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Abstract

This thesis has two flavors:

1. A universal theory of universal multi-user communication with fidelity criteria: We
prove the optimality of digital communication for universal multi-user communica-
tion with fidelity criteria, both in the point-to-point setting and in the multi-user
setting. In other words, we prove a universal source-channel separation theorem
for rate-distortion, both in the point-to-point setting and the multi-user setting.
In the multi-user setting, the setting is unicast, that is, the sources which vari-
ous users want to communicate to each other are independent of each other. The
universality is over the medium of communication: we assume that the medium
might belong to a family. Both in the point-to-point setting, we assume that codes
can be random: the encoder might come from a family of deterministic codes and
the decoder has access to the particular realization of the deterministic code, and
finally, an average is taken over all these deterministic codes. In Shannon’s theory,
random-coding is a proof technique. However, in our setting, random codes are es-
sential: universal source-channel separation does not hold if codes are not allowed
to be random. This happens because we are asking the universal question. We also
show the partial applicability of our results to the traditional wireless telephony
problem.

2. An operational theory of communication with a fidelity criterion: We prove the
source-channel separation theorem operationally: we rely only on definitions of
channel capacity as the maximum rate of reliable communication and the rate-
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distortion function as the minimum rate needed to compress a source to within a
certain distortion level. We do not rely on functional simplifications, for example,
mutual information expressions for the proofs. By operational, we do not mean
that what we are doing is “practically operational”. The view that we have is also
be viewed as a layered black-box view: if there is a black-box that is capable of one
form of communication, then the black-box can be layered in order to accomplish
another form of communication.

Thesis Supervisor: Sanjoy Mitter
Title: Professor of Electrical Engineering and Computer Science
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stata impossibile. Le nostre camminate, le partite a calcio e a ping-pong, le nostre
visite alla panettaria italiana, sono ricordi a cui ripenso con gratitudine, cos̀ı come la
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TA। KAs smJ nhF\ pAtA TA l�Ekn koEff )!r krtA TA ! y� EktAb�\ pxn� s� m� J�

BOEtk EvâAn m�\ zEc h� I। gEZt þEtyoEgtAao\ kF t{yArF krn� h�t� m� J� gEZt m�\ zEc

h� I। in þEtyoEgtAao\ kF t{yArF k� f� zaAtF Edno\ m�\ a@yApk VF. en. s�fn bh� t

u(sAh s� gEZt EsKAt� T�। v� hm�\ EsKAn� m�\ sMp� Z smEpt T�। in f� zaAt k� Edno\ m�\

ek shCA/A aOr aQCF do-t , zpqA sAm�tA , yAd aAtF h{ , Ejsk� sAT m{\ gEZt

svAlo\ k� bAr� m�\ socA krtA TA। jb in þEtyoEgtAao\ kF t{yArF g\BFr h� I , tb

m� J� þZ�fcr , yogAn\d aOr v�\kVcl aAEd bh� t smEpt a@yApko\ n� gEZt EsKAyA।

aEBnv , hErhrn̂ , �Eq rAj , fohm , jydFp , aAEd a(y\t b� E�mAn shCA/o\ s� bh� t

gEZt sFKA।

l�Ekn sbs� mh�vp� Z vh cAr sAl T� jb uÎ gEZt sFKn� m{\ gEmyo\ kF C� EÓyo\ m�\

BArtFy sA\EHykFy s\sTAn , kSk�A jAyA krtA TA। in Edno\ , BOEtk y\/fA-/ kA

p� vÜAtk a@�yn m{\ BArtFy þO�oEgkF s\-TAn , bMb{ , m�\ kr rhA TA , l�Ekn in cAr

sAl hr grmF kF C� EÓyo\ kA ek mhFnA m{\ klk�� m�\ EbtAtA TA। BOEtk y\/fA-/ aOr

gEZt kA yh bh� t u�m m�l TA। bh� t uÎ gEZt sFKA ! sbs� mh�vp� Z , m{\n� þAEyktA

Es�A\t sFKA EjskF CAp m�r� is foD Enb\D m�\ -p£ h{ ! tFn þA@yApk , fom�f bAgcF ,

bF. vF. rAv tTA am(y d� , Evf�q yAd aAt� h{\। i�ho\n� K� b smpZ s� EsKAyA। þA@yApk

rAv aAj tk k� m�r� þAEyktA Es�A\t k� sv��¤ a@yApk h{\ !

j{sA m{\n� phl� khA , p� vÜAtk a@yyn m{\n� BArtFy þO�oEgkF s\-TAn , bMb{ , m�\ Ed�� t

y\/fA-/ m�\ EkyA। þTm vq m�rA kmrA sATF udy c�EÓyr TA। udy s� aEDk b� E�mAn

kmrA sATF EmlnA m� fEkl hF nhF\ , nAm�\Ekn h{ ! bh� t s� þA@yApko\ n� EsKAyA , Ejnm�\

þA@yApk nArAyZn̂ KAs yAd aAt� h{\। þA@yApk nArAyZn̂ n� p� vÜAtk a@yyn k� þTm

vq m�\ a(yAEDk gEZt d� E£koZ s� Ev�� t þErpTo\ k� bAr� m�\ EsKAyA। tb m{\n� Ev�� t

y\/fA-/ aOr gEZt m�\ phlF bAr sA' s\b\D pAyA। yh s\b\D m�r� is foD Enb\D m�\

BF d�Kn� ko EmltA h{। þA@yApk nArAyZn̂ n� tBF s� an� s\DAn kF aor BF þo(sAEht

EkyA।

m{\n� ÜAtko�r a@yyn BF BArtFy þO�oEgkF s\-TAn , bMb{ , m�\ hF EkyA। ÜAtko�r

foD þb\D k� Ely� Ejs an� s\DAn svAl k� bAr� m�\ m{\ soc rhA TA , uspr m{\ þA@yApk

Evv�k borkr k� sAT vAdAn� vAd EkyA krtA TA। un Edno\ þA@yApk borkr VAVA m� lB� t

an� s\DAn s\-TAn m�\ þA@yApk T� , l�Ekn BArtFy þO�oEgkF s\-TAn , bMb{ , m�\ sEht

þA@yApk T�। yh m�rA þTm gMBFr an� s\DAn an� Bv TA। þA@yApk borkr k� an� s\DAn

"�/ m�\ uns� aEDk jAnkAr m{\n� fAyd hF koI d�KA ho। yh bAt sAP h{ Ek yEd

þA@yApk borkr n hot� , to m{\ em. aAI. VF. m�\ nhF\ hotA !
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p� vÜAtk a@�yn k� d� sr� yA tFsr� vq m{\n� p� >y Evp-snAcAy s(ynArAyZ goi\kA tTA

unk� shAyk aAcAyo� s� Evp-snA sADnA sFKF। is sADnA kF m�rF Ej\dgF m�\ bh� t

ghrF CAp h{। EnE�t !p s� Evp-snA sADnA n� m�r� is foD Enb\D kF an� s\DAn

EdfA pr þBAv XAlA h{। Evp-snA s� aEDk ghrA upd�f fAyd is d� EnyA m�\ n ho।

Evp-snAcAy U bA EKn goi\kAjF k� Evp-snA g� z T�। is kArZ , Evp-snAcAy U bA

EKn ko yAd krtA h� । Es�AT gotm s\yk s\b� � , jo sMBvt, is d� EnyA k� ab tk

k� sv��¤ mnov{âAEnk h{\ , n� yh sADnA þTm EsKAyF , aOr yh sADnA Evp-snAcAyo�

kF v�fAvlF �ArA goi\kAjF tk clF aAI। is kArZ , Es�AT gotm s\yk s\b� � ko

yAd krtA h� ।

a�tt, , apn� pErvAr tTA bcpn k� bAr� m�\ k� C ElK� gA। m{\ mAtA - EptA aOr bhn

k� sAT bMb{ m�\ bwA h� aA। mAtA - EptA n� apnF aor s� ��¤s\Bv prvErf kF , uskA

aABArF h� । bcpn k� do-t yAd aAt� h{\। aOr yAd aAtA h{ kZAl , m�rA nEnhAl , jhA 

grmF kF C� EÓyo\ m�\ apn� mm�r� BAI -bhno\ k� sAT K�lA krtA TA !
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When things become manifest

To the ardent meditating brahmin,

All his doubts vanish

Because he understands [each] thing with its cause.

- Mahavagga Pali 1

In his influential book The Structure of Scientific Revolutions, Thomas Kuhn argues
that a field of scientific inquiry is made up by paradigms and puzzles. He describes
paradigms as models for research, a general problem area sharing a common formula-
tion, a framework in which it becomes possible to ask ‘valid’ questions. Puzzles are
concrete applications, conjectures, open problems. Most scientists piece together puz-
zles and it is this activity which Kuhn calls normal science. The term puzzle suggests
spielerei - playing games. This negative connotation is - so it said - unintentional.
By formulating puzzles, a scientist can focus on specific questions, questions lead to
answers, answers are the products of scientific research.

This structure of scientific inquiry is very much present in (applied) mathematics in
general and in the theory of dynamical systems in particular. However, there has
been an unfortunate unexplicable total domination of puzzle solving. Paradigms have
been muted, supressed, not spoken about, let alone scrutinized, rejected, updated.
Examining and formulating paradigms has achieved a reputation in mathematical circles
as being soft: it leads to too many definitions and not enough theorems. Solving puzzles,
on the other hand, is considered a serious activity, requiring intelligence, mathematical
culture, virtuosity. The ultimate of mathematical achievement is to solve a puzzle (a
conjecture) formulated by someone else preferably in another century. Thus, we have
attained a complete reversal in which posing paradigms is considered spielerei, we find
ourselves in a situation in which proving theorems, not building theories, appears to be
the aim of mathematical research.

-Jan Willems in his paper Models for Dynamics





Chapter 1

Introduction: Digital
communication architectures, why
or why not?

What many of us fail to realize is that the last four hundred years are a highly special
period in the history of the world. The pace at which changes during these years have
taken place is unexampled in earlier history, as is the very nature of these changes. This
is partly the results of increased communication, but also of an increased mastery over
nature, which on a limited planet like the earth, may prove in the long run to be an
increased slavery to nature. For the more we get out of the world the less we leave, and
in the long run we shall have to pay our debts at a time that may be very inconvenient
for our own survival.

-Norbert Wiener

� 1.1 Introduction

Communication is a basic need of most (if not all) living beings. For humans, verbal
language has developed as a very important form of communication and language is
supposed to be the reason why humans have dominated other living species on this
planet [Hay05]. With the advance of technology, communication has flourished over
long distances in some form of language, be it speech, images or text. Also has flourished
communication over long distance between machines or between humans and machines
using some form of language.

This thesis is concerned with a theory of communication in scenarios where commu-
nication is desired over long distances between many users. There are various sources
which various users want to communicate to each other with various guarantees over
a communications medium. Examples of such media are wireless and internet. In the
example of traditional wireless, telephone, the sources are voice of various users and the

1
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medium of communication is the atmosphere. In the case of the internet, the sources
can take various forms, for example, text, audio, video, etc., and the medium of com-
munication is the internet architecture. Wireless communication over the atmosphere
or communication over the internet requires communication technology in the modern
sense of the word, and not in the sense of smoke signals and drum rolls that primitive
societies used as technological aids to communication.

In what follows in this chapter, I have taken material directly, on various instances,
from the first chapter in Gallager’s book [Gal08], a version of which can also be found
on MIT OpenCourseWare [Gala] and the first and second video lectures of his course
on Digital Communications which can be found on the MIT OpenCourseWare [Galb].

Also, in what follows throughout the thesis, when I use the word “wireless communica-
tions,” I would be referring to traditional wireless telephony. Wireless communication
is used today, not just for voice communication, but also for transmission of various
kinds of data.

� 1.2 Chapter outline

This chapter is a high-level discussion of analog and digital architectures and factors
which determine which technology (analog or digital) should be implemented and which
should not, and whether or not any technology should be implemented. We also discuss
the contributions of this thesis, which are partly motivated by the factor of cost /
performance which determines in an important way, which technology is implemented.

In Section 1.3, we discuss analog and digital point-to-point communication systems.

In Section 1.4, we discuss the reasons for which technology (analog or digital) is im-
plemented and which is not. We also discuss reasons which should be considered when
determining which technology is implemented, or whether a technology should be imple-
mented at all, and which are not considered. These reasons belong to various categories
as discussed in this section. One very important reason is cost / performance.

In Section 1.4.2, we discuss, why the reason of cost / performance is a very important
reason which determines which technology is implemented. In this section, we also
consider the reason of human nature and how it determines what exists in this world.
In Section 1.4.3 we discuss that the reason of cost / performance, just by itself is not
well understood in multi-user settings. Understanding this is one of the motivations for
this thesis.

In Section 1.6, we discuss multi-user analog and digital communication systems. An-
other motivation of this thesis is to undertand why digital architectures are good on
a conceptual level. These are the two flavors of this thesis: understanding digital ar-
chitectures from the point of view of cost / performance in multi-user communication



Sec. 1.3. Point-to-point analog and digital communication systems 3

channelencoder decoder sourcesource reconstruction

1

Figure 1.1. A general point-to-point communication system

systems and understanding why digital separation based architectures are good on a
conceptual level.

These two flavors are discussed in Section 1.7.

At the end, Section 1.8 discusses the organization of the rest of this thesis.

� 1.3 Point-to-point analog and digital communication systems

For simplicity, consider a point-to-point communication problem: there are 2 users,
and one user wants to communicate a source to the other user over a medium (which is
synonymous with a channel in the point-to-point setting) with some guarantee. In the
point-to-point setting, the medium will be called, the channel. For example, a person
in Boston wants to send an e-mail to his parents in Mumbai over a simplified point-to-
point internet channel. The guarantee is that the e-mail should have no errors in that
it should be received exactly as it was sent. Another example is that a person in Boston
wants to talk to his parents in Mumbai on the phone over a simplified point-to-point
wireless channel. The guarantee is that the parents should be able to hear what the
son spoke and make sense out of it even though the reproduction might not be exact.

This is done with the help of an encoder and a decoder. The encoder encodes the
source. The encoded source is the input to the channel. The channel communicates
the input with errors. The decoder reconstructs the source from the erroneous channel
output. In the example of wireless, a cellphone acts as both an encoder and a decoder.

� 1.3.1 A general/analog point-to-point communication system

A general point-to-point communication system is the composition of an encoder, chan-
nel, and a decoder, see Figure 1.1.
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� 1.3.2 A digital point-to-point communication system

Modern day communication systems are usually digital. Digital communication systems
are communication systems which use a digital sequence as an interface between the
source and the channel input, and similarly, between the channel output and the final
destination.

A digital sequence is a sequence made up of elements from a finite alphabet, for example,
the binary digits (bits) {0, 1}, the decimal digits {0, 1, 2, . . . , 9}, or the letters from the
english alphabet. Binary digits are almost universally used for digital communication
and storage, and hence, when we say digital communication, we would mean that the
interface is binary. Communication sources, for example, speech waveforms, image
waveforms, and text files, are represented as binary sequences. The binary sequence
is then converted into a form suitable for transmission over particular physical media
such as a cable, twisted wire pair, optical fiber, or electromagnetic radiation through
space.

Thus, a point-to-point digital communication system is a special case of a general
communication system where the encoder is the composition of a source encoder and a
channel encoder, and the decoder is the composition of a channel decoder and a source
decoder. See Figure 1.2.

The idea of converting an analog source output to a binary sequence was quite revolu-
tionary in 1948, and the notion that this should be done before channel processing was
even more revolutionary. By today, with digital cameras, digital video, digital voice,
etc., the idea of digitizing any kind of source is commonplace. The notion of a binary
interface before channel transmission is almost as commonplace. For example, we all
refer to the speed of our internet connection in bits per second.

The input to the channel encoder is a digital sequence, usually a binary sequence.

Note, finally, that digital schemes are a special case of analog schemes.

� 1.3.3 A note on digital point-to-point communication systems

In general, an analog source can be converted into a digital sequence as follows: sample
the analog source very finely and quantize the sampled source very finely. The finer
the sampling and the quantization, the closer, the digital sequence is a replica of the
original analog source. In the limit, the digital sequence completely represents the
analog source.

In this thesis, we would consider questions related to the optimality of digital architec-
tures: that is, whether digital architectures can perform as well as analog architectures.

Since, by very fine sampling and quantization, the digital representation will approach
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the analog source as closely as we want, it seems that digital architectures can be made
to perform arbitrarily closely to analog architectures. This is not necessarily that direct
because usually, there is a limitation on the resource consumption in the system. Very
fine sampling and quantization can consume a lot of switching energy and thus, the
digital scheme, built this way, might end up consuming a lot more energy than the
analog scheme. Thus, it is a priori unclear whether digital schemes will perform as well
as analog schemes.

Another very important point is that we do not want the digital interface to be of very
large cardinality. In fact, we want that cardinality to be independent of the source. If
the source quantization is very fine and depends on the source, this can lead to a very
large cardinality of the digital interface, and we would like it to be as small as possible:
as stated before, we prefer if it is binary.

� 1.3.4 Separation based architectures

In practice, digital architectures are built in the following manner:

1. The source encoder compresses the source to within an allowable distortion level.
The output is a binary sequence.

2. The channel encoder and decoder help to communicate the binary sequence reliably
over the channel. By “reliably”, we mean that the error probability in the detection
of the binary sequence is “very” small.

3. The source decoder reconstructs the source from the original binary sequence

Separation based architectures are called so because they separate the source and the
channel: the source encoder and decoder are independent of the channel and the chan-
nel encoder and decoder are independent of the source. In addition, however, when
defining separation based architectures, we require “reliable” communication of the bi-
nary sequence over the channel. A general digital communication scheme may or may
not be a separation based scheme with the above definition.

Separation based architectures are thus, a special case of digital architectures. When
proving results concerning the optimality of digital communication, we will always do
it by the use of separation based architectures.
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� 1.4 Factors which determine which technology is implemented and fac-
tors which should be considered when determining which technology
is implemented or whether a particular technology should be imple-
mented, but are not

In Subsection 1.4.1, we discuss the reasons which determine which technology is imple-
mented and factors which should be considered but many times, not, when determining
which technology is implemented, and whether a technology should be implemented in
the first place. These are a whole variety of reasons: cost / performance (in other words,
profit motive), architectural, social, etc. These reasons are discussed in subsection 1.4.1.

Among all these reasons, there is one very important reason determines whether a
technology is implemented. This is the reason of cost / performance. The reason why
this is the factor of cost / performance is the a very important factor, is speculated
on, in Subsection 1.4.2. Another consideration is human nature, and its effect on
whether a technology is implemented or which technology is implemented, and this is
also speculated on, in Subsection 1.4.2.

In Subsection 1.4.3, we argue that the cost / performance reason, just by itself, with-
out the other reasons, is not well understood in multi-user settings. This leads us to
one of the motivations for this thesis: understanding cost / performance in multi-user
scenarios.

� 1.4.1 The reasons, both, which determine and do not determine which
technology is implemented

There are a number of reasons why communication systems now usually contain a
binary interface between source and channel (that is, why digital communication is
now standard, and has replaced analog communication). The reasons mentioned below
all into to two categories:

• those which drive what finally gets implemented in practice. In my opinion, one
of the main factors here is cost / performance. This is a simplification, but still
very true.

• reasons concerning simplicity of architectures, understanding related to the func-
tioning of the communication system arising from the simplicity of architecture,
and social reasons. This can be sub-catagorized into various reasons.

These reasons are discussed below:
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Cost / performance considerations

1. Cost / Performance characteristics: This has three components

(a) Cost of digital hardware: Digital hardware has become so cheap, reliable and
miniaturized, that digital interfaces are eminently practical. This has been
possible because of 20/30 generations of Moore’s law. Very roughly, since the
number of transistors that can be placed on a particular area of a chip doubles
every 18 months (or two years): the cost to put a transistor on a chip decreases
and thus, the cost for obtaining the same performance decreases. Things are
more complicated than this, but this is the rough idea.

(b) Standardization: Digital communication is a general way of communication
irrespective of the source and the channel: the source is first converted to binary
and these binary sequences are then communicated over the channel. Analog
design can be much more complicated, and much more of an art than digital
design, and hence, it costs more: an analog designer usually gets paid much
more than a digital designer! The cost of a chip is approximately related to
the cost of development divided by the number stamped out. Standardization
leads to lowers cost of development, and thus, cheaper chips. This is partly
elaborated on in Gallager’s first and second video lectures in the series [Galb].

(c) Separation theorem: One of the most important of Shannon’s information the-
oretic results is that if a source can be transmitted over a channel with certain
distortion guarantee in any way at all, it can also be transmitted using a binary
interface between the source and the channel, without any significant change
in the use of system resources like energy and bandwidth. This is known as the
source/channel separation theorem. Thus, given an analog architecture which
achieves some performance, the same performance can be achieved with the
same energy and bandwidth consumption by using a digital architecture. As a
result, the best possible digital architecture will cost the same from the point
of view of energy/bandwidth consumption as the best possible analog archi-
tecture. This does require assumptions that delay in reception of the source is
not a concern, but making this assumption is probably an okay approximation.
Note 1.1. The above optimality of separation based architectures was
proved by Shannon in [Sha48] for reliable point-to-point communi-
cation. In [Sha48], Shannon also stated the optimality of separa-
tion based architectures for communication with a fidelity criterion
(distortion criterion), and proved it in [Sha59]. Separation, in fact,
does not hold in the most general possible multi-user scenarios. This
point of whether separation holds in multi-user scenarios is com-
mented on in Subection 1.7.1, and proving optimality of separation
in certain multi-user scenarios is one of the main foci of this thesis.
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Other reasons

The other reasons are classified as technical/technological reasons and social reasons.

Technological reasons:. This can be categorized further, as follows:

• Layering and hence, simpler conceptualization: This is the same as the standard-
ization reason, but viewed very differently. Digital architectures give a simple con-
ceptual way of building architectures: first convert the source into binary, then,
communicate the binary sequences over the channel, and finally, get a reconstruc-
tion of the source. In a digital communication system, the action of the source
encoder is independent of the channel (that is, depends only on the source) and
the action of the channel encoder is independent of the source (that is, depends
only on the channel). This is not necessary from the definition of a digital commu-
nication system, but this is how digital communication systems are constructed.
in practice. A most general analog communication scheme would be a compli-
cated non-linear function of the source and the channel. Digital communication
linearizes this into source coding followed by channel coding, and hence, conceptu-
ally much simpler than a most general communication scheme. This is elaborated
on in [Gal08] (or the equivalent course notes [Gala] )and first and second lectures in
the series [Galb]. What is questionable about this point in terms of being a reason
why digital architectures are used is that layered schemes can be built even in an
analog way, and hence, this cannot be a fundamental reason for why architectures
are digital. I will add that others might disagree about this last point.

• Simpler networking: A standardized binary interface between source and channel
simplifies networking, which now reduces to sending binary sequences through
the network. This is elaborated on in [Gal08] (or the equivalent course notes
[Gala]). This point is very important, for example, in the case of the internet
because the internet architecture consists of a series of links and it is good to
have a standardized interface for the input and output of each link. This point
is questionable in the sense, again, that one can also have a standardized analog
interface. Probably, what is good about a standardized binary interface is that its
cardinality is the smallest possible cardinality that an interface can have, that is
2, instead of a standardized analog interface which will have infinite cardinality.

• Physical performance: This performance is different from Reason 1, which dis-
cussed the cost/peformance characteristics. This reasons refers to the “physical”
performance of the system.

Copying directly from [OPS48], which talks about the advantages of PCM (pulse
code modulation) over analog systems, in particular, frequency modulation:

“In most transmission systems, the noise and distortion from the individual links
cumulate. For a given quality of over-all transmission, the longer the system, the



10 CHAPTER 1. INTRODUCTION: DIGITAL COMMUNICATION ARCHITECTURES, WHY OR WHY NOT?

more severe are the requirements on each link. For example, if 100 links are to
be used in tandem, the noise power added per link can only be one-hundredth as
great as would be permissible in a single link.

Because the signal in a PCM system can be regenerated as often as necessary, the
effects of amplitude and phase and non-linear distortions in one link, if not too
great, produce no effect whatever on the regenerated input signal to the next link.
If noise in a single link causes a certain fraction p of the pulses to be regenerated
incorrectly, then afterm links, if p� 1, the fraction incorrect will be approximately
mp. However, to reduce p to p′ = p

m requires only a slight increase in the power
in each link as we have seen in the section on threshold power. Practically, then,
the transmission requirements for a PCM link are almost independent of the total
length of the system. The importance of this fact can hardly be overstated.”

The above refers to the section on threshold power, part of which basically says
that in a PCM system, as the signal power is increased, after a particular point,
even a slight increase in signal power will decrease the probability of error by a
huge amount. The reader is refered to [OPS48].

In a usual analog system, however, such performance cannot be achieved. This
is because a usual analog system uses amplifiers to amplify the analog signal and
noise is amplified in the same proportion as the signal is amplified.

I wonder, however, if there are smart ways of building analog systems which achieve
the above performance of a PCM system.

These reasons are a mixture of my own understanding synthesized with talking to some
experts and the reasons which I have taken from [Gal08] (or equivalently, [Gala]), [Jr.a],
and [OPS48]. The reader is refered to the first chapter, each in [Gal08] or equivalently,
the course notes [Gala], and the first two videos of the corresponding course [Galb] ,
lecture notes [Jr.a] and the first video of the corresponding course [Jr.b], and [OPS48],
for a more detailed exposition.

There are societal reasons which should drive which technology gets implemented, they
are:

Societal reasons: Some of them are the following:

• Health: World Health Organization has declared that cellphone radiation might
cause cancer [WHO]. Thus, the communication schemes should also be designed
in a way such that they reduce such risks. Potentially, some particular electromag-
netic waveforms are more harmful than others, and this can potentially determine,
what architectures to use

• Is it interesting?: Digital design is more modular than analog design. However,
fact is also, that digital design is much less interesting than analog design. Analog
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design is much more of an art, whereas digital design is more, just a process
which needs to be implemented. Another way of saying this is that digital design
is a much more automated process (the automation might be done by human,
and not necessarily, a machine) compared to analog design. I wonder about the
ramifications of this in the workplace. Because of the modularity got out of digital
design, and the division of labor it can produce, what is the effect of this on the
individual working in the workplace? Is the individual just playing the role of a
nail in a big machine, or does the individual see work as a whole, and a process of
human growth?

There are further societal reasons, which should drive whether technology like wireless
communications or internet gets implemented in the first place or not, whether in an
analog or a digital manner. The reasons of health also falls under this bullet.

• Health: Again, let us take the example of wireless. As we said above, the World
Health Organization has declared that cellphone radiation might cause cancer. It is
totally possible that this means that wireless radiation at radio frequency, but with
the amount of energy needed in the cellphone radiation is going to cause cancer
irrespective of anything else, and this factor should be taken into consideration
when determining whether a technology like wireless should be implemented or
not. This is a reason for whether wireless technology should be implemented or
not, and not a reason for whether analog or digital.

• Concentration: There are unverified studies which show that concentration can
suffer in the presence of too much electromagnetic radiation from computers and
potentially cellphones, and this should determine, whether a technology is im-
plemented or not. This is a reason for whether wireless technology should be
implemented or not, and not a reason for whether analog or digital.

• Environment: Again, let us take the examples of wireless. The environmental
impact of manufacturing cellphones, managing the base-stations, the waste dump
produced in the process, etc, is another factor which should be taken into consid-
eration.This is a reason for whether wireless technology should be implemented or
not, and not a reason for whether analog or digital.

• Ramifications of living in a globally interconnected world: The internet has made
the world very connected and fast paced. Is this the kind of super-globally con-
nected, fast paced, multi-tasking way of living conducive to human happiness or
not? This is a reason for whether wireless technology should be implemented or
not, and not a reason for whether analog or digital.

This list of societal factors is incomplete. However, the point is that as we said before,
Reason 1 is the primary (and probably the only) reason which determines whether a
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technology is implemented and which technology is implemented. The reason for this
is speculated on, in the next sub-section.

