the operator-theoretic

analysis of feedback systems is presented. The purpose here is to

recall a familiar class of problems and indicate an appropriate

framework for their analysis. The concept of a feedback system as

an operator on function spaces is introduced and stability of the

feedback system defined in terms of the continuity properties of

the operator. Appropriate references are the original papers of

Sandberg (54], and Zames (74], and the papers (63] (65] and monograph

[64] of Willems. The thesis of Davis [12] gives a rather complete

treatment of the input-output theory of general linear systems.



Let X be a vector space of V-valued functions on the set

R ; that is, each element x of X maps R into V where V is some

given vector space. Let G be an operator mapping X into itself

such that GO = 0. For u c X as an "input" consider the following
e

equation

(1) x(t) + (Gx)(t) - u(t), t C R+

as descriptive of a deterministic feedback system. The operator G

represents the cascade of all the elements of the open-loop system

and x the "feedback error." As a model of physical elements the

operator G must be causal and the solution x must be bounded over

finite time intervals (bounded subsets of R ). These requirements

are made precise using the truncation operators {w t} defined by

f x(s) s t+
(7r tx)(s) - ; s, t c R .

0 s > t

Assume that X is closed under these truncations. The operator G

is causal if (pointwise)

7rtGx =r tGwtx, t R+, x c X .

Assume that Xe has a normed subspace (X, t1ll) and that the truncations

are the projections, 7rt : Xe * X for every t. The existence of a

locally bounded solution to (1) is assumed in the following fashion:

every (input) element u of Xe gives rise to a unique (output) element

x of X such that
e

(7rtx) (s) + (It G( Otx)) (s) = (rtu)(s) ; s, t C R +



Thus, by the projection property of Wt the function Ttx is an element

of X and is thus bounded for every t c R+ .

Having assumed the existence of solutions bounded over finite

intervals, the system is said to be stable if bounded (on R ) inputs

give rise to outputs bounded over the entire time set. Or precisely:

Definition 1: The feedback system (1) under consideration is said

to be X-stable if for any u C X the conditions hold:

(i) the solution x corresponding to u is actually an element

of X,

and (ii) there exists a K < c independent of u s X such that

I lxII KlJull.

The nature of the definition is clarified by the following

restatement:

Theorem 2: (65, Theorem 4.1] Assume that I + G has a causal

inverse on X,, then a necessary and sufficient condition that (1)

be X-stable is that (I + G)~A be bounded on X.

The theorem indicates clearly that the correct mathematical

framework for the investigation of input-output stability is in

that theory relating to the invertibility of (causal) operators.

For example if the operator G is linear then the invertibility of

I + G requires that -1 not be an element of the spectrum of G [12).

For linear, time-invariant convolution operators on several Banach

spaces [11] the spectrum of G is the set (assuming g e L1 (R+))

a(G) U e-st g(t)dt
Re(s)04 O



The stability condition on G in this case is the familiar Nyquist

Criterion.

For the abstract equation (1) the need for general invertibility

criteria led to the following theorem whose proof was perhaps initially

motivated by some similar inequalities in the theory of Banach

algebras (see Bachman (1, p. 34]).

Theorem 3: (Small-Gain Theorem) For the equation (1) under the

existence and causality assumptions suppose that G is a contraction

on X; i.e. there exists a constant a < 1 such that

sup I a <1.
f X

Then for any u e X the inequality

e1tx 1 1-a)~A ||rtuII

holds for every t e R+. Hence, u e X implies that x E X and

lxii 4 (1-a)~1 ||ul, and so, that (1) is X-stable.

The power of this sipple and obvious result is only fully

realized in its special cases, one of which is the Circle Theorem,

a striking geneaalization of the Nyquist Criterion. Let the vector

space V be R and define the (nonlinear) operator G as

t
(Gx)(t) - g(t-s)f(s,x(s))ds

where f R x R + R is continuous (separately) and the kernel g

is locally L (R) (absolutely integrable on finite intervals). Assume

that the feedback equation u - x + Gx is well-posed (has a unique



solution) on the space X - L (the extended space with normed

subspace (L,(R+

Theorem 4: (Lw-Circle Theorem [75]) Assume the following:

(i) u e (L,(+

(ii) For some r > 0

r t
e e 1g(t)Idt < co

0+
(iii) For some constants a, b C R

0 4 a 4 f(t x) + b < w, for every t R x c Rx

(iv) For G(s) the Laplace transform of g, and some r c (O,r )

the exclusion holds

{-[ (a+b)]~ ,jO} 4 U
Re(s): -r

G(s)

(v) For some r e (O,r 0 )

sup |G (-r +j) + (a+b) > (b-a)
(cR

Then x e L.(R+) and |lxi < Kjjuj for some K < co independent of u.

Remark 5: Conditions (iv) and (v) mean that the r-shifted Nyquist

locus of G does not encircle (iv) or intersect (v) the closed disc in

the complex plane centered at {-[ (a+b)]~ ,jO} with radius 1 (b-a).

The theorem is valid on, for instance, L2 (R+) with r 0 - 0;

however, in the L, version to be used here (Theorems 3.2.3, 3.3.6)

the assumption of "decaying memory" (ii) for the convolution seems

necessary in the proof (75]. Note that if a - b the theorem reduces



to the Nyquist Criterion which is necessary as well.

In section 3.1 a theorem similar to the Small-Gain Theorem is

used to establish general conditions for the asymptotic invariance

of the probability distribution of the solution of a general random

equation. In sections 3.2 and 3.3 conditions like the Circle

Theorem and the Nyquist Criterion are used to guarantee asymptotic

invariance for the solutions of random convolution equations. Before

proving this result it is necessary to describe precisely the structure

of a random operator equations, and introduce a topology suitable for

the analysis of probability dsitributions induced by random processes.

These topics are discussed in the next two sections.

2.3 Random Operator Equations:

A. Probability spaces:

In this section the concept of a random operator as a model of

a physical element with random parameters is rendered precise by

defining it to be an operator valued random variable. Certain properties

of random operators are noted and the nature of random operator

equations investigated. Appropriate references for this section are

the papers of Hana [31], [32], (33] and the survey of Bharucha-Reid (6].

Let (2, tf ,P) denote a basic probability space. When this

triple occurs in the sequel, the assumptions below will be implicit:

(i) (T) is a topological space, always separable, T denotes

the topology of the set 2.

See (7, Appendix III] for the implications of this constraint.



(ii) ' is the Borel a-algebra generated by the topology T.

That is, the least sub-class of 2 (the class of all the

subsets of 2) closed under countable unions, finite

intersections, and containing T.

(iii) P is a probability measure, by definition a complete (subsets

of sets of measure zero have measure zero), countably

*0 
00

additive (P{ U A } = P(A ), , A /I A =

i # j), finite (P(Q) < 0o), set function mapping ?7 into

R, normalized so that P(l) = 1.

For any measureable space (X, S (X)), here $(X) indicates the

Borel a-algebra of X, let F(f;X) denote the set of X-valued random

variables on Q; that is, the set of functions f : 4 + X and f is

measureable in the sense that f_ -S(X)C , or that the inverse

image of every measureable set is measureable.

Example 1: (Gaussian measure) Let (X, ~(X)) = (R, *(R)) the real line

with fi(R) generated by the open intervals of R. Let f : R -+ R be

a continuous function (hence P(R) measureable) and assume that the

measure y is defined by

if(A) - P{w e 0:f(w) e A e B(R)) - 1A 2(x)ex /2 dx

Then (R, eg(R), y f) is a probability space and f is a Gaussian

random variable.

*
i denotes the characteristic function of the set A.



Example 2: (Wiener measure) Let (X, e(X)) = (C(R+), (C)) where

C(R+) is the set of real-valued continuous functions on R+ topologized

by uniform convergence on compact intervals. -B (C) is the least

a-algebra containing sets of the form

A(t;a,b) = {f e C: f(t) C [a,b) c R} , t c

A measure P is induced on R(C) by its definition on such sets A.

P{A(t;a,b)} = P{f C C : f(t) C [a,b) I f(r) r 4 s < t}

1 2. 2 dx)
1te-[x-f-) 2a /2 2(t-s)dx

/2-ffa t -s) a

P is in this instance the Wiener measure [7]. Note that for s 0,

the assumption f(O) = 0 is standard.

B. -Random Equations:

The following definition was given by Hans [31].

Definition 3. Let (0, 7 ,P) and (X, f(X)) be given, then a map

T : Q x F(P;X) + X is a random operator if T(-,x(-)) - y(-) is a

random variable (an element of F(f2;X)).

Example 4: (Deterministic operators) Let G be a continuous map

X into X. Then it is routine to verify that C : F(Q;X) -+ F( 2;X)

and that every continuous deterministic operator is a random operator

according to Definition 3.

Example 5: (Linear convolution) Let (X, 1(X)) = (C(R ), (C))

and let g c C(R+). Let w denote the Wiener process, and x c F(Q;C)



independent of w. Then the C-valued function y (on SI) defined by

(its value at t)

y(tw) = g(t-s)x(s,w)dw(s,w) , t C R+

is an element of F(2;C). The integral on the right is defined in

the Ito sense; its properties and a proof of the assertion here

are given in Ito [40]. The convolution above defines a linear random

operator on the space of C-valued random variables.

An alternate formulation of the notion of a random operator

may be given as follows: Let (X,d) be a separable metric space and

8'(0) the set of all continuous maps X + X. Give to the set 'k ((')

the (strong) topology T generated by the convergence Gn + G if and only

if

d(Gnx, Gx) - 0 for every x e X.
n T

Let $(s9) denote the Borel a-algebra of subsets of ( generated

by this topology. Then for any (0, 7 ,P) given, let F(Q;, t6) denote

the set of J6 -valued random variables. That is, each element G of

F(n ;k) maps Q into A(X) such that (w)[.] = G (.) jh(x). Thus,

for every w c Q G(M)[*] is a continuous map X * X; and so, this

definition coincides with Definition 3 on the continuous operators.

Moreover, it is clear that probability distributions may be intro-

duced on -B(;4) and convergence arguments made for random operators

as well as for random variables in the usual manner. In the next section

this possibility is investigated further and the preservation of probabilistic



convergence under random operations discussed.

The use of random operator equations in section 3.1 necessitates

a discussion of the nature of a solution to such an equation.

Definition 6 For (0, 1,P), (X,1B(X)), G e F(n;sj(X)), and

y e F( 2;X) given, then every element x of F(f2;X) satisfying

P{: G(w)[x(w)] = y(w)} = 1

is a solution of the equation Gx = y.

Thus, a solution is required to be a random variable; that is,

to have certain measureability properties. This qualification has

been the source of a considerable amount of research on the nature

of solutions to random equations (see for instance Hank (32],

Bharucha-Reid [6]). Most of this has been a consequence of the

ambiguous nature of Definition 3.

Assume that (X, 1I-1|) is a Banach space. An element G of

F(0;A(x)) is said to be a random contraction if there exists a

real-valued random variable c such that c(w) < 1, for every w e

and

IIG(w)[x1] - G(w)[x 2]|| ' c(w)1|x1-x211

The analog of the Banach-Cacciopoli fixed point theorem [42, p. 627]

in this setting is:

Theorem 7: [33] Let (X,1|-||) be a Banach space, G c F(Q;2I (X))

a random contraction, then there exists an element x of F(1l;X) such

that



P{W: e(W)[x(W)] = x(W)} = 1 .

The random variable x is unique almost everywhere (P), and may be

obtained by the process of successive approximations starting at

any initial element x0 of F(f;X).

This result is then the basis of the proof of existence and

uniqueness of solutions of random operator equations. For the

equation Gx = y, given G e F(1; ab (X)) and y e F(l;X) if C may be

shown to be a contraction, then Theorem 7 may be invoked to assure

the existence of a unique element of F(f2;X) (as a set of equivalence

classes under P) as the solution. Moreover, the classical scheme of

Picard iterations may be used to approximate the solution. This

is a result of somewhat more subtlety than is apparent at first reading

as it implies that the Picard iterates are at each step random

variables, and they approach almost surely a random element which is

the desired solution. In most cases of course only local existence

and uniqueness may be established in this manner.

C. Moment spaces:

As the convergence arguments used in Chapter 3 utilize certain

moment bounds, it is appropriate at this point to introduce a few

definitions of "moment spaces" and consider operators on these spaces.

Let (2, 7,P) and (X, 4CX),||-||) be given and denote by E(-) the

usual expectation operator on the subset of F(S;X) for which

Ex = f x(w)P(dw)



is well-defined as a Bochner integral [72, p. 219].

In particular define the sets (of equivalence classes)

4q (C2;X) $ (x e F(1;X) : lxi = (E{j|xj| })l< c; q e [1,o)},

And in the case that (X, i 1-1) is a Banach space of real-valued

functions on R, the spaces

tq (1;X; ) - {x e F(Q;X) :|x I ([E{ x(t,W))q)])l/q< Go; qe[l,o)}

Here k is any sub-additive linear functional on real-valued functions.

Typical examples used here are

(f) - ess sup lf(t)I
tcR+

2 (f) = Jf(t)Jdt

Under these restrictions on Z it is clear that 1 1 1 1 is a norm

and ( q, ||-|| a normed linear space. Under the choices I

and L2, Eq is a Banach space as well, Thus, elements of q (n;X;2Y

thare (almost surely) bounded in q absolute moment. Elements of

thAq(SI;X;k2) have absolutely integrable q moments. See Ito [39] or

Skorokhod [55] where similar spaces are defined and used in existence

arguments for stochastic differential equations.

Assuming that (X, ||-||) is a space of functions closed

under the truncation operation (1rt, see section 2.2), the "extended

*(x+y) 4 R(x)+ 2(y), k(ax) = |al(x) x,y c R+, a e R



spaces" { x c F2;X) : lttx C tq, t C R+} are convenient

for certain statements pertaining to the existence of solutions in

feedback equations.

Let t(X) denote again the set of operators mapping X into

itself continuously. For those elements G of F(i;j&) for which the

supremum is finite define

IGI = sup
Sxe ,( o
q xq#0

Gx

q

And under

of causal

Note that

A few

Eratmle 8:

operator G

the assumption that X is a function space and 8(X) consists

operators (see section 2.2), then for G e F(2;.4) set

J G = sup jj .j
q xe I q

IxI Io

in this case |IG|| j depends on 1.

examples are given below to illustrate the definitions.

Consider the space E2 (;X;k 1) and the (deterministic)

on X = C(R+), the continuous functions, given by

t
(Gx)(t,w) = y(t,w) = J g(t-s)x(s,w)ds

Then

2 t t
Ey2(t) j ' g(t-s)g(t-r)E{x(s)x(r)}dsdr

( t g(t-s)(E{x2 () 1/2ds)2
0

Hence,



y I g(t)|dt ||jx I .

and the bound is attained.

Example 9: Consider 22 2) and the operator G on X = L2 (R+)

the space (deterministic) of square-integrable real-valued functions.

Then, for y = Gx,

y(t,w) f g(t-s)x(s,W)ds , t E R+, w e n
0

where ITT t
Ey 2 (t)}dt = E{(f ;(gitaT)x(s4)'da)3}dt

0 f t0

T f t g(r)|dt t g(t-s)E{x2(s)ds dt
0 0

(f jg(t)|dt)2  ,12

This bound, however, may be improved by taking into account

the fact that for each w e Q the integral f |x(t,W)j2dt < a*.