Just as a note, reasons like effect on health can definitely be studied before a technology
gets implemented. Reasons like ramifications of living in an interconnected world can
probably only be understood in hindsight unless someone really wise with a lot of vision
ends up looking at the problem. This is another discussion, for another day.

� 1.4.2 A very important reason for which technology is implemented: cost
/ performance, and human nature

Reason 1, that is cost/profit motive, is unfortunately a very important reason which
ultimately drives which technology gets implemented. This is due to the fact that we live
in a partly dysfunctional capitalist society where empathy takes a back seat. Capitalism
can, in general, be good. Here, I am commenting on the present capitalist structure,
and not saying that capitalism is bad in general. The way present day capitalism is
structured really might be a physical manifestation of the brain anomaly known as
psychopathy [Ron11]. The bigger picture of what is good for the world is lost many
times because of the overemphasis on monetary gains. This is just my opinion and that
of some others, and others might disagree.

I should add that things are more complicated than what I have written above. Tech-
nology is a process, and what gets implemented tomorrow is a function of what exists
today. However, in my opinion, the fact still remains that at the fundamental level,
a lot of things happen in the society because of some kind of monetary motive. One
might want to package things in a way that it is not just monetary motive, but in my
opinion, it is monetary motive which is at the base of a lot of things. Others disagree
with me.

Questions like the above bring us to some of the most fundamental questions in eco-
nomics, and I would leave any further discussion here.

There is one reason which might be more fundamental than cost / performance, and
that is human nature: many of us want to be someone and do something, and monetary
urge beyond what one needs, is but one facet of this urge. This is not a negative
urge. But it can become negative without wisdom. For example, with the question
of wireless communications, one can argue in a positive way that it helps people keep
in contact, and hence, it is a good thing. On the flip-side, are the negative effects
to health and environment, and questions about ramifications of living in a global
interconnected world. Evidently, the reason of people being able to keep in touch, won.
I wonder, why? I wonder whether the people who made the initial breakthroughs, both
theoretical and implementation in wireless systems, really cared about people being
able to keep in touch or whether their real motivations lay somewhere else. I would
like to believe that their real motivations lay somewhere else: doing something exciting,



Sec. 1.4. Factors which determine which technology is implemented and factors which should be considered when

determining which technology is implemented or whether a particular technology should be implemented, but are not13

fun, making something out of their life, making money, and being famous. They might
make themselves “feel good” by telling themselves that this system will do something
good by helping people keep in contact with each other. If this were not the case, I
would like to believe that there would have been more of a debate on whether systems
like wireless got implemented. I am just speculating here. Also, things, of course, are
more complicated than this. The point however, is that “I am” is a huge factor in many
bad things happening in this world.

Questions like the above bring us to some of the fundamental questions about human
nature, and I would leave a further discussion here.

There are various other reasons. I am taking the view of a skeptic here, and stating
only the negative reasons. I should say that in my opinion, these negative reasons are
very fundamental reasons, probably the most fundamental.

A corollary of the fact that Reason 1 is a very important driving motive behind which
technology gets implemented is that if someone came up with an analog architecture
which saved billions or trillions of dollars compared to a digital architecture, and thus,
someone find ways of making money, then some one would find a way of implementing
the analog scheme, irrespective of anything else. Again, things are more complicated
than this because overhauling a huge existing system is a non-trivial matter.

� 1.4.3 The cost / performance reason, even just by itself, is not understood
well enough, in multi-user settings

Also, as regards Reason 1, it is Reasons 1a and 1b and not Reason 1c which have
been crucial in replacing analog technology with digital technology. Reason 1c is in
fact not understood in the biggest communication problems like wireless and
internet. Shannon proved 1c under two assumptions:

1. The setting is point-to-point: there are two users and one user wants to commu-
nicate a source to another user

2. The action of the channel as a transition probability is known

Real situations, for example, wireless or internet, do not follow this paradigm. Let us
consider the example of wireless:

1. Wireless is a multi-user problem and not a point-to-point problem.

2. The wireless medium is time-varying and only partially known, that is, its action
cannot be modeled as a known transition probability. Of course, the channel state
can be ascertained to some extent by exchanging messages between the users but
still, the fact is, that the action of the channel as a transition probability is only
partially known.
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Thus, it is unclear, for example, in the wireless communications problem whether digital
communication is the best thing to do as regards cost / performance related to point
1c. It might well be the case that one comes up with an analog architecture which saves
billions/trillions of dollars in energy costs in the electromagnetic waves that cellphones
emit, and leads to much more than the energy savings from reason 1a and 1b, and
enough to overhaul the wireless communication system to analog. It takes a lot to
overhaul such a big system like wireless, but the prospect of enough profit might well,
do it.

In fact, it is known that in certain multi-user communication problems with correlated
sources, digital communication is not optimal in the sense of reason 1c, see, for example,
[Gas02].

Many people believe that the most fundamental problems in wireless communications
are related to reliable communication of binary sequences over the wireless medium, in
particular, for example, understanding the effect of fading. Another important question
is to model the propagation of electromagnetic waves through random media.These are
definitely a very important question irrespective of whether the architecture is analog
or digital because fading will have to be dealt with in either architecture. However,
this is a question, which is important irrespective of whether one wants to use analog
architecture or digital architecture. In my opinion, an even more fundamental question
is whether one wants to build architectures digitally for wireless communications in the
first place. Others would disagree because they would say that things are digital, and
that is how things are going to be. There is truth to that, too.

The previous discussion leads us to one of the motivations for this thesis.

� 1.5 Analog or digital from the point of view of cost / performance: one
of the motivations for this thesis

From the above discussion, it follows that from the perspective of cost / performance, it
is not entirely evident that digital communication systems should be used in multi-user
communication problems. This was one of the questions I had in mind when I started
working on this problem. I would not say that I have answered this question, but this
thesis does provide some understanding of point 1c in multi-user scenarios when the
medium action might only be partially known.

Cost / Performance: If it turned out to be the case that the energy consumption
by an analog architecture in certain multi-user problems like wireless are much less
compared to a digital architecture, in the long run, compared to the cost of building
digital architectures, then, the system might possibly get overhauled. In other words,
it is possible that an analog architecture exists for which the cost savings from reason
1c are more than the cost savings of reasons 1a and 1b of the best possible digital
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architecture By optimality, we mean the following: digital architectures are optimal if,
given an analog architecture which consumes some amount of system resources for some
performance, a corresponding digital architecture exists which consumes roughly the
same or lesser system resources and provides roughly the same or better performance.
Others disagree with me on this point, in that it is almost next to impossible to overhaul
a big system like wireless.

Another flavor of this thesis is intellectual/conceptual understanding of why separation
holds, and this is discussed in Section 1.7 and Subsection 1.7.2.

Before I go into a description of our results, I’ll first look at multi-user networks.

� 1.6 Multi-user analog and digital communication systems

Let there be N users. N might vary with time. User i wants to communicate source
Xij to user j, 1 ≤ i, j ≤ N to within some guarantee Gij , over a medium m. Xij is
reconstructed as Yij at user j. This is accomplished with the help of modems (modula-
tors/demodulators) hi at user i, 1 ≤ i ≤ N . In the example of wireless communications,
the medium is the atmosphere and the modems are cellphones and base stations (the
cellphone towers). This is a general multi-user communication system. See Figure 1.3.
A more elaborate high-level description and rigorous description is in Chapter 3.

The guarantee depends on the particular situation. When talking on the phone, the
guarantee is that communication should happen to within a distortion level. When
sending an e-mail, it is the e-mail is received perfectly (this is not possible in a noisy
system, and the way this is abstracted is by building systems where the probability of
error is very small).

At time t, the modem hi at user i takes inputs Xi1(t), Xi2(t), . . ., Xij , . . ., XiN (t). At
time t, hi produces an output Oi(t) which is an input to the medium of communication
m. The various inputs Oi(t), 1 ≤ i ≤ N into the medium “mix” and noise is added on
top of it. The medium produces an output Ii(t) which is an input to the modem hi.
Based on Oi, the modem produces outputs Y1i, Y2i, . . ., Yji, . . ., YNi, where Yji is the
reproduction of Xji, the source that user j wants to communicate to user i. Xij , Yij ,
Oi, Ii, are evolving in time. The story is the same at each user i.

In a digital multi-user communication system, each modem is digital. A digital mo-
dem hi is portrayed in Figure 1.4. At user i, the sources Xi1, Xi2, . . ., XiN are first
converted to random binary sequences by the source encoders. These binary sequences
are communicated reliably over the medium with the help of medium modems at the
various users. Finally, at user i, the source decoders help produce the reproductions
Y1i, . . ., YNi, of X1i, . . ., XNi, respectively. The story is the same at each modem hi.

Next I discuss the two flavors of this thesis.
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� 1.7 The questions asked and answered in this thesis/ the two flavors of
this thesis

This thesis, as stated in the abstract, has two flavors, and here, they are stated in the
order which is the reverse of the order in the abstract:

1. Optimality of separation from the perspective of cost/peformance: Understanding
reason 1c, that is, whether source-channel separation holds in multi-user commu-
nication problems when the medium description as a transition probability is only
partially known. This has already been stated in Section 1.5. Discussion on the
nature of our results concerning this point is there in Subsection 1.7.1

2. Intellectual/Conceptual There is no fundamental understanding, as regards a sep-
aration theorem, even in the point-to-point setting, when the channel behavior
as a transition probability is only partially known. Also, there is no fundamental
understanding, as regards a separation theorem in multi-user problems. We will
make some statements about separation in both the point-to-point case when the
channel is only partially known and also in the multi-user case when the medium
is only partially known. Also, Shannon’s proof of source-channel separation for
a known channel in the point-to-point setting is, in my opinion, not very trans-
parent, and we believe that our proof, more general in setting in many ways, is
also more transparent. Thus, we want to understand, why separation holds, on a
conceptual level. This is discussed in Subsection 1.7.2.

� 1.7.1 Understanding reason 1c: does separation hold in multi-user com-
munication problems?

Recall the multi-user communication problem discussed in the previous section. We
consider the problem of communicating soures Xij , 1 ≤ i, j ≤ N , from user i to user j
within a guarantee Gij over a medium m. The guarantee that we will use is that the
source Xij is communicated to within a distortion level Dij under a distortion metric
dij . The medium m is only partially known. Mathematically, this is abstracted out by
saying that the medium m might belong to a family of transition probability matrices.

We will make the following assumptions:

1. The sources Xij are independent of each other

2. The users can generate random codes

3. In order to prove rigorous results, we will assume that the distortion measures
dij are additive. However, as we shall see from the nature of the proofs, the re-
sults should hold for permutation invariant distortion measures also. Permutation
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invariant distortion measures are those for which rearranging the input and the
output in the same way does not change the distortion between the input and the
output

4. Delays do not matter: more precisely, an arbitrary but finite delay is allowed
between the transmission of the sources and their reception

Under these assumptions, we prove that digital communication is optimal from the
point of Reason 1c: that is, we will prove that assuming random-coding is permitted, if
there exists some architecture to communicate independent sources Xij over a partially
known medium m to within a distortion Dij under a distortion metric dij , then, there
exists a digital communication scheme which accomplishes the same, and has the same
bandwidth requrements as the original scheme and essentially the same energy/power
consumption as the original scheme.

Thus, from the point of view of reason 1c, for communication problems which satisfy
the above assumptions, digital architectures are as good as analog architectures. Since
digital architectures are already better from point of view of reason 1a and 1b, and
since, it follows that from the view-point of cost / performance, digital architectures
are optimal.

Assumption that the sources Xij are independent of each other is necessary. Gastpar
[Gas02] provides examples of multi-user problems where sources are correlated and
separation is not optimal from the point of view of reason 1c.

In Chapter 2, we will prove the optimality of digital communication in the point-to-
point setting. This has been done by Shannon in [Sha59]. Shannon, however assumed
that the action of the channel as a transition probability is known. We do not make
this assumption. In Chapter 3, we prove the optimality of digital communication in the
multi-user setting under the above assumptions. This is done by reducing the problem
to a point-to-point problem and an inductive argument. In Chapter 4, we will see,
how this result is partially applicable to the wireless problem. The wireless problem
is complex, and we can only capture some features into a mathematical abstraction.
As we shall see, the assumption of independence of sources only holds partially. Also,
delays matter. However, our modeling does offer partial justification in terms of reason
1c for the use of digital architectures.

I’m not claiming that I’m solving a practical problem or that I am solving the wireless
problem. To summarize my view-point:

1. First I claim that the question, “Are digital architectures optimal from the point
of view of cost / performance in multiuser settings, for example wireless” is a
question that is not entirely well understood. As I have said some others disagree
with me in that they believe that the implemented architectures, for example, in
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the wireless problem, will be digital, no matter, what, and hence, this is not a
question of any concern at all.

2. Then, I prove that under various assumptions (stated before), digital architectures
are in fact optimal from the point of view of reason 1c, and thus, from the point of
view of cost / performance. Finally, we see, to what extent the assumptions hold
in the wireless example.

Next, we come to the second point of this thesis, which is, why does separation hold in
the first place, on a conceptual/intuitive level

� 1.7.2 Why does separation hold on a conceptual level?

Shannon proved the optimality of digital communication in the sense of Reason 1c
(source-channel separation) for reliable communication in [Sha48] and communication
with distortion in [Sha59] in the point-to-point setting.

The very important contribution of these works was not just proving source-channel
separation but also, simple expressions for the information content of a source, the
minimum number of binary sequences needed to compress a source to within a distortion
level (the rate-distortion function) and the maximum rate of reliable communication
over a channel.

The problem of maximum rate of reliable communication over a channel is an infinite
dimensional optimization problem for which, Shannon provided that a corresponding
finite dimensional optimization problem expression (called single letterization) exists.
This is a mutual information expression. The enormous importance of this expression
is that it can in fact be calculated by a machine (or by hand using pen and paper),
and thus, it can be figured out, which channels allow reliable communication at which
rate. This view has been taken in practice, and a lot of research has, for example, been
devoted to finding capacity achieving codes over the AWGN channel, as is clear from
Dave Forney’s course notes and video lectures [Jr.a] and [Jr.b], respectively.

Similarly, the problem of the minimum number of binary sequences needed to compress
a source to within a particular distortion level is an infinite dimensional optimization
problem. Shannon provided a corresponding single letterization, the rate-distortion
function, which is a mutual information expression, and which can be calculated by
machine or by hand. Thus, we know the minimum number of binary sequences needed
to represent a source.

The disadvantage of reliance on mutual information expressions in my view (and the
view of some others, and there are others who disagree with this view) is that the
proof of why separation holds is not evident. As a mathematical proof, one can see
the correctness of the result, but on a more intuitive level, it is unclear why separation
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holds. This is especially true for the rate-distortion problem, and Shannon’s proof can
be found in [Sha59].

In short, in my view, mutual information expressions and proofs based on mutual
information expressions are good to make calculations on which sources can be com-
municated over which channels but they do not lend much insight into the nature of
separation.

Reality can be understood at various levels. A very good example is gravity. The
various levels of understanding are:

1. Newton came up with a formula for the force of attraction between two bodies.
This is helpful in terms of making calculations and predictions. However, it is
totally unclear, how, this action at a distance happens physically

2. There is the postulate of gravitons or gravitational waves which machines are
trying to detect. If true, this will tell, how the bodies exchange information, and
the force of attraction is produced

3. The third reality is that of direct experience: as humans who can feel, if we can
develop the capability to feel that there, indeed, is a force of attraction caused just
due to attraction based on masses. This is the best form of understanding reality

The question of why digital communication does not fit exactly into the above frame-
work, but there are some similarities:

1. A mathematical proof that separation holds

2. Intuition based on the mathematical proof, of why separation holds

3. Direct experience based on examples and real engineering problems. No direct
experience at the level of self-experience is possible in some of these engineering
problems

In my opinion and that of some others, Shannon’s proof in [Sha59] provides a mathe-
matical proof that separation in problem of communication with distortion holds, but
it does not give much intuition as to why separation holds.

The proof of the separation theorem for communication with distortion in [Sha59] has
two parts:

1. Achievability: If the channel capacity is larger than the rate-distortion function
for a particular source, then communication of the source to within the distortion
level over the channel is possible by the separation architecture of source-coding
followed by channel-coding
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2. Converse: If communication of a particular source to within a distortion level is
possible over a channel by some architecture, then the channel capacity is larger
than or equal to the rate-distortion function for the source for that distortion level.
Thus, by achievability, the communication of the source to within the distortion
level is also possible by using a source-channel separation based architecture

The direct part is fairly intuitive. Shannon’s proof of the converse in [Sha59] seems
to work based on a lot of mathematical manipulations with entropy and mutual in-
formation and using their properties like convexity. The ideas are those of a standard
information-theoretic converse proof.

We provide a proof of the separation for communication with distortion which uses only
the definitions of channel capacity as the maximum rate of reliable communication and
the rate-distortion function as the minimum rate needed to compress a source to within
a particular distortion level. We do not use any simplified mathematical expressions for
channel capacity or the rate-distortion function like the single-letter mutual information
characterizations. We call this an operational proof because it only uses the operational
meanings of channel capacity as the maximum rate of reliable communication and the
rate-distortion function as the minimum rate needed to compress the source to within
a certain distortion level and not any simplified mathematical quantifications of these
quantities. Our usage of the word operational should not be confused with “being
operational in practical implementations”. The proof of the direct part is the same
as that of Shannon. However, for us, the converse is an achievability: we prove the
converse using achievability techniques, and in my opinion, lends much more insight
into the nature of separation than Shannon’s proof. The proof also demonstrates a
duality between source and channel coding and our proof of separation is built on ideas
from that duality. Why separation fundamentally holds is, in my opinion, hidden in
this duality.

� 1.8 Organization of this thesis

In Chapter 2, we prove the optimality of digital communication for communication with
a fidelity criterion in the sense of reason 1c (in other words, a universal source-channel
separation theorem for rate-distortion) assuming that random-coding is permitted.

In Chapter 3, we prove the optimality of digital communication for communication with
fidelity criteria in the multi-user setting assuming that the various sources which the
users want to communicate to each other are independent of each other (the setting is
unicast) and that, random coding is permitted at the various encoders and decoders.

In Chapter 4, we discuss the partial applicability of the results of Chapter 3 to the
traditional wireless telephony problem.

In Chapter 5, we provide an operational perspective on the source-channel separation
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theorem for rate-distortion. We also provide an alternate proof of the rate-distortion
theorem for certain sources which we believe is more insightful than Shannon’s original
proof.

in Chapter 6, we recapitulate and discuss potential research directions.

� 1.9 In the next chapter ...

In the next chapter, we prove the optimality of digital communication for universal
communication with a fidelity criterion in the sense of reason 1c in the point-to-point
setting assuming random-coding is permitted.
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Chapter 2

Optimality of digital communication
for communication with a fidelity
criterion: universal, point-to-point
setting

The fundamental problem of communication is that of reproducing at one point exactly
or approximately a message selected at another point.

-Claude Shannon

Our difficulty is not the proofs, but in learning what to prove.
-Emil Artin

� 2.1 In this chapter ...

� 2.1.1 Introduction

In this chapter, we prove that digital communication is optimal for rate-distortion
communication in the sense of reason 1c stated in Section 1.4.1 in Chapter 1. That is,
we prove a source-channel separation theorem in the rate-distortion context. A source-
channel separation theorem for rate-distortion in the point-to-point setting was hinted
at by Shannon in [Sha48] and proved rigorously in [Sha59]. Shannon [Sha59] assumes
that the action of the channel as a transition probability is known. We call these,
fully known channels. The main contribution of our source-channel separation theorem
for rate-distortion is that we assume that the channel is only partially known. This is
abstracted by saying that the channel probability may belong to a set. In mathematical
terms same encoding-decoding schemes should work for all channels in the set.

This is important because real life media like the internet and wireless are only partially
known. One way of modeling these situations is to say that the medium action is only

25
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partially known as a transition probability. Internet and wireless are multiuser networks.
In this chapter, we only prove the optimality of digital communication in the point-to-
point setting. Another important contribution of this thesis is to prove the optimality of
digital communication in certain multiuser settings where the medium is only partially
known.. This is the subject of the Chapter 3.

Our formulations will be information-theoretic, see Section 2.2. In the information
theory literature, encoding-decoding schemes which work for a partially known channel
are called universal. Note that the universality is over the channel, and not the source.
We will assume that the source statistics are known. The reason why we assume the
knowledge of source statistics is commented on, in Section 2.19.

In our work, we use the probability of excess distortion criterion instead of the expected
distortion criterion for the definition of “communication to within a distortion D”. The
probability of excess distortion criterion is (2.29) and the expected distortion criterion
is (2.28). This use of the probability of excess distortion criterion instead of the excess
distortion criterion is crucial to our work. This is commented on in Section 2.12.

Also, throughout, we will assume that random-coding is permitted. That is, the encoder
and the decoder are allowed to generate random codes. That is, the encoder can belong
to a family of encoders and the decoder has access to the particular realization of
the encoder. Errors get averaged out over the random code. Over a fully known
channel, if there exists a random code which achieves a particular performance, usually,
there also exists a deterministic encoder-decoder which achieves the same performance.
However, over partially known channels, random codes can enhance the performance
of the system. Mathematically, this happens because since we model a partially known
channel as coming from a set of fully known channels, some of the deterministic codes
that make up the random encoder-decoder may work well for some channels, and others
will work well for other channels, and they can be constructed in such a way that taking
an average over all these deterministic encoder-decoder work well for all the channels
and achieve a performance which a single deterministic encoder-decoder cannot achieve.
This point is discussed precisely in Section 2.17. We emphasize again, that we insist
in good performance over “all channels” in the set which make up the partially known
channel, rather than good performance averaged over the channels.

The channel model as a transition probability will be very general in the sense that the
present channel output can depend, in an arbitrary manner, on all the past channel
inputs, all the past channel outputs, and possibly, an initial channel state.

We will hint at the essential connection between source and channel coding that allows
separation to be true. This essential connection or duality will not use the definition of
channel capacity as a maximum mutual information or the rate-distortion function as a
minimum mutual information. Only the meanings of channel capacity as the maximum
rate of reliable communication and the rate-distortion function as the minimum rate
needed to compress a source to within a certain distortion level will be used. This
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discussion will be high level. This is the subject of Section 2.14.

Rigorous results will be proved when the source is i.i.d., and the time evolves discretely
for the source and channels and additive distortion measures. This is done in Section
2.15.

High level remarks will be made when the source and channel evolve continuously
in time, the source is stationary ergodic and the distortion measure is permutation
invariant. Of course, separation will not hold for arbitrary stationary ergodic sources
and arbitrary channels. The point of this discussion will be to bring out the idea of why
results are expected to generalize to this more general setting. Permutation invariant
distortion measures are discussed in Sections 2.14 and 2.16. Generalization to stationary
ergodic sources evolving in continuous time is discussed in Section 2.18.

� 2.1.2 A high-level statement of universal source-channel separation for
rate-distortion in the point-to-point setting

The following is a high-level statement of the universal source-channel separation the-
orem for rate-distortion:

High level statement 2.1 (Universal source-channel separation for rate-distortion
or the optimality of digital communication for universal communication with a fidelity
criterion). Assuming random-coding is permitted, in order to communicate a random
source universally over a partially known channel to within a particular distortion
level, it is sufficient to consider source-channel separation based architectures, that is,
architectures which first code (compress) the random-source to within the particular
distortion level, followed by universal reliable communication over the partially known
channel. There is sufficiency in the sense if there exists some architecture to commu-
nicate the random source to within the required distortion level, universally over the
partially known channel, and which consumes certain amount of system resources (for
example, energy and bandwidth), then there exists a separation based architecture to uni-
versally communicate the random source to within the same distortion universally over
the partially known channel, and which consumes the same or lesser system resources
as the original architecture.

We emphasize, again, that universal means that the same encoding-decoding scheme
should work irrespective of the particular action of the partially known channel, which,
as we have said above, belongs to a set of transition probabilities. Also, we emphasize
again, that universality is over the channel, not the source.

� 2.1.3 Chapter outline

The following is the outline of this chapter:
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The first part deals with the set-up, definitions, comments on the definitions and a
small discussion on important past literature:

Section 2.2 discusses the information theoretic set up and the assumptions that we
make. Some assumptions like “delays do not matter” (in other words, arbitrarily large
delays are allowed) are crucial to our results whereas other assumptions like the channel
input and output sets are finite and time evolves discretely are not crucial and are made
only to simplify mathematical technicalities.

Section 2.3 discusses a very important notation that we use: the superscript notation.
It is important enough to merit a separate section.

Section 2.4 discusses sources and section 2.5 discusses channels. We will assume that the
channel is only partially known, and the channel model is a very general channel model.
These sections also discuss in brief, the validity of our source and channel models.

Sections 2.6 and 2.7 discuss analog and digital communication systems respectively.
They discuss analog encoders and decoders, digital encoders (source encoder and chan-
nel encoder) and digital decoders (channel decoder and source decoder), the make up of
point-to-point analog and digital communication systems and resource consumption in
point-to-point communication systems. The sections also discuss the problem of point-
to-point communication problem, and the particular problem of communication with a
fidelity criterion that we study in this thesis. In part, this section makes rigorous, the
discussion in Section 1.3.

This is followed by a discussion of distortion in Section 2.8. We discuss two kinds of
distortion measures: permutation invariant and additive. Additive distortion measure
is a special case of permutation invariant distortion measure. Sections 2.9 defines what
it means for a channel to be capable of universally communicating a random source
to within a certain distortion level. Channels which communicate a random source to
within a certain distortion level are defined with the probability of excess distortion
criterion. Section 2.10 defines source codes which code (compress) a source to within
a certain distortion level. Two criteria are used when defining source codes which
compress a source to within a certain distortion level: the expected distortion criterion
and the probability of excess distortion criterion.

Section 2.11 defines universal reliable communication over a partially known channel.

This is followed by a small discussion of why we use the probability of excess distortion
criterion instead of the expected distortion criterion in Section 2.12.

Section 2.13 discusses the important past literature on the problem of point-to-point
communication with fidelity criterion.

Then, we come to the results:

Section 2.14 discusses why universal source-channel separation in the point-to-point
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setting holds in the point-to-point case. We use what we call the uniform X source for
this discussion. The uniform X source consists of sequences with type precisely pX , and
this helps avoid a lot of εs and δs in the proofs. This discussion holds for permutation
invariant distortion measures. We assume a technical condition on the rate-distortion
function, and with this assumption, we have a rigorous proof of universal source-channel
separation theorem for communication with a fidelity criterion in order to communi-
cate the uniform X source when the distortion metric is permutation invariant. This
section is the most important section of the whole thesis and is the main idea why sep-
aration/optimality of digital communication holds for universal communication with a
fidelity criterion.

This is followed, in Section 2.15, by a rigorous proof of the universal source-channel sep-
aration theorem for rate-distortion when the source is i.i.d. and the distortion measure
is additive.

The results are followed by various discussions:

Section 2.16 discusses the high-level idea for proving universal source-channel separation
rigorously for permutation invariant distortion measures .

Throughout, we have made the assumption that random-coding is permitted. This
assumption is crucial Section 2.17 discusses why this assumption is crucial.

Throughout, we have assumed that the source evolves in discrete time. Section 2.18
discusses high-level ideas for generalization to continuous time sources.

Section 2.19 comments on the assumptions described in Section 2.2, which was discussed
above in brief.

Finally, we recapitulate this chapter in Section 2.20.

� 2.2 Our set up: Information theoretic, and various assumptions made

We will use an information-theoretic set up. In particular, we will assume that

• Delays do not matter : That is, it is okay if the source is reproduced with arbitrar-
ily large (but finite) delay. This assumption makes sense in certain cases, but not
in others. For example, it makes more sense when sending a text message com-
pared to real-time voice communication over a cellphone. In any case, it is a good
assumption from the point of view of getting insight into the nature of communica-
tion architectures. This assumption is crucial. The cruciality of this assumption is
in the sense that if this assumption is not made, in fact, source-channel separation
based architectures are not optimal

• The source can be modeled as a random process, in particular, a stationary ergodic
random process: This is the usual assumption made in communications theory,
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that the source can be modeled as a random process. Also, it is the usual assump-
tion in communications theory, that the source is stationary, ergodic.