Hence, each sample function x(w) admits a Fourier transform,

x(jvW) Z x(t,w)e dt , e 0 v e R.

Hjger equality holds in the L2 (R+) sense. Assuming that g c L2 (R+) has
A

a transform G(jv), then for each w c 9

f 2 (t,w)dt 4 sup G(v)|2 2(t,w)dt
0 veR TO

and use of the Lebesque Dominated Convergence Theorem [16, p.151]

for E(.) permits the conclusion

1y1|2,1i sup $(jv)| ||x||2,Y '



Moreover, this bound is attained.

Example 10: Again for the case X = C(R ), consider the random operator

G on F(f2;C) given by

(G(w)[x(w)])(t)=y(t,w)'= t g(t-s)x(s,w)dw(s,w), t e Rq w e 0

on non-anticipating functions (i.e. 7rtrx is independent of (I-Wt)w

for all t, see section 3.2) in E2 (f2;X;Z ). The following calculations

2 ~ t2
(1) E{y (t)} Ej( {g(t-s)x(s)dw(s))2

02

=a2 2 (t-s)E{x (s)}ds
0

2 2(here E{(dw(t)) I = a dt) permit the conclusion

||y||9~ 4 ( |~v|dv)1/
1 -1

where G is the Fourier transform of the kernel g. See, for instance,

McKean (50] for details of the reduction of (1) which makes use of

the decisiv property of orthogonal increments of w. Extension of

this idea is the basis of several moment inequalities proven and

used in sections 3.2 and 3.3 below.

2.4 Topologies for Random Processes:

The appropriate topology for the convergence arguments of the

next chapter is introduced in this section. The topology is the usual

one generated by weak convergence on a set of measures and, following

a brief discussion of the general case, its properties are discussed



for certain random function spaces including the continuous functions.

The preservation of weak convergence under mappings is the final

subl-ect of this section.

Consider the following question: If the random process x(t) is

the limit in some precise sense of the sequence of processes {xn(t)},

then for some functional f is it possible to determine the distribution

of f(x) f those of f(x n) are known? In other words is the distribution

of f(x) the limit in some sense of the distributions of f(x n)? It

is clear that some regularity assumptions must be placed on f to

make these questions meaningful. Typical examples of functionals

f are

f(x) = t2 g(x(t))dt
t

f(x) - sup |x(t)I

The techniques introduced below have been developed to answer

questions such as these.

Let XX,d) be a complete, separable metric space and let

Bd(X) denote the class of Borel subsets of X generated by the

d-topology. Let C(X) denote the set of continuous (in d) functionals

on X. Let (f2, 7 ,) be the basic probability space and let x, x n + X

be random variables. The distribution of x(x n) is defined as

y (A) M P{W E M x () e A c Sd(X)}

Then a necessary and sufficient condition for convergence of the

sequence of distributions of f(x n) to that of f(x) for all f £ C(x)



is that

lim h(x)u (dx) = h(x)p(dx)
n-+oo f- n 1

For all bounded, continuous functionals h. This answers the question

posed above subject to the restrictions imposed and makes further

study of the limiting operation above of interest.

On *d(X) let PM(X) denote the set of probability measures,

and let BC(X) denote the set of bounded, continuous functionals.

If for elements pn, V of PM(X)

hdy + hdy , for every h e BC(X),
Xn X

then yn converges weakly to U, or yn y p. This convergence is

determining by the following:

Theorem 1: [7, p.9] Elements y, v of PM(X) coincide if hdy -
fXI hdv for every h e BC(X). Other implications are given in [7, Theorem

2.1, p. 111.

Let a subset A C PM(X) be called relatively compact if every

sequence in A has a weakly convergent subsequence (vhose limit need

not be in A, though in PM(X)). This compactness definition will

be used in Chapters 3 and 4 to prove the existence of invariant

distributions for stochastic processes. The criteria for determining

relative compactness in general metric spaces are due largely to

Prohorov and are given below. A family of probability measures

A C PM(X) is called tight if for every e > 0 there exists a compact

set K(E) C X such that y(K(e)) > 1-C for every y c A [7, p.37].



Theorem 2: [7, p. 37] Let (k,,) be a complete, separable

metric space, A C PJW3 , then A is tight if and only if it is

relatively compact.

On E()) define a neighborhood system via the following

sets: for V e 1W(-49) C > 0, k C 2+

Nk,v (P) - (v E PM(X): h idv- idi < C,

h c BC(X), i-1,2,...,k)

Call the topology V generated by these neighborhoods the topology

of weak convergence; clearly y + y if and only if y + y)n w n
A natural question to pose is: When is W' metrizable?

For y, V E PM(X) let

-= inf {C > 0: y(A) 4 v(N (A)) + c}

where N (A) = ix c X: d(x,A) < c}, and A c X is closed. Let 2

be defined by reversing the roles of p and V. Define

L(Iz,v) = max (e ,C2)

Theorem 3: [7, p. 238] The function L is a metric on PM(X) called

the Prohorov metric. Moreover, the L-topology is equivalent to )r

if the set X is separable.

By defining the distance between two random variables to be

the L-distance between their distributions a metric (L) may be

defined on F(Q;X) the set of X-valued random variables. It is routine

to verify



Proposition: If {x n, x are elements of F(A;X) then

P{wc 2:d(xn (),x(w)) -+ 0) 1

implies L(x ,x) = L(y x ,y ) -+ 0.
n

Conversely,

Theorem 4: [56] If {xn I is an L-Cauchy sequence (possibly defined

on different probability spaces), then a sequence {yn} and y may

be constructed on (f, 7 ,P) such that

L(xn' n 0 and P{w:d(yn(W),y(w)) + 0} - 1.

Call a subset A = {xa, a e A} of elements of F(Q;X) indexed

by A, totally L-bounded in (F(Q;X),L) if every infinite sequence

xan n 1taken from A has an L-Cauchy subsequence. This property
n

is equivalent to the induced distributions of {x.} being relatively

compact. Precisely:

Theorem 5: [53] For A to be totally L-bounded, it is necessary and

sufficient that for every c > 0, there exists a compact subset

K(c) c X (independent of a e A) with

P{w : xa(w) e K(C)} > 1-c , a c A

Or equivalently, that the induced distributions {V }be tight.
xa

Assume now that the metric space (X,d) is the space of R-valued

continuous functions on R+ (denoted by C(R+)) with the metric

d(f,g) = 2-n jj 14n.
n=1 + n



where ||hI|n - sup Ih(t)j. Then (Cd) is a complete, separable
0t~n

metric space. In this case F(f2;C) is a space of random functions.

The basic compactness result for measures defined on (C, Bd(C))

is given by the following:

Theorem 6: [7, p. 95] A subset A c F(fl;C) is totally L-bounded if

the following conditions are satisfied for any sequence {x c A:

(i) the sequence (of distributions induced by) {x n(0)} is

tight;

and (ii) there exist constants y ; 0 and a > 1 and a non-decreasing,

continuous function f on R such that

P {W:|Ixn(t) -xn(S)| 'X ) & jf(t)-f(s) a,

for all t, s e R+, n e Z+, and A > 0.

Corollary 7: The moment condition

E{x n t)-x n~s }y 4 jf(t)-f (s)

implies condition (ii) via Chebyshev's inequality.

Corollary 8: [41, p. 10] A subset A c F(A;C) is totally L-bounded

if there exist c > 0, cn > 0, n=l,2,...,An c d(C) such that,

for every x c A

(i) E{i 2 (0)} 4 c

(ii) E{Ix(t)-x(s)| ; x c A } g c t-sj2 , 0 < s,t < nn n _

00

(iii) (1 - P{w:x(w) e A n)) is uniformly convergent on A.
n=l



These results will be used in Chapter 3 to investigate the

behavior of the solutions to stochastic feedback equations. In

that setting it is necessary to understand the transformation of

distributions by operators on sets of stochastic processes.

Let WX, 8(x)) and (Y, -4 (Y)) be measureable spaces and

G : X -+ Y a measureable function. for f e F(;:) let y. be the

distribution induced on - (X) by f. Recall that

y f(A) = P{w : f(w) c A c B(x)) = P(f*)

Then assuming G : F(S;X) * F(SI; Y) for f e F(O;*), Gf induces in

the same way a distribution on $(Y) according to

yGf (B) = P{w : G(f(w)] e B E 4(Y)£

= P{w : f(w) C G1 B e *(X)}

= pf(G B)

If G is a random function the transformation is more interesting.

Let (Xd ) and (f,d ) be separable metric spaces. Then 8(X,Y) is the

set of operators g : X + Y, continuous in the strong topology. Let

S(X,Y) have the strong operator topology [16, p. 475], and let

6 (0 ) be the least Borel a-algebra induced by this topology.

As in section 2.3,F(f;A ) denotes the set of. )(X,Y)-valued random

variables.

A criterion sufficient to guarantee the assumption G : F(11;1) 4 F(O;Y)

is the following



Theorem 9: (32] Let x be an element of F(A;X) and let G e F(S;pb),

then the function y : 2 + Y given by

y(w) - (Gx)(w) - G(w)[x(w)]

is a random variable if G(w)[-] is continuous X + Y for almost

every w c f2. Thus, every G c F(n; A ) maps F(SI;X) into F(Q;Y).

For the random variable y a Gx a distribution is induced on

-(Y) according to

PGx(B) - Pw : (Gx)(w) e B E (Y)

a P-w : O(w) [x(w)] e B}

Now by assumption (X,dx) is separable, it follows that X has a

countable base (7, Appendix I] that is, a family of open sets such

that every other open subset of X is the union of a sub-family of

these. Indicate this base by 7 i {A } and assume (without

loss of gunerality) that the Ai are pairwise disjoint. It follows

from the Borel property of - (X) (it is generated by the topology)

that (X) is generated by 2 . Returnintgto the expression for

ylGx for G e F(i; ), it follows from the last few remarks that

Gx (B) P P [{w:x(w) c Ai} n) {w :C(w) , c (AiB)}]}

M yP (A i)yG( (AiB))
i-1

Here A (Ai,B) C it (XY) is the set of operators g mapping X into

Y and Ai into B. (The random variables x and G have been assumed



independent under P). The formadxa mion

yGx(B) fX Ux(dn)yG(.) ({n},B))

follows from above.

Now assume that X and Y are R-valued function spaces on R, closed

under the truncation operators {7t }tcR+. Let j8 (X,Y) be further

restricted to include operators causal as well as continuous. Each

element x of F(W;X) generates a set of distributions {1 tx +te on

*S(X) according to the rule

y (A) M :P x(w) e A)
t

And in the same manner as above for G e Jk (X,Y) and B £ - (Y)

(B) G xw x t t

mPiit G) B]

Assuming that (Xd ) and (Y,d ) as sets of functions are

separable, metric spaces, and that the random operator G is an

element of F; I), then the formal expression below gives

PrtGx (B) - y t(dl)y tG( ({n},B))

the distributions induced on -S(Y) by Gx for any element x of

F(O;X).

As the final topic of this section consider the questions raised



by the transformation of a weakly convergent sequence of distributions

by an operator. Precisely, let A C PM(X) be a relatively compact

set of measures and let H be a function mapping X into itself: under

what restrictions does H preserve weak convergence in PM(X) and

relative compactness of A? A partial answer is given in

Theorem 10: (Topsoe [61]) Let (X,d, -13(X)) be a complete, separable

metric space, H a measureable map from X into Itself, and {y } 1 an n'.l

weakly convergent sequence of elements of PM(X) with limit U. Then

the sequence {y n (H 1)} 00 is weakly convergent (to .(H )) if
n=l

H is continuous (modulo y).

Though easily proved by examining the terms

I f(H(x))yn (dx)

for f e BC(X) (that is, f(H-) C BC(X) if H is continuous), generalization

of this result to the case where H is random is not straight-forward.

For i E PM(X) and G e F(Q; 3A (X,X)) define

v(w)[-] = y(G(w) (.))

In general let L denote the Prohorov metric on PM(X) and let

-f(PM) be the least Borel a-algebra generated by the L-topology. For

any basic probability space (0, X ,P) then F(SI;PM) has the usual

interpretation and is well-defined as a consequence of the metric pro-

perties of L. Each element v of F(n;PM) is pointwise a probability

measure, v(M) e PM(X) for each w e 0.

Two definitions of convergence of F(f2;PM) are given in



Definition: (i) The sequence {vn (w) C F(f2;PM) converges weakly

almost surely to V e F(a;PM) if for every f c BC(X)

lim ess sup |ff(x)v n()[dx] - f (x)v(w)[dxI = 0
n-+n Wei X X

Denote this by vn V.n w .Lao

(ii) The sequence {vn (w) C F(Q;PM) converges weakly in mean to

V e F(f;PM) if for every f e BC(x)

lim E{I f f(x)vn(w)[dx] - f f(x)v(w)[dx]f} = 0
n-+eo XX

Denote this by vn w L *

The next theorem gives conditions on the operator G C F(Q;;) so that

convergence in the senses (i) and (ii) above is implied by y n + y in the

Prohorov topology.

Theorem 11: Let (X,II*II) be a separable Banach space, and let G e F(4; (X)).

(i) Then y1n + y (in L) implies that

v [*] = y (G(w)) -) + v for some V c F(A;PM)n,w n1 a

(ii) Let G e F(Q; )f ) be such that

E{||G(w)[x] } 4 K||xI

for all x c X and some finite K independent of x. Then y n

(in L) implies that Vn' w-Lo ' for some w c F(n;PM).

Proof: (i) Since G() c %4(X) (modulo P), f(G(w)[*]) is an element of

BC(X) for almost every w e Q and every f e BC(X). Hence, for almost

every w c 2

lim f(G(w)[x])pn (dx) - f (G(w)Ix])i(dx)| - 0
n-w e tnf

which implies the conclusion for V-(w) = ii(G(w) *)



(ii) By the hypothesis of (ii) the integral

SG(M)[xP(dw) is uniformly bounded (I-)
in x. Thus, since the yn are probability measures (specifically,

they are a-finite), Fubini's Theorem implies the equality (for

every f e BC(X))

f(G(w)[x])V (dx)P(dw) = f(G(w)[x])P(do)P (dx)

Since f c BC(X) and G(w) c ,b (X) (almost surely), and by the assumption

of (ii), the function

ff(G(w)[-])P(dw) : X + R

is an element of BC(X). The conclusion follows using the reasoning

in the proof of (i).

QED

Remarks: (1) Thus, continuity of G(w) on X, almost surely (P), is

sufficient to guarantee (w,L,,)-convergence for G operating on L-convergent

distributions yni. Clearly convergence (w,L) implies convergence

(w, L.).

(2) It is useful to think of the elements of F(Q;PM) as "random

distributions." That is, assume that a number of control policies

are available and that each of these is stochastic because of the nature

of the task at hand. Then each of these possible policies may be re-

presented by an element of PM(X), and if the control decision is made



44

at random it may be modeled as an element of F(A2;PM). In other words

a control policy is chosen according to some probability law from a

set of stochastic controls. See the paper [76] for some related

definitions of relaxed stochastic controls.

In the setting here the uncertain system "randomizes" the set

of probability distributions representing the input and it is this

point of view that is used in the latter portions of section 3.1.



CHAPTER 3

ASYMPTOTIC PROPERTIES OF STOCHASTIC SYSTEMS

3.1 Asymptotic Properties of General Feedback Systems:

The results in this chapter summarize an analysis of the

asymptotic properties of feedback systems described by possibly

random operators and subjected to stochastic inputs. In this

section the properties of general feedback systems are investigated,

and a theorem akin to the Small-Gain Theorem (section 2.2) used

to establish moment bounds for signals in feelback systems. Under

certain conditions on the system operator and the input the distributions

of the feedback signals are shown to be asymptotically invariant.

These results are reviewed in sections 3.2 and 3.3 for certain feed-

back systems described by random convolution operators. In section

3.4 a simary of the related existing theory for systems described

by differential equations is presented.

Before undertaking the analysis of the asymptotic properties of

uncertain systems it is important to define precisely the nature of

such a system in feedback form. First the notion of a proper

signal space is required. Let 1 c R be a linearly ordered set, the

time set. Let X be a set of R-valued functions on H , assumed to be

Borel measukeable (i.e. x (-6(R)) C (( 9 ) for every x c X. Let

{'t}tc 9 denote the set of causal truncations introduced earlier,

and denote by {Et Ite the set of anti-causal truncations. Assume

that X is closed under both species of truncation. In that case



and y E F(R;X) by continuity of G. Furthermore, for x e S(Q;X),

G c j (X) and assuming GO = 0, then y c S(f;X) because G is causal

(and GO = 0).

A feedback system will be specified by a set of inputs, a

plant, and a feedback controller. It will be assumed here that the

system signals have their values in the same space as the inputs.

The input space is defined as follows: Let X, 0 , and

(Ol, 7t) be specified as above and let {P } (A an index set)
a acA

be a set of probability measures on (l , # ). For each a s A,

f C S( 1 ;X) induces a probability distributioinon (X, 16(X)) according

to the rule

Pa,wtf(B) = P {W C Q 1: Ot f)(w) c B C B(X).

The input space is defined as an element of (S(Q ;X),aicA

for some choice a C A. The flexibility allowed by specifying a set

of distributions {P } rather than a single distribution reflects

the empirical nature of the analysis of physical systems containing

uncertainties. Frequently a number of hypothetical distributions

for any uncertainty are proposed and some method of hypothesis testing

used to determine the "best" of the candidates. This selection process

should be regarded as preliminary to the analysis contained here.

The plant is defined by the following procedure: Let 4c(X)

be specified as above, and let (P22' 2) be a measureable space (possibly

distinct from (O , ')). Let {P a}$B be a set of distftbutions on

.72. Let F(Q2 ;A) be the set of i-valued random operators on 2

governed by the law p induced on c according to



X(s) s > t
((x(s) =t0 s 4 t

or symbolically t I t (I the identity on X).

Giving B an appropriate topology (relative to R) X may be

topologized and a (least) Borel a-algebra -A(X) induced by the

topology of X. To emphasize the fact that the systems to be studied

here are to be considered as control.systems,. the.set.of signals

is constrained to begin at some finite time. Thus, the set of

signals admitted in the system is constrained as

A
S(S;X) = {f E F(2;X) : f E 0 for some t C }.

Let A(X) again denote the set of operators mapping X into

itself. Indicate by .c(X) the subset of ,&(X) consisting of causal,

continuous operators. All systems to be studied here will by assumption

be constructed from elements of Zc(X). Note, however, that this

does not imply that the overall system will be either causal or

continuous, and in general additional conditions will be required to

assure preservation of these properties. See Willems [64] for a

discussion of this feature of feedback systems which he calls well-

posedness. Every element of Jic(X) induces a natural map on F(n;X)

into itself using the continuity assumption and a natural map on

S(1l;X) by the additional restriction of causality. That is, for

x e F(12;X), G c cX) then

y(-) = G[x(w)]



p1 (D) = P {W e 02 : m(w) E D c "z(. AA)}

by any element m of F(n2; . The collection

{F(f2 c *J I'YSeB

is the set of plants "selected" according to the law y chosen as

cqptly' accounting for the physical observations.

For the purposes of this analysis the feedback operator is also

assumed to be uncertain, though in design problems it usually may

be freely chosen. Under this assumption the set of feedback controlkers

is specified in exactly the same manner as was the set of plants. For

a given measureable space {f23 O} and a set of hypothetical distributions

{P Yr on .73 a feedback controller is an element of F(3 3 c

governed by the law P specified as best.

For any element x of F(;X) let -ie(7rtx) denote the least

Borel algebra generated by Trx, s 4 t; in symbols

S(wt Yt s
s,te 9

The assumption of measureability of x assures that %f(7itx) c

for every t c .

Definition 1: Given a measureable space ( and a set of probability

measures {P a}(A on 2 , a functionall h on F(n;X) into itself is

said to be a-non-anticipative if for every x e F(Q;X), - (7t[h(x)])

is independent of &(Ftx) for every t e A with respect to Pa.

See for instance, Gikhman and Skowkhbd [29, section 3.3] for



a discussion of independence of set algebras. Call h non-anticipative

if h is a-non-anticipative for every a £ A.

Informally stated the definition says that values of the function

h(x)(t) are independent of the future t x of x, at least with respect

to the distribution P

Proposition 2: If h is causal, h(7rt x) th(wtx), then h is non-

anticipative.

Definition 3: A stochastic dynamical system is a 4-typle

{S(fX, a acA; F(2 2EB0 where S(21 ;X) is the set

of X-valued signals, {Pa a set of distributions on (Mi, 17),

{P } a set on (Q2' 2) and F(r2 , a set of -valued maps on

Q2. Here each element G of is non-anticipative (with respect

to {Pa)) on S( 1;X) into itself. Moreover, for each G c 4

assume GO - 0.

Definition 4: A stochastic dynamical system is said to be in feedback

form if it may be written as the 6-tuple

{S (o 1;x, {P aEA ;FS2 , SEB)ac; F( 3' ' v{ Y $er

where the components have the meanings and implications established

above. Moreover, that the operator H selected on (02 x3'2 3

according to {P } x {P } given by

H( (2,m3)= (I+K(w3) oG 2

(G c F(12 ;,1), K c F(;g )) is one-to-one and non-anticipative

with respect to {P on S(11;X) into itself. In addition HO - 0.

Clear from this definition is the observation that by identifying



(2 2  3' , 2  '73' {PO x {P}}) with some space (6, 1,{P}) the

random operator H may be specified on f2 by

H(w)- I + G(w)

where G is a .Aj -valued random variable on 2. Moreover, by combining

(S01 'a 1 ) and (Q, 7 ,{P}) intthe same way, it is possible to

define H and the input signals *(11;X) on the same probability space,

governed by the same collection of probability laws. The conclusion

of this argument is that, for the purposes of this analysis at

least, it suffices to consider the random operator equation

x(W) + G(w)[x] = u(w)

defined on some probability space (0, Z ,{P }) as representative

of the feedback system under investigation. Here u,x e S(Q;X),

u an admissible input, x to be studied, and G is a random operator

on F(f2;X) into itself, non-anticipative with respect to {P } . More-

over, for the purposes of the analysis to follow it is a useful

simplification to assume that G(w) is an element of Jc(X) (C )

the causal, continuous operators on X. Thus, using Proposition 2

above, the qualifier "non-anticipative with respect to {P }" may be

ignored for wmdh operators G. Finally, the assumption is made that

by some decision process the "best" distribution has been chosen from

among {P }A x B Y ) on the product space (M1 x 0 2 'l 2 x 3

Designate this underlying basic space by the customary symbols (0, 2 , P).

Recall from section 2.3 the defitition of the spaces {(f;X;E)



and C(q,() (from here on the arguments Q and X will be omitted

when not of central concern). Let G be an element of F(I; 2)
and u any element of S(n;X), then make the following:

Assumption (Al): (Existence of a locally bounded solution) For the

equation

(1) u(t,w) = x(t,w) + (G(w) [x(w) ]) (t), t c w , c

assume that u c e (I) implies that x c 6 (k).

That is, that wt u es (k) for any t c 0 implies 7rxt Sq (21).
As remarked abom the assumptions of causality and continuity of G

on the function space X 4aid GO a 0) establishes that x e S(OQ.

What is assumed here is roughly (dependent on k7 the additional

property that x has a "locally" bounded qth absolute moment.

The following result is the analog of Theorem 2.2.3 (Small

Gain Theorem) in this setting.

Theorem 5: For the equation (1) above subject to the assumptions

introduced with G e F(Q; )) and u e t (2I) f) S(W;X), a sufficient

condition that x s q (I) fl S(2;X) is that

IG|f 'q9, 4 a(l) < 1

for some a(k) independent of u.

Proof: By the assumption (Al) x exists and by virtue of the causality

of (I+G) on X, x is an element of E () (n S(m;X). Moreover,
qe

using the causality of G

7rrt x(W) a tu(W) - 7r tG(M)[ltx(W)), t E 9 W C Q



so x does not anticipate u and is a well-defined solution. Next

using the triangle inequality property of ||- as a norm,

it follows that

I 7rtXl 'q,L 4 17tu||qz + 7rtG(7rtx q,

The assumption on G permits

IlntxI q~k i I I7rtu| |q, + a(L) I |7tX q,21

The restriction on a(t) and the assumption u e q lead to

t, q,A q,1a() u|

Observing the right hand side to be independent of t C 0 It follows

that

IxI qj - dup ||I tx [l- X1)]~ |u! q,
te H

and hence, that the conclusion of the theorem is valid.

Note that the inequality |jxj|q, 4 KI ul tqZ for some K < co

is a "bonus" not required in the theorem. In deterministic stability

theory this property (||x|| 4 Kiuj|) is sometimes called "finite-

gain stability" and is frequently included as a condition in the

definition of stability to preclude certain uniform boundedness

arguments. See Willems [65] for a discussion of this point. Though

not explicitly required above the finite gain property will be



decisive below, where certain assumptions on u are used to deduce

properties of x other than boundedness (see the proof of Theorem 3.2.5).

By the assumptions preceding the theorem I+G has a causal inverse

on X or more generally on S(i;X), and that inverse is locally bounded

(maps t + ), the theorem guarantees that the inverse is

globally bounded (6 + E ). An important corollary to the theorem

preceeds from the definition

- q 11Gx -Gx211 q.
x1,x2 E q l1~2 q,,

li -x211q,k 0

of the incremental gain of G c Ac

Corollary 6: For the equation

u 1 )-u 2(W)=x 1 M-x 2 MWGWxl (w)]-G(w) [x 2W

with ul, u2 e qe m) n S(f2;X) and G e F(n; c) subject to the

additional constraint

u-u2 e q,Y S(;X)

a sufficient condition that x1-x2 E 6 qL n S(m;X) is that &(i) < 1.

Proof: By assumption (Al) above x 1-x 2  (E C() and by the causality

of the inverse of I+G on X, x 1-x 2  tqe) n S(;X). Moreover, causality

of G assures that x1-x 2 does not anticipate u-u 2 and so that x1 -x 2 is

well-defined as a solution of the equation. The remainder of the theorem

follows directly from the definition of &(I) and the equation



7t xl(W)I~ri2 (W)-wtul (W)-7rtu2 (w 7tG (w) [7txl ()]+7tG (w)[(7tx2(W

along the line of the proof of Theorem 5.

QED

Remark 7: That Theorem 6 is a more stringent requirement for a

system that Theorem 5 follows immediately from the observation

a(i) 4 &(Z) for every G c F(1; bc ) (choose x2 E 0 in the definition

of &(t)). Thus, Theorem 5 may hold and Theorem 6 not. When valid,

Theorem 6 guarantees that not only does I+G have a causal, bounded

inverse on 6qt but also that the inverse is continuous. This

property is essential in the sequel.

Let 0 be the fixed set R - [O,w) (another choice is

R = [t ,t ) for some to E R). Let (X,d) be a complete, separable
t0

metric space of functions mapping R+ into R. Then with this choice

of B it is possible to identify F(SI;X) and S(Q;X) (that is, all

elements of F(il;X) are for each w elements of S(S2;X); the opposite

inclusion holds by definition). Moreover, for the two functionals

mentioned earlier

1 1(f) = f jf(t)|dt, f e X

L2(f) = ess sup If(t)I
t e R+

the spaces q (f2;X;2,2) are Banach spaces.

In the next two sections below specific choices of the space

X (as the set of continuous functions, and as the set of piecewise



continuous functions) permit the use of bounds on the space q(2

to make Prohorov's Theorem applicable to certain feedbakk systems.

Theorem 8 here is intermediate in this process.

Recall from section 2.4 the definitions of the Prohorov topology

and the definition of totally L-bounded sets of random variables.

Assume that (X,I|-|I) is a Banach space. For H e .,Oc(X) define

the norm of H on X (distinct from the norm of H as an operator on

8 ) as

p(H) = sup

O#xeX

and let X - {f:R R : itf e X

with X.

Theorem 8: (Deterministic plant)

where

be the extended space associated

Consider the equation on S(fl;X)

u(w) = x(w) + G[x(w)]

u C S(n;X), G C bc(X)

and the existence of a solution x e Xe such that ntX E S(SI;X)

is assumed. Moreover, assume that the set of disbributions

{P tu IteR+ induced by u on 18(X) is relatively compact, then a

sufficient condition that the set {p x t£R+ be keiatively compact
t

is that

(i) p(G) < 1

(ii) (I+G)- 1 c



Proof: Condition (i) assures that the solution x(w) is an element

of X for every w E 0. The argument is familiar

7rt XM aWt UM - W tG [Trt M

II7tx x() 1I 1 I[rtu(w)I + I wtG[wtx(M)I

4 1 u(o)I + p(G)I|tx(w)II

Thus,

tx(w)l4 (l-p(G)] ljju(w)j| for every t c R

W e

and the conclusion is immediate. That x e S(O;X) is a consequence

of the facts that wtx e S(O;X) for every t, and x = lim t xe
t-+W

Again using the causality of G, for every t e R+, (I c I

td x~)+ wtG~irtx(o) - irtu(w).71t XM+Wt G[rt X() ft U

Hence, for any A e 8(X)

P{w : Wt x(w) c A}

M P{W : t 1 1rtu(w)] c A}

= P{W : 7tu(w) E (I+G) Al

Where (I+G)~AA c (X), since (I+G) is continuous on X. Thus,

the formula

pt t (A) p 7 (I+G) A]

follows from the above equalities and the definition of induced

distributions.