Without these assumptions, it is very difficult to prove any rigorous results. Com-
ments are made in Subsection 2.4.3, on this assumption

• The channel can be modeled as a (partially known) transition probability: In infor-
mation theory, channels are modeled as transition probabilities.

We will assume that the channel is only partially known, and thus, we will model
the channel as coming from a set of transition probabilities. We will assume
that this modeling makes sense. The motivation behind this modeling is that
real channels like wireless and internet are time-varying, and their action is not
entirely known: at any point of time, the action of the wireless channel is not
entirely known as a transition probability, and the exact internet architecture and
its behavior is not entirely known as a transition probability. If the channel were
adversarial, it can usually be modeled as a partially known channel. Comments are
made in Section 2.5.4, on modeling a channel as a known transition probability or
a partially known transition probability. The more usual language of saying that
the channel is modeled as a transition probability is that we will be solving the
universal/compound problem.

In most of the information theory literature, further assumptions on the behavior
of the channel, for example, memorylessness, Markoff nature or some assumptions
on the memory of the channel (for example, indecomposability in the sense of
Gallager [Gal68]) are needed. We will not require any such assumptions, and our
model will be a very general channel model a la Verdu-Han [VH94]

• The source can incur distortion, and the distortion can be modeled as a distortion
metric: We will allow the source to incur distortion, and we will work in the frame-
work of rate-distortion theory as developed by Shannon [Sha59]. Our treatment
will be different in the sense that we will use the probability of excess distortion
criterion instead of the average distortion criterion. We will assume that the dis-
tortion can be modeled as a distortion metric, and this is the usual assumption
made in communications theory

The above assumptions are the basis on which information theory is built. We would
require further assumptions, and they are stated below

The following crucial assumptions are made concerning the nature of the distortion
metric and the distortion criterion, and on random-coding:

• The distortion metric can be modeled as a permutation invariant distortion met-
ric, and the distortion criterion is the “probability of excess distortion” criterion:
A permutation invariant distortion function is the following: the distortion be-
tween the source input signal and its reproduction does not change under the
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same rearrangement of the source and its reproduction. We require the distortion
metric to be permutation invariant in the sense that our results are not true if
this assumption is not made. Also, we use, what we call the “probability of excess
distortion criterion (2.29), the same as the one used in the book of Csiszar and
Korner in [CK97], instead of the expected distortion criterion (2.28) which was
used by Shannon in [Sha59]. Again, our results are not directly true if we use the
expected distortion criterion.

• Random-coding is permitted: We assume that random-coding is permitted. This
assumption is crucial in the sense that if random-coding is not permitted, the
universal source-channel separation theorem for rate-distortion that we prove is not
true. In Shannon’s random-coding argument, random-coding is a proof technique:
assuming that a random code exists, a deterministic code exists. For us, random-
coding is not just a proof technique. It is necessary. This is because we assume
that the channel is only partially known unlike Shannon who assumed that the
channel is fully known. This is commented on further, after we have proved our
results, in Section 2.17.

We make the following assumption concerning the statistics of the source. We conjecture
that we do not require this assumption, but we are not sure.

• The source statistics are known: That is, the source distribution is known. As
stated in the previous line, we conjecture that we do not require this assumption.
This is commented on further in Section 2.19.

The remaining assumptions are made to prove results rigorously and to avoid mathe-
matical complications, and we are quite sure that modulo some technical assumptions,
they can be removed.

We will make the following assumptions on the cardinality of the source and source
reproduction alphabet:

• The source alphabet and source reproduction alphabet are finite: (in fact, to make
any kind of physical sense, it is enough to assume that source alphabet is finite: it
does not make sense to have the reproduction alphabet cardinality larger than the
source alphabet cardinality): this assumption is needed to prove rigorous results.
It not crucial to our work, and the results can be generalized to many sources with
infinite alphabet size.

We make also make the following assumption on the random process corresponding to
the source:

• The source that needs to be communicated over the channel is i.i.d.: this assump-
tion is made only to prove the results rigorously and for simplicity of presentation.
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We believe (in fact, we are sure), that the results will generalize to many stationary
ergodic sources.

We make the following assumption concerning the distortion measure:

• The distortion measure is additive: this assumption is made to prove rigorous
results. We will hint at how to generalize the results to permutation invariant
distortion functions. Permutation invariant distortion functions and additive dis-
tortion functions are defined in Section 2.8.

We will make the following assumptions on the time evolution of the source and the
channel:

• The channel evolves discretely in time: this assumption is made for simplicity
of presentation. Continuous time stochastic models for channels involve a lot of
technicalities. As will be clear, the results generalize without any change in proofs,
even when the channel evolves in time continuously.

• The source evolves discretely in time: this assumption is made for simplicity of
presentation. Continuous time models for sources involve a lot of technicalities.
We will point out ideas for generalizing to sources which evolve continuously in
time.

• The source and the channel evolve on the same time scale: We will assume that
the source and channel evolve on the same time scale. In particular, we will
assume that the source and the channel evolve at every integer time. In practice,
source can be evolving faster than the channel or vice-versa. For example, when
sending a text message on a cellphone, the source is in fact, evolving in time
discretely, whereas the wireless medium evolves in time continuously. We make
this assumption for simplicity of presentation. Our results can be generalized to
the case when the source and channel evolve on different time scales.

The assumptions which are crucial are:

• Delays do not matter

• The source can be modeled as a stationary ergodic random process and the channel
can be modeled as a transition probability

• Allowed distortion between the source and its reproduction can be modeled as a
permutation invariant distortion metric

• The source statistics are known,



Sec. 2.3. The superscript notation 33

and an assumption which we have made and is crucial to proving our results, but which
we believe can be removed is

• Source statistics are known

The rest of the assumptions are made in order to prove rigorous results and to avoid
mathematical complications. Of course, universal source-channel separation will not
hold for arbitrary stationary ergodic sources and arbitrary permutation invariant dis-
tortion metrics; however, we believe that it should hold for a wide variety of stationary
ergodic sources and permutation invariant distortion metrics. These assumptions are
commented on in Section 2.19 after we have have provided the the rigorous proof of the
universal source-channel separation for rate-distortion.

� 2.3 The superscript notation

Superscript n will denote a quantity with or related to sequence length (or block length)
n. For example, For example, xn will denote a sequence of length n. Y n denotes a
random variable on the set Yn. Note that Y n need not be i.i.d.: the superscript n
refers to the block length being n. kn and cn will denote n-length channel transition
probabilities. en will denote an encoder which encodes n length sequences and fn will
denote a decoder which decodes n length sequences.

We will denote sequences of these quantities for various block lengths with < >. For
example, sequences < xn >∞1 , < yn >∞1 , < kn >∞1 , < cn >∞1 . We will denote these
infinite sequences by their single letters: for example, x =< xn >∞1 , y =< yn >∞1 ,
k =< kn >∞1 , c =< cn >∞1 .

In general, the superscript n just denotes block length n and is not supposed to indicate
a cartesian product or nesting of sorts. For example, Y n need not be i.i.d., and in
general, there might be no relation whatsoever between Y n and Y n+1: it need not even
be the case that the first n components of Y n+1 are the same as Y n. In other words,
there might be no nesting.

In certain cases, there will be nesting. For example, when we discuss physical channels,
kn, the transition probability corresponding to the channel for n length sequences will
be the first n components of kn+1. However, this will not be the case when we discuss
abstract channels: cn might be unrelated to cn+1. Similarly, for encoders, en, the
encoder used to encode n-length sequences might be completely unrelated to en+1, the
encoder used to encoder n+ 1 length sequences.

In certain cases, superscript n will indeed denote a cartesian product of sorts. For
example, Xn will be reserved for an i.i.d. X sequence of length n. For a set A, An
will many denote the cartesian product of A with itself, n times. There are other cases
when this will not be true: we will discuss sets Un consisting of sequences of a particular
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type: in that case, there need not be any cartesian product relation between Un for
various n.

The ith component of xn will be denoted by xn(i). In particular, xn(n) will denote the
value of the sequence xn at time n. Usual literature uses the notation xn for xn(n). The
reason why we do not want to use this notation is because this notation makes sense
only when xn is the first n components of xn+1. In our set-up, nesting will happen
in certain situations and not in others. For example, output sequences yn will not
be nested, in which case, yn+1 6= (yn, yn+1(n + 1)), and the notation of yi for the ith

component will not make sense because it would be unclear, we are talking about the
ith component of yn for which block length n. For that reason, we use the notation
yn(i). The same discussion holds for abstract channels, encoders and decoders which
are not nested in general. There are certain cases when quantities will be nested. For
example, when we consider the model of physical channel k =< kn >∞1 , the kn will be
nested, that is, kn+1 = (kn, kn+1(n+ 1)). In this case, we will also denote kn(i) (which
is the same irrespective of the block length n, that is, kn(i) = kn

′
(i)∀n, n′) by ki: the

notations ki and kni will be used interchangeably in such situations.

We would have occasion to require the part of a sequence corresponding to block length
n. an(p..q) will denote (an(p), an(p+ 1), . . . , an(q)).

There will be one case when we will not use the superscript notation. That will be
when we are dealing with real numbers related to certain block lengths. Then, we will
use sub-scripts. For example, ωn will denote a real number related to block length n
and correspondingly, the sequence < ωn >

∞
1 . We will not use the superscript notation

in this case to prevent the possibility of confusion of ωn with the nth power of ω.

� 2.4 Source and source reproduction

In this section, we describe our abstraction of a source and source reproduction. The
problem of point-to-point communication is to communicate a source from a sender to
a receiver over a possibly noisy channel with some guarantee.

Sources will be modeled as random processes.

First, we start with some notation.

� 2.4.1 Some notation

Notation 2.1 (Source space). The source alphabet is X . We assume that X is a finite
set. X n denotes the cartesian product of X with itself n times. An element of X is x.
An element of X n is denoted by xn.

Notation 2.2 (Source Reproduction space). The source reproduction alphabet is Y. We
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assume that Y is a finite set. Yn denotes the cartesian product of Y with itself n times.
An element of Y is y. An element of Yn is denoted by yn.

Note 2.1. The source reproduction space is not the same as the source space for the
purpose of abstraction, and also, for the purpose that the source reproduction need not
always be a perfect replica of the source. The latter is the case, for example, with voice
communication where the received voice need not be the same as the transmitted voice
for the recipient to make out, what the speaker said.

� 2.4.2 i.i.d. X source

We will assume that sources evolve discretely in time.

We will model sources as random processes. For simplicity, we will use the i.i.d. X
source.

Notation 2.3 (i.i.d. X source). X is a random variable on X . pX is the corresponding
probability distribution. Xn denotes the i.i.d. X source of block length n. Xn denotes
i.i.d. X sequence of length n. < Xn >∞1 is the i.i.d. X source.

� 2.4.3 Discussion: are “real” sources really stationary ergodic

We stated in the previous section that our results stated in the further sections and
chapters can be generalized to stationary ergodic sources. The question arises: can
practical sources be modeled as stationary ergodic sources.

The answer is, no.

For example, the sources related to language, for example, written text in some lan-
guage, or spoken language, are not stationary ergodic. The use of stationary ergodic
sources is made only to understand the problem of communication and get some hints
into the nature of things, and hopefully, design systems.

Exact models of real world are difficult to make, and even if made, it is difficult to come
up with any theory about them.

See, for example, [Galb], for a discussion.

� 2.5 Physical channels

In this section, we describe the physical channel model that we use.

The kind of model we are interested in is the following: Consider the example of wireless
channel. The exact behavior of the wireless medium is unknown, even though we might
have some knowledge. One criticism to this argument is the following: the wireless
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channel changes behavior over time scales which are large compared to the block lengths
used in wireless communications and thus, over each block length, the wireless channel
is essentially fixed. This is true, but what we are saying is that this fixed channel over
a particular block length is not known, and this is what we want to model.

We will abstract a channel as a transition probability. This will be called a known
channel. As we would like to model channels whose action is not entirely known. These
channels are the partially known channels and will be modeled as coming from a set of
transition probabilities. Before we state these definitions, we state some notation.

Time will be assumed to evolve discretely.

� 2.5.1 Some notation

Notation 2.4 (Channel input space). The channel input space is the set is I. We assume
that I is a finite set. In denotes the cartesian product of I with itself n times. An
element of I is ι. An element of In is denoted by ιn. We do not denote an element of
In by in because i is used for indexing.

Notation 2.5 (Channel output space). The channel output space is the set is O. We
assume that O is a finite set. On denotes the cartesian product of O with itself n times.
An element of O is o. An element of On is denoted by on.

� 2.5.2 A fully known physical channel, k

A fully known physical channel is one whose action as a transition probability is known.
This is mathematically abstracted as follows:

Definition 2.1 (A fully known physical channel). We want to use a very general channel
model: the output of the channel at time i can depend on the inputs of the channel up
to and including time i − 1 and the outputs of the channel up to and including time
i−1. Let the block length be n. The channel transition probability at time i is denoted
by ki:

ki(on(i) |ιn(1..i− 1), on(1..i− 1)), if i ≤ n
ki(on(i) |ιn, on(1..i− 1)), if i > n (2.1)

is the probability that the channel output at time i is on(i) given that the channel
inputs and outputs up to and including time i − 1 are ιn(1..i − 1) (or ιn if i > n) and
on−1(1..i− 1) respectively.

Note that ki is independent of the block-length n. When the block-length is n, the
channel evolves until some time tn ≥ n. The channel is kn = (k1, k2, . . . , ktn). For
simplicity, we assume that tn = n. Thus, when the block-length is n, the channel
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kn = (k1, k2, . . . , kn). Assumption that tn = n can be made without loss of generality:
it is related to the issue of time scales, discussed in Note 2.6.4.

In the superscript notation as defined earlier, kn is also denoted as kn(n). Note that
kn+1 = (kn, kn+1(n+1)), that is, this model of a physical channel is nested, as it should
be. It is for this reason, as stated in Section 2.3 that we can use the notation kn. The
full channel evolution in time, as stated in Section 2.3, is denoted by k =< kn >∞1 .

Note 2.2 (Is there no dependence on the initial channel state?). In general, there is a
dependence of ki on the initial channel state. However, we do not show this dependence.
This is because, as we shall see, the model of the channel that we will use is a partially
known channel, in that, the channel can belong to a family. For that reason, we will
treat the same channel with different initial states as different channels and assume that
all these channels belong to the family which make up the partially known channel. A
partially known physical channel is the subject of the next subsection.

Note, also, that even though the model of a physical channel is nested, the channel
inputs, and hence also, the channel outputs, may not be nested.

Note 2.3 (A very general channel model). This is a very general model of a “physical”
channel as a transition probability evolving in discrete time. It is in fact, the most
general possible model of a “physical channel” evolving in discrete time other than the
fact that we have not made the dependence on the initial channel state for the reason
described in Note 2.2. In particular, we do not impose any memorylessness or Markoff
assumptions on the channel.

� 2.5.3 A partially known physical channel

Note that since the initial state s may not be entirely known, in general, and also,
since the transition probability kn might not be entirely known, we want to model a
channel as belonging to a set of transition probabilities. This motivates the definition
of a partially known physical channel:

Definition 2.2 (Partially known physical channel). A physical channel is said to be
partially known if it belongs to a set of transition probabilities A.

Notation 2.6 (Notation for a partially known channel). A partially known channel k
which comes from a set of transition probabilities A is denoted by k ∈ A, and it is will
be referred to as, “partially known channel k ∈ A.”

Note 2.4 (Partially known channels and compound channels). In the information theory
literature, partially known channels are referred to as compound channels. See for
example [CK97] for a discussion of memoryless compound channels. Our model is
different from [CK97] in the sense that our channels are not memoryless.
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� 2.5.4 Discussion: Can “real” channels be modeled as a transition proba-
bility or a family of transition probabilities?

We have modeled channels which are partially known as coming from a set of transition
probabilities.

Question arises: is modeling “real” channels or media as coming from a sets of transition
probabilities, a good model? For example, can wireless medium or the internet be
modeled as a coming from a set of transition probabilities.

The answer is that we do not know.

Some people like to model channels adversarially. Adversarial models can usually be
modeled as a set of transition probabilities. Again, it is unclear if this is the right thing
to do.

The important thing, from our perspective will be, as we shall see, is that the channel
model will be quite irrelevant: we want to prove the optimality of source-channel sep-
aration. From the nature of the proof, it will be clear that we will convert any given
architecture into a digital architecture in order to prove the optimality of a digital
scheme, and thus, the channel model will be quite irrelevant.

The optimality of digital communication is probably much more fundamental than the
underlying channel model. This will be commented on further in Subsection 2.14.10,
after a proof of universal source-channel separation for rate-distortion for the uniform
X source.

Of course, it would fail to hold for very pathological channel models. And of course, it
can still happen that real channels belong to the family where digital communication
is not optimal. We leave these questions unanswered.

Multi-user media will be modeled and results of this chapter, generalized to the mul-
tiuser setting, in Chapter 3

� 2.5.5 The problem of communication over a partially known channel

The problem of communication over a fully known channel is to construct an encoder
and a decoder in order to communicate the source over the channel with a particular
guarantee.

The problem of communication over a partially known channel k ∈ A is to construct an
encoder and a decoder such that the source is communicated over the channel withsome
guarantee irrespective of the particular k ∈ A. The encoder and the decoder should be
independent of the particular channel.

The guarantee that we will use is communication to within a distortion level.
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The question we want to answer is: given a partially known channel k ∈ A, are source-
channel separation based architectures optimal to communicate i.i.d. X source over this
partially known channel to within a distortion level D. In other words, if there exists
some general architecture to communicate i.i.d. X source over the partially known
channel to within a distortion D, does there exist a digital scheme which consumes the
same or lesser system resources and accomplishes the same?

We discussed analog and digital point-to-point communication architectures in Section
1.3. In Sections 2.6 and 2.7, we make these rigorous.

� 2.6 An analog point-to-point communication system

In this section, we describe rigorously, the general point-to-point communication system
described on a high-level in Section 1.3. A general point-to-point communication system
consists of an encoder, a channel and a decoder. The encoder encodes the source and the
encoder input is communicated over the channel. The decoder reconstructs the source
from the channel output. Hopefully, end-to-end, the source has been communicated
to within the required guarantee. The guarantee that we will use is communication to
within a distortion level.

In this section, we define the action of the encoder, channel and decoder rigorously.

The precise definition of communication to within a distortion level are left for later
sections.

As stated before, throughout, we will assume that time evolves discretely, both for the
source and the channel, and that, the source, source reconstruction and channel input
and output alphabet are all finite.

� 2.6.1 Discussion: Is this not already digital?

We have assumed that the source space, the channel input space, the channel output
space and the source reproduction space are all finite. Thus, from the definition of
Chapter 1, this architecture is already digital. The question comes, why are we calling
this an analog communication system. The answer is that we have assumed the spaces
to be finite only for the sake of avoiding mathematical technicalities. All definitions
made so far and that will be made for the rest of this section can also be made with
infinite sets. Our results can be generalized to the setting where the input and output
spaces are infinite. The fact that we use a digital interface consisting of a finite alphabet
(two) will remain unchanged even when the rest of the alphabets are infinite.
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� 2.6.2 Encoder and decoder

The encoder takes input from the source. Thus, X is also the encoder input space. The
encoder produces an output into the channel. Thus, I is also the encoder output space.
The output of the encoder is transmitted over the channel and the channel output is an
input to the decoder. Thus, O is also the decoder input space. The decoder reconstructs
the source. Thus, Y is also the decoder output space. Definitions 2.5 and 2.6 state these
definitions precisely.

Definition 2.3 (Random codes and random coding). Random codes are codes where
the encoder can belong to a family of deterministic codes and the decoder has access to
the particular realization of the deterministic encoder that happened. The performance
of the code is judged by averaging over the family of deterministic codes under a certain
probability distribution of the particular deterministic code. Random codes can be
generated by using common randomness which is defined next.

Note 2.5. i.i.d. random codebook generation, as done by Shannon in his random-coding
argument, is a special case of above random codes.

Definition 2.4 (Common randomness). The encoder and decoder have access to com-
mon randomness. This means that they have access to a continuous valued random
variable independent of all other random variables in the system. Common randomness
is used to generate random codes. The common randomness input is denoted by r.

Definition 2.5 (Encoder). When the block length is n, the encoder acts as en:

en(in | xn, r) (2.2)

is the probability that the encoder output is in given the encoder input is xn and the
common randomness input is r.

Note that the encoder is not necessarily nested. Also, note that in the encoder model,
we assume that the input xn is available at the beginning of time. This assumption can
be made because we allow arbitrary delays and the input can be thought of as buffered.

Definition 2.6 (Decoder). When the block length is n, the decoder acts as fn:

fn(yn | on, r) (2.3)

is the probability that the decoder output is yn given the decoder input is on and the
common randomness input is r.

Note 2.6 (How can common randomness be used to generate random codes). We defined
random codes as codes where the encoder belongs to a family of deterministic encoders
and the decoder has access to the particular realization of the deterministic encoder
that happened. Note that such codes can be generated using common randomness.
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For each r, assume that the encoder en(· | xn, r) is deterministic in the sense that
en(in |xn, r) is 1 for some particular in and zero otherwise. This happens for all xn

and in might depend on xn. Similarly, for each r assume that the decoder fn(· | on, r)
is deterministic in the sense that fn(yn | on, r) is 1 for some particular yn and zero
otherwise. This happens for all on and yn might depend on on. Such an encoder-
decoder pair en, fn is a deterministic encoder-decoder pair. r can vary, and is available
both at the encoder and the decoder. Thus, we have generated codes when the encoder
can belong to a family of deterministic encoders and the deterministic decoder can
depend on the particular choice of the deterministic encoder. Shannon used random-
coding arguments by generating codes i.i.d. from a particular distribution. As we stated
before, random codes of this variety are a special case of random-codes as defined by us.
There is a big difference however: for Shannon, random-coding was a proof technique,
whereas for us, random-coding is not just a proof technique.
Note 2.7 (A note on real-time evolution and the corresponding mathematical abstrac-
tion). Note that the encoder and decoder are not necessarily nested. Also, note that
in the encoder model, we assume that the input xn is available at the beginning of
time. This assumption can be made because we allow arbitrary delays and the input
can be thought of as buffered. Also, note that in the decoder model, we assume that
the channel output on is available at the beginning of time. This assumption can be
made because we allow arbitrary delays and the decoder output can be buffered before
making an estimate of yn.

The real time-evolution will probably happen as follows:

• Time 1 to n: xn arrives

• Time n+ 1 to 2n: The encoder produces in

• Time n+ 1 to 2n: The channel produces output on

• Time 2n+ 1 to 3n: The decoder produces the estimate yn

The mathematical model that we have abstracts this real-time evolution.

� 2.6.3 The composition of the encoder, channel and decoder: the point-
to-point communication system

Definition 2.7 (Composition of encoder, channel and decoder). The composition of
the encoder, channel and decoder is the point-to-point communication system. When
the block length is n, this composition is a transition probability en ◦ k ◦ fn, which we
denote by cn.

cn(yn | xn) (2.4)

is the probability that the composite channel output is yn given that the input is xn.



42
CHAPTER 2. OPTIMALITY OF DIGITAL COMMUNICATION FOR COMMUNICATION WITH A FIDELITY

CRITERION: UNIVERSAL, POINT-TO-POINT SETTING

Notation 2.7. Since we are interested in block lengths as they become larger and larger,
the composition of the encoder, channel and decoder will be denoted by < en ◦ kn ◦
fn >∞1 .

Since we model channels as belonging to a set of transition probabilities A, we would
like to think of the point-to-point communication system as

{< en ◦ kn ◦ fn >∞1 | < kn >∞1 ∈ A} (2.5)

� 2.6.4 Time scales

Note that the encoder has been defined as a transition probability

en(in | xn, r) (2.6)

In effect, this means that the source and the channel are evolving on the same time
scale. This is because, until time n, the number of source inputs is n and the number
of encoder outputs which is the same as the channel inputs is also n: thus, the rate of
source input is the same as the rate of channel input. Another way of saying this is
that the source and the channel are evolving on the same time scale.

This is an assumption for modeling convenience. We can state all definitions with source
and channel evolving on different time scales. It only leads to notational difficulties.
For this reason, throughout, we will assume that the source and the channel evolve on
the same time scale. Our results can be generalized to the case when the time-scale of
source and channel evolution are different.

� 2.6.5 The view of a point-to-point communication system as an abstract
channel, c

Definition 2.8 (Composite or abstract channel model, < cn >∞1 ). The point-to-point
communication system can thus be viewed as a composite transition probability, <
cn >∞1 . When the block length is n, the point-to-point system acts as cn:

cn(yn | xn) (2.7)

is the probability that the composite system output up to time n is yn given that the
system inputs up to time n are xn. c =< cn >∞1 is the composite or the abstract
channel.

Note 2.8 (Why do we call this channel model, abstract?). Note that the abstract channel
model is noncausal and nonnested. This is the reason for calling this model abstract.
Of course, we also call it the composite channel model because it is the composition of
the encoder, the channel, and the decoder.
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This is the abstract channel model we will use: a channel should be thought of as a
sequence of transition probabilities < cn >∞1 where, when the block length is n, the
channel acts as cn, and cn(yn|xn, s) is the probability that the channel output is yn given
that the channel input is xn and the initial state is s. We will denote the composite
channel by c =< cn >∞1 =< en ◦ kn ◦ fn >∞1 .

Similarly, when the channel belongs to a family of transition probabilities, we will think
of the abstract communication system as

CA , {< en ◦ kn ◦ fn >∞1 | < kn >∞1 ∈ A} (2.8)

Note 2.9. Note that the input space of the abstract channel c is X instead of I and the
output space is Y instead of O

� 2.6.6 Communication of a random source over a point-to-point commu-
nication system

Let the block length be n. The steps of communication are the following

1. The input to the encoder en is a realization xn of the i.i.d. X source Xn (for this
description, the source need not be i.i.d., it might be some general random variable
Xn). The encoder produces the source encoding which is a realization ιn of the
random variable In. in is the input to the channel

2. in is communicated over the channel kn and the channel output is a realization on

of the random variable On

3. The decoder dn reconstructs the source from on. The decoder output is a realiza-
tion yn of the random variable Y n.

For block length n, this results in the joint random variable XnY n on the source-source
reproduction space X n × Yn with the corresponding probability distribution pXnY n .
See Figure 2.1.

� 2.6.7 Resource consumption in the point-to-point communication system

In this subsection, we discuss the resource consumption in this point-to-point communi-
cation system. We want to think of system resources like energy and bandwidth. Note
that our set-up is abstract, in that the sets X ,Y, I, and O are finite sets. Thus, defin-
ing energy consumption or bandwidth consumption physically is not possible. What
we will instead state, is a sufficient condition for two system resources to consume the
same resources, and see, why this abstraction makes sense.
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Figure 2.1. The action of a point-to-point communication system

A sufficient condition for two systems to consume the same system resources

We want to think of point-to-point communication systems in terms of the previous
subsection (Subsection 2.6.6). Let s1 and s2 denote two communication systems with
the same spaces X , I,O and Y, which are used to communicate a random source over
a channel k. The encoder-decoder for the system s1 are < en1 , f

n
1 >∞1 and the encoder

and decoder for system s2 are < en2 , f
n
2 >∞1 . In abstract terms, the two systems are

s1 =< en1 ◦ k ◦ fn1 >∞1 (2.9)
s2 =< en2 ◦ k ◦ fn2 >∞1 (2.10)

The source < Xn >∞1 which needs to be communicated over the two systems is the
same for both systems. The random-variables defined in the previous subsection for
the system s1 are Xn, In1 , On1 and Y n

1 . The random-variables defined in the previous
subsection for the system s2 are Xn, In2 , On2 and Y n

2 .

A sufficient condition for the systems s1 and s2 to consume the system resources is:
∀n, In1 has the same distribution as In2 as random variables (note that In1 and In2 are
n-length random variables).

Note that the above is a sufficient condition for two systems to consume the same system
resources; it is not necessary. Even if the distribution of In1 and In2 is not the same, it
does not directly imply that the two systems consume different system resources.

In the next subsection, we argue, why this abstract sufficiency of the equality of con-
sumption of system resources makes sense.

Why does this sufficient condition for two systems to consume the same system resources

make sense?

The two resources which we are concerned with are energy and bandwidth. In general,
these definitions make sense only for systems evolving in continuous time.
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Consider a system evolving in continuous time. The input to the system at time t is
X(t), the output of the encoder at time t is I(t) is the input to the channel, the output
of the channel at time t is O(t) is the input to the decoder and the output of the decoder
at time t is Y (t) which is the source reproduction.

Energy is consumed in the point-to-point communication system in two ways:

1. Energy consumed in the processing and computations in the encoder and the
decoder.

2. Energy transmitted into the channel, that is, the energy in the signal.

In many practical scenarios, the energy consumed in the processing in the encoder and
the decoder is much less than the energy consumed in the signal transmitted into the
channel. For example, in the wireless example, most of the energy is consumed in the
signal transmitted by the cellphone into the air, and not in voice processing.

The instantaneous power input into the system at time t is ι2(t) where ι(t) is a real-
ization of I(t). The expected instantaneous power consumption is E[I2(t)]. Clearly,
the power consumption depends only on the distribution of the random process I. En-
ergy consumption is an average over time, of the power consumption, and thus, again,
depends only on the distribution of I.

Thus, assuming that the energy consumed in the processing and computations in the
encoder and the decoder can be neglected, the energy consumed in the system depends
only on the distribution of the channel input process I.

Now, let us consider bandwidth consumption. Let one particular realization to the
channel over time t be ι(t). The bandwidth requirement is the support of the fourier
transform of ι(t). Again, if two systems with inputs I1(t) and I2 to the channel have
the same distribution for the processes I1 and I2, the bandwidth requirements on the
channel will be the same.

Thus, energy and bandwidth consumption are a function, only of the channel input
distribution. For this reason, we have made the abstract condition under which two
systems consume the same energy. Of course, this is a sufficient condition, and not a
necessary condition.

As we have stated before, we believe our results can be generalized to systems evolving
in continuous time; we are restricting to discrete spaces to avoid mathematical techni-
calities. When generalizing our results to continuous time system evolution, the only
fact that would be needed about the consumption of system resources is the above
sufficient condition for the equality of consumption of system resources, and for that
reason, we just restrict to this rather general condition. We will use this condition when
proving the optimality of digital communication for communication with a fidelity cri-
terion when we construct a digital system which consumes the same system resources
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as an analog system by showing that the channel input distribution for both the analog
and the digital system is the same.

Consumption of “lesser” system resources

Suppose a communication system needs to be built to meet certain communication
guarantees. Suppose this can be done with certain consumption of system resources.
Then, we will say, abstractly, that the same guarantee can be met by consumption of
the same or “lesser” system resources. This, again, is an abstract definition because we
have not defined the consumption of a system resource; we have only stated a sufficient
condition for the equality of consumption of the same system resources by two systems.
However, the reason for this abstract use of the word “lesser” is done because for
physical systems where resource consumption can in fact be defined, this would be the
right usage of “the same guarantee can be met by consumption of the same or lesser
system resources.”

� 2.6.8 The point-to-point communication problem

The systems problem of point-to-point communication is to construct encoder-decoder
pair < en, fn >∞1 which satisfy certain constraints on resource consumption and such
that the source is communicated over the partially known channel (the channel belongs
to a set A) with a certain guarantee.

The guarantee that we will use is communication to within a distortion level. The
precise definition of communication with distortion is defined in Section 2.9.

The question that we will ask is: can the encoder-decoder < en, fn >∞1 be constructed
digitally without loss of optimality. First, we define digital architectures rigorously in
the next section.

� 2.7 A point-to-point digital communication system

In a digital point-to-point communication system, the encoder is broken down into
source encoder and channel encoder, and the decoder is broken down into channel
decoder and the source decoder. This was described, on a high-level, in Section 1.3.

The source encoder - source decoder pair is called the source code.

The channel encoder - channel decoder pair is called the channel code.

The source encoder converts the source into a binary sequence, that is, a sequence of
0s and 1s. The binary sequence is communicated reliably (with a small probability of
error) over the channel with the help of the channel encoder and the channel decoder.
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The source decoder reconstructs the source from the output of the channel decoder.
Hopefully, end-to-end, the source has been communicated with the required guarantee.
The guarantee that we will use is communication to within a distortion level.

In this section, we define mathematically, the action of source encoder-source decoder
pair, and the channel encoder-channel decoder pair. The channel has already been
rigorously defined in the previous section.

The precise definitions of communication to within a distortion level and reliable com-
munication are left to later sections.

In this section, we will only talk about things abstractly, and thus, the models will be
noncausal. However, behind every noncausal model, there is a causal model.

� 2.7.1 A rate R binary sequence

When the block length is n, a rate R binary sequence would be a binary sequence of
length nR. Physically, this means a sequence of nR 0s and 1s.

The source encoder produces a binary sequence as output. If the source is random, the
binary sequence is also random. This is abstracted as follows:

Definition 2.9 (The binary sequence set or the message set). The set of rate R binary
sequences evolving for n units of time (block length is n) is the set

Mn
R = {1, 2, . . . , 2bnRc} (2.11)

Each message ∈Mn
R should be thought of as being associated with a particular binary

sequence. A generic element of Mn
R will be denoted by mn.

The binary sequence is communicated over the channel, hopefully, reliably, with the help
of the channel encoder and the channel decoder. The output of the channel decoder
is the reconstructed binary sequence. This gives the binary sequence or the message
reproduction set.

Definition 2.10 (The binary sequence reproduction or the message reproduction set).
The message reproduction set should be thought of as the message set along with an
error message, if the message could not be reconstructed

M̂n
R = {1, 2, . . . , 2bnRc} ∪ {e} (2.12)

e is the error message, and one should think of another possible binary sequence being
associated to e. A generic element of M̂n

R will be denoted by m̂n

In general, decoding will happen with a delay.
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� 2.7.2 Source code

The source code consists of a source encoder and a source decoder.

When the block length is n, a realization of the source input is xn ∈ X n. This is mapped
by the source encoder into mn, an element of the message setMn

R. mn is communicated,
hopefully reliably over the channel with the help of the channel encoder and the channel
decoder. The output of the channel decoder is m̂n. The source decoder reconstructs
the source from the output m̂n of the channel decoder and the source reconstruction is
yn.

The mechanism by which the source encoder and the source decoder act is abstracted
as follows:

Definition 2.11 (Rate R deterministic source code). Rate R deterministic source code
is a sequence s =< sn >∞1 =< ens , f

n
s >

∞
1 , where ens is a function with domain X n and

range Mn
R, and fns is a function with domain M̂n

R and range Yn.

We usually think of encoders and decoders as transition probabilities. In the above def-
inition, we have defined ens and fns as functions. This is because deterministic functions
can be thought of as transition probabilities.
Note 2.10 (Interpretation of a rate R deterministic source code). It would be helpful
to refer to Figure 2.2, except that there is no common randomness input. e =< ens >

∞
1

is the source encoder and f =< fns >
∞
1 is the source decoder in Figure 2.2. When the

block length is n, the source encoder is ens and the source decoder is fns . xn ∈ X n is
source coded by ens as mn = ens (xn). This message is communicated over the channel
with the help of the channel encoder and the channel decoder. The output of the channel
decoder is the message reconstruction m̂n of mn. In a “good” digital communication
system, we would like m̂n to be equal to mn with high probability. m̂n is source decoded
as yn = fns (m̂n). yn is the reconstruction of xn. In a “good” digital communication
system, yn would be with an acceptable distortion of xn. Note that the sets Mn

R and
M̂n

R are the same. However, we have used different notation just to emphasize that
M̂n

R is the message reconstruction set and Mn
R is the message set.

We would assume that there is common randomness at the transmitter and the receiver.
In other words, the codes can be random. This is made precise as follows.

Definition 2.12 (Rate R random source code). A rate R random source code is a
sequence s =< sn >∞1 =< ens , f

n
s >∞1 . There is a source of randomness which we

denote by r. which is available both at the encoder and the decoder. ens is a transition
probability

ens (mn|xn, r) (2.13)

is the probability given that the source input is xn and the common randomness is r.

fns (yn|m̂n, r) (2.14)
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is the probability that the source reconstruction is yn given that the message recon-
struction is mn and the common randomness input is r

Note 2.11. If there is no common randomness input (mathematically this can be thought
of as the same source encoder and source decoder being used irrespective of the common
randomness input), a random source code reduces to a deterministic source code.

Note 2.12 (Interpretation of a rate R random source code). It would be helpful to refer
to Figure 2.2. e =< ens >∞1 is the source encoder and f =< fns >∞1 is the source
decoder in Figure 2.2. When the block length is n, the source encoder is ens and the
source decoder is fns . There is a common randomness input at the encoder and the
decoder. Recall that the encoder consists of a source encoder and a channel encoder
and a decoder consists of a channel decoder and a source decoder. There is a common
randomness input at the encoder and the decoder. This means that both the encoder
and decoder have access to a common random variable. This random variable is used
to generate random codes. xn ∈ X n is source coded by ens as mn with probability
ens (mn|xn, c). This message mn is communicated over the channel with the help of
the channel encoder and the channel decoder. The output of the channel decoder is
the message reconstruction m̂n of mn. In a “good” digital communication system,
we would like m̂n to be equal to mn with high probability. m̂n is source decoded as
yn with probability fns (yn|m̂n, c). yn is the reconstruction of xn. In a “good” digital
communication system, yn would be within an acceptable distortion of xn.

Definition 2.13 (Transition probability corresponding to a source code). If there were
perfect reproduction through the channel, that is, mn is always reproduced as m̂n, the
final distribution of the source reproduction given the source is given by the transition
probability ens ◦fns . ens ◦fns (yn|xn) denotes the probability that the source reproduction
is yn given that the source input is xn. < ens ◦fns >∞1 is called the transition probability
corresponding to the source code s.

Discussion 2.1 (Why define the transition probability corresponding to a source
code?). The transition probability corresponding to a source code is defined by taking
the composition < ens ◦ fns >∞1 of the source-encoder < ens >

∞
1 and the source-decoder

< fns >∞1 . However, in a digital communication system, the source-encoder and the
source-decoder are not interconnected to each other, directly. The channel encoder,
the channel and the channel-decoder exist between the source-encoder and the source-
decoder. The question arises: does taking the composition of the source encoder and
the source-decoder make physical sense? The answer is that it does make physical
sense. This is because, in a digital communication system, the channel encoder, the
channel and the channel decoder act in a way so that the input to the channel encoder
is communicated reliably, that is, with a very small error, and received at the channel
decoder. Thus, the composition of the channel encoder, the channel, and the channel
decoder can be thought of as a point-to-point communication sub-system which does
almost perfect transmission. For this reason, the composition of the source encoder,
the channel encoder, the channel, the channel decoder and the source-decoder will be
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“close to” the composition of the source-encoder and the source-decoder, and in effect,
the source reproduction from of a source after passing through the whole communica-
tion system consisting of the source encoder, channel encoder, channel, channel decoder
and the source decoder will be the same, with high probability, to the source repro-
duction, as if the the channel encoder, the channel and the channel decoder did not
exist, and the source encoder were directly connected to the source decoder. Further
in particular, the distortion incurred, end-to-end (defined rigorously in Section 2.9),
by a point-to-point communication system consisting of the source-encoder, channel
encoder, channel, channel decoder and source decoder for a particular source will be
“close to” the distortion incurred by the system consisting of the composition of the
source encoder and the source decoder with the source input.

Discussion 2.2 (Construction of source codes via random-coding arguments, and di-
rectly defining the transition probability corresponding to the source code). In usual
random-coding arguments for source-coding in the information theory literature, and
also, the random-coding arguments for source-coding that we will use, source codes
are usually constructed by directly defining the transition probability < ens ◦ fns >∞1
corresponding to the source code < ens , f

n
s >∞1 , and not the source-encoder < ens >

∞
1

and the source-decoder < fns >
∞
1 , separately. If one is not defining the source encoder

< ens >
∞
1 and the source decoder < fns >∞1 , separately, it might not be clear, what

the rate of the source code is. In the random-coding arguments, usually, the encoding
is done in the following way: when the block length is n, generate 2bnRc codewords
using a particular distribution. This means that the set on which ens ◦ fns puts nonzero
probability for any possible source distribution has cardinality 2bnRc. It follows that
ens ◦fns factors through a set of cardinality 2bnRc, and thus, has rate R. We will use such
a random-coding construction by defining the transition probability ens ◦ fns directly for
constructing a source code in Sections 2.14 and 2.15.

� 2.7.3 Channel code

The channel code consists of the channel encoder and the channel decoder.

The source encoder produces a message mn ∈ Mn
R as output which is an input to

the channel encoder. The message mn is encoded by the channel encoder into ιn, an
element of the channel input space. The channel produces an output on. The message is
reconstructed by the channel decoder from the channel output on, and the reconstructed
message is m̂n which is hopefully equal to mn.

The mechanism by which the channel encoder and the channel decoder act is abstracted
as follows:

Definition 2.14 (Channel encoder). On an abstract level, the action of the channel
encoder is a transition probability.

enc (ιn|mn, r) (2.15)
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is the probability that the encoder output is ιn given that the channel input message
is mn and the common randomness is r.

The channel encoder should be thought of as the sequence < enc >
∞
1 .

Definition 2.15 (Channel decoder). On an abstract level, the action of the channel
decoder is a transition probability.

fnc (m̂n|on, r) (2.16)

is the probability that the output of the channel decoder is m̂n given that the input is
on and the common randomness is r.

The channel decoder should be thought of as the sequence < fnc >
∞
1 .

Note 2.13. Since the source-encoder and the channel encoder are at the same location
physically when building a communication system, and similarly, since the channel
decoder and the source decoder are at the same location physically when building a
communication system, the common randomness input r can be thought to be the
same for both the channel code and the source code.

� 2.7.4 Digital communication system

See Figure 2.2.

Definition 2.16 (Digital encoder). The digital encoder consists of the composition of
the source encoder and the channel encoder:

< en >∞1 =< ens ◦ enc >∞1 (2.17)

Definition 2.17 (Digital decoder). The digital decoder consists of the composition of
the channel decoder and the source decoder

< fn >∞1 =< fnc ◦ fns >∞1 (2.18)

Definition 2.18 (Digital point-to-point communication system). The digital communi-
cation system is the composition of the digital encoder, channel and the digital decoder:

< en ◦ kn ◦ fn >∞1 =< (ens ◦ enc ) ◦ kn ◦ (fnc ◦ enc ) >∞1 (2.19)

The channel model that we will use is that of a partially known channel k ∈ A. Thus,
we would like to think of the set of digital communication systems

{< en ◦ kn ◦ fn >∞1 =< (ens ◦ enc ) ◦ kn ◦ (fnc ◦ enc ) >∞1 : k =< kn >∞1 ∈ A} (2.20)
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� 2.7.5 Communication of a random source over a point-to-point digital
communication system

Let the block length be n. The steps of point-to-point digital communication are the
following:

1. The input to the source-encoder ens is a realization xn of the i.i.d. X source Xn.
The output of the source encoder is a realization mn of the random binary source
Mn
R. mn is input to the channel encoder.

2. The channel encoder encodes the random binary source realization mn into a
sequence ιn which is a realization of the random variable In, and is the input to
the channel

3. The channel acts on ιn and produces the output on which is a realization of the
random variable On

4. The channel decoder decodes on into the reconstruction of the random binary
source m̂n which is a realization of the random variable M̂n

R.

5. The source decoder reconstructs the source from m̂n. The source reconstruction
is yn which is a realization of Y n.

See Figure 2.2.

� 2.7.6 Resource consumption in a digital point-to-point communication
system

A digital point-to-point communication system is a special case of a general point-to-
point communication system: the speciality lies in that the encoder and decoder are
both digital.

For this reason, and the fact that the sufficient condition that we have stated for equality
of consumption of system resources depends only on the channel input, this discussion
is the same as for a general point-to-point communication system, see Subsection 2.6.7.

� 2.7.7 Since all the spaces are finite, is the point-to-point communication
system not already digital?

We discussed before that the assumption that all the spaces are finite is made only
for technical simplifications. Our results stated in the further sections and chapters
will generalize to the case when the source, channel input, channel output and source
reconstruction alphabets are infinite.
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There is another reason why we have to go through this whole discussion. This is the
following:

As described before, the way digital communication systems are constructed is the fol-
lowing: the source is first coded by the source encoder into a binary sequence. This
step usually compresses the source to within the desired guarantee of communication.
The binary sequence is communicated reliably over the channel. This reliably transmit-
ted binary sequence is reconstructed back to the source by the source decoder. Thus,
digital architectures, at least the ones used in practice, have the special feature that
the channel communicates the binary sequence reliably, and this needs to be described
irrespective of whether the alphabets are finite or infinite. This is another reason for
this whole description of digital communication systems.

We will take this as the definition of a digital communication system:

1. There is a digital interface (usually binary) between the source and the channel

2. The channel encoder and decoder perform in a way which accomplishes reliable
communication over the channel

� 2.7.8 The point-to-point communication problem

As stated before, the systems problem of point-to-point communication is to construct
encoder-decoder pair < en, fn >∞1 which satisfy certain constraints on system resources,
and such that the source is communicated over the partially known channel (the channel
k ∈ A with a certain guarantee.

The question is: can this be done with digital encoders and decoders which have the
same system resource consumption (or, digital has lesser system resource consumption).
Advantages of digital architectures have been discussed, to some extent, in Chapter 1.

We will prove the optimality of digital architectures for the guarantee of communication
to within a distortion level. The digital architecture that we will construct to communi-
cate a random source to within a particular distortion level will function as follows (this
is the usual way an architecture is constructed for communication with distortion):

1. A source encoder which will code (compress) the source to within the distortion
level D

2. A channel encoder and a channel decoder which will help communicate the coded
(compressed) source over the partially known channel, reliably

3. A channel decoder which will reconstruct the source

End-to-end, the source will be communicated to within the required distortion level.
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From the descriptions in Sections 2.6 and 2.7, it follows that we still need to define the
following rigorously:

• A general point-to-point communication system which communicates a random
source to within a distortion level over a partially known channel

• A source code which codes (compresses) a source to within a particular distortion
level

• Reliable communication over a partially known channel

This is the subject of the next few sections: Sections 2.8, 2.9, 2.10, and 2.11.

� 2.8 Distortion

We will allow the source reconstruction to be distorted compared to the source. In this
section, we state some definitions related to distortion.

Notation 2.8 (D). D > 0 denotes a distortion level.

Definition 2.19 (Single letter distortion metric, d). d : X × Y → [0,∞) is the single
letter distortion metric. Let x ∈ X , y ∈ Y. d(x, y) is the distortion incurred if x is
reconstructed as y.

Definition 2.20 (n letter distortion measure/metric, dn). dn : X n×Yn → [0,∞) is the
n-letter distortion metric. Let xn ∈ X n, yn ∈ Yn. d(xn, yn) is the distortion incurred if
xn is re-constructed as yn.

Definition 2.21 (Permutation invariant n letter distortion metric). Let πn be a per-
mutation (rearrangement) of (1, 2, . . . , n). That is, for 1 ≤ i ≤ n, πn(i) ∈ {1, 2, . . . , n}
and πn(1), πn(2),. . ., πn(n) are all different. For xn ∈ X n, yn ∈ Yn, denote

πn(xn) , (xn(πn(1)), xn(πn(2)), . . . , xn(πn(n))) (2.21)

πn(yn) , (yn(πn(1)), yn(πn(2)), . . . , yn(πn(n))) (2.22)

We will denote πn(xn) as πnxn, and similarly, for the action of πn on any sequence.

An n-letter distortion measure dn is said to be permutation invariant if

dn(πnxn, πnyn) = dn(xn, yn) (2.23)

Discussion 2.3 (Physical interpretation of permutation invariant distortion measure).
Intuitively, a permutation invariant distortion measure is one where the distortion re-
mains unchanged if both the input and the output are re-arranged. We would like to
believe that physical distortion measures satisfy this requirement to some extent. For
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example, consider a voice signal (at the transmitter) and a corresponding reconstruc-
tion (which might not, as stated before, be a precise replica of the original voice signal)
at the receiver. Suppose what the person spoke consisted of two sentences and the two
sentences are interchanged. The reconstructed voice signal is rearranged in the same
way at the receiver. We would like to believe that the receiver would be able to make
out what the person spoke to the same extent in both of the above cases. The definition
of a permutation invariant distortion measure is an abstraction of this. Note that this
is a simplification in the sense that sentences of language have meaning and meaning is
lost by permutation.

Definition 2.22 (Additive n letter distortion measure). n letter distortion metric dn

is said to be additive if

dn(xn, yn) =
n∑

i=1

d(xn(i), yn(i)) (2.24)

for some single letter distortion measure d

Note 2.14. Additive distortion measures are permutation invariant.

We would be interested in sequence of distortion measures for each block length n,
< dn >∞1 , and this is what we will call a distortion measure

Definition 2.23 (Permutation invariant distortion measure). A permutation invariant
distortion measure is a sequence < dn >∞1 where dn is a permutation invariant n letter
distortion measure

Definition 2.24 (Additive distortion measure). An additive distortion measure <
dn >∞1 is one for which each dn is additive with the same single letter distortion metric
for each n

� 2.9 Universal communication of a random source over a partially known
channel to within a certain distortion level

In this section, we define communication of a source over a partially known channel to
within a certain distortion level.

Let k ∈ A be a partially known channel with input space I and output space O as
described in Subsection 2.5.2.

First, we describe the point-to-point communication system which communicates i.i.d.
X source over a channel k ∈ A. Recall the action of a a point-to-point communication
system in described in Subsection 2.6.6.

The input to the encoder is the i.i.d. X source. Thus, when the block length is n,
the input is the i.i.d. X sequence of length n, Xn. The composition of the encoder,
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en fnk ∈ AXn Y n

Pr
(

1
ndn(Xn, Y n) > D

)
< ωn ∀k ∈ A

1

Figure 2.3. Universal communication to within a distortion D over a partially known channel k ∈ A

channel, and decoder, produce an output sequence Y n. This results in a joint random
variable XnY n on the input-output space X n × Yn and the corresponding probability
distribution pXnY n . Note that we are talking about a partially known channel and thus,
pXnY n will vary depending on the particular k ∈ A.

Definition 2.25 (A partially known channel which is capable of universally commu-
nicating i.i.d. X source to within a distortion level D). The partially known channel
k ∈ A is said to be capable of universally communicating i.i.d. X source to within a
distortion D if there exists a sequence ω =< ωn >

∞
1 such that ωn → 0 as n→∞, and

an encoder-decoder pair < en, fn >∞1 independent of the particular k ∈ A such that
under the joint distribution pXnY n as described above,

pXnY n

(
1
n
dn(Xn, Y n) > D

)
≤ ωn ∀ k ∈ A (2.25)

See Figure 2.3. In the figure, we have not shown the common randomness input r to
the encoder and the decoder. In the future, in this chapter, in the figures, we might
not show the common randomness input. It will be assumed to be there.

Note 2.15 (Universal?). The word universal in the above definition refers to the fact
that the same encoder-decoder work for all channels k ∈ A.

Note 2.16 (Why ω?). The reason why the sequence ω =< ωn >
∞
1 is important is that

it helps introduce uniformity in the rate at which error → 0 as n → ∞. If we made
Definition 2.25 with

pXnY n

(
1
n
dn(Xn, Y n) > D

)
→ 0 as n→∞ ∀ k ∈ A (2.26)

instead of (2.25), the rate of probability of distortion > D will tend to 0 for all k ∈ A,
but this rate will not be independent of the particular channel k ∈ A. In real scenarios,
given a partially known channel, we would want to construct an encoder and decoder
which will work and achieve a particular error criterion in the probability of distortion
> D, and thus, we require a uniformity in the definition over all k ∈ A.
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Universal multi-user communication with fidelity criteria 41

nD

sequence xn ∈ Xn with empirical distribution “close to pX”

sequence yn ∈ Yn

Figure 2.4. Pictorial action of a channel which is capable of communicating the i.i.d. X source to
within a distortion level D

Note 2.17 (Probability of excess distortion criterion).

pXnY n

(
1
n
dn(Xn, Y n) > D

)
≤ ωn ∀ k ∈ A (2.27)

is called the probability of excess distortion criterion (for obvious reasons).

Note 2.18 (Intuitive action of a channel which is capable of communicating i.i.d. X
source to within a certain distortion level). Intuitively, the composition of encoder,
channel and decoder in Definition 2.25 acts as follows: with high probability, a pX
typical sequence is distorted to within a ball of radius nD, and this probability → 1
as the block length n → ∞. See Figure 2.4. This figure superimposes the X n and
Yn spaces. Red squares denote sequences in the X n space with empirical distribution
“close to pX”. Sequences xn whose empirical distribution is “not close to pX” do not
affect the probability of excess distortion definition. For this reason, Figure 2.4 does not
show these sequences. yn ∈ Yn, however, can have any empirical distribution. Thus,
the figure shows all points in Yn and these are shown in gold circles.

When defining source codes which communicate sources to within particular distortion
levels, in addition to the probability of excess distortion criterion, we will also con-
sider the expected distortion criterion. Expected distortion criterion is the one more
commonly found in literature, for example, in [Sha59].
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� 2.10 Source codes which code a source to within a particular distor-
tion level, the rate-distortion source-coding problem, and the rate-
distortion function

In this section, we define what it means for a source code to code a source to within a
certain distortion level and the associated minimum rate at which this can be accom-
plished. This is followed by a discussion on the importance of the definition of a source
code which codes a source to within a certain distortion level.

� 2.10.1 Source-coding or source compression?

We will use the terms source-coding and source-compression synonymously. This is
because a source code is used to code a source to within a distortion level, and in effect,
this is compressing the source.

� 2.10.2 Source codes which code (compress) a source to within a particular
distortion level and the rate-distortion function

In this subsection, we define what it means for a source code to compress a source to
within a certain distortion level and the associated minimum rate at which this can be
accomplished.

Consider a source code s =< sn >∞1 .

Let the block length be n. The composition of ens and fns is a transition probability
ens ◦ fns (yn|xn). The action of ens ◦ fns on the n-length source Xn results in an output
random variable Y n on Yn, and thus, a joint random variable XnY n on X n ×Yn with
the corresponding probability distribution pXnY n .

We consider two definitions of distortion: expected distortion and probability of excess
distortion. These are defined below. The expected distortion definition is the one used
usually in literature. This is the definition used by Shannon [Sha59]. The probability
of excess distortion definition is used, for example, by Csiszar and Korner [CK97].

Definition 2.26 (Achievability of expected distortion D by source code s when en-
coding i.i.d. X Source). Distortion D is achievable in the expected sense (or that,
distortion D is E-achievable, or that expected distortion D is achievable ) by the source
code s for the i.i.d. X source if under the joint distribution pXnY n as described above,

lim sup
n→∞

EXnY n

[
1
n
dn(Xn, Y n)

]
≤ D (2.28)

See Figure 2.5. In this figure, the common randomness input r to ens and fns has been
omitted.
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Figure 2.5. A source code which communicates i.i.d. X source to within an expected average distortion
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Figure 2.6. A source code which communicates i.i.d. X source to within a probability of excess
distortion D

Note 2.19. By definition, if distortion D is achievable in the expected sense (or that,
distortion D is E-achievable) by the source code s for the i.i.d. X source, then distortion
D′ > D is also achievable in the expected sense by the source code s for the i.i.d. X
source.

Definition 2.27 (Rate-distortion function REX(D)). Rate R is E-achievable correspond-
ing to distortion level D for the i.i.d. X source if there exists a rate R source code s
which achieves expected distortion D when encoding the i.i.d. X source. The infimum
of all E-achievable rates for distortion level D is the rate-distortion function REX(D).