Let {t n 1 be an increasing (unbounded) sequence of elements
n n=i

of R and coniAder the sequence {V. }n1. Let f be any element

n
of BC(X), the bounded, continuous functionals on X, then

ff(y)-p (dy) a f(y)yJt u [(I+G) dy]

n n

- f[(I+G)y]pR, (dy)

n

Since I+G is an element of c (X), the function f[(I+G)(-)] X - X

is an element of BC(X). Moreover, since the set {PIItu }teR+ is

assumed to be relatively compact in the weak topology, there exists

a subsequence (unbounded) {t n} 1 C t n n such that the
n n =l n nl

subsequence

f f[ (+GG y tn'r u (dy) n'O

converges. Hence, the original sequence t x C has a convergent

subsequence. The arbitrary nature of the set {t I leads to the
n ninl

desired concludion that {y t t+ is relatively compact.7r x tR+
t

QED

In other words the theorem says that on the function space X,

totally 4e-bounded (stochastic) inputs give rise to totally L-bounded

outputs if the (deterministic) system operator I+G possesses a bounded,

continuous, causal inverse on X. Boundedness of the signals is not



the usual notion of boundedness in norm, but a more refined concept

defined in terms of the distributions induced on X by the signals.

Although it may be considered as a rather direct consequence

of Tops~e's Theorem (section 2.4) Theorem 8 serves a number of

purposes. First it unites in a simple way the Prohorov theory of

convergence and the detemministic operator stability theory to give

interesting results for stochastic systems. And it executes

this union in such a way as to make directly applicable the deter-

ministic stability criteria (at least in their incremental form)

to problems in this setting. Secondly it again establishes the

invertibility of operators as a key tool in the class of problems

being considered here. In this way Theorem 8 is the analog of

Willems' result (Theorem 2.2.2). Corollary 9 below makes the Small-

Gain Theorem applicable in this general setting and provides the

link to explicit criteria based on this result.

Corollary 9: Let G be an element of joc(X) and

- IIGx 1-Gx2 11p(G) = sup
xi ,x2 EX ll1-x2T

xI-x 2#0

then the system operator I+G under consideration maps totally L-bounded

inputs (u e S(f2;X)) into totally L-bounded outputs (x C S(;X)) if

p(G) < 1.

Proof: Clearly p(G) < p(G) and so (i) of Theorem 8 is satisfied. An

easy calculation suggested in the proof of Corollary 6 shows that



(I+G) is Lipschitz on x with Lipoahitz constant [1-b(G)]

and, hence, is bounded and continuous. Causality of (I+G) 1

is assumed, thus (ii) of Theorem 8 holds.

QED

Examples illustrating the last four theorems are postponed

until the sections following this one. In the remainder of this

section the operator G defining the feedback system will be permitted

to be random and the results from the latter paragraphs of section

2.4 used to investigate the system properties. Thus, let G be an

element of F(f; .;c) and let u e S(f;X). Assume that G and u are

independent under P. The properties of x defined by

(2) x(w) + G(w)[x(w)] = u(W)

are at issue here. Referring to section 2.3 for comments on the

existence and measureability of solutions to (2), the assumption

of locally bounded solutions will has usual be made.

Assumption (A2): For the equation (2) it is assumed that it u E S(M;X)

implies that Wtx c S(f2;X). That is, that bounded, measureable

inputs (7t u) give rise to bounded, measureable outputs, at least on

finite intervals [O,t]. Bounded means in ||-|| on X.

This assumption implies that for every w C Q, I+G(w) has a

locally bounded inverse on X,, and moreever, that this inverse maps

measureable signals (elements of S(Q;X)) into measureable signals.

Now let {PItu ltcR+ denote the distributions induced by 7ltu



on -(X). Put

{v )*t tu {~ (I+G(W)) I]I

The Borel measureability of G e F(Q; c) assures that v e F(92;PM(X))
c ~ t

(recall this notation from section 2.4). Then from these remarks and

Theorem 2.4.11 the following result gives a partial description of x.

Theorem 10: For the equation (2) defined on the function space X,

subject to the above assumptions on G, let u e S(O;X), then by (A2)

t x E S(SI;X) for every t c R+. Moreover, if P1 (G) < 1 where

IG()[x]-G(W) [x2
p1 (G) = ess sup sup

W Eft x isx 2X 11

x1 -x2 0

bhen x e S(A;X); and if the set {yI t teR+ is relatively compact,

(as a subset of the metric space (PM(X),L)), then so is {v w)t

in the (w,L.) topology on F(f2;PM(X)).

Proof: Using the causality of G(w) for every W

1t X(W) - Wtu(W) - 7tG(w) (wtx(W)

Thus,

Iktx H II1tuII + |I|rtG()[wt(w)

SHull| + p(G) - ||wtX(W)ll

which proves that x e S(n;X) when combined with (A2) (establishing



measureability of the truncated signals), using a simple limiting

argument.

By a modification of the usual argument the condition 1 (G) < 1

implies that (I+G(w)]~A maps X into itself X (and is Lipschitz

continuous) for each w C Q. Let {pit t R+ be the distributions

induced on -(X) by w tu. Then using Theorem 2.4.11 (i) the conclusion

of the theorem follows.

QED

Corollary 11: If P2(G) < 1 where

JG(w)[x J1]-G(w)[x2]11
P2 (G) = sup EtI

x1 ,x21 X 11xlx 21I

x 1 -x 2 O

then {P 7tu L-relatively compact implies that {v t (M)} is relatively

compact in the (w,L1) topology on F(A;PM'(X)).

Proof: In Theorem 2.4.11 put

K - [1-P 2 (G)]~ <

QED

The lack of symmetry in these results renders them provisional

in nature. In the next two sections this deficiency is avoided by

specializing the random operator C to be a nonlinear convolution in

a special form. The space X is also restricted to be the continuous

functions or the piecewise continuous functions. In the general case,

however, this problem remains open.



3.2 Convolution versus a Wiener Process:

In this section the general results of the last section are

reconsidered for a special class of random operators formed by

convolution versus a Wiener process. Three particular problems

are analyzed here: For a general convolution versus a Wiener

process sample properties are discussed and moment inequalities

derived. For a nonlinear convolution equation moment bounds are

obtained for the solution and a condition similar to the Circle

Theorem (section 2.2) is used to guarantee the existence of an

invariant solution distribution. Finally, as a corollary to the

analysis of the nonlinear case a linear convolution is considered

and a condition like the Nyquist Criterion given to guarantee the

asymptotic invariance of the solution distributions.

Let w denote the usual real-valued Wiener process on R , normalized

so that w(O) = 0. The Wiener measure w is a probability measure on

(C(R ;R), -(C)) satisfying two properties. For each t, s e R the

random variable w(t)-w(s) is normally distributed (on R) with mean

E{w(t)-w(s)) = m(t-s)

and variance

E{[w(t)-w(s)-m(t-s)] 2} a2jt-s.

And for any finite collection of elements {t i} n C such that

t 1% t2  ' . ' tn < c, the random variables w(t2)-w(tl),w(t3)-w(t2)

...,w(tn )w(tn- 1 ) are independent under (the measure) w.

For any C-valued random variable x on (A, , P) let Est(x) c



denote the minimal Borel a-algebra over which x(r) is measureable

for r e [s,t]. Symbolically,

t - U rx1( (C)).
re[s,t]

In particular let 6t(dw) denote the least Borel o--algebra over
St

which w(r)-w(q) is measureable for s 4 r 4 q 4 t.

Endow C(R+) with the metric (see section 2.4)

d(x,y) -G 2-n +ix-y|i ,|z|n sup)
nl t[0,n]

Let f be a continuous functional on (C,d), and assume that the

measureable function g : R x R * R is a causal convolution kernel,

i.e., g(t,s) 0 for s > t. Then the operator

t
(Gx)(t,w) = g(ts)f (s, (r8x)(w))dw(s,w)

is well defined as an Ito integral [40] on non-anticipating random

functions x C F(Q;C), i.e., those for which t(x) ' Sot(dw) is
independent of - t*(dw) for every t e R+. (Here k V $2 denotes

the least Borel algebra containing both 'Bl and B2)*

Let u c F(Q;C) be a non-anticipating random function in the

above sense. As a special case of the general feedback equations

of the last section consider the following equation.

t
(1) x(t,W) a u(t,W) ft- g(t,s)f(s,x(s,w))dw(s,w)



Theorem 1: Conditions sufficient for the existence of a solution

x E F(;C) (with locally bounded second moments) such that

.6ot(x) V -ot(u) v kot (dw) is independent of 6o (dw) are

that

(i) f(sz)12 I a2(s)|z12, z e R

(ii) g 2(t,s)a 2(s)ds < o
0

See [55, Chapter 3] where a much more general existence theorem

is proved using the usual Picard approximations.

The properties of the moments of x are of fundamental importance

in establishing the ultimate invariance properties of the distribution

of x. The existence theorem above guarantees that the first and

second moments of x are locally bounded (finite on any bounded interval

[0,T]). The next theorem gives a bound on the entire half-line.

Assume that f : Rx R+ R is continuous and that

If(s,z)I ja(s)j Iz! , z e R,

for some real-valued continuous function a. Assuming the hypothesis

of Theorem 1, the mean of x the solution of (1) evolves according to

t
E{x(t)} a E{u(t)} - g(t,s)E{f(s,x(§))}mds

Theerem 2: (i) If

t
sup |g(t~s)| I|a(s)j Im ds 19 a < 1
teR+ 0o

then



sup E{jx(t)f} 9 (1-a) sup E{fu(t)t}
teR+ tER+

(ii) Let E{u(t)} = 0, m=O, then E{x(t)) - 0, and if

sup 2 g (t,s)a 2(s)ds a < 1
teR+ 0

then

2 1/2 1 2 t
sup (E{x (t)}) / (1- -1 sup (E{u t)}
teR+ tcR+

Proof: (i) This part of the theorem follows easily from the

inequalities (assume m > 0):

E{Jx(t)|} < E{ju(t)j} + f |g(t,s)|E{|f(s,x(s))|}mds

4 E{ju(t)|i + t Jg(ts)| |a(sj|E{jx(s)I}mds
0

(ii) The first statement of this part follows from the Theorem 1

and the properties of the Ito integral (50, p.24]. The remainder of

(ii) follows from

(E{x 2 (0)1/2 4 (E{u 2 ( )1/2

t2 1/2 21/

+ (E{(j' g(t,s)f(s,x(s))dw(s)) 2 1/)2  Eu2
0

+ a(tg2 (ts)a2(s)ds)1/2 sup (E{x2  D 1/2

0 04si t

QED

It is u&a bounds on the second moment that Corollary 2.4.8 is

used to establish the existence of an invariant limit (in distribution)



for x. The remainder of this section will be devoted to a statement

and proof of this property for two special cases of '1.) corresponding

to certain restrictions on the functional f in (1). The first result

below gives an improved moment bound for the nonlinear case under

these restrictions.

Let (1) be replaced by

t=
(2) x(t,W) - u(t,W) - j g(t-s)f(s,x(s,))dw(s,w)

where g is now a time-invariant kernel and Theorem 1 is assumed to

be in force. Assume moreover, that

0 < a s,z) 4 b < co , s e R+, z c R

Theorem 3: Under the additional assumptions that E{u(t)} a 0,

E(dw(t)) = 0, for every t e R the conditions:

() e r otg2(t)dt < co for some r0 < 0 ;

(ii) for H(r+jv) - e e-jVt 2(t)dt, and some r e (r ,0),

the exclusion below holds

(-2a-2 (a 2+b ) ,jO) H(r+jv) ; and
vER
rar

0

(iii) sup |H 1 (r+jv)+ 2 (a2 +b2 ) > 2 (b2-a2
veR

for some r e (r ,0).

imply that sup E{x(t) 2} < asup E{u(t) 2 for some finite 0 > 0.
teRC teR+



Proof: An easy calculation gives

2 2 2fr' 2 2E{x (t)) a E{u (t)) + a jg (t-s)E{f (s,x(s))}ds

= E{u2 (t)} + a (a +b2) t g2 (t-s)E{x2(s)}ds

+ a2 J g2 (t-s)E{f (s,x(s))}ds

2 ' 2sz, .1 (22)2where f (s,z) - f 2 2 2

By (ii) a2 2(a +b2)H (r+jv) # -1, thus by two lemmas of Benes [15,

Lemmas 4,5, p. 32] the operator I + $ a2 (a+b2)H (H defined by (ii))2

has a continuous inverse represented by the identity minus a con-

volution. Hence,

E(x (t)) } (1 + 2 (a +b)H)(Eu2

2 2+ a h(t-s)E{f (s,x(s)))ds

where h is the function whose Fourier transform is H(jv) -

H(jv)[l+ 2 (a2+b2 )H(jv)] 1 . An easy calculation verifies

2 1 2

|f2(s,z)| (b2-a2 2

Thus,
2 22 2

E{x (t)} I (I + (a +b )H)(Eu )(t)

222

+ $ a (b -a ) h(t-T)E{x (s)}ds

Condition (iii) establishes



sup A a2(b -a )H(r+jv) < 1

and the conclusion of the theorem follows from the L,-version

of the deterministic Circle Theorem in Zames (75] (given in section

2.2).

QED

Remark: Note that

H(r+jv) - G(r+j(v-v ))G(r+jv0)dv0

where

G(r+jv) - Oe-rt,-Jvtg(t)dt

And so, the criteria could have easily been stated in terms of

the r-shif ted Fourier transform of g.

The sufficiency of the following theorem is easily established

using the techniques of the last proof.

Theorem 4: Consider the linear integral equation

t
x(t,W) - u(t,W) - fog(t-s)x(s,w)dw(swm),

then subject to E{u(t)} - 0, E{dw(t)} - 0 and Theorem 1, the

condition

a2  |G(jv)|2dv < 27

is necessary and sufficient to guarantee

sup+ E{x 2(t)) 4 Y sup+ E{u 2(t)} for some y.
teR teR



Proof: (Necessity) Using the properties of the stochastic integral,

the following equation is easily derived

E{x2 (t) = E{u (t)} + a2 g 2(t-s)E{x 2(s)}ds.

Rewriting this equation as

t
y(t) = z(t) + h(t-s)y(s)ds

0

where the L-boundedness of y is at question, the conclusion (both

parts) of the theorem follows from a result of Davis [11] and the

observation that y is a continuous function on the half-line + which

follows from Theorem 1.

QED

By further specializing the input process u it is possible to

use the criteria of Theorems 2 and 3 to establish the asymptotic

invariance of the solution distribution.

Theorem 5: Consider the integral equation

t
(3) x(t,w) - u(t,w) - g(t-s)f(s,x(s,w))dw(s,w)

subject to the existence condition of Theorem 1. Assume that u

and w are independent, E{u(t)} ~ 0, E{dw(t)} = 0 and, moreover,

that the process u satisfies the Lipschitz condition

|u(tlt)-u(Sw) 2 4 Yt-s| , y > 0, t,s e R T

almost surely (w), and the moment bound E{u (t) W} 2 < m.Then a



necessary and sufficient condition that the solution x of (3) be

totally L-bounded in (S(2;C),L) is that

E{x (t)} a2 < G, t eR

for some constant a > 0. Moreover, if u is stationary then x is

asymptotically stationary with respect to u and the increments of w.

Remark: Clearly then Theorem 3 gives a sufficient condition for the

distributions of x to be bounded (or ultimately invariant) for nonlinear,

conic functions f. Theorem 4 gives a necessary and sufficient

condition in the special case of linear, constant functions f. Both

criteria are stated in terms of the Fourier transform of g, and are

thus subject to the usual design interpretations used for feedback

systems including a linear, time-invariant, convolution operation.

Proof of the theorem: The proof is based onna lemma of Ito and Nisia [41]

stated as Corollary 2.4.8 above. It follows the pattern of a similar

proof in [41]. The verification of the hypothesis of that lemma pro-

ceeds in three steps, the first showing that the solution xoof (3) is

totally L-bounded.

Lemma 6: Let the kernel g be locally L2, that is f jg(T)1 2dt < c for

+ s
t, a C R ; then there exists a constant n - n(c,T) such that for

any e > 0, T > 0,

P{w : sup !x(t,w)I > n} < e , for every s cR
s~tcs+T

Proof: From the definition of a solution



t
x(t) - x(s)+U(t)-u(s) - I g(t-T)f(T,x(T))dw(T)

-f [g(t-T)-g(s-T)]f(T,x(T))dw(T)
0

And so, setting

sup
s~t1s+T

ix(t)I

the inequality

S 4 |x(s)| + lu(s)|

t
+ sup |

sgtts+T s

+ sup |f
s~tts+T 0

[g(t-T)-g(s-T) ]f (T,x(T))dw(T)I

-v +W+X+Y+Z

follows. Thus

P(S > n) 4 P(V > R/5) + P(W > n/5) + P(X > n/5) + P(Y > n/5) + P(Z > n/5).

Now

P(V > q/5) 4 (E{x2(s)})1/2 5a

and P(W > n/5)4 in the same way. The analysis of the next three

terms is somewhat more delicate. From the Lipschitz assumption on u

Iu(t,w)| I ytt-s| + |u(s,W)I

Hence,

+ sup
s~tts+T

Ju(t)|



sup |u(tOW)| 4 YT + |u(sxW)|
SI tCS+T

and so, for n > 5YT

V{x > } } 4 P{|u(sW)I > -YT}

5§
n-5YT

For Y and Z consider the following

P{Y > ?1/5} 4 a2 )2b2 sup
s~t(94-T

g 2(T)E{x 2(t-T)}dT

2 a 2  5 2b2  2(T)dT

Similarly, for Z

P{Z > n/5} 4 a2 5)2b2 :
0 f

[g(t-T)-g(s-T)] 2E{x 2(T)}dT

S4c 2b2 ) 2 S -T 2g2(T)dt]
0

Therefore, the bound for n,' 5yT

P(S > ny (+)+ 5+ 52 a 2b I ?0-T
g (T)dT

0

holds, and clearly for any e, T > 0 an n may be chosen sufficiently

large enough to imply

P{S > 0) < C

QED (Lemma 6)



The second step in the proof requires verification of the

following lemma.

Lemma 7: There exists a constant ( = ((m,T) such that for every

t, v C [s,s+T] the following inequality holds (almost surely w)

E{|x(t)-x(v)14  sup
strjs+T

jx(r)| I m} ; &It-v 12

if for every s, T e R

61 (T) - sup
04t<T

( g2 (T)dT) 2<t 0o

sup
s~vst~s+T

( [g(t-v-T)-g(T)]2d )2 <
0

Proof: Again express the solution to (3) as

x(t)-x(v) = u(t)-u(v) - 1 g(t-T)f(x(T))dw(T)

- F [g(t-T)-g(v-T)]f(x(T))dw(T)

where the arbitrary assumption t a v has been made. Using

(c+d)4 4 8c +8d and the pointwise assumption on u, the following

obtains

E{jx(t)-x(v) 14j sup
str~s+T

|x(r)| 4 m}

4 8y 21t-v j 2

+ 64E{(t g(t-T)f(x(T))dw(T)) 4 sup jx(r)j A ml
ft str~s+T

62(s,T) =



+ 64E ( [g(t-T)-g(v-T)]f(x(T))dw(T)) sup
'O sris+T

- X + Y + Z.

Now

Y -g4 2 (t-T)g 2(t-W)Em {f2 (T)f2 W1)w2 (dw2 (P)v64 tfv
fVV

where Em includes the conditioning sup jx(r)| 4 m. Thus,
strig+T

Y i 64 a4b4m t 2(T)dT) 2  64 a4h 4 m 6(s+T)Jt-vJ2

By similar arguments

Z 4 64a0 m b4(v [g(t-T)-g(v-T)] 2dT)2
0

C 64a4m4b4a2(s,T)It-vI2

where d and 62 are given in the hypothesis of the Lemma. Choosing

-8yb2 + 64ab4m4[61(s+T)+62(s,T)]

satisfies the assertion of the lemma.

QED (Lemma 7)

Next the assertion that the solution x of (3) is totally L-bounded

is verified.

Lemma 8: The conditions of Lemmas 6 and 7 imply that x is totally

L-bounded.

Proof: Denote by 6s the shift operator

|x(r)| I m}



(0sx)(t) - x(s+t),

and by (*)+ the function (r)+ - max (r,O). Using Lemma 6, define

the constants nk - n(e(k),T(k)) - n(2-k ,2k+T), then

P{ sup |jsw( 4 tk I
-k-Titik

- P{ sup |x(t)I C nk} 4 1-2-k
(s-k-T)+ tts+k

Let the function C in Lemma 7 define the constants

Ek = k, 2k+T), then from Lemma 7 for t,v e [(s-k)+,s+k]

E{lx(t)-x(v) 141'sup |x(t)| 4 n k )4kI t-v j2
(s-k-T)+ 4tgs+k

Define Ak c C(R) as {h e C: sup |h(t)| 9 nk} , then
-n-tt~n

and the conclusion of this Lemma follows from Corollary 2.4.8.

QED (Lemma 8)

The remainder of the proof of the theorem follows from the

last lemma. Let (PM(C),L) be the set of probability measures on

C(R+;R) equipped with the Prohorov metric. Then from Lemma 8 the

induced distributions {y }sR+ on (C(R+), f(C)) is relatively compact,

By the Lipschitz assumption on u the set {P useR+ is elatively compact,
s

and setting (6sw)(t) - w(t+s)-w(s) it is easily shown (using Corollary 2.4.8)

that {p} } is relatively compact. Recalling the fact that the direct
Ow



product of (relatively) compact sets is (relatively) compact, then

the set of distributions {ussR+ induded oi (CXCxC, 16(CxCxC)) by

(6s xs u,6 sdw) is relatively compact. This establishes the first--asser-

tion of the Theorem.

Now using the fact that 6 sh is continuous in (s,h) on RX C(R)

(for the metric d), the function P (A) is measureable on R for any

s9t A E 1(Cx~xC). Hence, the function((6ft)

1 t
vt(A) - - t ys (4) ds

is continuous on R+ for any A as above.

Since the set {ys} is relatively compact, by Prohorov's Theorem

(Theorem 2.4.2 here) for any C > 0 there exists a compact subset

K(5 ) c (CxCxC)(R+) independent of s E R such that y (K) ? 1- E and

therefore such that vt(K) > 1- E for every t E R+. Thus, the set {v t teR+

is relatively compact, and there exists a measure Vo C PM(CxCxC) and an
increasing sequence {t n-1 such that vt or equivalently in

n
the L-topology.

Let (x,u,w) be the (CxCxC) (R )-valued random variable whose prob-

ability law is v . It remains to show that

(1 u,') - (UMw

(ii) x is stationarily correlated with respect to (ii,w),

and (iii) R - u- - Gx

Point (i) follows from the stationarity of u and of the increments of w.

To show (ii) consider continuous, bounded functionals *192*
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km
on R , R respectively and the series of equalities

t{-X +t'' , +t 2t't'' '+ "t'' t"+t)
1k 1 m 1 n

~ r OJr ds E{$ 6 +t+s i1 2 t +t+s j=1 3 ~t +t+s =1-

1 2Tr+t

_I fi - Tr ds EI$x )'P(i )'P( ) n

M T d[El{jt +s 2 t+s 3 t+s
rt r t

1 Tr _

= lim - ds
r-* r 0

- E{$ 1(~ t '' t *2 ( t '''''9u t ') *3 (wtu"''''w t )}
1 k 1 m 1 n

Here the third equality follows from the symbolic decomposition

Tr+t T r + T +t t

and the boundedness properties of (i,u,w) over finite intervals. That this

series of equalities for all $P,$2'$3 determines the properties of

the finite dimensional distributions of (i,;,) is fundamental, see

Gikhman and Skorokhod (29, Chapter 3].

To show (iii) it suffices to show that for every s c [O,t]

(iii)' i(t) = x"(s) + u(t) - u (s) - r( GE)(t) + (Gx) (a).

An argument used in Ito and Nisio [41] may be applied directly at this

point to yield the desired conclusion.
QED (Theorem 5)

In the event that the function f is linear (f(z) - az, a > 0)

Theorem 5 may be sharpened using Theorem 4 to prove:



Corollary 9: For the linear integral equation

t
x(t) - u(t) - a g(t-s)x(s)dw(s)

subject to the assumptions on u, w, and g expressed in the hypothesis of

Theorem 5, a necessary and sufficient condition that the distribution of

x be ultimately stationary is that

(4) a2a2 f0 JG(jv)1 2 dv < 2

3.3 Convolution Versus a Levy. Process:

The most immediate modification of the integral equation investigated

in the last section is to consider the convolution operator with the

Wiener measure replaced by a Levy measure, representative of the most

general process with independent increments. As is well-known [29] the

Levy process has sample paths with at most countable jump discontinuities

in any finite interval. Moreover, it may be decomposed into a linear

combination of a Wiener process and a general Poisson process. In a feed-

back system jump process may be considered as models of random shock

phenomena and Levy process models as descriptive of combinations of con-

tinuous and shock random signals. It is therefore appropriate to review

the properties of such processes, whose sample paths are quite different

from those of the Wiener process and its transformations.

Let {b } be a set of independent, identically distributed random
n nul

variables on some probability space (Q, '7,P) . Assume that the distri-

bution function of the n is



F (W) = P{W: g(W) < a) f
E n 0

where X > 0. Note E{g} = Let

- e-a ; a > 0< 0a

S ; ca<

Sn (~

then the distribution of S is
n

n-I k

Fn(a)u- kfk

0

a> 0

; < 0

A Poisson process x(t,W), t C R+, W C, may be defined via

max{k: Sk(W) < t}
x(tio) k

if Sk(W) < t

Note that x(t o) = n if and only if

the induced distribution of x is

(At) n e'
P{W: x(tWo) = n) =i

0

*S 00(W) = 0

for all k

Sn(w) < t and S (w) > t. Thus,

n- 0, 1, 2,...

; 00 .

From this expression E{x(t)) = At, E{(x(t) - Xt)2) = Xt. Intuitively,

the Poisson process represents a quantity increasing by unit jumps

occuring at random instants of time.

A somewhat more general process which accounts for random jump

amplitudes is defined as follows. Let {n = be a set of independent,
k k-i

identically distributed random variables with comon distribution function

F (a) = P{W: n(w) < a ER} . Let x be a Poisson process defined as above,

independent of the nk' and governed by parameter X > 0. A compound



Poisson process y may be defined by the expression

x tJW)
y(t, k1) ; x(tw)> 1

0 x(t,W) 0.

In wordsy(t,o) jumps by nk(w) at the instant that x(t,w) changes from

k-i to k. The distribution function of y(t) is determined as {'36]

Fy(t)(a) = P{W: y(t,W) < a) =n n=

g(n) = n i)
where gn = F * F and F = F (* denotes convolution).

Continuing the reasoning of the previous sections, the paragraphs

that follow define an operator capable of describing the presence of

"random shocks"in a feedback system. The asymptotic properties of such

systems are then analysed using this operator.

Let (X, -3(X)) be a measureable space and consider the random

measure on (R+) x (X) denoted by v([s,t],A), [s,t] c R+, A (

as expressing the number of events in the set A during the interval [s,t].

Assume thattbhe random variable v takes on non-negative values independent

on disjoint sets from -(R+) x A(X). And for each set [s,t] x A CO(R)X),

assume that v([s,t],A) is Poisson with parameter H R(TA) dT ; i.e.,

t t
P{w: v(w,[s,t],A) = n} =-1 ( Hf(T,A) d )n exp(- ]I(T,A)dt).

s

Here ](t,A) is a probability measure 6nr (X) for each t e R , and a

measureable function R+ -+ R for each A e i X.

It follows that the random process v is a process with independent

increments (on R+); so the stochastic integral



f(,x) v(dt,dx)

for non-anticipating random functionals i on R+ x X such that

ft f E l (t,x) |k II(Tdx) dt , k = 1,2; t E R+

is well-defined as the usual limit of Riemannsums, see also Ito [40] and

Gikhman and Dorogovcev [28].
t

Let 9(t,A) = v([0,t],A) - f l(t,A) dT , then the following hold
0

(i) E{ ft f (t,x) -(dtr,dx) } - 0

(ii) E{( f (T,x) -(dt,dx) )2 f
6 X 0 fx Et(ox)j12 11(t,dx) dT .

Now let the process x be defined on R x Q into X as a non-anticipating

( NOt(x)v Ot(v([os],.)) is independent of t. (v([st],.)) ).func-

tional of V. Let H be an operator on X-valued non-anticipating random

functions behaving as follows: if the "input" to H at time t is x(t),

then H causes a displacement of x by

rt h(v,x(t),y) v(dv,dy)
is Y,

over the interval [s,t] C Rt. Here h is some (continuous) function

mapping R x X x X.

Recalling the definitions of the last section, the remainder of this

section is devoted to an analysis of the integral equation (1) below as

a model of a stochastic system with unity feedback (here the space X =R).



(1) x(tw) a u(t,w) - g(t-s)f(s,x(s,) dw(s,w)

- g(t-s) f h(s,x(s,w),y) v(wdsdy)

From Skorokhod [55] the following existence theorem gives conditions under

which the equation (1) is well-posed.

Theorem 1: [55,Section 3.3] Assume that the functions u,g,f,h satisfy

the following conditions:

(W) u(4) for each w e S has only finite jump discontinuities (u is

real-valued), and E{u(t) 2} < ** for t e (0,T], T finite.

(ii) There exists a K < cc such that for all t e

J jg(t-s)1 2 If(s,x) - f(s,y)|2 ds

+ Ig(t-s)12 | h(s,x,a) - h(s,y,a) 12 (s,da) ds
0 R

< K jx-y|12 ; x,y e R.

(iii) There exists a K < a such that for all t e

t

0 g(t-s)|' |Rh(s,x,y)| 11(s,dy) de < K(1+|x|) x c R.

Then a solution x of the integral equation (1) exists, is locally botnded

almost surely, and has only jump discontinuities. Moreover, if

sup E{u(t) 2} < (, then sup tE{x(t) 2} < co for any T R+. The solution
O<t<T O<t<T

x is unique at all points of continuity.