Definition 2.28 (Achievability of probability of excess distortion D by source code s
when encoding i.i.d. X Source). Distortion D is achievable in the probability of excess
distortion sense (or that, distortion D is P-achievable) by the source code s for the i.i.d.
X source if

lim
n→∞

pXnY n

(
1
n
dn(Xn, Y n) > D

)
= 0 (2.29)

See Figure 2.6. In this figure, the common randomness input r to ens and fns has been
omitted.
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Note 2.20. In the above definition, we use lim
n→∞

and not lim sup
n→∞

because both definitions

are the same. This is because, if an ≥ 0, 1 ≤ n <∞, then, lim sup
n→∞

an = 0 if and only if

lim
n→∞

an = 0.

Note 2.21. By definition, if distortion D is achievable in the probability of excess dis-
tortion sense by the source code s for the i.i.d. X source, then distortion D′ > D is
also achievable in the probability of excess distortion sense by the source code s for the
i.i.d. X source.

Definition 2.29 (Rate-distortion function RPX(D)). Rate R is P-achievable correspond-
ing to distortion level D for the i.i.d. X source if there exists a rate R source code s
which achieves probability of excess distortion D for the i.i.d. X source. The infimum
of all P-achievable rates for distortion level D is the rate-distortion function RPX(D).

Note 2.22. The probability of excess distortion definition is local unlike the expected
distortion definition which is global. In my opinion, the probability of excess distortion
definition is also more intuitive, and makes more sense than the expected distortion
definition. This is elaborated on, in Section 2.12.

The above definitions of REX(D) and RPX(D) are based on the “physical” meaning of
what it means to compress a source. The rate-distortion function can also be defined
information-theoretically:

Definition 2.30 (The information-theoretic rate-distortion function RIX(D)).

RIX(D) , inf
{pY |X :

∑
x∈X ,y∈Y pX(x)pY |X(y|x)≤D}

I(X;Y ) (2.30)

The rate-distortion theorem of Shannon [Sha59] states that an expression for REX(D) is
in fact, RIX(D):

Theorem 2.1 (Rate-distortion theorem). An expression for REX(D) is RIX(D)

Note 2.23. The source-coding problem that we consider is the above described problem
of compressing the i.i.d. X source to within a distortion D under the expected and
probability of excess distortion definitions.

� 2.10.3 The rate-distortion source-coding problem

The rate-distortion source-coding problem is to find the minimum rate needed to com-
press a source to within a certain distortion level. For the i.i.d. X source, these
functions, as defined above, are denoted by REX(D) and RPX(D).
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� 2.10.4 Discussion: Why are source codes which compress a source to
within a certain distortion level, important?

In defining source codes which compress a source to within a certain distortion level,
we have taken the composite transition probability corresponding to the composition of
the source-encoder and the source-decoder. In practice, however, there is the channel
encoder, channel and the channel decoder between the source encoder and the source
decoder.

From discussion 2.1. it follows, on a high level, that the distortion introduced in a
source (either under the expected distortion criterion or the probability of excess dis-
tortion criterion) after passing through the whole communication system consisting of
the source encoder, the channel encoder, the channel, the channel decoder and the
source decoder will be “close” to the distortion produced by a source code as defined
in this section.

This will become clearer, after reliable communication has been defined rigorously. This
is the subject of the next section.

� 2.11 Universal capacity of a partially known channel

The way usual digital communication systems are constructed, the random binary se-
quence at the output of the source encoder is communicated with a very small error
over the channel with the help of the channel encoder and the channel decoder. This
motivates definition of reliable communication or the achievability of a rate R reliably,
and the definition of channel capacity. The channel model we have is only partially
known, and thus, the channel comes from a set k ∈ A. Thus, we would be defining
universal reliable achievability of rate R and universal capacity. The word “universal”
refers to the fact that the same encoding-decoding scheme should work for all channels
in the set.

Let k ∈ A be a partially known channel with input space I and output space O as
described in Subsection 2.5.2. This is the partially known channel.

Recall the definition of a channel encoder < enc >
∞
1 and a channel decoder < fnc >∞1

defined in Subsection 2.7.3.

When the block length is n, the input to the source encoder ens is Xn. Xn is source
encoded by ens and the output is a random binary sequence which is a random variable
Mn
R with corresponding distribution pMn

R
. Mn

R is the input to the channel encoder
enc . The output of the channel encoder is In which is an input to the channel kn.
The channel produces output On which is an input to the channel decoder fnc , which
reconstructs the random binary sequence as M̂n

R.
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M̂n
R is the input to the source decoder fns which produces the reconstructed source

output Y n.

For now, we are only interested in the dynamics of Mn
R to M̂n

R.

If the source code has rate R, the output of the source encoder is a rate R random
binary sequence Mn

R with the corresponding probability distribution on the set Mn
R =

{1, 2, . . . , 2bnRc}. pMn
R

can, in general, be quite arbitrary depending on ens , and we will
assume that it can be any possible probability distribution on {1, 2, . . . , 2bnRc}.
In a usual digital communication system, the channel encoder < enc >

∞
1 and the channel

decoder < fnc >
∞
1 are constructed in such a way that the random binary sequence should

be communicated over the channel with a very small error. This is abstracted out by
saying that the small error → 0 as the block length n→∞.

Let the input to the channel encoder enc be a rate R random binary sequence Mn
R. The

output of the channel decoder is the reconstruction of the random binary sequence,
M̂n
R. Note that M̂n

R will depend on the particular k ∈ A; however, we do not show this
dependence. For reliable communication, we would require that

Pr(M̂n
R 6= Mn

R)→ 0 asn→∞ (2.31)

As we said above, the distribution pMn
R

to be arbitrary, the above should hold irrespec-
tive of the distribution pMn

R
. One way of ensuring this is to say that this happens on a

per message level with a uniformity over all messages

Pr(M̂n
R 6= Mn

R|Mn
R = mn) < δn ∀mn ∈Mn

R, for some δn → 0 as n→∞ (2.32)

Note that if

Pr(M̂n
R 6= Mn

R|Mn
R = mn) < δn ∀mn ∈Mn

R, (2.33)

then it follows that

Pr(M̂n
R 6= Mn

R) < δn as n→∞ (2.34)

for arbitrary distribution pMn
R

, and note that δn is independent of the distribution
pMn

R
. The fact that δn is independent of the distribution pMn

R
can be important if

we do not know the distribution apriori of the source. Then, after compression, the
distribution pMn

R
might not be known. The system should be able to provide a certain

error guarantee for the same block length (this is important when building the system)
irrespective of the distribution of the source, and thus, it is important that δn be
independent of the distribution pMn

R
.

Also, we would want the rate of fall of error probability to zero with increasing block
length at a uniform rate independent of which particular realization of the channel
k ∈ A occurs. This is because, when building a real system, we will not know which
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en
c fn

ck ∈ AMn
R M̂n

R

Pr(M̂n
R "= Mn

R|Mn
R = mn) < δn, ∀mn ∈Mn

R,

∀k =< kn >∞1 ∈ A, for some δn → 0 as n→∞

1

Figure 2.7. Universal reliable communication over partially known channel k

particular channel k ∈ A will happen, and the communication guarantee should hold
irrespective of this guarantee.

This motivates the definition of universal reliable achievability of rate R over a partially
known channel.

Definition 2.31 (Universal reliable achievability of rate R over a partially known
channel k ∈ A). Rate R is said to be universally achievable over the channel set A if
there exists a channel code < enc , f

n
c >∞1 , independent of the particular k ∈ A, and

if there exists a sequence < δn >
∞
1 , δn → 0 as n → ∞ independent of the particular

k ∈ A such that

Pr(M̂n
R 6= Mn

R|Mn
R = mn) < δn,∀mn ∈Mn

R, ∀k =< kn >∞1 ∈ A (2.35)

See Figure 2.7. The common randomness input r to the channel encoder and the
channel decoder exists but has been omitted in the figure.

Note 2.24 (Universal?). Universality in the above definition refers to the fact that the
same encoder-decoder work for the partially known channel k ∈ A.

Definition 2.32 (Universal capacity of the partially known channel k ∈ A, Crc(A)).
The supremum of all universally achievable rates over the partially known channel
k ∈ A is the universal capacity of the partially known channel k ∈ A, and is denoted
by Crc(A).

Note 2.25. The sub-script rc in Crc(A) stands for random-coding. We allow the encoder
and decoder to be random, and thus, Crc(A) is the random-coding universal capacity
of the partially known channel k ∈ A.

Note 2.26 (Resource consumption). One would also like, in the definition of universal
capacity, to have a dependence on the consumption of system resources. As we shall see,
results concerning resource consumption that we need will automatically result from the
encoding-decoding scheme that we will use and for that reason, we are not making the
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capacity depend on any resource constraints. In general, however, the capacity should
be defined by restricting the encoder and decoder in such a way that only certain system
resources are being consumed.

Note 2.27 (Universal capacity and compound capacity). The definition of universal
capacity of a partially known channel is the same, in spirit, as the definition of compound
capacity as defined in information theory literature, see, for example, [CK97]. [CK97]
talks about a compound DMC and thus, the partially known channel comes from a set
which consists of discrete memoryless channels (DMCs). We allow the set to consist of
arbitrary channels with the same input and output space.

Note 2.28 (The universal capacity of a set of abstract channels). An abstract channel,
that is, thinking of the composition of an encoder, channel, and a decoder, as a channel,
was defined in Subsection 2.6.5. Universal capacity can analogously be defined for a set
of abstract channels with input space X and output space Y. We will use this view of
universal capacity of a set of abstract channels in Sections 2.14 and 2.15, when proving
the universal source-channel separation theorem for rate-distortion.

The channel-coding problem that we will consider is that of the universal capacity of a
partially known channel which is capable of universally communicating i.i.d. X source
to within a distortion D. We will relate this universal capacity to the rate-distortion
function for the i.i.d. X source. This will be used to prove the universal source-channel
separation theorem for rate-distortion.

� 2.12 A comparison of the expected distortion and the probability of excess
distortion criterion and the reason why we use the probability of
excess distortion criterion

In this section, we compare the expected distortion and the probability of excess distor-
tion criteria. We also state the reason why we use the probability of excess distortion
criterion and not the expected distortion criterion.

� 2.12.1 A comparison of the expected distortion and the probability of
excess distortion criteria

We use the probability of excess distortion criterion (2.29) for communication to within
a distortion level D and not the expected distortion criterion (2.28). The following is a
comparison of the two criteria:

The probability of excess distortion criterion is local whereas the expected distortion
criterion is not. This observation has been made by Csiszar and Korner [CK97]. The
probability of excess distortion criterion is local in the sense that it says (roughly) that
with high probability, a sequence xn ∈ X n whose empirical distribution is “close to pX”
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is distorted to within a ball of radius nD with high probability and this probability
→ 1 as the block length n → ∞. Thus, with the probability of excess distortion
criterion, statements can be made (with high probability) concerning individual xn

sequences. The expected distortion criterion, however, is an expectation condition,
and hence, global (not local) because statements cannot be made about particular pX
typical sequences.

For this reason, the probability of excess distortion criterion is also more intuitive: it
can be represented pictorially, see Figure 2.4 as opposed to the expected distortion
criterion.

For the same reason, we believe that the probability of excess distortion criterion makes
more sense than the expected distortion criterion. When communicating a source se-
quence, we would like to have most sequences be communicated with a certain guaran-
tee, rather than a guarantee averaged over all the source sequences.

We should add that the probability of excess distortion criterion is stronger than the
expected distortion criterion in the sense that if the probability of excess distortion
criterion holds, the expected distortion criterion also holds (under minor technical as-
sumptions).

� 2.12.2 Why do we use the probability of excess distortion criterion instead
of the expected distortion criterion?

Most literature on information theory uses the expected distortion criterion. However,
we use the probability of excess distortion criterion.

We use the probability of excess distortion criterion (2.29) for communication to within
a distortion level D instead of the expected distortion criterion (2.28) because we do not
know how to prove universal results with the expected distortion criterion.

Also, as discussed in the previous sub-section, in my opinion, the probability of excess
distortion criterion makes more sense than the expected distortion criterion. Finally,
from a practical standpoint, none of them really makes sense: for example, if we want
to put a distortion criterion on voice, neither the expected distortion criterion or the
probability of excess distortion criterion make sense. However, in my opinion, the
probability of excess distortion criterion does make “more” sense. I will add that
the probability of excess distortion criterion making “more” sense than the expected
distortion criterion is a very marginal reason for using the probability of excess distortion
criterion: the main reason, as we said above, is that we do not know how to prove
universal results with the expected distortion criterion.
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� 2.13 Important past literature

Shannon proved a source-channel separation theorem for rate-distortion in the point-
to-point setting for the problem of reliable communication in [Sha48]. In this paper,
Shannon also hinted at, but did not give any proofs of optimality of separation for
communication with distortion. This was the subject of [Sha59].

As we have said before, Shannon assumed knowledge of the channel as a transition
probability. We only assume partial knowledge of the channel as a transition probabil-
ity, and prove a universal source-channel separation theorem for communication with
distortion in the point-to-point setting. This is the main contribution of this chapter.
In Chapter 3, these results are generalized to the multiuser setting.

Shannon assumed that the distortion measure is additive. Since then, results have been
generalized to sub-additive distortion measures, see for example [Han10]. We prove
our results with the assumption of permutation invariant distortion measures. There
is no real relation, to the best of our understanding, between sub-additive distortion
measures and permutation invariant distortion measures.

� 2.14 The main ideas for why separation holds for universal communication
with a fidelity criterion: separation for the uniform X source under
a technical assumption on the rate-distortion function

This is the most important section in the whole thesis, and discusses the
main idea for why separation or the optimality of digital communication
holds for universal communication with a fidelity criterion.

We prove the universal source-channel separation theorem for rate-distortion for what
we call, the uniform X source (which is defined below) under a technical assumption on
behavior of the rate-distortion function. Throughout this section, the distortion metric
is assumed to be permutation invariant.

� 2.14.1 The organization of this section

This section is organized as follows:

Subsection 2.14.2 discusses the uniform X source which we use throughout this section
instead of the traditional i.i.d. X source. The uniform X source consists of all sequences
with type precisely pX . It thus has a single type class. We use the uniform X source
because the proofs with a source which has a single type class avoids a lot of εs and δs
in the proofs.

Subsection 2.14.3 discusses source codes and various rate-distortion functions when
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coding the uniform X source. These would be direct generalizations of the definitions
for the i.i.d. X source. One new definition that we will introduce will be that of the
inf rate-distortion function, and this would be related to the technical assumption that
we will make.

Subsection 2.14.4 discusses encoders and decoders, and further discusses the capability
of a partially known channel for universally communicating the uniform X source to
within a certain distortion level.

Subsection 2.14.5 states the technical condition that we will need on the rate-distortion
function in order to prove the universal source-channel separation theorem for rate-
distortion.

Subsection 2.14.6 states the universal source-channel separation theorem for universal
communication with a fidelity criterion for the uniform X source, Subsection 2.14.7
discusses the two steps in the proof, and Subsection 2.14.9 proves it. Before the proof,
we make a small note on random-coding in Subsection 2.14.8.

This is followed by various discussions in Subsection 2.14.10 on the nature of the proof,
why separation holds, and connections between source and channel coding.

Finally, we make a short note on the technical assumption that we make concerning
the rate-distortion function in Subsection 2.14.11.

� 2.14.2 The uniform X source

Definition 2.33 (Uniform X source). Let X be a random variable on X . Let pX(x)
be rational ∀x. Let n0 be the least positive integer for which n0pX(x) is an integer
∀x ∈ X . Let Un denote the set of sequences with (exact) empirical distribution (type)
pX . Un is nonempty if and only if n0 divides n. Let n′ , n0n. Let Un

′
denote a random

variable which is uniform on Un′ and zero elsewhere. Then, < Un
′
>∞1 is the uniform

X source and is denoted by U . Intuitively, the uniform X source is the source which
puts uniform distribution on the set of all sequences whose empirical distribution is pX .

Note 2.29. The superscript n′ in Un′ denotes that the block length is n′. It does not
mean that Un′ is the cartesian product of some set U with itself n times. In fact, the
set U = U1 is empty unless n0 = 1. Similarly, the superscript n′ in Un

′
denotes block

length. It does not mean that Un
′

is i.i.d. U source for some random variable U .

Definition 2.34 (n0). n0 is the least positive integer for which n0pX(x) is an integer
∀x ∈ X .

Definition 2.35 (n′). n′ , n0n.

Note 2.30 (Uniform X source makes sense only for block lengths divisible by n0).
Uniform X source is defined only for those block lengths which are divisible by n0.
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Note 2.31. If pX(x) is irrational for some x ∈ X , Un is empty ∀n. Thus, in order to
define the uniform X source, the assumption that pX(x) be rational ∀x ∈ X is necessary.

Note 2.32. Let pX(x) be rational ∀x ∈ X . The uniform X source and the i.i.d. X
source are “close” to each other in the following sense. The uniform X source puts
mass only on sequences with empirical distribution exactly pX . For large n, i.i.d. X
source puts “most of” its mass on sequences with empirical distribution “close to” pX .
We are interested in i.i.d. X source.

Note 2.33 (Why use the uniform X source). Uniform X Source has a single type class
by definition. This helps avoid a lot of εs and δs in arguments.

� 2.14.3 Source codes for the uniform X source and rate-distortion func-
tions for the uniform X source

Assume that X is such that pX(x) is rational ∀x ∈ X .

The definitions of source codes for coding the uniform X and the transition probability
corresponding to such a source code are analogous to the corresponding definitions,
Definition 2.11, Definition 2.12 and Definition 2.13 of Subsection 2.7.2. There are two
differences:

• Since the uniform X source is defined only for those block lengths of the form
n′ = n0n, source codes for the uniform X source are defined only for these block
lengths

• The input space, when the block length is n′ is Un′ and not X n′

Achievability of expected distortion D when coding the uniform X source is defined
analogously to Definition 2.26, except that (2.28) is replaced by

lim sup
n′→∞

EUn′Y n′
[

1
n
dn

′
(Un

′
, Y n′)

]
≤ D (2.36)

The rate-distortion function REU (D) is defined analogously to (2.27).

Achievability of probability of excess distortion D when coding the uniform X source
is defined analogously to Definition 2.28, except that (2.29) is replaced by

lim
n′→∞

pUn′Y n′

(
1
n′
dn

′
(Un

′
, Y n′) > D

)
= 0 (2.37)

The rate-distortion function RPU (D) is defined analogously to (2.29).

We also need the definition of inf achievability of probability of excess distortion D
when coding the uniform X source. This is the same as the definition of achievability
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of probability of excess distortion D when coding the uniform X source, except that
(2.37) is replaced with

lim inf
n′→∞

pUn′Y n′

(
1
n′
dn

′
(Un

′
, Y n′) > D

)
= 0 (2.38)

The above is called the inf probability of excess distortion criterion.

The rate-distortion function RPU (D, inf) can be defined analogously to RPU (D) by using
(2.38) instead of (2.37).

� 2.14.4 Encoders and decoders to communicate the uniform X source, and
universal communication of the uniform X source over a channel
to within a certain distortion level

In this subsection, we want to define, what it means for a partially known physical
channel to be capable of communicating the uniform X source to within a certain
distortion level.

A physical channel k =< kn >∞1 has been defined in Subsection 2.5.2 and a partially
known physical channel k ∈ A has been defined in Subsection 2.5.3. The channel evolves
for every integer time. However, what will matter, when we consider the interconnection
of the encoder, channel and the decoder is the channel subsequence < kn

′
>∞1 .

The view of an analog point-to-point communication system to communicate the uni-
form X source is the same as the view of Section 2.6 with the following differences:

• Encoders and decoders are sequences < en
′
>∞1 and < dn

′
>∞1 defined only for

those block lengths n′ which are divisible by n0

• The input space when the block length is n′ is Un′ instead of X n′

• The interconnection will be made among encoder < en
′
>∞1 , channel < kn

′
>∞1

and decoder < fn
′
>∞1

It is important to note that encoders, channels and decoders are defined only for block
lengths n′ of the form n0n, but they evolve, as before, for each integer time.

The view of a point-to-point digital communication system to communicate the uniform
X source is the same as that of Section 2.7 with the same differences:

• Source encoders, source decoders, channel encoders, channel decoders are defined
only for those block lengths n′ divislble by n0

• The input space when the block length is n′ is Un′ instead of X n′
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The distortion function is defined in the same way as Section 2.8 except for the same
reasons that the sequence is < dn

′
>∞1 and dn

′
: Un′ × Yn′ → [0,∞) instead of

dn : X n × Yn → [0,∞). Definition of permutation invariance and additiveness is
defined in the same way as in Section 2.8.

Consider a partially known channel k ∈ A.

The input to the encoder is the uniform X source. Thus, then the block length is n′,
the input is the i.i.d. X sequence of length n′, Un

′
. The composition of the encoder,

channel, and decoder, produce an output sequence Y n′ . This results in a joint random
variable Un

′
Y n′ on the input-output space Un

′×Yn′ and the corresponding probability
distribution pUn′Y n′ . Note that we are talking about a partially known channel and
thus, pUn′Y n′ will vary depending on the particular k ∈ A.

The partially known channel k ∈ A is said to be capable of universally communicating
uniform X source to within a distortion D if there exists a sequence ω =< ωn′ >

∞
1 such

that ωn′ → 0 as n→∞, and an encoder-decoder pair < en
′
, fn

′
>∞1 independent of the

particular k ∈ A such that under the joint distribution pUn′Y n′ as described above,

pUn′Y n′

(
1
n′
dn

′
(Un

′
, Y n′) > D

)
≤ ωn′ ∀ k ∈ A (2.39)

See Figure 2.3, except that all n are replaced with n′ and Xn is replaced with Un
′
. In

the figure, we have not shown the common randomness input r to the encoder and the
decoder.

� 2.14.5 The technical condition on the rate-distortion function that we
will require in order to prove the universal source-channel separa-
tion theorem for rate-distortion for the uniform X source under a
permutation invariant distortion metric

We will assume that RPU (D) = RPU (D, inf). We will prove this for an additive distortion
metric in Chapter 5.

Another assumption which we require is that pX(x) is rational ∀x ∈ X . We require this
assumption because otherwise, the uniform X source is not defined.

� 2.14.6 A statement of universal source-channel separation theorem for
rate-distortion for the uniform X source

Theorem 2.2 (Universal source-channel separation theorem for rate-distortion in the
point-to-point setting for the uniform X Source / Optimality of digital communication
for universal communication of the uniform X source with a fidelity criterion). Let d =<
dn

′
>∞1 be a permutation invariant distortion metric under which RPU (D) = RPU (D, inf).
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Assuming random-coding is permitted, in order to communicate the uniform X source
over a partially known channel to within a particular distortion level, it is sufficient
to consider source-channel separation based architectures, that is, architectures which
first compress the uniform X source to within the particular distortion level, followed
universal reliable communication over the partially known channel. There is sufficiency
in the sense if there exists some architecture to communicate the uniform X source
to within a certain distortion universally over the partially known channel, and which
consumes certain amount of system resources (for example, energy and bandwidth),
then there exists a separation based scheme to universally communicate the uniform X
source to within the same distortion universally over the partially known channel and
which consumes the same or lesser system resources as the original scheme.

� 2.14.7 Steps to prove Theorem 2.2

In this section, we state the steps in proving Theorem 2.2. The steps are:

• Step 1 for why Theorem 2.2 holds: Given a partially known channel k which is
capable of universally communicating uniform X source to within a distortion D,
first prove that the universal capacity of the partially known channel k is larger
than or equal to the rate-distortion function RPU (D). Also, prove that the universal
reliable communication at rates < RPU (D) can be accomplished by using an encoder
and a decoder such that the resulting architecture consisting of the composition of
the encoder, channel and decoder, when used for universal reliable communication,
consumes the same system resources irrespective of the distribution on the message
set as the original architecture when used for universal communication to within
a distortion level D of the uniform X source over the partially known channel.

This step is illustrated in Figure 2.14.7.

• Step 2 for why, the Theorem 2.2 holds: Thus, in fact, given a partially known chan-
nel which is capable of communicating uniform X source to within a probability
of excess distortion D, and hence, from Step 1, its universal capacity is ≥ RPU (D),
universal communication to within a distortion D over the partially known chan-
nel could actually be carried out by first compressing the uniform X source to
within a distortion D under the probability of excess distortion criterion and then
communicating the resulting rate RPU (D) random binary sequence universally and
reliably over the partially known channel. Since the reliable communication can
be accomplished by using an encoder-decoder such that the resulting architecture
consisting of the composition of the digital encoder, channel and digital decoder
consumes the same system resources as the original architecture to universally
communicate the uniform X source to within a distortion D over the partially
known channel k, the digital architecture to communicate the uniform X source
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Step 1:

Given, ∃ < en′, fn′ >∞
1 and < ωn′ >∞

1 , ωn′ → 0 as n′ →∞ such that

en′ fn′

k ∈ A

k ∈ AUn′ Y n′

Pr
(

1
n′

dn′(Un′, Y n′) > D

)
< ωn′∀k ∈ A

prove ∃ < en′
c , fn′

c >∞
1 and < Fn′ >∞

1 , Fn′ → 1 as n′ →∞ such that

en′
c fn′

cMn′ M̂n′

Pr(M̂n′ = Mn′ | Mn′ = mn′) ≥ Fn′, ∀mn′,∀k ∈ A
at rates < RP

U(D)

such that resource consumption remains unchanged.
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Universal multi-user communication with fidelity criteria 44

Thus, ∃ source code < en′
s , fn′

s >∞
1 , and < ω′n

′
>∞

1 , ω′n
′
→ 0 as

n′ →∞ such that

k ∈ AUn′ Y n′en′
s fn′

sen′
c fn′

c

digital link

Pr
(

1
n′

dn′(Un′, Y n′) > D

)
< ω′n

′ ∀k ∈ A

such that resource consumption is the same as in the original
architecture of Step 1

Step 2:

to within a distortion D over the partially known channel k also consumes the
same system resources.

This step is illustrated in Figure 2.14.7.

We argue these steps in Subsection 2.14.9. Before that, we make a note on random-
coding in the next subsection.

� 2.14.8 Random codes

In part of the proof, we will generate codebooks uniformly from the set of all sequences
which have type precisely X. As we have emphasized before, for us, random-coding is
not just a proof technique. It is essential. This will be discussed further in Section 2.17.

� 2.14.9 The proof of Theorem 2.2

Proof. Proof of Step 1 in order to prove Theorem 2.2

Recall that we will denote n′ = n0n.

Let k =< kn
′
>∞1 ∈ A be a partially known channel which is capable of universally

communicating the uniform X source U to within a distortion D. Thus, there exist an
encoder-decoder < en

′
, fn

′
>∞1 and a sequence ω =< ωn′ >

∞
1 , ωn′ → 0 as n′ →∞ such

that with the composition of the encoder, channel and decoder, < en
′ ◦ kn′ ◦ fn′ >∞1

with input U =< Un
′
>∞1 , end to end,

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D

)
< ωn′ , ∀k ∈ A (2.40)
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Consider the partially known abstract channel

c ∈ {< en
′ ◦ kn′ ◦ fn′ >∞1 |k =< kn

′
>∞1 ∈ A} , CA (2.41)

We will prove that the universal capacity of the partially known channel c ∈ CA is
≥ RPU (D), and this can be accomplished by an encoder-decoder < En

′
, Fn

′
>∞1 such

that for universal reliable communication at rates R < RPX(D), the point-to-point
communication system < En

′ ◦ cn′ ◦ Fn′ >∞1 consumes the same system resources
(irrespective of the particular c ∈ A) as the original point-to-point communication
system < en

′ ◦kn′ ◦fn′ >∞1 when used to communicate the uniform X source universally
to within a distortion D.

From this it will follow that the universal capacity of the partially known channel
k is ≥ RPU (D), and this universal reliable communication at rates < RPX(D) can be
accomplished with the help of encoder < en

′
c >∞1 =< En

′ ◦ en′ >∞1 and decoder <
fn

′
c >∞1 =< fn

′ ◦Fn′ >∞1 . The point-to-point communication system < en
′
c ◦kn

′ ◦fn′c >∞1
when used for reliable communication at rates < RPX(D) consumes the same system
resources as the original point-to-point communication system < en

′ ◦kn′ ◦fn′ >∞1 when
used to communicate the uniform X source to within a distortion D.