Before proceeding to the analysis of the nonlinear equation (1) con-

sider the linear case (corresponding to f and h linear)



t t

(2) x(t) = u(t) - f g(t-s) x(s) dw(s) -f g(t-s) x(s) f h(y) v(ds,dy)

where

E{dw(t)} = m dt

E{(dw(t) - mdt) 2 a2 dt

E{v(dtA)} = R(A) dt

2
E{(v(dtA) - R(A)dt)2} R 1(A) dt.

Assume that u, w, and v are independent processes. Then clearly, assuming

Theorem 1 holds,

t t
E{x(t)) = E{u(t)} - f g(t-s) E{x(s)} m ds - f g(t-s) E{x(s)}fh(y)R4dy)dt

0 0 R

Hence,

Theorem 2: Assume that g e L (R) and let G(s) denote the Laplace trans-

form of g. Then E{Iu(t)|} < ao implies E{|x(t)I} < co if and only if

(-(Mft) ,jO) i U G(s)
Re(s)eR+

where r - h(y)11(dy)
fR

Now consider the problem of bounding the second moment of x. An easy

transformation of equation (2) gives

(3) x(t) = u(t) - f g(t-s)x(s)[m+;]ds - f g(t-s)x(s)d*(s)

- g(t-s)x(s) h(y) v(ds,dy)

where dwz(s) = dw(s) - m do and i(ds,dy) v v(ds,dy) - R(dy)ds.

Assuming now the conditions of Theorems 1 and 2, the following holds



t
x (t) = (G lu) (t - J

where G is the linear deterministic convolution whose kernel g has

Fourier transform G 1 (ja) = 1 + (m+9)G(ja)] and the kernel ' has

Fourier transform G(ja) = G(ja)G 1 (ja). In this case

E{x(t) ) - t t (t-s)g 1(t-r)E{(s)u(r)}dsdt + t g(t-s)Ex ( +r)ds

from which the following is clear.

Theorem 3: Let g s L (R), and assume that Theorems 1 and 2 apply, then

sup+ E{u(t)2} < I o implies sup+ E{x(t) 2} < w if and only if
tSR tiR

(i) (-((m + ib 1,jo) t U + G(s)
Re(s) cR

and (ii) |||| 2 < + a2-1/2

or equivalently,

-i) G G(j ) 2J-IM 1 + (if + Mn) G(jc a)
A 2 )dca < 2i(w +ad

As an illustrative exampleconsider the linear convolution represented

by G(s) - k/(s+p) , then

1 G(ja| 2

2 - | 1 + (m 'if)GjaI da =
k 2

2p+ a +R)

2 2 +
Hence, sup E{x(t) ) < asup E{u(t) for some 8 e R if and only if

tcR+ teR+

k 2 2 +) (m+)
2

2( + a )
< p.a

t
g t-s)x(s)d4(s) - f g-s)x(s) fRh(y) '(ds,dy)



Two sufficient conditions were proved in [66] for a special case of

(2) (corresponding to v a 0); these may be modified to apply in this case,

and they yield conditions more easily checked for a given kernel g than

the criteria. (ii) or (ii)' of Theorem 3.

Corollary 4: Assume that g e L (R). Then for equation (3) sup+ Ex(t)2
t2R

5$ sup E{u(t) 2 for some 0 e R if there exists a y c R such that

2
(i) 2 + g(0) < 1 ,

m+i +y

(ii) and either of the following conditions is satisfied

(a) (m + 70/y > 0, and the Nyquist locus U G(ja) lies inside
acR

the circle centered on the real axis of the complex plane

at ( y ,j0) and pasting through the origin.

(b) -1 < (m + w)/y < 0, and the Nyquist locus U G(jc) lies
dcR

inside the disc centered on the real axis at (-'r ,jO) and

passing through the origin.

(c) (m +ir)/y < -1, and the Nyquist locus U G(jct) does not
acR 1-1

intersect or encircle the disc centered at (-y ,jO) passing

through the origin.

Proof: By Theorem 3:tt suffices to show that

(c2 +w)-.L f 0 IG(ja)/(l + (m +9)G(ja)) 2 da < 1.

Using the restrictions on the graph of G(ja), it follows that

(m + 9)G(ja) <' [1 + Y(m + 9)]1 ~ (m + 7)G( a)

I + (m + 7r)G(ja) 1+ (m + 70)G(ja)



Thus,

(a2 + G Qa) 2 < 2 + G(ja)

2w m + 70(+ 0)G(ja) d - a + Y 21r 1 + (m + R)G(ja)

= 2 + Y g(0)

2w m+it+y2

The last step using g e L1 (R+), and the assumption that zero is a Lebesque

point of ' (1, p.5].

QED

The next result is a special case of Corollary 4 as y + 0.

Corollary 5: Assume that g e L1 (R+), then for equation (3), sup E{x(t)2 1
tER

<fsup+ E{u(t) } for sdme a E R if
teR

(i) + * > (a + 9)(0)

and (ii) ReG(ja) > 0 for all a eR.

While Corollary 5 involves a "passivity" property of the operator G,

Corollary 4 is reminiscient of the various "circle criteria" introduced

above (sections 2.2, 3.2, and Theorem 6 below), and its primary use is

to provide easily verified conditions for moment bounds in the equations

being considered. That is, for any of the integral conditions given above

(Theorem 3, Theorems 3.2.3 and 3.2.4) sufficient conditions may be derived

directly in terms of restraints on the kernel g rather than the quantity

|Ig | 2g appearing in the results mentioned by using arguments similar to

those in the proof of Corollary 4.

Returning then to the analysis of the nonlinear equation (1), assume

that



E(dw(t) = 0

2) 2
E{[dw(t)J } a dt

E{v(dtdy) I R(dy)dt

E{[v(dtdy) - f(dy)dt]2 -R(dy)dt

and that there exist constants a,b,c,d such that

0 < a < f(t,x) /x <:,b < ;teR, x C R;

0 < c < h(t,x,y)/x < d < w; t e R+, xy e R

Moreover, assume that E{u} - 0 and that u, w, and v are independent processes.

Theorem 6: For equation (1) under the assumptions of the last paragraph

sup E{x(t) }< $sup E{u(t) ) for some R+if
tdR+ teR+

(i) There exists an r0 > 0 such that

0exp(r 0t)| g(t)| dt <

(11i) i = fR n(dy) < .

-1
(iii) {[-W(c+d)/2},jO } U G(s)

Re(s)>-r
=0

(iv) For 6(s) - G(s)[l + g(c+d)G(s)] (see (iii)) and 2- *6,

then

( [cr2(a2+b2 + 7-(c2+d2 -1j0I $ G0(s)
Re(s)>-r,0

(v) For some a e(0,1) and r e (O,r )

sup |G(1 s) + [a2 a2+b2) + (c2+d2 )](b-a2) + i(d -c
Re(s)>-r



and (vi) For some r c (O,r,) and

H(r+jE) = r (r + j(( - + J0)

-~ 0 0

then
1 H(r + jC) i2(d2-c2)

sup 1 21 2) + (2+d2)a. <ja
2 2

Proof: A transformation of (1) gives

t
x(t) - U(t) - r g(t-T) f h(T,X(T),y) (dy)dt

0o -co

1 t t tgtTftxT)wT
- c+d) J (t-T)x(T)dT - g(t-T)f(T-x(J))dw(T)

0 g -t) h(i,x(T),y) 9(dt,dy)

where v(dt,dy) = v(dT,dy) - f(dy)dt and fi(t,x,y) .- h(tx,y) -j(c+d)x

and i is defined in condition (ii). Let W(s) = [1 + r(c+d)G(s)], then

by (ii) and (iii) and from, for example, [12], W exists on L,(R+) func-

tions. Hence,

x(t) = (W~ u)(t) - J (t-T) J h(T,x(T),y) 1(dy)dt

- f (t-T)f(T,x(T)) dw(t) - (t-) h(T,x(t),y)S(dt,dy)

where G the Fourier transform of g is defined above. Then taking into

account the assumptions on u, w, and 7:



t e
E{(t)2 } = E {(W u) 2 (t) } + E {( f~ (t- T) h(T,x(T),y) 11(dy)dT) 2

+ t ~2 (t-T) E{f2 2 dT
+0 f txT)ad

+ ft g (t- T) f-oE (h2 tx(T),y) }R(dy) dT

Again adding and subtracting the terms

2(a2+b2) fo 92 (t-T) E{x(t)2 I dT

t2 2

ft (t-T) E{x(t)2} dT

the result is

2) +.12 2 2) + 22)
E{x(t) } a (a +b ) + *(c2+d )

1( u)2(t)} + E{( t
E{(W~u)2 0f

2 2
9 (t-'r) Efx(tr) } d-r

2
j(t-r) h(T,x(T)y) H(dy)dt)

+ 2 2(t-T) E{? 2(Tix(T))}20

+ ft 2 (t-T) E{G2(TX(T),y) H(dy)dT

where 22('tx) f (t,x) - -(a 2+b 2)x and h 2(t,x,y) - h 2(t,x,y)
1222

-(c2+d2)x2 . Setting K to be the linear convolution operator whose

1 22 2 2 2 -
Fourier transform is I(s) = [1 + [2(a +b ) + ii(c +d )]G2 (s)]

where G2(s) is defined in the theorem statement, and using (iv)

c2 2-if(c +d..)



(4) E {x(t) 2 } 0
A r-1 2
K(E((W u) D(t)

+ t k(t-T)E{(

+ a g(t-s Etf (s,x(s))} ds
+

+ t -t s 00
0 -co.0

E{h 2 (sx(s) ,y) } (dy)

kernel whose transform is G(s) = 6(s)K(s) and K k.

Using the bounds,

If(sx)| < $I(b 2-a 2)x , for every s e RI,

1^2(s,x,y)I <-I(d2-c2)x2  , for every s e R+, y R,

and condition (v) it is clear that the last two terms in equation (4) are
2

bounded by a sup E{x(s) } . Closer consideration of the decisive
O<s<t

term (T2) second on' The right of (4) will yield the desired conclusion.

Expanding the square

f (T-s)-(T-y) E{h(s,x(s),y)h(yx(y),z) n(dy)H(dz) ds dy
0 0 - c

f< f' I' (T-s)-(T-y)
0 0 9 -W -c

< 1 '2 2_2 T
2 (d -c2)(
2 0

'(T-s) ds)2 sup E{x(s) 2
o<s<T

Hence,

T2 < $ 2(d2c I k(t-t)| (Icm2 0 0
9(s)ds )2 sup E{x(s)2 Id.

D<s<T

g,(T-s) h(s,x(s),y) R(dy)ds) 2

-0

where
Ag

g is the

[E{h2(s,y)}11 [E{h2 P'I1 2R(dy)Rl(dz)dsdy



And so, condition (vi) implies that

1T2I < (1- ci sup E{x(s) 2

and that the combined operator composed of T2 and the sum of the last

two terms is a contraction on the Banach space defined by the norm

21/lxul - su E{x(s) } The conclusion of the Theorem follows easily

from this point using familiar arguments from the earlier sections.

QED

While Theorem 6 may be regarded as a direct generalization of Theorem

3.2.3 (nonlinear convolution versus a Wiener process), the comparatively

more complicated conditions (i)-(vi) of Theorem 6 would seem to preclude

the graphical interpertation possible for the conditions of the earlier

theorem. No attempt will be made here to weaken Theorem 6 to permit such

an,interpertation, though the promise of such a proceduce is acknowledged.

In order to complete the extension begun in this section it is neces-

sary to prove the analog of Theorem 3.2.5 using Theorem 6 to prove asymp-

totic invariance of the solution of equation (1) under appropriate

assumptions on u, w, and v. Whild conceptually no more difficult, the

statement and proof of the analog is technically more complex because of

the nature of the sQlution sample paths of equation (1). Recall that

the basic existence theorem for this situation (Theorem 1 here) adapted

from [55] guarantees only that the solution trajectories will be piece-

wise continuous. It is therefore necessary to discuss weak convergence of

distributions on spaces of piecewise continuous functions. Recall that in

section 2.4, it was rather easy to determine conditions for a set of



distributions on the space of continuous functions to be compact by using

a modification of the Ascoli Theorem [16] to characterize compact sets of

continuous functions and Prohorov's Theorem (2.4.5)

Neded thus, are a topology on the set of piecewise continuous functions

rendering them separable and complete (so that Theorem 2.442 will be neces-

ary and sufficient in this case) and a characterization of the compact

subsets in this topology. Combining the work of Skorokhod [56], Billingsly

[7], and Stone (58] the necessary framework is available. Rather than state

this technical structure and then prove the theorem, the result will be

statedand the appropriate elements of the theory of weak convergence of

measures on piecewise continuous functions used in the proof stated as

lemmas.

Theorem 7: Consider the equation (1) under the assumptions

(i) f and b satisfy the sector conditions with the parameters (ab)

and (c,d) respectively.

(ii) E(dw(t)) } 0 and E{([dw(t)] } a dt.

2
(iii) E{v(dtdy)} a R(dy)dt and E{[v(dtdy) - I(dy)dt] = f(dy)dt,

(iv) u, w, v are independent, u is piecewise continous (from the

right) almost everywhere (P), and E{u(t)} = 0 ; E{u(t) }eL(R+).

For s,t points of continuity (almost sure) of u and T d[s,t]

E{|u(t) - u(T)1/2 u() - u(s)| 1/2} yjt-s| 2

(v) The kernel g e L (R+) flL.(R+). (Much less restrictive conditions

are possible here.)

Then the criterion of Theorem 6 is sufficient to guarantee the asymptotic

invariance of the solution process x.



Outline of Proof:

Definition 8: Let D(R ;R) denote the space of real-valued fuctions on R+

which have a limit from the right and are continuous from the Uft.

Elements of D(R+;R) are bounded on compact intervals, and for any

E > 0 have at most a finite number of jumps of amplitude greater than e

in any bounded interval [71.

Lemma 9: [55,section 3.3] The existence Theorem 1 implies that x e F(Q;D),

the set of D-valued random variables on A, if u C F(SI;D).

Lemma 10: [55],[58],[7, p.115] A metric d exists on D(R+;R) such that

(D,d 0) is a complete, separable metric space.

This lemma assures that Theorem 2.4.2 applies in its full power on

(Dd ).

Lemma 11: (7] For a subset J of D(R+;R) to be relatively compact (with

respect to d ) it is necessary and sufficient that foe every T e R , and
0

partition {t } of [0,T]

sup sup lf(t) < **
fcJ te[O,T]

lim sup inf max {If(t)-f(s)| ; ts C [t ,ti+1)} 0,
6-*0 fCJ {t } O<i<r

where 6= idax {t -t ' is the size of the partition.
i i

This result is the counterpart of the Ascoli Theorem definigg compact

sets of continuous functions. The necessary convergence criterion (compare

Corollaries 2.4.7 and 2.4.8) is provided by:

Lemma 12: A subset A c F(0.;D) is totally L-bounded if the following



conditions are satisfied for any sequence (xn} cn A

(i) The sequence {x (0)} is tight

(ii) For sat continuity points of xn and any T E (s,t]

E{ n(t)-xn &Xn n (a} < Pt-s2

for a > 0, a > 1/2, and some p > 0, all independent of n.

The proof of the Theorem 7 then proceeds to verify the inequality of

Lemma 12 (11) along the lines of the proof of Theorem 3.2.5, the particular

values of a and 8 used are 2 and 1 respectively. The proof is, however,

tedious and somewhat removed from the main focus of this work and will be

omitted.

In the next section the properties of the solutions of differential

eqaations subject to totally L-bounded inputs is examined. Conditions on

the cofficients of the equations are found to guarantee that the solution

is totally L-bounded when the driving function has this property.

3.4 Differential Equations with Totally Bounded Inputs:

In order to illuminate the results of the earlier sections of this

chapter it is worthwhile to consider them in the usual setting provided by

stochastic differential equations. This section consists of two distinct

parts. First a general class of nonlinear functional differential equations

is considered and conditions for L-total boundedness of the solution given.

By assuming the functional coefficients in this equation to be memoryless

functions the solution becomes.a diffusion (strong Markov process), and the

latter portion of this section contains a few remarks on this case.

Following Fleming and Nisio [26] (see also Ito and Nisio [41]),



consider the functional stochastic differential equation

(1) dx(t) = (a(wtx))(t) du(t) + (b(wtx)(t)) dw(t)

where a and b are continuous functionals on C(R ;R) (the R-valued con-

tinuous functions on the negative real line R , with the metric d introduced

in section 3.2); w is a Wiener process on (Q, 1,P); u is a control to be

specified later; and irt is the truncation operator. An initial function

x_ such that x(t) w x_(t), t e R7, completes the specification of the

equation. Assume the initial function x is an element of F(S2;C(R~;R))

Let U c. C(R+;R) be the subset of the continuous functions satis-r

fying the Lipschitz condition below: for f e Ur

|f(t) - f(s)j < yt-sj ; t,s e , f(O) = 0,

for some constant y independent of f. Let Ur have the relative topology

induced as a closed subset of (C(R+),d). Let S(Q;U) be the set of U -r r

valued random variables (signals because the half-line R+ is the time set).

Proposition 1: (1) Let PM(U r) have the Prohorov topology, then PM(U r) is

relatively compact. (ii) As a subset of F(2;C), the C(R+)-valued random

variables, S(a;U r) is totally L-bounded.

Proof: (i) It is easy to verify that (U ,d) is a compact (hence complete

and separable) subset of (C(R+),d). Part (i) follows from this observation

and Prohorov's Theorem (2.4.5 here). Part (ii) is immediate from (i) or

from Billingsly's result (Theorem 2.4.6).

QED

Thus, the set of stochastic processes permitted as inputs is,in the

terminology of section 2.4, totally L-bounded. The Lipschitz condition,



though severe, is not altogether uncommon in the literature dealing with

stochastic control; see for instance, Fleming and Nisio [26], and Fleming

[24] for some remarks on this assumption. It is a natural constraint in

the framework of the studies here.

A few assumptions are in order on the coefficients in (1) and on the

past condition x Assume

(i) a,b are continuous on C(R ),d)

(ii) For f c C(R+) ,t e R,

0
a(f)(t)|+ |b(f)(t)l < |f(s)|dK(s)

0
for some measure dK, dK(s) < .

(iii) E(x_(t) } < c, t < 0, for some c<c

(iv) -0t(u) v B(x,) v )0t(dw) is independent of Bt (dw)

for every t s R+

Theorem 2: [26,p. 783] Under assumptions (i) through (iv) above, equation

(1) has a unique solution x with locally bounded second momentssuch that

x C F(G;C(R+)) and ot -(X) c (x-) v t 0 t(u) v B0 t(dw) for

every u c S(Q;U r

Let E= {(iu,w)} the collection of triples such that x_ has the

same probability law as x on C(R , u S(Q;U r), and w is a standard

Wiener process. Following Fleming and Nisio [26], let s denote the generic

element of 7 and let T a (x : s -7} denote the set of solutions gen-

erated by elements of E.

Theorem 3: [26 ,p. 787] The set ' is a sequentially compact subset of

(S(Q;C(R+)),L) where L denotes the Prohorov metric.



Thus, for all admissible inputs, the state x is confined to a compact

subset of the state space, in this case S(Q;C(R )). Hence, using the same

techniques employed in section 3.2, for any element s of E, it is poss-

ible to show that the distributions of x , the corresponding solution, are

convergent in the Cesaro sense used there to an invariant distribution on

C(R ). In Ito and Nisio [41] a rather more detailed treatment of equation

(1) is presented for the case when du(t) = dt, corresponding in a sense

to an autonomous system.

Though giving the desired analogy to the results of sections 3.2 and

3.3, Theorem 3 was used for quite a different purpose in [26]. Consider

the problem of selecting a control u from S(Q;U r) to minimize the func-

tional E{O(x,u)} where 0 is some positive (values in R ),continCOus

functional on C(R+) x Ur (4einty).

Theorem 4: [26,p.792] Let E c:. S be closed under L-sequential limits,

then there exists an element s e S such that E{O(x ,u1 )} < E{4)(x,u)}

for any other a . Here (x) is the solution of (1) corresponding to

As a theorem in stochastic eontrol theory the above result has a proper

place as a preliminary existence theorem; however, it suffers from being

non-constructive and from requiring "total knowledge" of the sat&erx.'LThe

existence problem in optimal stochastic control theory is in any case

very difficult, and attempts to proceed beyond theorems of this nature have

not been altogether successful. Some recent work holding the promise of a

solution to the problem is contained in the papers of Benes [3], [4] and

Duncan and Variaya [15], and the cogtjprehensive survey of Fleming [24].



In the present context Theorem 4 serves to illustrate the earlier

sections of this chaptet by providing an alternative application for the

mathematical techniques involved. Note that in the equation (1), the

solution x need not be a Markov process. The same observation holds in the

work in the references [3],[4], [15]. If the solution x is a Markov process,

the additional mathematical structure available has compelling consequences.

In the remaining paragraphs of this section iome of the important aspects of

this base will be summarized. As most of the analytis of stochastic systems

has been done in this setting only a few of those results related to this

research will be presented.

Consider the stochastic equation (all elements are real valued)

dx(t,w) = a(t,x(tw))dt + b(tx(t,w))dw(t) ; x(Oo) X0 (), t R , .

As usual this equation is but a shorthand for the integral equation

t +
(2) x(t)-x(s) - a(s,x(s))ds + b(s,x(s))dw(s) ; t,s e R

Here subject to the assumption of Lipschitz continuity on the coefficient

functions a and b, and the assumption that ' (x0) is independent of

B (dw) a solution of (2) may be shown to exist as an element of

S(Q;C(R )). Moreover, from the form of (2) it is easy to see that the

solution x is a Markov process. In fact x is a strong Markov process

(begins afresh at random times, see Ito [39] or McKean [50]), and so is

a diffusion.

As a markov process the solution x is characterized by a transition

operator (Dynkin [19, Chapter 3]) P: R x R x R x 43(R) + R. Here

P(t,s,x0 ,E) expresses the probability that at time t R+ , stariing in



state x at time s e R+ (s <t), the solution x(t) is an element of E e0

The following properties characterize P:

(i) For every (ts,x) e x R+ x R, P(t,s,x,.) is a probability

measure on &(R).

(ii) For every E e ((R), P(t,s,xE) is a measureable function of

t,s,x jointly on the appropriate domain.

(iii) For every (t,s,xE) and r c [s,t]

P(t,s,x,E) = P(t,r,y,E) P(r,sx,dy)

(iv) P(sgs,x,E) - lE(x) for every a e R+

Condition (iii) is the familiar Chapman-Kolmogorov equation for Markov

processes [19]. This key property of P defines a two-parameter family of

operators on L,(R), the bounded measureable functions mapping R into

itself,according to the rule

Tt5s f(x) W R f(y) P(t,s,x,dy)

For those fuctions f for which it existstthe limit

T f- f
L - lim tt-

t+s t

defines the operator

af 2(,x) af(x
(Asf)(x) - a(s,x)- (x) + b2(s,x) (x)8 2 axx

whose domain Z(As) includes at &&ast C (R;R), the space of functions

R + R, having compact support and two continoous derivatives. See for

instance [19] for more details.

On the set of probability measures on R (PM(R)) the transition
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operator P defines a second two parameter-family of operators, for y e PM(R)

(U tsy)(E) = R P(t,s,x,E) y1(dx)

In a sense (which may be made precise [19]) U may be regarded as the

adjoint of T. Observe that U defines the evolution of the probability dis-

tribution of x, the solution of (2). That is, if S is the distribution

of the initial state x(s), then U, s A is that of x(t), t > s, on B(R).

If P as a measure on (CR) has a "derivative" (Radon-Nikodym [30])

with respect to Lebseque measure dy, then denoting this function by p:

P(t,s,x,E) - p(t,s,x,y) dy

Moreover, the function p (which may be a generalized function if need be)

satisfies the equations, for 0 < s < t

(3a) Asp - al(s,x) a(t,s,x,y) + 2(sx) (t~s~x~y) 2a(tosoxIy),
s ax 2 ax 2a

(3b) A p a(t,y)p(t,s,xy)] + I a [b t,y)p(t,s,x,y)] ap(ts,x,y)
(b Atpn ay 2 ay 2  at

Here A is the "generator" of T and A is formally its adjoint. Of
5tos t

course (3a) and (3b) are the well-known Kolmogorov backward and forward

equations. The latter is also frequently called the Fokker-Planck equation.

For the (3b) the fundamental solution is generated by the initial condition

(6 - the Dirac function) p(s,s,x,y) = 6(x-y). And for (3a) p(t,t,xy)-

1(x) defines P(t,s,x,r) for 0 < s < t.r = Z=

Note that (3b) makes little sense unless theccoefficients a and b are

sufficiently smooth. Equation (3a) has the obvious advantage that it applies

even if the coefficients are not well-behaved. Moreover, it is known [19]
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* 2
that if a and b are bounded and Lipschitz (Holder) continuous , and b is

everywherepositive-definite, then (3a) has a smoothunique7 fundamental

solution. This solution precisely Msfines the distribution of the process

x corresponding to As, starting from any initial distribution, according

to

(U too)(E) - p(t,s,x,y) y(dy)
JR

where y is the distribution (on -(R)) of x(s).

A modification of this concept yields a means of solving arbitrary

equations of the form

(4) As8u a , u(s,x) f(x).

That is, since Et1 f(x(s)) JR p(t,s,x,y) f(y) dy (Et,g is the

expectation of ( conditioned on x(t) = x), then clearly u(t,x) = E f(x(s))

"solves" (4). See (19, Chapter 13] for more details. Taking into account

the interpertations afforded by the stochastic differential equation for

x, this solution method is more than a tautology.

The problem corresponding to the analysis of the past three sections

in this setting is to study the behavior of the function p(t,s,x,y) as a

solution of (3a) as t-s approaches infinity. In other thadispecific

instances this analysis uses certain auxillary functions with properties

similar to Lyapunov functions. For the case of time-varying coefficients

(a and b) under consideration here the best result is due to Il'in and

Khas'minskii [38]:

See [59] for an analysis of equations with less restricted coefficients.
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Theorem 5: [38,p.248] Let p(t,s,x,y) be the fundamental solution of (3a)

for t > s. Let V(t,r) be a positive function, monotonically decreasing

with respect to t, and nondecreasing with respect to r > 0, such that for

all s

(i) a(t-s,x) +V(tx b2(t-s,x) 2 V(t,x|) < 0
ax 2ax 2z

(ii) V(0,r) > 1 ; r > 0.

(iii) V('tr) dt < eo; r> 0.,
fR+

Then for every measureable function f, f p(ts,x,y) f(y) dy a ,

as t-s + oo, where a is a constant and a > 0 if f(x) > 0.

Proof: Put

u(t,x) fR p(t,s,x,y) f(y) dy

in Theorem 3 of [38] and the vesult follows.

Corollary 6: [38,p. 2551 Let a(t,x) be bounded for all x e R, V > s, and

a(t,x) + xb(t,x) < -$ < 0 , then the conclusion of Theorem 5 holds.

If the coefficients are time-invariant in (2), that is,

(5) dx(t) - a(x(t)) dt + b(x(t))dw(t)

then the Markov process x may be described by a transition operator

P:R x R x C(R) -+ R. In this case P(tx,E) gives the probability that

x(t) e E given that x(0) = x. The sets of operators {T tltR+ and {Ut}tER+

(Tt f( = I f(y)P(t,x,dy)

(Ut)( R P(t,x,E)(dx)
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are in this case semigroups, Tt o Ts = Tt+s and Ut 0 U = U t+s, as a

consequence of the Chapman-Komogorov relations, The f!,initesimal generator

A of T is defined as the limit

Ttf-
LM - lim = Af.

tos

af 1 2 a2af
Here Af - a(x) i + - b (x) ,x 2and the equations (3a) and (3b)

ax 2

for the density function p of P are

(6a) __pt, ,y)__ptxy + b2 32(6a) ap(t~xly) - a(x) ap-(toxty) + 1b 2(x) a 2Ptx 2y
at ax 2a

(6b) p(txy)= a[a(y)p(t x,y)] +. 2 [b 2(y)p(t,x,y)]
at ay 2 2

Or concisely,

(6a)' 3p/at - Ap , p(O,x,y) - 6(x-y)

(6b)' ap/at - A*p , p(0,x,y) - Ex)

The problem corresponding to Theorem 5 above is to establish the

existence of an invariant distribution for x. Such a distribution is an

element y of PM(R) such that y U Uy for every t > 0. It is an equivalent

problem to look for solutions to A*u = 0. For let u be the density of the

invariant measure V with respect to Lebesque measurey(E) =fE u(x) dx,

and let p(t,x,y) be the density of P(t,x,E). Thenagain the definition of

an invariant distributiOn is yV(E) m (U t)(E) or
t

u(z)dz =R P(t,x,E) p (dx)

p(t,x,y) dy u(x) dx
f E
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[ I f p(t,x,y) u(x) dx ] dy

or since E e *(R) was arbitrary

u(y) = p(t,x,y) u(x) dx
fR

Assuming the right-hand side to be twice differentiable in x and once in t

under the integral sign, and assuming p as a function of t and y satisfies

A*p - ap/at, then

(a/at - A*)u(y) = R (a/at - A*)p(t,x,y) u(x) dy

= 0.

And so, A*u - 0 justifying the claim.

Before considering the invariant measure problem from this point of

viewit is appropriate to return to the transition operator and examine it

more closely. The next paragraphs follow Khas'minskii [43]. Assume the

following:

(i) The process x as a solution of (5) has continuous sample paths.

(ii) The operators Tt: C(R) + C(R), or that x is a Feller Process [19].

(iii) The process x is non-degenerate, or equivalently, P(t,x,U) > 0

holds for any open set of positive Lebesque measure.

(iv) The process x is a strong Markov process.

(v) The process z is recurrent; i.e., there exists a compact subset

K of R such that for every x e R, P(t,x,K) - 1 for some t e R+.

Proposition 7: [43,p. 180] The trajectories of the process x are every-

dense in R.
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The relevant result derived from these assumptions is given in the

Theorem 8: [43,p.182] For the recurrent, diffusion process x as a solu-

tion of (5) there exists a non-trivial, unique a-finite invariant measure

p. If p(R)< c, then

P(t,x,E) dt + p(E)/g(R)

Compare the second assertion of this theorem with the arguments in the

proof of Theorem 3.2.5. See Doob [14] for related remarks on this convergence.

Using Doob [14, Theorem 5], Khas'minskii is actually able to conclude that

if y(R) is finite, then P(t,x,E) + y.(E) for every x c R. Finiteness of

y may be shown under minor additional restrictions on the process x.