We proceed to prove that the universal capacity of the partially known channel c ∈ CA
is ≥ RPU (D). Note that we have assumed that RPU (D) = RPU (D, inf). Thus, it is
sufficient to prove that the universal capacity of the partially known channel c ∈ CA is
≥ RPU (D, inf). This is what we proceed to prove.

This is done via parallel random-coding arguments for

• the universal capacity of the partially known channel c ∈ CA, and

• the rate-distortion source-coding problem of finding the minimum rate needed to
compress the uniform X source to within a distortion D under the inf probability
of excess distortion criterion.

The random-coding arguments are similar, yet different from the ones used in the
information theory literature. We want to derive a connection between the above two
problems in order to prove the desired result, and we are not interested in simplified
functional expressions for the universal capacity of the partially known channel c ∈ A
or simplified expressions for the rate-distortion function RPU (D, inf).

The two problems:

• The channel-coding problem: The channel-coding problem is that of computing
the universal capacity of the partially known channel c ∈ CA
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• The source-coding problem: The source-coding problem that we consider is to
derive an upper bound on RPU (D, inf), the minimum rate needed to compress the
uniform X source to within a distortion level D under the inf probability of excess
distortion criterion

Block length: For both the channel coding and the source coding problems, let the block
length be n′. Towards the end of the argument we will take the limit n′ → ∞. Recall
that n′ = n0n is the set of all integers for which the uniform X source makes sense.

Codebook generation:

• Codebook for the channel-coding problem: Let communication be desired at rate
R. Generate 2bn

′Rc sequences independently and uniformly from the set Un′ , the
set of all sequences ∈ X n which have empirical distribution precisely pX .

This is the code book Kn′ . Note that the codewords ∈ Un′ . The encoder is denoted
by < En

′
>∞1 . Note that the encoder is random.

• Codebook for the source-coding problem: Let q be an empirical distribution (type)
on Y, that is q ∈ P(Y). Let q be an achievable type when the block length is
n′. In other words, n′q(y) is an integer ∀y ∈ Y. Let Un′q ⊂ Yn

′
denote the set of

all sequences with empirical distribution, precisely q. Generate 2bn
′Rc codewords

independently and uniformly from the set Un′q
This is the code book Ln′ . Note that the codewords ∈ Un′q ⊂ Yn

′
. Note that the

codebook is random.

Joint typicality:

• Joint typicality for the channel coding problem: Sequences (un
′
, yn

′
) ∈ the channel

input-output space Un′ × Yn′ are said to be jointly typical if

1
n′
dn

′
(un

′
, yn

′
) ≤ D (2.42)

• Joint typicality for the source coding problem: Sequences (un
′
, yn

′
) ∈ the source

input - source reconstruction space Un′ × Yn′ are said to be jointly typical if

1
n′
dn

′
(un

′
, yn

′
) ≤ D (2.43)

Note that the definition of joint-typicality for both the channel-coding and the source-
coding problems is the same.
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Note 2.34 (A note on the definition of joint typicality). Jointly typical sequences are
defined in the information theory literature in a way so that the set of all jointly typical
sequences occurs with high probability and this probability → 1 as the block length
n′ → ∞. In our framework, from the codebook generation and from the action of the
channel, all we know is that

1
n′
dn

′
(un

′
, yn

′
) ≤ D (2.44)

with high probability , and this is, thus, our definition of jointly typical sequences. In
usual information theory frameworks, the channel action is known as a transition prob-
ability and thus, when defining jointly typical sequences, there is usually a requirement
on the conditional type of the output sequence given the input sequence. However, our
description of the channel is not in terms of a transition probability. Our description
of the channel is in terms of the distortion that it produces on sequences with type
precisely X and hence, the above definition of joint typicality.

Decoding:

• Decoding for the channel coding problem: Let the sequence yn
′
be received. If there

exists unique codeword un
′

in the code book Kn′ for which (un
′
, yn

′
) are jointly

typical, declare that un
′

is transmitted, else declare error. The decoder is denoted
by Fn

′
. Note that the encoder-decoder En

′
, Fn

′
is random

Note 2.35. This decoding rule can be thought of as a variant of minimum distance
decoding

Note 2.36 (Are the encoder-decoder random-codes in the sense of Definition 2.3).
We defined random codes in Definition 2.3. In our coding scheme, we are gener-
ating codewords uniformly from the set Un′ and the decoder is, as defined above,
a variant of minimum distance decoding . This encoder-decoder be thought of as
a random-code in the sense of Definition 2.3. We leave out an elaboration as to
why that is the case. As disussed in Note 2.6, our encoder-decoder can thus be
generated using common randomness.

• Encoding for the source coding problem: Let the sequence un
′ ∈ Un′ needs to be

source coded. If there exists some sequence yn
′

in the code book Ln′ for which
(un

′
, yn

′
) are jointly typical, encode un

′
to one such yn

′
, else declare error. Note

that the encoder-decoder is random.

Note 2.37. Note that “unique” in the channel coding problem gets converted to “some”
in the source coding problem

Some notation:
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• Notation for the channel coding problem: We will do the analysis assuming that a
particular message is transmitted. The message set is

Mn′
R = {1, 2, . . . , 2bn′Rc} (2.45)

Assume that message mn′
i ∈Mn′

R is transmitted.

Let the codeword corresponding to message mn′
i be denoted by un

′
c . Let the non-

transmitted codewords be denoted by u′n
′

1 , u′n
′

2 , u′n
′

2bn′Rc−1.

un
′
c is a realization of Un

′
c . By the random code book generation, Un

′
c has uniform

distribution on Un′ .
u′n

′

i is a realization of U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1. By the random code book

generation, U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1, has uniform distribution on Un′ .

By the random code book generation, the codewords are generated independently
of each other, and thus, Un

′
c , U ′n

′

i , 1 ≤ i ≤ 2bn
′Rc − 1 are all independent of each

other as random variables.

The action of the partially known channel c ∈ CA on the transmitted codeword
un

′
c produces an output yn

′
.

yn
′

is the realization of some random variable Y n′ which is got by the action of
the channel c on Un

′
c . Note that Y n′ will be different for different c ∈ CA. Assume

that some particular c ∈ CA happens, and Y n′ is the corresponding channel output
random variable. Our argument will hold for all c ∈ CA.

yn
′

depends on un
′
c .

By the codebook generation, the codewords are generated independently of each
other, and there is no dependence between yn

′
and u′n

′

1 , u′n
′

2 , u′n
′

2bn′Rc−1. That is,

yn
′
, and Y n′ are independent of U ′n

′

i , 1 ≤ i ≤ 2bn
′Rc − 1.

• Notation for the source coding problem: We will do the analysis assuming that a
particular un

′ ∈ Un′ needs to be coded.

The source is the uniform X source. Thus, un
′

is a realization of Un
′

where Un
′

has uniform distribution on Un′ .
The codebook is

Ln′ = {yn′1 , y
n′
2 , . . . , y

n′

2bn′Rc
} (2.46)

For all i, yn
′
i is a realization of the random variable V n′

i . By the random codebook
generation, V n′

i is the uniform distribution on the set Un′q ⊂ Yn
′

of all sequences
with precise type q.

By the random code book generation, the codewords are generated independently
of each other, and thus, V n′

i , 1 ≤ i ≤ 2bn
′Rc are independent of each other as

random variables.
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Also, the codewords are of course, independent of the source sequence, and thus,
un

′
and Un

′
are independent of V n′

i , 1 ≤ i ≤ 2bn
′Rc.

Analysis:

• Error analysis for the channel coding problem: We analyze the probability of
correct decoding.

We analyze the probability that a message is correctly received given that a par-
ticular message is transmitted. Think of some probability distribution Mn′ on the
message set Mn′

R . This probability distribution will not matter for the calcula-
tion. In fact, the calculation that we do can be done even if there is no probability
distribution on the set of messages. We calculate

Pr(M̂n′
R = Mn′

R |Mn′ = mn′
i ) where mn′

i ∈Mn′
R (2.47)

The code book generation is symmetric. For this reason, the above probability
will be independent of the particular message mn′

i ∈Mn′
R .

Also, Mn′ will depend on the particular k ∈ A. We will get a bound for

Pr(M̂n′
R = Mn′

R |Mn′ = mn′
i ) (2.48)

which is independent of the particular k ∈ A.

From the decoding rule, it follows that for correct decoding, the following should
happen:

–

1
n′
dn

′
(un

′
c , y

n′) ≤ D (2.49)

–

1
n′
dn

′
(u′n

′

i , y
n′) > D, 1 ≤ i ≤ 2bn

′Rc − 1 (2.50)

Thus, the event of correct decoding is:
{

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

}
(2.51)

• Error analysis for the source coding problem: We analyze the probability of error.

The analysis is done assuming that a particular sequence un
′ ∈ Un′ needs to

be source coded. As we shall see, this error is independent of the particular
source sequence because of the same empirical distribution of the source sequences,
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the symmetric nature of the code book construction, and permutation invariant
distortion measure.

An error happens if there exists no yn
′

in the code book Ln′ such that (un
′
, yn

′
)

are jointly typical, that is, an error happens if

1
n′
dn

′
(un

′
, yn

′
) > D∀yn′ ∈ Ln′ (2.52)

The event of error is

∩2bn
′Rc

i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

}
(2.53)

Note 2.38. Note that in the channel coding problem, we analyze the probability
of correct decoding and in the source coding problem we analyze the probability
of error

Calculation:

• Calculation of probability of correct decoding for the channel coding problem:

The correct decoding event is:
{

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

}
(2.54)

We wish to calculate the probability of the above event.

Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

= Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
})

+ Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})
−

Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∪ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

≥(1− ωn′) + Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})
− 1

=− ωn′ + Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

=− ωn′ +
2bn

′Rc−1∏

i=1

Pr
({

1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

(since U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1, Y n′ are independent random variables)

=− ωn′ +
[
Pr
({

1
n′
dn

′
(Un

′
, Y n′) > D

})]2bn
′Rc−1

(where Un
′

has the same distribution as U ′i
n′ and is independent of Y n′)
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=− ωn′ +


 ∑

yn′∈Yn′
pY n′ (y

n′) Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D | Y n′ = yn

′
)


2bn
′Rc−1

=− ωn′ +


 ∑

yn′∈Yn′
pY n′ (y

n′) Pr
(

1
n′
dn

′
(Un

′
, yn

′
) > D | Y n′ = yn

′
)


2bn
′Rc−1

=− ωn′ +


 ∑

yn′∈Yn′
pY n′ (y

n′) Pr
(

1
n′
dn

′
(Un

′
, yn

′
) > D

)


2bn
′Rc−1

(since Un
′

and Y n′ are independent)

≥− ωn′ +

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

(2.55)

Rate R is achievable if

−ωn′ +

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

→ 1 as n′ →∞ (2.56)

It is known that ωn′ → 0 as n′ →∞. It follows that rate R is achievable if

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

→ 1 as n′ →∞ (2.57)

• Calculation of probability of error for the source coding problem:

The error event is:

∩2bn
′Rc

i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

}
(2.58)

We wish to calculate the probability of this event.

Pr
(
∩2bn

′Rc
i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

})
(2.59)

=
2bn

′Rc∏

i=1

Pr
({

1
n′
dn

′
(un

′
, V n′

i ) > D

})
=
[
Pr
({

1
n′
dn

′
(un

′
, V n′) > D

})]2bn
′Rc

(2.60)

where V n′ is a random variable which is uniformly distributed on Un′q and is inde-
pendent of un

′
for all un

′ ∈ Un′ .
The type q with which the codewords are generated can be chosen by us. For
block length n′, we can choose the best possible achievable q for which the above
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error probability is the minimum. Let the set of all possible achievable types q for
block length n′ be denoted by Gn′ . The least possible error probability is given by

[
inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′) > D

})]2bn
′Rc

(2.61)

To show the above dependence of the distribution of V n′ on q, we denote it by
V n′
q . Thus, the least possible error probability is

[
inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})]2bn
′Rc

(2.62)

Since we are using the inf probability of excess distortion criterion, it t follows that rate
R is achievable if

 inf
q∈Gn

′
i

Pr

({
1
n′i
dn

′
i(un

′
i , V

n′i
q ) > D

})


2bn
′Rc

→ 0 for some n′i = n0ni for some ni →∞

(2.63)

Connection between channel coding and source coding:

It turns out that the main calculation we need to do in the channel coding problem is

inf
yn′∈Yn′

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
(2.64)

and the main calculation we need to do in the source coding problem is

inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
(2.65)

We will prove that the above two expressions are equal.

We will prove more generally, that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
, if yn

′
has type q

(2.66)

Let yn
′

have type q.

First we prove for the channel coding problem that if yn
′

and y′n
′

have the same type
q, then

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, y′

n′) > D

})
(2.67)
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Since Un
′

is the uniform distribution on Un′ , it follows that it is sufficient to prove that
the cardinalities of the sets

{
un

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
and

{
un

′
:

1
n′
dn

′
(un

′
, y′n

′
) > D

}
(2.68)

are equal

Since yn
′

and y′n
′

have the same type, y′n
′

is a permutation of yn
′
. Let y′n

′
= πn

′
yn

′
.

Denote the sets

Byn′ ,
{
un

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
(2.69)

and

By′n′ ,
{
un

′
:

1
n′
dn

′
(un

′
, y′n

′
) > D

}
(2.70)

Let un
′ ∈ Byn′ . Since the distortion measure is permutation invariant, dn

′
(πn

′
un

′
, πn

′
yn

′
)

= dn
′
(un

′
, yn

′
). Thus, πn

′
un

′ ∈ By′n′ . If un
′ 6= u′n

′
, πn

′
un

′ 6= πn
′
u′n

′
. It follows

that |By′n′ | ≥ |Byn′ |. yn
′

and y′n
′

in the above argument can be interchanged. Thus,
|Byn′ | ≥ |By′n′ |. It follows that |Byn′ | = |By′n′ |. Thus, it follows that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, y′n

′
) > D

})
(2.71)

V n′
q denotes the uniform random variable on the set of all sequences of all type q. Let
V n
q be independent of Un

′
. It follows, by use of 2.71 that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, V n′

q ) > D

})
(2.72)

Next, we prove for the source-coding problem that if un
′
, u′n

′ ∈ Un′ (in particular, they
have the same type), then

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(u′n

′
, V n′

q ) > D

})
(2.73)

Since V n′
q is the uniform distribution on the set of sequences Un′q of type q, it follows

that it is sufficient to prove that the cardinalities of the sets
{
yn

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
and

{
yn

′
:

1
n′
dn

′
(u′n

′
, yn

′
) > D

}
(2.74)

are equal.
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Since un
′

and u′n
′

belong to the set Un′ , u′n′ is a permutation of un
′
. Let u′n

′
= πn

′
un

′
.

Denote the sets

Dun′ ,
{
yn

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
(2.75)

and

Du′n′ ,
{
yn

′
:

1
n′
dn

′
(u′n

′
, yn

′
) > D

}
(2.76)

Let yn
′ ∈ Dyn′ . Since the distortion measure is permutation invariant, dn

′
(πn

′
un

′
, πn

′
yn

′
)

= dn
′
(un

′
, yn

′
). Thus, pin

′
yn

′ ∈ Du′n′ . If yn
′ 6= y′n

′
, πn

′
yn

′ 6= πn
′
y′n

′
. It follows that

|Du′n′ | ≥ |Dun′ |. un
′

and u′n
′

in the above argument can be interchanged. Thus,
|Dun′ | ≥ |Du′n′ |. It follows that |Du′n′ | = |Dun′ |. Thus, it follows that

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(u′n

′
, V n′

q ) > D

})
(2.77)

Un
′

denotes the uniform random variable on Un′ . Let Un
′

be independent of V n′
q . It

follows from 2.77 that

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, V n′

q ) > D

})
(2.78)

From (2.73) and (2.78), it follows that if yn
′

has type q,

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
(2.79)

It follows that

inf
yn′∈Yn′

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= inf

q∈Gn′
Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
(2.80)

This proves what we had set out to prove in the connection between source and channel
coding.

Denote

Fn
′
, inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= inf

q∈Gn′
Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})

(2.81)

Relation between the universal capacity of the partially known channel c ∈ CA and the
rate-distortion function RPU (D, inf)
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• Channel coding problem: From (2.57), it follows that rate R is achievable if

[Fn
′
]2
bn′Rc−1 → 1 as n′ →∞ (2.82)

• Source coding problem: From (2.63), it follows that rate R is achievable if

[Fn
′
i ]2

bn′
i
Rc → 0 as n′i →∞ for some n′i = n0ni for some ni →∞ (2.83)

If rate R is achievable for the channel-coding problem, so is any rate < R. Define:

α , sup{R|rate R is achievable for the channel coding problem
by use of the above random-coding method} (2.84)

Then,

lim
ni→∞

(Fni)2bniR
′c−1 < 1 ∀ R′ > α for some sequence ni →∞ (2.85)

Thus,

lim
ni→∞

(Fni)2bniR
′′c−1 = 0 for R′′ > R′ (2.86)

Note that R′′ > R′ > α, but other than that, R′ and R′′ are arbitrary. It follows that
rates ≤ α are achievable for the source coding problem.

Note that the above random-coding method is just one possible method to generate
codes for the channel coding problem. In general, it is possible that there exists another
coding method which performs better than the above random-coding method, that is,
for which rates > α are achievable for the channel coding problem. Thus, what we
can claim from the above argument is that rates < α are achievable for the channel-
coding problem. Thus, Crc(CA) ≥ α. Similarly, the above random-coding method is
just one possible method to generate codes for the source coding problem. In general,
it is possible that there exists another coding method which performs better than the
above random-coding method, that is, for which rates < α are achievable for the source-
coding problem when we use the probability of excess distortion criterion with the inf
definition. That is, RPU (D, inf) ≤ α. Thus, Crc(CA) ≥ α and RPU (D, inf) ≤ α. In
particular, Crc(CA) ≥ RPU (D, inf).

We have assumed that RPU (D, inf) = RPU (D), and thus, Crc(CA) ≥ RPU (D).

Thus, by use of encoder-decoder < En
′
, Fn

′
>∞1 , rate R is universally and reliably

achievable over the unknown channel c ∈ CA if R < RPU (D). Recall that c ∈ {<
en

′ ◦ kn′ ◦ fn′ >∞1 | < kn
′
>∞1 ∈ A}. It follows that by use of encoder < En

′ ◦ en′ >∞1
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Universal multi-user communication with fidelity criteria 23

Layered reliable communication over A at rates < RX(D)

en′
fn′

En′
Fn′

en′
c fn′

c

k ∈ AMn′
R M̂n′

R

Us,n′
Is,n′

reliable communication at rates < RP
U(D) for all k ∈ A

• e′n: Generate 2nR codewords i.i.d. X . This is the codebook.

f ′n: Suppose yn is received. If ∃ unique xn in codebook such that xn is pX−
typical, and

1
n
dn(xn, yn) ≤ D, declare xn is transmitted, else declare error

• Xs,n, the input to en, has the same distribution as Xn, and thus, the same
distribution, as in the original architecture. Superscript s stands for “simulated”.

• We do not need to know the channel transition probability, nor do we need to know
en, fn, in order to construct e′n, f ′n for reliable communication. In particular, this
is a universal construction

• Reliable communication at rates < RX(D) is not possible in general if random-coding
is not permitted

Figure 2.8. Universal reliable communication over the partially known channel k ∈ A

and decoder < fn
′ ◦ Fn′ >∞1 , rates R < RPU (D) are universally and reliably achievable

over the partially known channel k ∈ A.

Next, we want to see the resource consumption of the architecture for reliable commu-
nication.

Let the block length be n′. The original architecture consists of the encoder en
′
, the

partially known channel k and decoder fn
′
. With the input, the uniform X source

Un
′
, in the limit, the uniform X source is communicated to within a distortion D

universally over the partially known channel k. With input Un
′

to the encoder en
′
,

let the distribution of the channel input be denoted by In
′
. In the new architecture,

encoder En
′

and decoder Fn
′

are built “on top of” the already existing architecture in
order to communicate the message source Mn′ universally and reliably over the channel.
The encoder En

′
generates codewords with the same distribution as the source Un

′
.

This is because, the codewords are generated independently and uniformly from the
set Un′ . Let this random variable be denoted by U s,n

′
. The superscript “s” should

be thought of as “simulated”. It follows that in this new architecture for reliable
communication, the input to the channel will be some random variable Is,n

′
which has

the same distribution as In
′
. From comments in Subsections 2.6.7 and 2.7.6, it follows

that the new architecture, consisting of the encoder < En
′ ◦ en′ >∞1 , partially known

channel k, and decoder < fn
′ ◦Fn′ >∞1 , when used to communicate the message source

< Mn′ >∞1 , consumes the same system resources as when the original architecture
consisting of the encoder < en

′
>∞1 , the partially known channel k, and decoder <

fn
′
>∞1 is used to communicate the uniform X source. See Figure 2.8. The common

randomness input exists but has been omitted in the figure.

This finishes Step 1. We use this to prove Step 2.

Proof of Step 2 in order to prove Theorem 2.2

Let the partially known channel k be capable of universally communicating the uniform
X source to within a distortion D. This is accomplished with the help of an encoder-
decoder < en

′
, fn

′
>∞1 . From the above argument of Step 1, it follows that with the help
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of encoder < en
′
c >∞1 =< En

′ ◦en′ >∞1 and decoder < fn
′

c >∞1 =< fn
′ ◦Fn′ >∞1 , universal

reliable communication can be accomplished over the channel k at rates < RPU (D) by
use of the same system resources as in the original architecture. In other words, the
universal capacity of the partially known channel k is ≥ RPU (D).

Assume that the universal capacity of k is strictly greater than RPU (D). It now follows
that by source-compression followed by universal reliable communication, the uniformX
source can be communicated universally over the partially known channel k to within a
distortion D. A rough argument is the following: Take the uniform X source. Compress
it using a source-encoder < en

′
s >∞1 to within a probability of excess distortion D.

The output is a rate RPU (D) message source (this is not entirely precise and we are
omitting some εs and δs). This rate RPU (D) message source can now be communicated
universally and reliably over the partially known channel k with the help of channel
encoder < en

′
c >∞1 =< En

′ ◦ en′ >∞1 and channel decoder < fn
′

c >∞1 =< Fn
′ ◦ fn′ >∞1 .

Finally, the output of the channel-decoder is source-decoded using decoder < fn
′

s >∞1 .
End to end, the uniform X source is universally communicated to within a distortion D
over the partially known channel k, digitally. The input to the channel has distribution
Is,n

′
when block length is n′ as described in Step 1 and thus, this source-channel based

scheme consumes the same system resources.

A precise argument is the following:

We said above that the universal capacity of the partially known channel k is ≥ RPU (D).
Assume that the universal capacity is strictly > RPU (D). Let the universal capacity be
RPU (D) + δ, δ > 0.

Let ε = δ
2 . By the definition ofRPU (D), it follows that there exists a rateRPU (D)+ε source

code < en
′
s , f

n′
s >∞1 which compresses the uniform X source to within a probability of

excess distortion D.

Let the block length be n′.

The action of en
′
s on Un

′
produces an output random variable Mn′

R on the setMn′
R . The

set Mn′
R is

Mn′
R = {1, 2, . . . , 2bn′(RPU (D)+ε)c} (2.87)

Since the universal capacity of k ∈ A is strictly greater than RPU (D) + ε by assumption,
the message Mn′

R can be universally and reliably communicated over the partially known
channel k in the limit as n → ∞. Finally, the source is re-constructed by using the
source decoder fn

′
s .

See Figure 2.9. The common randomness input exists but it has been omitted in the
figure, but it exists.

For every ε > 0, ∃n′ε such that when the block length is > n′εn′ , for all k ∈ A, Pr(M̂n′
R 6=
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Universal multi-user communication with fidelity criteria 24

The answer: making an arbitrary architecture digital

en′
fn′

En′
Fn′

k ∈ AUn′
Y n′Us,n′

Is,n′

communication of uniform X source to within a distortion D
universally over the partially known channel k

en′
s fn′

s

digital
link

digital encoder digital decoder

• Optimality of digital communication for universal rate-distortion communication: If
random-coding is permitted, in order to communicate i.i.d. X source to within a
distortion D over the channel set A, it is sufficient to consider architectures which
first compress the source X to within a distortion D and this is followed by universal
reliable communication over the channel set A

• Delay in the digital architecture might be larger

• Can be generalized to stationary ergodic sources

• The above construction should hold for many non-additive distortion measures also

Figure 2.9. Converting an arbitrary architecture for communicating the uniform X source to within
a distortion D universally over the partially known k, into a digital architecture

Mn′
R ) ≤ ε. It follows that

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D

)
< ωn′ + ε, if n′ > n′ε,∀k ∈ A (2.88)

ε > 0 is arbitrary, and thus, it follows that end-to-end, in this separation based ar-
chitecture, the uniform X source is communicated universally and reliably to within a
distortion level D over the partially known channel k.

The input to the channel has distribution Is,n when block length is n as described in
Step 1 and thus, this source-channel based scheme consumes the same system resources
like energy and bandwidth.

This completes the argument.

Note that we assumed that the universal capacity of the partially known channel k is
strictly > RPU (D), whereas from Step 1, it only follows that the universal capacity of the
partially known channel k is ≥ RPU (D). It is unclear what will happen if the capacity
of the partially known channel k is precisely RPU (D). This “tension” of what happens if
the capacity is precisely RPU (D) is usual in information theory.

Note 2.39 (Time delays). Note that the definition of capability of universal commu-
nication of the uniform X source over a set of channels A requires the existence of
some sequence ω =< ωn′ >

∞
1 , ωn′ → 0 as n′ → ∞, such that end-to-end, over the

composition of the encoder, channel and decoder,

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D

)
≤ ωn′∀k ∈ A (2.89)
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In the separation based scheme for communication of i.i.d. X source to within a dis-
tortion level D over the set of channels A,

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D

)
≤ ωn′ + ε∀n′ > n′ε (2.90)

Note that ε > 0 can be chosen arbitrarily. Thus, the error sequence is some other
ω′ =< ω′n

′
>∞1 . On a physical level, this translates into saying that for a particular

probability of excess distortion requirement, the delay (the block length) required might
be different, and in particular, larger in the digital separation architecture compared to
the analog architecture. For this reason, we require the assumption stated in Section
2.2, that delays do not matter. As we said in Section 2.2. if delays did concern us,
separation does not hold.

� 2.14.10 Discussions

A note on the proof technique and a comparison with Shannon’s proof: using achievability

techniques to prove a converse

Our proof, as the usual proofs of source-channel separation go, consist of two steps
which have been stated before and are stated incompletely here:

1. If there exists some scheme in order to communicate the uniform X source univer-
sally over the partially known channel k to within a distortion D under the prob-
ability of excess distortion criterion, then the universal capacity of k is ≥ RPU (D)

2. If the universal capacity of a partially known channel k is > RPU (D), then universal
communication of the uniform X source to within a probability of excess distortion
D can be accomplished over the channel k by source compression followed universal
reliable communication

We need to make sure that the system resource consumption is the same in both steps.
From these two steps, the universal source-channel separation theorem follows.

These two steps traditionally are called converse and achievability, respectively. Step 1
is called converse because its traditional proof due to Shannon [Sha59] uses the usual
converse techniques of equalities and inequalities related entropies and mutual informa-
tions. This proof of Shannon is discussed in brief in Subsection 5.7.4. Step 2 is usually
achievability. Also, usually, Step 2 is Step 1, and Step 1 is Step 2. However, we will
stick to our ordering.

For us, both Step 1 and Step 2 are achievability. Step 1 is achievability for us because we
demonstrate a coding scheme with which communication at rates < RPU (D) is possible
over the partially known channel k. We use a traditional random-coding argument for
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Step 1. We are thus using achievability methods to prove a result which is traditionally
viewed as converse. In my opinion, this lends more insight into the nature of separation.

Further comparison of Shannon’s and our proof is made in Subsection 5.7.4.

A further note on the proof technique: layering “on top of” the original architecture

Note that given an original analog scheme consisting of encoder < en
′
>∞1 and decoder

< fn
′
>∞1 for universal communication to within a distortion D over the partially

known channel k, the digital scheme that we construct is built “on top of” this scheme.
The digital encoder consists of the source encoder < en

′
s >∞1 , the channel encoder

< en
′
c >∞1 =< En

′ ◦ en′ >∞1 . Note that the channel encoder < En
′ ◦ en′ >∞1 is layered

on top of the original encoder < en
′
>∞1 . The digital decoder consists of the channel

decoder < fn
′

c >∞1 =< fn
′ ◦ Fn′ >∞1 and the source decoder < fn

′
s >∞1 . Note that the

channel decoder < fn
′ ◦ Fn′ >∞1 is layered on top of the original decoder < fn

′
>∞1 .

The original scheme is thus, converted into a digital scheme by introduction of a digital
link. This also lends insight into how separation holds

Also, this should also be thought of as a proof technique, and we are illustrating just
one possible digital scheme. There might be other ways of constructing digital schemes
which accomplish the same goal which might not be layering on top of the original
scheme.

A note on the connection between source coding and channel coding

The main step, in our opinion, in proving Steps 1 and 2 is noting that equality (2.66)
is true. This equality is re-stated below:

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
, if yn

′
has type q

(2.91)

This illustrates the mathematical duality between source and channel coding which
finally leads to separation being true. We believe that this duality can be interpreted
as a covering-packing duality; however, we are unsure. On a more intuitive level, the
duality can also be seen in the parallel random-coding argument for the source-coding
and the channel-coding problems. We discuss this further in Subsection 5.8.1
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Why does separation hold?

In my opinion, fundamentally why separation holds boils down to (2.66), and is repro-
duced below:

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
, if yn

′
has type q

(2.92)

This equation illustrates the connection between the problems of rate of reliable com-
munication and the rate-distortion function, and why reliable communication at rates
< RPU (D) is possible over a partially known channel which is capable of communicating
the uniform X source to within a distortion D. This helps in converting the original
scheme into a digital scheme.

An operational perspective on the optimality of digital communication

The perspective on the optimality of digital communication in this section is operational:
we use only the definition of channel capacity as the maximum rate of reliable commu-
nication and the rate-distortion function as the minimum rate needed to compress a
source to within a certain distortion level. Unlike traditional proofs, for example, the
one in [Sha59], we do not use simplified mathematical expressions, for example, mutual-
information expressions for the channel capacity or the rate-distortion function. As we
said, the proof in this section is not entirely precise. A precise proof, both for the
uniform X source and the i.i.d. X source, are the subject of Chapter 5. We believe
that our operational proof lends more insight into the nature of separation compared
to the traditional proofs.

The operational nature of our proof is discussed in much more detail in Subsection
5.7.4: Chapter 5 is in fact devoted to an operational perspective on the optimality of
digital communication for communication with a fidelity criterion.

� 2.14.11 A note on the technical assumption RP
U (D) = RP

U (D, inf)

We have assumed that the distortion metric is permutation invariant and that, RPU (D) =
RPU (D, inf). We do not know if RPU (D) = RPU (D, inf) is true for an arbitrary permutation
invariant distortion metric. We would like to believe that it is not true for an arbitrary
permutation invariant distortion metric. However, we would also like to believe that
for most “well behaved” permutation invariant distortion metrics, RPU (D) = RPU (D, inf)
should hold.

One kind of permutation invariant distortion metrics for which RPU (D) = RPU (D, inf)
holds is additive distortion metrics, and this proof is carried out in Chapter 5.
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� 2.15 A rigorous proof of the universal source-channel separation theorem
for rate-distortion for i.i.d. X source and additive distortion measure

In this section, we provide a rigorous proof of the source-channel separation theorem
for rate-distortion for the i.i.d. and the distortion measure is additive.

� 2.15.1 A statement of the universal source-channel separation theorem
for rate-distortion for i.i.d. X source and additive distortion metric

Theorem 2.3 (Universal source-channel separation theorem for rate-distortion in the
point-to-point setting for the i.i.d. X Source / optimality of digital communication
for universal communication of the i.i.d. X source with a fidelity criterion). Assuming
random-coding is permitted, in order to communicate the i.i.d. X source over a par-
tially known channel to within a particular distortion level under a an additive distortion
metric, it is sufficient to consider source-channel separation based architectures, that is,
architectures which first compress the i.i.d. X source to within the particular distor-
tion level, followed universal reliable communication over the partially known channel.
There is sufficiency in the sense if there exists some architecture to communicate the
i.i.d. X source to within a certain distortion universally over the partially known chan-
nel, and which consumes certain amount of system resources (for example, energy and
bandwidth), then there exists a separation based scheme to universally communicate the
i.i.d. X to within the same distortion universally over the partially known channel and
which consumes the same or lesser system resources as the original scheme.

� 2.15.2 Steps to prove Theorem 2.3

There are two steps in the proof of Theorem 2.3 They are the same as the steps in the
proof of Theorem 2.2 stated in Subsection 2.14.7 with the following changes:

• Replace the uniform X source with the i.i.d. X source

• Replace permutation invariant distortion metric with additive distortion metric

� 2.15.3 The proof of Theorem 2.3

Proof. Proof of Step 1 in order to prove Theorem 2.3

Let k =< kn >∞1 ∈ A be a partially known channel which is capable of universally
communicating the i.i.d. X source to within a distortion D. Thus, there exist an
encoder-decoder < en, fn >∞1 and a sequence ω =< ωn >∞1 , ωn → 0 as n → ∞
such that the if the input to the composition of the encoder, channel and decoder
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< en ◦ kn ◦ fn >∞1 is i.i.d. X source X =< Xn >∞1 , the output is Y =< Y n >i1 nfty
such that end to end,

Pr
(

1
n
dn(Xn, Y n) > D

)
< ωn∀k ∈ A (2.93)

Consider the partially known abstract channel

c ∈ {< en ◦ kn ◦ fn >∞1 |k =< kn >∞1 ∈ A} , CA (2.94)

We will prove that the universal capacity of the partially known channel c ∈ CA is
≥ RPX(D), and this can be accomplished by an encoder-decoder < En, Fn >∞1 such
that for universal reliable communication at rates R < RPX(D), the point-to-point
communication system < En ◦ cn ◦ Fn >∞1 consumes the same system resources (irre-
spective of the particular c ∈ A) as the original point-to-point communication system
< en ◦ kn ◦ fn >∞1 when used to communicate the i.i.d. X source universally to within
a distortion D.

From this it will follow that the universal capacity of the partially known channel k is
≥ RPX(D), and this universal reliable communication at rates < RPX(D) : in fact, this
communication can be accomplished with the help of encoder < enc >

∞
1 =< En ◦ en >∞1

and decoder < fnc >∞1 =< fn ◦ Fn >∞1 . The point-to-point communication system
< enc ◦ kn ◦ fnc >∞1 when used for reliable communication at rates < RPX(D) consumes
the same system resources as the original point-to-point communication system < en ◦
kn ◦ fn >∞1 when used to communicate the i.i.d. X source to within a distortion D.

We proceed to prove that the universal capacity of the partially known channel c ∈ CA
is ≥ RPX(D).

We do this by use of a random-coding argument. First, we prove that Crc(CA) is
≥ RIX(D), where RIX(D) is defined in Definition 2.30.

First, we recall some notation concerning the method of types.
Notation 2.9 (The type of xn, pxn). Let xn ∈ X n. pxn denotes the empirical distribution
of xn and is called the type of xn. That is, for x ∈ X ,

pxn(x) ,
number of x in the sequence xn

n
(2.95)

Notation 2.10 (Typical set, T (p, ε)). Let p be a probability distribution on X . Let
ε ≥ 0. The sequence xn is said to belong to T (p, ε), and such an xn is said to be ε p
typical if

∑

x∈X
|pxn(x)− p(x)| ≤ ε (2.96)

Codebook generation: Generate 2bnRc codewords i.i.d. pX . This is the code book Kn.
As usual, the superscript n in Kn denotes the block length. This is the encoder En.
Note that this is a random encoder
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Note 2.40 (Note on code book generation method). For a channel ∈ CA, a pX typical
sequence is distorted, with high probability, to within an average distortion D. In
general, the behavior of the channel on a nonpX typical sequence can be arbitrary. In
other words, the belonging of a channel to CA is independent of the behavior of the
channel on nonpX typical sequences. When thinking of the action of CA as an attacker,
the attacker can act on nonpX typical sequences arbibrarily: for example, produce a
random output sequence. For this reason, the codebook should contain sequences which
are pX typical, else, the attacker will destroy the sequence. For this reason, we use i.i.d.
pX source generation. Another way of thinking about i.i.d. pX code book generation is
the following: we only have knowledge of the behavior of the attacker when the source
is i.i.d. X. Thus, it makes sense to use a code book which is i.i.d. X. The encoder can
be thought of as simulating the i.i.d. X source.

Definition 2.36 (Joint typicality). (xn, yn), xn ∈ X n, yn ∈ Yn are said to be ε jointly
typical if

1. xn is ε pX typical, that is, xn ∈ T (pX , ε)

2.
1
n
dn(xn, yn) ≤ D

Note 2.41 (A note on the definition of joint typicality). In information theory, typical
set are defined in a way so that the set of typical sequences have high probability.
Since the input to the channel is i.i.d. X, the definition of joint typicality requires that
pxn ∈ T (pX , ε). When the input to the channel is i.i.d. X, with high probability, the
average distortion between the channel input and output ≤ D. For this reason, we

require that
1
n
dn(xn, yn) ≤ D. We do not have any other information about the action

of the channel. In the usual information theory literature, the channel is a discrete
memoryless channel. In that case, the definition of joint typicality requires that the
conditional type of the output yn given the input xn be close to the channel transition
probability. However, our description of the channel is not in terms of its transition
probability. Our description of the channel is in terms of the distortion that it produces
on pX typical sequences. Hence, the above definition of joint typicality.

Decoding : Let yn be received as the output of the channel. If ∃ unique xn ∈ the code
book Kn such that (xn, yn) ε-jointly typical, declare that xn is transmitted, else declare
error. This is the decoder Fn. Note that the encoder-decoder En, Fn is random.
Note 2.42 (A note on the decoding process). The decoding rule is the usual joint typi-
cality decoding rule. It can potentially be thought of as a variant of minimum distance
decoding.

Note that the encoding and decoding scheme are independent of the particular channel
∈ CA.

In what follows,
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• xn ∈ Kn denotes the transmitted codeword. xn is a realization of the random
variable Xn.

• yn denotes the received sequence (output of the channel). yn is a realization of
the random variable Yn. Y n is the output of the channel when the input is Xn.

• zn ∈ Kn denotes a codeword which is not transmitted. zn is a realization of the
random variable Zn. Zn is i.i.d. X and by the codebook construction, Zn is
independent of Xn. Since, Y n is the output of the channel when the input is Xn,
Zn and Y n are also independent.

Next, error analysis is carried out.

The error analysis is carried out given a particular message mn needs to be communi-
cated. That is, we calculate

Pr(error | message mn needs to be communicated) = Pr(M̂n
R 6= Mn

R | Mn
R = mn)

(2.97)

Since the random code book is symmetric over all messages, this error probability is
independent of the particular message mn. It follows that

Pr(error) = Pr(M̂n
R 6= Mn

R) (2.98)

is in fact equal to

Pr(M̂n
R 6= Mn

R | Mn
R = mn) (2.99)

By the notation described above, xn denotes the encoding of mn. Since the code book
is random, xn is a realization of Xn. zn denotes the encoding corresponding to another
message m′n.

The error events given that the message mn is transmitted can be decomposed into two
(not necessarily disjoint) events:

1. En1 : (Xn, Y n) is not ε jointly typical

2. En2 : ∃zn such that (Zn, Y n) is ε jointly typical. That is,

(a) ∃zn such that pzn ∈ T (pX , ε) and

(b)
1
n
dn(Zn, Y n) ≤ D

Pr(M̂n
R 6= Mn

R | Mn
R = mn) = Pr(En1 ∪ En2 )
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≤ Pr(En1 ) + Pr(En2 ) (2.100)

Since, as discussed before,

Pr(M̂n
R 6= Mn

R) = Pr(M̂n
R 6= Mn

R | Mn
R = mn), (2.101)

it follows that

Pr(M̂n
R 6= Mn

R) ≤ Pr(En1 ) + Pr(En2 ) (2.102)

Note that the encoding and decoding scheme is independent of the particular c ∈ CA.
However, the probabilities are not. We would like to make statements concerning
probabilities which hold irrespective of the c ∈ A. Thus, rate R is universally achievable
over the partially known abstract channel c ∈ CA if

Pr(M̂n
R 6= Mn

R)→ 0 asn→∞ (2.103)

at a uniform rate over all channels ∈ CA.

It follows that rate R is achievable if

Pr(En1 )→ 0 as n→∞ (2.104)

at a uniform rate over all channels ∈ CA, and

Pr(En2 )→ 0 as n→∞ (2.105)

at a uniform rate over all channels ∈ CA.

We now proceed to bound Pr(En1 ) and Pr(En2 )

By definition of a channel ∈ CA and by the way the code book is generated,

Pr(En1 ) ≤ ωn,∀c ∈ CA (2.106)

Pr(En2 ) requires a more elaborate calculation. A bound on Pr(En2 ) is calculated, next.
This is done by a method of types calculation, a-la [CK97].

For simplifying notation, let the sets X and Y be

X = {1, 2, . . . , |X |}, and
Y = {1, 2, . . . , |Y|} (2.107)

In what follows, it will be helpful to remember that q(·) and q·|·(·|·) will denote probabil-
ity measures and transition probability kernels respectively of observed types (empirical
distributions), and p(·) will denote probability measures of transmitted types.
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Figure 2.10. The sorted received sequence yn and the correspondingly shuffled codeword zn illustrat-
ing the relevant types

.......................... ...............................

.......................... ...............................

Blown up

nqY (1) nqY (j) nqY (|Y|)

nqY (j)qZ|Y (1|j) nqY (j)qZ|Y (i|j) nqY (j)qZ|Y (|X ||j)

1

Recall that the received sequence is yn. Let the type of yn be qY . That is, ∀j ∈ Y, the
number of j occurring in yn is nqY (j).

Sort the output yn to place all the j ∈ Y together, and correspondingly shuffle the
positions in the code book’s codewords. This leads to no change in distortion between
shuffled codewords and the sorted received sequence yn, and thus, will not effect the
analysis of Pr(En2 ). The sorting and shuffling is done, only to aid the reader in this error
calculation: the shuffling will make it easier to give a pictorial representation, Figure
2.10, which is described, and alluded to, in the next paragraph.

Recall that zn is a nontransmitted codeword. Over the chunk of length nqY (j), let the
type of the corresponding entries of zn be qX|Y (·|j). In other words, over the chunk of
length nqY (j), the number of i in zn is nqY (j)qZ|Y (i|j). See Figure 2.10.

For now, the type of yn, pyn is assumed to be qY . Later, we will take a bound over all
possible qY .

For error event En2 , (zn, yn) are ε jointly typical. Mathematically,

1. Denote
∑

j∈Y
qY (j)qX|Y (i|j) as qZ(i). qZ is a probability distribution on X . By the

definition of joint typicality, zn is ε pX typical if

qZ ∈ T (pX , ε) (2.108)

2. Denote qZY (i, j) , qY (j)qZ|Y (i|j). qZY is a probability distribution on X × Y re-
sulting from the probability distribution qY ∈ P(Y) and the transition probability

kernel qZ|Y : Y → P(X ). Thus,
1
n
dn(zn, yn) ≤ D can be restated as

∑

i∈X ,j∈Y
qZY (i, j)d(i, j) ≤ D (2.109)

Recall that Zn is generated i.i.d. pX , and is independent of yn. The probability that
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over the chunk of length nqY (j), the corresponding entries of Zn have type qZ|Y (·|j) is

≤ 2−nqY (j)D(qZ|Y (·|j)||pX) (2.110)

where D(·||·) is the Kullback-Leibler divergence and defined for probability distributions
p and q where p, q ∈ P(X ) as

D(p||q) ,
∑

x∈X
p(x) log

p(x)
q(x)

(2.111)

Note that we are using the same alphabet D for the distortion D and the Kullback-
Leibler divergence D(·||·). It will be clear from context, which one is being referred
to.

Thus, the probability that over the whole block of length n, in the chunks nqY (j), the
corresponding entries of zn have type qX|Y (·|j) for all j

≤
∏

j∈Y
2−nqY (j)D(qZ|Y (·|j)||pX) (2.112)

= 2−n
∑

j∈Y qY (j)D(qZ|Y (·|j||pX) (2.113)

= 2−nD(qZY ||pXqY ) (2.114)

It would be helpful to note the positions of where p occur and where q occur, in the
above expression.

To bound the probability that zn is at a distortion ≤ D from yn, the above probability
needs to be summed over all possible types qZ|Y (·|j), 1 ≤ j ≤ |Y| such that (2.108) and
(2.109) are satisfied.

The number of conditional types qZ|Y (·|j) is ≤ (n + 1)|X ||Y|. Recall that number of
nontransmitted codewords < 2bnRc. Putting all this together and using the union
bound,

Pr(En2 | pyn = qY ) (2.115)

≤
∑

qZY ∈S
2bnRc2−nD(qZY ||pXqY ) (2.116)

≤ (n+ 1)|X ||Y|2bnRc2−n infqZY ∈S D(qZY ||pXqY ) (2.117)

where S denotes the set of types satisfying (2.108) and (2.109), along with the type of
yn, which, for now, has been fixed to qY :

S =




qZY :

qZ ∈ pX ± ε∑
i∈X ,j∈Y qZY (i, j)d(i, j) ≤ D

qY fixed





(2.118)
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The type of the received sequence yn is arbitrary. In other words, qY is arbitrary. Thus,

Pr(En2 ) ≤ (n+ 1)|X ||Y|2bnRc2−n infqZY ∈T D(qZY ||pXqY ) (2.119)

where the set T is

T =

{
qZY :

qZ ∈ pX ± ε∑
i∈X ,j∈Y qZY (i, j)d(i, j) ≤ D

}
(2.120)

The set T is the union of the S over all possible qY . Thus, in in the bound (2.119), qY
is allowed to be arbitrary.

It follows that

Pr(En1 ) + Pr(En2 ) ≤ ωn + (n+ 1)|X ||Y|2bnRc2−n infqZY ∈T D(qZY ||pXqY ) (2.121)

From previous discussions, it follows that

Pr(error = Pr(M̂n
R 6= Mn

R) ≤ Pr(En1 ) + Pr(En2 ) ≤
ωn + (n+ 1)|X ||Y|2bnRc2−n infqZY ∈T D(qZY ||pXqY ) (2.122)

By definition, Pr(En1 ) = ωn → 0 as n → ∞ and ωn is independent of the particular
channel ∈ CA.

Note that the bound

(n+ 1)|X ||Y|2bnRc2−n infqZY ∈T D(qZY ||pXqY ), (2.123)

on Pr(En2 ) is independent of the particular channel ∈ CA.

Also, note that (n + 1)|X |(|Y|) is a polynomial. Thus, Pr(En2 ) → 0 as n → ∞ at a rate
independent of the particular channel ∈ CA if

R < inf
qZY ∈T

D(qZY ||pXqY ) (2.124)

It follows that Pr(error)→ 0 as n→∞ at a rate which is independent of the particular
channel ∈ CA for rates

R < inf
qZY ∈T

D(qZY ||pXqY ) (2.125)

(2.126)

Thus, rates R < infqZY ∈T D(qZY ||pXqY ) are universally achievable over the set of chan-
nels CA.
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Note that

D(qZY ||pXqY ) = D(qZ ||pX) +D(qZY ||qZqY ) ≥ D(qZY ||qZqY ) (2.127)

Thus, all rates R for which

R < inf
qZY ∈T

D(qZY ||qZqY ) = inf
qZY ∈T

I(Z;Y ) (2.128)

are universally achievable.

Recall (2.30), the definition of the information theoretic rate-distortion function, RIX(D).
It follows that

inf
qZY ∈T

I(Z;Y ) = inf
Z∈T (pX ,ε)

RIZ(D) (2.129)

Thus, rates

R < inf
Z∈T (pX ,ε)

RIZ(D) (2.130)

are universally achievable.

ε > 0 is arbitrary and the information theoretic rate-distortion function is continuous. It
follows that rates R < RIX(D) are achievable. In general, it is potentially possible that
with the use of other encoding-decoding schemes, rates ≥ RIX(D) are pseudo universally
achievable. Thus,

Crc(CA) ≥ RIX(D) (2.131)

The goal is to prove that Crc(CA) ≥ RPX(D). To this end, we prove that RPX(D) =
RIX(D). In fact, we will also end up proving that RPX(D) = REX(D) and thus, in effect,
we will prove that Crc(CA) ≥ RPX(D) = REX(D).

We proceed to prove that RPX(D) = REX(D) = RIX(D)

Proof that REX(D) = RIX(D) is there in [Sha59].

Next, note that REX(D) ≤ RPX(D). This is because of the following:

The idea is that the probability of excess distortion criterion is “stronger” than the
expected probability of error criterion. That is, if a particular probability of excess dis-
tortion level is achievable for some source, the same expected distortion is also achievable
by the same source code for the same source. A rigorous argument is the following:

Define:

Dmax , max
xinX ,y∈Y

d(x, y) (2.132)
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Let probability of excess distortion D be achievable with source code s =< sn >∞1 .
Then, for the source code s,

Pr
[

1
n
dn(Xn, Y n) > D

]
= εn → 0 as n→∞ (2.133)

It follows from the above equation that

E

[
1
n
dn(Xn, Y n)

]
≤ (1− εn)D + εnDmax → D as n→∞ (2.134)

Thus, the expected distortion D is achievable by use of the same source code s, and in
particular, by a source code of the same rate. It follows that REX(D) ≤ RPX(D).

By interpreting the definitions in Chapter 2.2 in [CK97] properly, one can see that
they are in fact using the probability of excess distortion criterion. From their proofs,
and by some additional arguments, it follows that RPX(D) ≤ RIX(D). These additional
arguments are related to taking lim inf instead of lim. We omit these arguments. They
are similar in spirit to the ones in Chapter 5 .

We have proved or cited references where the following are proved:

1. REX(D) = RIX(D)

2. REX(D) ≤ RPX(D)

3. RPX(D) ≤ RIX(D)

It thus follows that REX(D) = RPX(D) = RIX(D).

Back to finishing Step 1, it follows that Crc(CA) ≥ RIX(D) = RPX(D) = REX(D), and in
particular, Crc(CA) ≥ RPX(D).

Thus, by use of encoder-decoder < En, Fn >∞1 , rate R is universally and reliably
achievable over the unknown channel c ∈ CA if R < RPU (D). Recall that c ∈ {<
en ◦ kn ◦ fn >∞1 | < kn >∞1 ∈ A}. It follows that by use of encoder < En ◦ en >∞1 and
decoder < fn ◦ Fn >∞1 , rates R < RPX(D) are universally and reliably achievable over
the partially known channel k ∈ A.

Next, we want to see the resource consumption of the architecture for reliable commu-
nication.

Let the block length be n. The original architecture consists of the encoder en, the
partially known channel k and decoder fn. With the input, the uniform X source
Un, in the limit, the uniform X source is communicated to within a distortion D
universally over the partially known channel k. With input Xn to the encoder en,
let the distribution of the channel input be denoted by In. In the new architecture,
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encoder En and decoder Fn are built “on top of” the already existing architecture in
order to communicate the message source Mn universally and reliably over the channel.
The encoder En generates codewords with the same distribution as the source Xn.
This is because, the codewords are generated independently and uniformly from the
set X n. Let this random variable be denoted by Xs,n. The superscript “s” should
be thought of as “simulated”. It follows that in this new architecture for reliable
communication, the input to the channel will be some random variable Is,n which has
the same distribution as In. From the discussion in Subsection 2.6.7, it follows that the
new architecture, consisting of the encoder < En ◦ en >∞1 , partially known channel k,
and decoder < fn ◦Fn >∞1 , when used to communicate the message source < Mn

R >
∞
1 ,

consumes the same system resources as when the original architecture consisting of the
encoder < en >∞1 , the partially known channel k, and decoder < fn >∞1 is used to
communicate the uniform X source.

See Figure 2.8 with the uniform X source replaced with the i.i.d X source and the
rate-distortion function RPU (D) replaced with the rate-distortion function RPX(D) for
the i.i.d. X source.

This finishes Step 1. We use this to prove Step 2.

Proof of Step 2 to prove Theorem 2.3

Let the partially known channel k be capable of universally communicating the i.i.d.
X source to within a distortion D. This is accomplished with the help of an encoder-
decoder < en, fn >∞1 . From the above argument of Step 1, it follows that with the help
of encoder-decoder < En ◦ en, fn ◦ Fn >∞1 , universal reliable communication can be
accomplished over the partially known channel k at rates < RPU (D) by use of the same
system resources as in the original architecture. In other words, the universal capacity
of the partially known channel k ∈ A is ≥ RPX(D).

It now follows that by source-compression followed by universal reliable communication,
the i.i.d. X source can be communicated universally over the partially known channel k
to within a distortion D. A rough argument is the following: Take the i.i.d. X source.
Compress it using a source-encoder < ens >

∞
1 to within a probability of excess distortion

D. The output is a rate RPX(D) message source. This rate RPX(D) message source can
now be communicated universally and reliably over the partially known channel k with
the help of channel encoder < enc >

∞
1 ,< En◦en >∞1 and channel decoder < Fn◦fn >∞1 .

Finally, the output of the channel-decoder is source-decoded using decoder < fns >∞1 .
End to end, the i.i.d. X source is universally and communicated to within a distortion
D over the partially known channel k, digitally.

A rigorous argument for the above source-coding followed by channel coding is the
following:

We said above that the universal capacity of the partially known channel k is ≥ RPX(D).
Assume that the universal capacity is strictly > RPX(D). Let the universal capacity be
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RPX(D) + δ, δ > 0.

Let ε = δ
2 . By the definition of RPX(D), it follows that there exists a rate RPX(D) + ε

source code < ens , f
n
s >

∞
1 which compresses the i.i.d. X source to within a probability

of excess distortion D.

Let the block length be n.

The action of ens on Xn produces an output random variable Mn
R on the set Mn

R. The
set Mn

R is

Mn
R = {1, 2, . . . , 2bn(RPX(D)+ε)c} (2.135)

Since the universal capacity of k ∈ A is strictly greater than RPX(D) + ε by assumption,
the message Mn

R can be universally and reliably communicated over the partially known
channel k in the limit as n → ∞. Finally, the source is re-constructed by using the
source decoder fns .

See Figure 2.9 with the uniform X source replaced with the i.i.d X source.

For every ε > 0, ∃nε such that when the block length is > nεn , for all k ∈ A, Pr(M̂n
R 6=

Mn
R) ≤ ε. It follows that

Pr
(

1
n
dn(Xn, Y n) > D

)
< ωn + ε, if n > nε,∀k ∈ A (2.136)

ε > 0 is arbitrary, and thus, it follows that end-to-end, in this separation based archi-
tecture, the i.i.d. X source is communicated universally to within a distortion level D
over the partially known channel k.

The input to the channel has distribution Is,n when block length is n as described in
Step 1 and thus, this source-channel based scheme consumes the same system resources.

Note that we assumed that the universal capacity of the partially known channel k is
strictly > RPX(D), whereas from Step 1, it only follows that the universal capacity of the
partially known channel k is ≥ RPX(D). It is unclear what will happen if the capacity
of the partially known channel k is precisely RPX(D). This “tension” of what happens
if the capacity is precisely RPX(D) is usual in information theory.

This completes the argument, and thus, rigorously proves the universal source-channel
separation theorem for rate-distortion when the source is i.i.d. and the distortion metric
is additive.
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� 2.16 A universal source-channel separation theorem for rate-distortion for
permutation invariant distortion measures: discussion and high-level
view

We do not know how to generalize our results to arbitrary distortion measures.

However, we do know, on a high level, how to generalize our results to certain permuta-
tion invariant distortion measures. This follows because the proof of Section 2.14 holds
for permutation invariant distortion measures, though it required a technical condition
on the rate-distortion function .