Returning to the density equations, the precise conditions for x to

have an invariant measure are given in

Theorem 9: [43,p.190] In order that x have a finite invariant measure,

it is necessary and sufficient that Au = -l have a positive solution in

R %j D for some bounded domain D with smooth boundary 3D. Moreover, in this

case, for any measureable function f

lim f p(ts,y) f(y) dy = f(y) y(dy)
t-# R R

where y is the invariant measure, and p the fundamental solution of

A*p - ap/at.

Proved by arguments involving the first entrance times into the domain

D, Theorem 9 depends critically on the smoothness properties of 3D. This

is of course a significant condition and in most instances a handicap.

Based on the paper (43], Wonham's paper [71] contains some important
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sufficient conditions guaranteeing the hypothesis of Theorem 9, and thus

recurrence and invariance of the solution process x. His conditions use

Lyapunov functionals of the state.

Let S denote the open ball of radius r> 0 in Euclidean space and
r

assume that the function v on R satisfies the following

(i) v is twice continuously differentiable.

(ii) v(x) > 0 for x e Sr, v(x) ..was x -+ .

Theorem 10: [71,p.200] If there exists a function v, satisfying (i) and

(ii) above and such that Av < -1, the x, the solution of (5), has a

unique invariant distribution.

Although the analysis of Wonham and Khas'minskii relies almost exclus-

ively on the analytical structure of Markov processes, it is more illuminat-

ing to outline the proofs of Theorems 9 and 10 in the framework used earlier

in this chapter. The idea is simple: from any initial distribution y ,

the distributions of x(t) for t e R evolve according to Utuo t

where Ut is the semigroup defined above:

t E) = Ut(E) P(tx,E) 0(dx)

Clearly, Ut is linear and continuous on PM(R) with the topology of weak

convergence; continuity following from the Feller property. Thus, on a

compact set contained in PM(R), U is closed and has a fixed point [16,p.456].
t

Thus, it remains to show that the distributions of x form a compact sub-

set of PM(R). It is at thi*spoint that the Lyapunov functional is used,

see Elliot [22, section 4.3].

Let v be a functional on R satisfying the assumptions (i) and (ii)
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above; further assume that v(0) = 0. ThenElliot [22, p.39] shows that for

y > 0 the set

't(v;y) = {y cPM(R): f v(x) p(dx) < y}
R

is compact ( in the weak topology on PM(R)). Elliot's reS1ltisLthe fbi-

lowing:

Theorem ll3 [22, p. 35] Let v satisfying (i) and (ii) above be such that

for positive c ,c2 ,c3

(i)' |(Av)(x)| < c 1 U + 1x|2 )
x C R,

(11)' (Av)(x) < c2 - c3VW

then there exists an invariant distribution for x.

Proof: Consider Tt v(x), then

t
T tv(x) - v(x) + 0

T Av(x) ds

from Dynkin's Formula ([48,p.10] or [221). So

t
c 3 f

t
T v (x) de + Ttv x) < v x) + c2 dt

8 t 2

from which it follows that

c2
Ttv(x) < v(x) exp(-c 3 t) + (1 - exp(-c )

3

For any y > c2/c3 and yi e $(v;y) the equality

T tv(x) y(dx) -
R

c2 /c 3 <y

The compactness of 0(v;y) and the continuity of Ut yield the result.

QED

VWx (U ty1)(dx)
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It is appropriate to remark that this technique of proving the exist-

ence of distributions invariant under time-shifts is commonly used in the

ergodic theory of Markov processes per se. See for example Foguel [27]

for an interesting introduction to this subject. While less constructive

than the use of the steddy state Fokker-Planck equation, the technique is

quite similar to that used in the earlier sections of this chapter.
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CHAPTER 4

APPLICATIONS, CONCLUSIONS, AND FURTHER RESEARCH

4.1 A Few Remarks on Applications:

In this section two feedback systems profitably modelled as random

will be considered. The purpose here is not to give a complete investi-

gation of these examples but rather to indicate treatments within the

framework established in the last chapters.

A. The human operator:

As a first example consider the human as a feedback controller. Feed-

back systems containing humans arise naturally in many settings [2],

perhaps the most familiar one in an engineering context is as a pilot.

In the design of control mechanisms and instrument displays for aircraft

it is important to have some model of the pilot as the "actuator link"

between the instruments and the control mechanism. Because of the highly

individual techniques of pilots [45] and the possibility of a large number

of ylots flying any particular aircraft, it is appropriate to model the

human as containing some random parameters when operating in this situation.

In controlling an aircraft about some nominal trajectroy, the human may

be modelled as an essentially linear element subject to random perturba-

tions in the following manner. In reading the instruments errors are made,

and these errors, being characteristic of individuals, are usually modelled

as the effect of additive noise. Attempting to deduce the state of the

aircraft from these imperfect observations, the human performs a kind of

filtering operation in some optimal manner. Thli step is usually modelled

as operating on the noisy observation signal with an optimal linear (Kalman)
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filter. The next step in the control process is operating the control

mechanism so as to correct for any perceived errors from the nominal

trajectory. At this stage a delay is introduced as a consequence of the

neuro-motor delays of the human. Moreover, noise is usually added here to

account for the errors in manipulating the controls. This model of the

human controller in a steady-state control task reduces to the cascade

of elements shown in Figure 1.

X -+ K+m

observation filter motor gain

delay delay

O(t) m(t)
(observation noise) (motor raise)

Figure 1: A model of the human controller.

Defining the Kalman filter by its impulse response k, the input-output

equation of the model is

k0m(t) + k k(t-Ams) [x(s-A ) + o(s-A )] ds

y(t) - 0t > a

{km(t) ;t < +

For any model of the aircraft'*(about the nominal operating point) anal-

ysis of feedback systems including the human operator model above is

straight-forward from this point (except for the presence of delays) by
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familiar methods.

Frequently, however, a less detailed model of theehuman as a white

noise gain is used to obtain worst case results in experiments involving

a wide range of operating conditions [2]. In this case the model of

Figure 2 applies.

x K (S)

linear element

N(t)
(multiplicative
white noise)

Figure 2: A crude model of the human operator.

Here K represents the combined effects of the iuman's filtering action

and (Pade) approximations to the delays. Thus,

y(t) = f k(t-s) x(s) dN(s)

as an Ito integral,describes the transfer of observation (x) into control

action (y) by the human. Here k is the impulse response df the linear

element K. Again for an appropriate linea* model of the aircraft in steady

state operation, analysis of the human as a controller is straight-forward

using results like Theorems 3.2.4, 3.3.4, and 3.3.5. The latter give easy

sufficient conditions in terms of the frequency response of the linear

elements for boundedness of the signals in the control loop.
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In the event that the human model includes a nonlinearity satisfying

sector conditions as used in Chapter 3, perhaps reflecting thresholds of

no response [45], then analysis using Theorem 3.2.5, etc., is no more

difficult than in the linear case.

B. Analysis of round-off errors in numerical computations:

In the first chapter the point was raised that the accumulation of

round-off errors in a numerical computation aould be considered as a

stochastic process. Though in actuality a deterministic phenomena, the

randomization of the error evolution is warranted by the extreme com-

plexity of any nontrivial computation on a large machine. The development

of a statistical model takes the following foute (this analysis is drawn

from Henrici (34],[35]).

Most numerical algorithms consist of generating a sequence of numbers

x,,x,,..., defined by the relations

Xn - Fn (x0 .' n-l) ; n = 1,2,...

In actual machine computations, however, the algorithm is only approximatey

realized and machine numbers Xn (of finite length) are generated by the

approximate realizations Fn by

xn F n o'' n-1 ; n ,2,...

Write

in F n Ro '''' n-1 + en

and consider this as the definition of the local rounding error en. Thus,

en P n o'''9- 1 ) - Fn(i$e,*,in-1
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Each local rounding error is propagated through the remainder of the com-

putation (from n on), and in this process its effect on the final accum-

ulated error may be amplified or diminished. The accumulated rounding error

rn at any stage is defined as the difference between the numerical result

and the correct theoretical result; here rn R n -x n

Clearly, knowledge of the machine approximations Fn would permit one

to determine worst case bounds for the error evolution under the unlikely

hypothesis that each local rounding error has the maximum bad effect on the

accumulated error. Such a systematic reinforcement of errors is unlikely

in any typical computation, and the bounds obtained under this assumption

are usually uninformative. It is the need to have some appraisal of the

"average" growth of round-off errors that motivates the statistical

assumptions.

Therefore, assume that each e is for each n a random variable on somen

probability space (Q,,7,P) . The accumulated error evolves according to

rn e n + F (i ,...,in-1) + Fn n-I1

- en + Hn r ,..,rn-1)

The stability problem becomes the following: given the statistics of the

stochastic process { enlncZ+ describe those of the process {rnneZ+ as

n + cc. Of particular interest are bounds on theiameanand vriance of. the

process {r5 , as these are easily determined and indicate the average

rate of growth of the errors. The general conditions of section 3.1 enable

one to constrain the operator H so as to assure compactness of the dis-

tributions of {par}n Z+ (the truncations of r) on some sequence space
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and guarantee asymptotic invariance (with n) of the statistics of r if e

is stationary. Moreover, the moment bounds determine the asymptotic limit

distribution approximately. In certain linear integration schemes (the

operator H becomes a linear convolution) the results of section 3.2 apply

immediately. In relation to this point see [66], where the analog of Theorem

3.2.4 is given for random sequences.

4.2 Conclusions and Suggestions for Future Research:

In order to place the present work in perspectiveit is-necessaryito

place the study of stochastic systems within the theory of dynamical sys-

tems. Although it is too early for the latter task, some points are clear.

First the study of dynamical systems has proven to be one of the most

fruitful branches of engineering and mathematics, and for this reason any

extensions and generalizations should be pursuited for additional insight.

The admission of stochastic variables in optimization problems has led to

a much better understanding of the role of information patterns in control

systems as may be judged from the several papers on this subject in the

Bibliography. Secondly the application of stochastic systems as models

for complex physical systems would seem to be promising; the demonstrated

success of a few definitive case studies would strengthen thit assertion.

Of a more technical nature is the observation that the properties of

causal, dynamical systems ate deeply related to those of Markov processes.

A general examination of the relationship between causality and the Markov

property beyond the obvious would seem valuable. Certainly the description

of systems by stochastic differential equations interperted in the analy-

tical theory of Markov process has provided a rich class of systems
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described by partial differential equations. Viewed from the field of

what has come to be called distributed parameter systems, this aspect of

stochastic systems permits an easy interpertation of the properties of

the distribat solution as a probability density function. Moreover, the

additional interpertation provided by the differential equation for the

sample trajectories of the process cannot be but an asset in the analysis

of the partial differential equation. This relationship between distributed

systems and Markovian systems is largely unexploited as such.

As the remarks above reflect some of the tentative ; aspects of the

stochastic systems theory, so must the present work be regarded as pre-

liminary in nature. For as an investigation of the problem of determining

the transformations of probability distributions by dynamickl (feedback)

systems, its provisional aspects are apparent. Perhaps the most signifi-

cant drawback is the non-constructive nature of the analytis. It would be

an important extension of this work to render the process of analysis

constructive, though this is likely to be equivalent to sblving the implicit

feedback equations and hence impossible in general.

However, as an alternative approach to the analysis of the asymptotic

properties of stochastic systems, this work has succeeded in making the

Prohorov theory directly applicable to this kind of analygis. In this con-

text the work is antedated by that of Ito and Nisio [41] and Fleming and

Nisio [26], though the explicit connection of deterministic operator

stability theory and the Prohorov theory, using the results of Topsoe,

appears to be novel. Finally, the specific results of sections 3.2 and 3.3

are interesting as generalizations of deterministic counterparts-the
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Nyquist and Circle Theorems. Examined along with papersllikef21J, [47],

[73], [46], and [66], these theorems should increase the understanding of

stochastic systems containing linear elements.

Further comments on this work may be usefully made by suggesting a

few extensions and modifications. In addition to the general statements

above,consider then the following precise problems.

A. Stability conditions based on empirical distributions:

Of course one of the primary objections to this work is its a priori

assumption of given distributions for the perturbation inputs and random

parameters. In any practical experiment these are seldom given and usually

difficult to determine experimentally, though appropriate statistical

methods are available. About the most complete characterization one could

reasonably hope for is a number of empirical distributions for the uncer-

tainties derived from samples of the processes. It would bethereforevery

useful to determine conditions based on empirical distributions of the

inputs and outputs that assure the asymptotic regularity of the outputs

in the sense used previously. These conditions would have to apply for a

class of distributions which could give rise to those observed empirically.

The Prohorov theory has potential applications here especially on the space

D of piecewise continuous functions, see some comments to this effect in [7].

The definitions of stochastic systems given in section 3.1 are designed to

permit a number of possible distributions for the uncertainties present,

and may prove useful in the early stages of work on this problem.

B. Stochastic systems with nonlinear state spaces:

Consider the problem of designing a feedback control law to accurately

orient a rigid body (satellite) in orbit. The perturbations are essentially
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;to A

stochastic in nature, arisingposition sensor errors and natural pheno--

mena. As is well known the attitude of arigid body in a fixed coordinate

system is described by a set of 3 x 3 orthogonal matrices, a set not

closed under addition. Hence, the control problem must be analyzed in a

setting where the state space of the system is a nonlinear manifold.

Note that the analysis of round-off errors may be considered in this

framework, as the local errors are confined to a fixed interval and may

be considered as random variables on a circle, see [23,p.61].

One of the reasons for seeking problems with nonlinear state spaces

is the good possibility of obtaining explicit analytical solutions to

the diffusion equations (for the probability density functions&of the state).

There are rather few diffusion equations, aside from the Guass-Markov case,

that admit an explicit solution in the usual vector space setting. For

certain special manifolds explicit solutions to Laplace's equation are

well known and may be used to describe Brownian motions on these manifolds

[18]. Other references are Elliot [22], McKean [50] and the feferences

therein. Research on this problem should provide interesting enhancements

of the work in Brockett [9].

C. Passive stochastic systems.

Of a rather more technical nature is the problem of describing the

analog of passivity in a stochastic setting. Recall that a deterministic

operator G on the Hilbect space (H,4*,4> ) is said to be passive if

Re<x,Gx> > 0 for every x e H.

This is equivalent to the physical notion of a system which always diss-

pates energyfr(64].
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Let L2(R+) denote the space of square integrable, real-valued functions

on R+, and F(S:L2) be the set of L2-valued random variables. Then clearly

the set (4 .(Q;L 2),<*,*>), where for xy E .(Q;L2) C F(Q;L 2)

<xsy> E { x(t,w)y(t,w) dt)

and <x,x> < Go for every x, is a Hilbert space. Moreover, the inequality

<x,Gx> > 0 makes perfect mathematical sense for some (random) endomorphism

G on ((Q;L 2), and it is easy to give thegitive Operator stability theorem

(74,p.235] of the deterministic theory in this setting. Physical inter-

pertations of the result are less easy, however, and apparently some

notion of random spectra must be developed. Useful ideas are likely to be

found in statistical mechanics [62].
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