Also, the proof calculations of Section 2.15 for the i.i.d. X source, to a large extent,
hold for permutation invariant distortion measures. In particular, the method of types
calculations works exactly, for permutation invariant distortion measures. This is be-
cause for permutation invariant distortion measures, rearranging the sequences xn and
yn by the same rearrangement does not change the distortion. Still, some technical
conditions might be required on the distortion function. We have not worked out these
details.

I do not think the results can be generalized to arbitrary distortion measures (which
are not necessarily permutation invariant).

High level ideas for generalization to stationary ergodic sources and permutation in-
variant distortion measures are discussed in Section 2.18.

� 2.17 Discussion: are random codes needed? And if yes, can random-
coding be practically realized?

� 2.17.1 Are random codes needed?

In Shannon’s random-coding argument, [Sha48], random-coding is a proof technique.
Given a random code to achieve a particular rate of reliable communication, there exists
a deterministic code to. For us, random-coding is not just a proof technique: random
codes are in fact needed. The difference in our situation and the situation in [Sha48]
is that we have a partially known channel whereas Shannon assumed a fully known
channel.

On a high level, with the average probability of error criterion this happens for the
following reason: given a random code which achieves a particular error, one of the
deterministic codes that “make up” the random code will have an error which is less
than or equal to that produced by the random code. It follows that restriction to
deterministic codes is sufficient. For the maximum probability of error criterion that
we use, the usual argument which we omit has to go through throwing away half the
codewords (note that throwing away half the codewords does not change the rate).
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An example can be provided for the case of partially known channel k ∈ A which is
capable of communicating i.i.d. X source to within a distortion D, for which universal
capacity with random-coding is RPX(D) > 0 but universal capacity without random-
coding is zero. We omit this example here; but one can be constructed based on ideas in
[AKM]. From this example, it in fact follows that a universal source-channel separation
theorem for rate-distortion does not hold if random-coding is not permitted.

� 2.17.2 How can random codes be generated in practice?

In practice, perfect randomness is not needed. What is needed is pseudo randomness.
Pseudo randomness is used, for example, in PN sequences in CDMA. Pseudo random-
ness can thus be generated with the help of a seed.

We believe that the requirement of random codes (or pseudo-random codes) is not a
hinderance in practical implementation.

� 2.18 Discussion: Continuous time sources

The whole discussion in this chapter has rested on sources and channels evolving in
discrete time. In our framework, continuous time evolution of channels is easy to deal
with and this is one of the points discussed in the next section.

In this section, we discuss the problem of how does one deal with continuous time source
evolution in this framework. This view also generalizes to general stationary ergodic
sources (in fact, i.i.d. sources in continuous time do not make physical sense: the only
way to model them would be as some kind of white noise).

One incorrect way which of thinking about generalizing to continuous time sources is
the following:

Assume that the source is band-limited. The source can then be sampled by the sam-
pling theorem or by using some other orthonormal expansion as discussed, for example,
in Gallager’s book [Gal08], the corresponding course notes [Gala] or the video lectures
[Galb]. This makes the source discrete.

This approach works for the problem of reliable communication. However, this ap-
proach does not work for communication with a fidelity criterion. This is because if the
distortion measure for the continuous source is additive (instead of a summation, this
would be an integral) or permutation invariant, it is not necessary that the correspond-
ing distortion measure for the sampled source is additive or permutation invariant.
Unless the distortion measure is, for example, mean-squared distortion in which case,
by Parseval’s theorem, the distortion measure for the discretized source will also be
additive. In general, this is not the case.
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We believe that discretization procedures of the form of sampling will not work. For
continuous time sources, we need to carry out arguments either in the continuous time
domain, or discretize the time very finely and then take a limit as the discretization
blocks become smaller and smaller. [PG77], for example, proves the source-coding the-
orem for compression with a fidelity criterion for quite general continuous time sources,
and it might be possible, then, to use this result to prove a source-channel separation
theorem for communication with a fidelity criterion.

We offer another approach for generalization to continuous time source evolution. We
outline this approach, below.

The fundamental reason, why source-channel separation holds is, as we discussed before
in Section 2.14, is that (2.66) holds, and this equation is reproduced below.

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
, if yn

′
has type q

(2.137)

We want to see, how this will generalize to stationary ergodic sources, both in discrete
time or continuous time. The discussion will be rough.

Assume that time runs from −∞ to +∞.

As Shannon says in [Sha48], “If an ensemble is ergodic we may say roughly that each
function in the set is typical of the ensemble.” Thus, all realizations of the ensemble
look the same under time permutations. Whatever behavior happens in one realization
in certain time interval, a similar behavior will be observed in all other realizations
in different time intervals. In other words, after permutation, all realizations of the
ensemble look the same. This is not entirely true, but in spirit, it is.

This is precisely the property needed for (2.137) to be true: the sequences un
′ ∈ Un′ ,

are precisely the same under time permutations, and similarly, the sequences yn
′ ∈ Un′q

are also precisely the same under time permutations.

In the continuous time, stationary ergodic source case, still, the codewords can be
generated from a stationary ergodic process. Thus, the equivalent of (2.137) will be
true, the entire argument. Of course, this needs to be made precise, and things get
complicated when the time is finite. We have not worked out the details ourselves.
However, we do believe that this high level idea can be made precise.

� 2.19 A discussion of the assumptions described in Section 2.2

In the light of our proof of the universal source-channel separation theorem for rate-
distortion, we want to further comment on the assumptions of Section 2.2.

The assumptions in Section 2.2 were divided into various categories:
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The basic assumptions of communications theory:

• The assumption that delays do not matter: We use this assumption crucially. In
the digital scheme, the delay (or the block length) required for a particular error
for the probability of excess distortion beyond D might be larger than in the
original architecture. This is elaborated on, in Discussion 2.39. As stated in this
discussion, if delays matter, digital architectures are not optimal

• The assumptions that the source can be modeled as a stationary ergodic random
process: This is the usual assumption in information theory, and it is difficult
to prove results for sources which are not stationary ergodic. Such results exist,
however, for example, see [VVS95]. However, we do require this assumption.
Further comments were made in Subsection 2.4.3, on this assumption

• The assumption that the channel can be modeled as a partially known transition
probability: This was commented on, in Section 2.5.4. What is interesting, how-
ever, is that we do not require any further assumptions on the channel. The usual
assumption made on the channel is memorylessness, Markoff nature, or more gen-
erally, in Shannon’s words, channels for which “historical influences die away”, a
concept made precise by Gallager and called indecomposability in [Gal68]. We do
not require any further assumptions on the channel because we use the probabil-
ity of excess distortion criterion instead of the expected distortion criterion. The
probability of excess distortion criterion can be thought of as forcefully enforcing
a weak law of large numbers of condition, and that ends up, on an intuitive level,
being the reason that we do not require any further assumptions on the nature of
the transition probability of the channel

• The source can incur distortion, and the distortion can be modeled as a distortion
metric: This is the usual assumption made in information theory.

The following crucial assumptions has been made on the nature of the distortion metric
and the allowability of random-coding:

• The assumption that the distortion metric can be modeled as a permutation in-
variant distortion metric, and that, the distortion criterion is the “probability of
excess distortion” criterion: Many comments have been made on the permuta-
tion invariant distortion metric in the previous sections. We will not repeat here.
However, we wonder if our results can be generalized to more general distortion
metrics, for example, sub-additive distortion metrics as is the case in some of the
information theory literature, see for example, [Han10]. We do not know how to
do this. Our proof technique of Section 2.14 seems to rely crucially on the use of a
permutation invariant distortion metric. Also, to the best of our knowledge, there
is no relation between permutation invariant distortion metrics and sub-additive
distortion metrics; however, it would be good to understand this further.
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• The use of the probability of excess distortion criterion is crucial in the sense that
the universal source-channel separation theorem is not true if we use the expected
distortion criterion instead of the probability of excess distortion criterion. An
example can be constructed similar to the example in [VH94] on the first page of
this paper where it says, “Consider a binary channel where the output codeword
is equal to the transmitted codeword with probability 1

2 . . . ”

Note that this is an example of a “highly nonergodic channel,” and the only exam-
ples that we know of, belong to this category. If we impose ergodicity assumptions
on the channel, we know that at least in certain cases, even under the expected dis-
tortion criterion, a universal source-channel separation theorem for rate-distortion
holds. Some of these ideas are due to Amos Lapidoth.

This approach of Amos Lapidoth to proving a universal source-channel separation
theorem for rate-distortion uses the traditional information theory tools of entropy
and mutual information. We conjecture another possible way of attacking the same
problem which is the following: given a partially known channel k which satisfy
some ergodicity assumptions and is capable of communicating i.i.d. X source
to within a distortion level D under the expected distortion criterion. Does this
imply that the partially known channel k is also capable (with a possibly different
encoder-decoder) of communicating the i.i.d. X source to within a distortion D
under the probability of excess distortion criterion. We would like to believe that
this is true. However, we are unsure of this. However, if this were true, then based
on our results, it would follow that even if we used the expected distortion criterion
and imposed some ergodicity assumptions on the channel, we could convert the
problem into a problem with the probability of excess distortion criterion, and thus,
universal source-channel separation would hold even under the expected distortion
criterion. This is discussed further in Chapter 6.

• The assumption that random-coding is permitted: As we have stated before,
if random-coding is not permitted, universal source-channel separation for rate-
distortion is not true. This has been commented on, in Section 2.17.

The following assumption has been made on the knowledge of source statistics but we
conjecture that this assumption can be removed:

• The assumption that the source statistics are known: As stated in Section 2.2, we
conjecture that this assumption can be removed, but we are not sure. A possible
way to remove this assumption is the following: Ziv proved in [Ziv72] that under
certain alphabet assumptions, there exist universal algorithms for the class of all
stationary sources that perform as well for each source as an optimum source code
custom designed for each source, that is, reaches the rate-distortion limit for each
source. The distortion definition used in this paper is the expected distortion
criterion, and we believe the result should hold even with the probability of excess
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distortion criterion. Also, this is a source-coding result, and we are looking more
for a separation result for communication over a channel. With the above source-
coding result, though, we believe that we should be able to prove a universal
source-channel separation theorem for rate-distortion where universality is both
over the source and the channel. Possibly, [Ziv80] might be useful. We have not
carried this argument out.

The following assumptions have been made to prove results rigorously and to avoid
mathematical complications, and we are quite sure that modulo some technical as-
sumptions, they can be removed:

• The assumption that the source alphabet and source reproduction alphabet is finite:
We believe that argument can be carried out for some source alphabet which is not
finite. For example, let the source alphabet be a finite length interval of R. Then,
a rigorous argument can be carried out by discretizing the alphabet into small
intervals of size ∆ and then, taking the limit as ∆ → 0. If the source alphabet
is the whole real line R, and assuming that the source has sufficiently light tails
in that probability outside finite length intervals falls off sufficiently fast, we can
truncate the real line and then take limit to the whole real line. We believe that
this argument can also be made rigorous though we have not carried out the steps.

• The assumption that the source is i.i.d: We believe that the simulation argument
of Section 2.15 can be carried out for many non i .i.d. sources also. We have not
carried out this argument. In particular, we believe that the simulation argument
can be carried out for many stationary ergodic sources.

For sources in which memory dies out with time, another way of carrying out a rig-
orous argument is the following: consider large blocks of the source k interspersed
with smaller blocks of size k′. Over the block of size k′, the source memory will die
out so that the source will be “almost” independent over the blocks of length k.
This argument needs to be carried out rigorously, and we believe it can be carried
out. However, we have not done it.

Another view of this was provided in the previous section where we justified, on a
high-level, why the result should hold for stationary ergodic sources.

• The assumption that the distortion metric is additive: This has been commented
on, in Sections 2.14 and 2.16.

• The assumption that the channel evolves discretely in time: We have made this
assumption only for simplicity of presenting the physical channel model of Sub-
section 2.5.2. This model can be assumed to be continuous time and none of the
proof change. This is because of the nature of our proofs. As stated in Subsection
2.14.7, the first step is to prove that the universal capacity of the partially known
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channel k ∈ A which is capable of universally communicating i.i.d. X source to
within a distortion level D is ≥ RPX(D). We claim that this argument does not
depend on whether the channel evolves in time discretely or continuously. This
is because the first step in the argument is to consider the composite channel CA
defined in argument in Section 2.14.9. c ∈ CA evolves in discrete time even if
k ∈ A evolved in continuous time. The proof nowhere uses the exact description
of the set of channel k ∈ A; it only uses the description of the channel c ∈ CA.
It follows that proving that the universal capacity of the partially known channel
k ∈ A which is capable of universally communicating i.i.d. X source to within a
distortion level D is ≥ RPX(D) does not require the assumption that the partially
known channel channel k ∈ A evolve in discrete time. The proof of the universal
source-channel separation theorem for rate-distortion uses source-compression fol-
lowed by universal reliable communication over c ∈ CA, and thus, again, uses the
description of the partially known channel k ∈ A only through the partially known
abstract channel c ∈ CA. It follows that the universal source-channel separation
theorem for rate-distortion holds even if the channel evolved in time continuously.

The only thing that one needs to care about is, how to rigorously model channels
which evolve in time continuously. Once this is done, the proofs are automatic
because of the reason described above.

• The assumption that the source evolves in discrete time: The ideas for how the
universal source-channel separation theorem for rate-distortion can be generalized
to a source evolving in continuous time is discussed in Section 2.18.

• The assumption that the source and the channel evolve on the same time scale:
For simplicity of presentation, we have presented the results only for the source
and the channel evolving on the same time scale. The results can be generalized
to the case when the source and the channel evolve on different time scales.

� 2.20 Recapitulation

In this chapter, we proved a universal source-channel separation theorem for rate-
distortion. The universality is over the channel and not the source, and we conjecture
that the result can be made universal over the source.

The source-channel separation theorem, on a high-level says the following:

Assuming random-coding is permitted, in order to communicate a random source uni-
versally over a partially known channel to within a particular distortion level, it is suf-
ficient to consider source-channel separation based architectures, that is, architectures
which first code (compress) the random-source to within the particular distortion level,
followed by universal reliable communication over the partially known channel. There
is sufficiency in the sense if there exists some architecture to communicate the random
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source to within a certain distortion universally over the partially known channel, and
which consumes certain amount of system resources (like energy and bandwidth), then
there exists a separation based architecture to universally communicate the random
source to within the same distortion universally over the partially known channel, and
which consumes the same or lesser system resources as the original architecture.

By a partially known channel, we mean a channel whose behavior as a transition prob-
ability is only partially known. That is, the channel transition probability might belong
to a family of channels. Other than that, the channel model is very general in that the
present output of the channel can depend on some initial channel state, all past channel
inputs and all past channel outputs

The set up is information theoretic, and thus, we assume that delays do not matter.
In fact, if delays did matter, separation based architectures are not optimal from the
point of view of Reason 1c stated in Section 1.4.1 of Chapter 1.

We prove why universal source-channel separation should hold when all sets (source
space, channel input space, channel output space and source reproduction space) are
finite, the source is the uniform X source and the distortion metric is permutation
invariant. This requires a technical condition on the distortion function. This section
is the most important section of this thesis and should be thought of as the main idea
for why separation holds for universal communication with a fidelity criterion.

We rigorously prove the optimality of point-to-point setting when all sets (source space,
channel input space, channel output space and source reproduction space) are finite,
the source is i.i.d. and the distortion metric is additive.

We discuss, on a high level, how to generalize the results to infinite sets, stationary
ergodic sources, and continuous time source and channel evolution. We also comment
in brief that if random-coding were not permitted, universal source-channel for rate-
distortion does not hold.

� 2.21 In the next chapter ...

In the next chapter, we generalize the results of this chapter to the multiuser setting.
We prove that if random-coding is permitted, and if the sources that various users want
to communicate to each other are independent of each other (unicast setting), then
separation based architectures are optimal for universal multiuser communication with
fidelity criteria in the sense of reason 1c.
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Chapter 3

Optimality of digital communication
for communication with fidelity
criteria: universal, unicast
multi-user setting

It is, therefore, with a certain amount of hesitation that the present paper has been
written. Its purpose is to present the formalization of the picture of Fig. 1 as the
paradigm of a dynamical system in the hope of showing its usefulness in mathematics,
engineering and physics alike.

A dynamical system Σ is defined as a triple

Σ = (T,W,B) (3.1)

with T ⊂ R the time axis; W an abstract set, called the signal alphabet; and B ⊂W T

the behaviour.
-Jan Willems
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� 3.1 In this chapter ...

� 3.1.1 Introduction

In this chapter, we generalize the results of Chapter 2 to the multi-user setting. That
is, we prove that digital communication is optimal for rate-distortion communication
in the sense of reason 1c stated in Section 1.4.1 in Chapter 1, in the multi-user setting.

Mathematically, the question is the following: Given a partially known medium m over
which N users want to communicate. N might be unknown. For 1 ≤ i, j ≤ N, i 6= j,
user i wants to communicate a random source Xij to user j to within a distortion level
Dij under the distortion metric dij . If such communication is possible with certain
consumption of system resources (like energy and bandwidth) at each user, is the same
communication possible with digital schemes with the same or lesser consumption of
system resources at each user? See Figure 3.1.

Note that since we are assuming the medium to be partially known, we are asking the
universal question, where universality is over the medium of communication.

We will answer the above question in the affirmative under the following assumptions:

• The sources Xij are independent of each other. In the information-theory litera-
ture, the technical term for this is that the setting is unicast. This assumption is
crucial in the sense that if the sources are correlated, digital communication is not
optimal in the sense of reason 1c. This is discussed further in Section 3.2.

• Random-coding is permitted. This is the same assumption required in the point-
to-point setting discussed in Chapter 2, and for precisely the same reason, as
discussed in Section 2.17.

• For rigorous results, we assume that the sources are i.i.d. and the distortion mea-
sures are additive. As in Section 2.14, results will hold for permutation invariant
distortion measures for uniform sources under certain technical assumptions on
the rate-distortion functions of the various sources. As in Section 2.16, results
should be rigorously generalizable for certain permutation invariant measures, for
both i.i.d. and uniform sources without enforcing technical assumptions on the
rate-distortion functions.

In this chapter, we will outline the proof for the reduction of the multi-user problem
to the point-to-point problem. The proof is complete, though it is written in discursive
style: the reader can fill in the minor missing details.

We do not provide any answers to the problem of reliable communication of bits over
a medium. This is the classical problem of network information theory. Our view is
a reduction view. We reduce the problem of rate-distortion communication of various
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Figure 3.1. Are digital modems optimal for communication of independent random sources between
various users to within certain distortion levels over a medium
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sources over a medium to the classical network information theory problem of reliable
communication by showing the optimality of digital communication/source-channel sep-
aration architectures. Indeed, we do this in the universal setting.

� 3.1.2 A high-level statement of universal source-channel separation for
rate-distortion in the multi-user setting

High level statement 3.1 (Universal source channel separation or the optimality of
digital communication for universal multi-user communication with fidelity criteria in
the unicast setting). Let there be N users which want to communicate with each other
universally over a partially known medium m. User i wants to communicate source Xij

over the medium m to user j to within a distortion level Dij under distortion metric
dij. Assuming that sources Xij are independent and assuming that random-coding is
permitted, it is sufficient to consider separation architectures: each user i, 1 ≤ i ≤ N
first compresses the sources Xij, 1 ≤ j ≤ N , to within distortion levels Dij under
the distortion metric dij, followed by the universal reliable communication of all the
compressed at various users over the partially known medium. There is sufficiency
in the sense if there exists some architecture to communicate the random sources to
within the required distortion levels universally over the partially known medium, and
which consumes certain system resources (like energy and bandwidth) at each user, then
there exists a separation architecture to universally communicate the random sources to
within the same distortion levels universally over the partially known medium, and
which consumes the same or lesser system resources at each user as in the original
architecture.

� 3.1.3 Chapter outline

Section 3.2 discusses the important past literature on the problem of communication
with fidelity criteria in multi-user scenarios and the associated reduction to the tradi-
tional network information theory problem reliable communication over a network.

Section 3.3 discusses multi-user communication systems. A multi-user communication
system consists of a physical medium interconnected with modems. We first we discuss
multi-user communication systems on a high level, and then a rigorous view of these
systems. As in the point-to-point framework, we assume that time evolves discretely in
the medium though the results can be directly generalized to the case when the medium
evolves in continuous time for the medium. This is followed by a discussion of resource
consumption, for example, energy and bandwidth consumption in the system. This is
followed by a short note on digital communication systems.

Section 3.5 is probably the most important section of this chapter. This section discusses
the methodology that we will use to prove the optimality of digital communication for
multi-user communication with fidelity criteria. This section will describe the method-
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ology to reduce this problem to the problem of point-to-point communication discussed
in Chapter 2.

Section 3.1 gives a precise statement of the universal source-channel separation for rate-
distortion in the unicast, multi-user setting, and Section 3.7 uses the methodology of
Section 3.5 to prove this theorem.

This is followed by a recapitulation of this chapter in Section 3.8.

� 3.2 Important past literature

In Chapter 2, we discussed previous research for the point-to-ponit setting. In this
section, we discuss previous important work for the multi-user setting.

The model of the medium that we will use is very general: the present medium outputs
(the number of medium outputs is some number N) may depend, in genral, on all past
medium inputs and all past medium outputs. The only research on multi-user problems
with fidelity criteria which hold for general media (and not just for 3 user multiple-
access or broadcast or for very specific media) is [TCDS]. [TCDS] proves the optimality
of separation based architectures in multi-user, rate-distortion context, assuming the
sources are independent of each other (that is the setting is unicast). In that sense,
[TCDS], like us, also use the unicast setting. Our work is more general in the sense
that we assume the medium to be only partially known whereas the medium in [TCDS]
is assumed to be fully known: in other words, we are solving the universal problem
over the medium, whereas [TCDS] does not. There is one other minor difference:
[TCDS] uses the expected distortion criterion whereas we use the probability of excess
distortion criterion. As a result, [TCDS] requires finite memory assumptions on the
medium whereas we do not: this is a minor difference however, the major difference is
that we are solving the universal problem over the medium whereas [TCDS] is not.

Both [TCDS] and our work use the unicast setting to prove separation for communica-
tion with a fidelity criterion. One wonders if this is necessary. The answer is that there
exist counter examples when separation does not hold if the sources are correlated.
Two examples where separation does not hold are discussed in [Gas02] on Pages 27 and
28: reliable communication over the multiple access channel with correlated sources
and communication of a gaussian source over a broadcast channel with fidelity. In both
these examples, it is shown that uncoded transmission achieves better performance than
the performance achievable by separation architectures. Thus, it follows that in order
to prove general results, the unicast setting is the extent to which we can go in order to
prove exact separation results.

One question that arises is the following: can we say anything about the nature of
separation when the sources are not independent (that is, they are correlated). [TCDS]
proves approximate optimality results for separation under various restrictions on the
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distortion measure, in the multi-cast setting, that is, when a user wants to communicate
the same source to within distortion levels to different users: in certain cases, they prove
that the performance of separation architectures is to within 1

2 bit of the performance
of general architectures.

We have not proved any approximate optimality results in this thesis when the sources
are correlated.

The network coding literature also talks about another sense of separation: separation
between channel-coding and network-coding. See for example, [KEM]. Separation of
channel-coding and network-coding means the following: consider a network which con-
sists of noisy channels/links. Channel/network coding separation holds for a link in a
network if a channel of capacity C in the network can be replaced with an error free
link with throughput C without changing the rate region. For networks for which this
happens, the network information theory problem of reliable communication can be
reduced to the network-coding problem. As we have stated before, reliable communica-
tion and how to accomplish it is not the focus of this thesis. The focus of this thesis is
the reduction of rate-distortion communication problems in multi-user settings to the
problem of reliable communication of bits in multi-user settings; thus, we implicitly as-
sume that we know how to solve the multi-user reliable communication problem. In this
thesis, when we mention separation, we always mean the separation of source-coding
and channel-coding, and not the separation of channel-coding and network-coding.

� 3.3 A multi-user communication system

In this section, we describe the model of a multi-user communication system and a dig-
ital multi-user communication system. We also comment on the resource consumption
in a multi-user communication system.

In a point-to-point communication system, communication happens over a channel.
In a multi-user communication system, communication happens over what we call, a
medium. In a point-to-point communication system, encoders and decoders aid com-
munication. In a multi-user communication system, the communication happens with
the help of modulators-demodulators or modems: this is because each user is both a
sender and a receiver.

� 3.3.1 High level view of a multi-user point-to-point communication sys-
tem

The following is the high-level view of a multi-user point-to-point communication sys-
tem. This is a more detailed description of the description can be found in the next
sub-section.
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There are various users. The users communicate sources among each other. The sys-
tem consists of ”architecture boxes” interconnected to a medium. The architecture
boxes aid communication. The architecture boxes can be thought of as system protocol
or modulators-demodulators. Architecture boxes, now onwards, will be refered to as
modems. See Figure 3.2.

More concretely:

There are N users. N might change with time. User i communicates source Xij(t) to
user j over the system. i 6= j: a user does not transmit anything to itself. The repro-
duction of Xij(t) at user j is Yij(t). The system potentially provides some guarantees
on how close the source reproduction Yij(t) is to the source Xij(t). One example of a
guarantee, and the one we will use is the following: source Xij(t) is communicated to
within some distortion level.

Note the ordering of i and j in Yij(t).

m denotes the medium. h1, h2, . . . , hi, . . . hN are various modems constructed over the
medium. hi is the modem used by user i, 1 ≤ i ≤ N .

Modem hi at user i takes source inputs Xi1(t), Xi2(t), . . . , Xij(t), . . . , XiN (t). hi takes
input Ii(t) from the medium m. In wireless systems, Ii(t) is an electromagnetic wave.
Modem hi produces an output Oi(t) into the medium m. In wireless systems, Oi(t) is
an electromagnetic wave. The modems also have a common randomness input r which
they use the generate random codes. Modem hi produces outputs source reproductions
Y1i(t), Y2i(t), . . . , Yji(t), . . . , YNi(t). Ii is an input to the medium m but output to the
modem hi. Oi(t) is an output of the medium m but an input to the modem hi.

The medium takes inputs I1(t), I2(t), . . . , IN (t) and produces outputs O1(t), O2(t),
. . . , ON (t).

The time evolution in Xij(t), Ii(t), Oi(t), Yij(t) will be sometimes supressed. They will
be denoted by Xij , Ii, Oi, Yij .

The modem hi encodes information into input Ii. Ii contains information about

1. Sources Xij , 1 ≤ j ≤ N that user i wants to communicate to other users.

2. Sources Xi′j′ , i
′ 6= i. Modem hi has knowledge of other other sources Xi′j′ which

are not inputs at user i through the medium output Oi. In this case, information
about Xi′j′ is being relayed through user i.

The behavior of medium m may be complex. For example, wireless medium. The
interaction of medium m and modems hi and the resulting flow of information may be
complex. The users may be co-operating. There may be multi-hopping and feedback.

The exact medium and system behavior does not concern us. In our formulation,
the end-to-end system behavior that Xij is communicated from user i to user j and
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Figure 3.2. High level model of the system
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received as Yij is what will matter. The precise model that we will use is that the
medium behavior as a transition probability is only partially known in the sense that
it might come from a set of transition probabilities. We will call this a partially known
medium. The precise mathematical model is the subject of Subsection 3.3.2.

The sources Xij should be thought of as primitive in the sense that system behavior,
that is, the behavior of modems hi and medium m do not affect the sources. Sources
evolve in time, independently of “everything else.”

� 3.3.2 Rigorous, mathematical view of a point-to-point communication
system

This subsection states the precise mathematical model of the given system which was de-
scribed imprecisely in the previous subsection. This model illustrates, how a “physical”
model of interconnection of a partially known medium with modems can be abstracted
mathematically.

Some basic definitions

There are N users. N might change with time.

The system consists of

1. a medium m, and

2. a modem hi at each user i, 1 ≤ i ≤ N ,

interconnected to each other.

Medium and modems are modeled stochastically. Sources are modeled as random pro-
cesses.

We assume that medium and modems evolve only at integer times. They would start
evolving at some time, and we assume that this time is 1 (in general, it can be any
integer time). This assumption of evolution at integer times is made only for simplicity
of presentation. All our results hold even if medium and modems evolved in time,
continuously.

In what follows, i 6= j. This just means that a user is not communicating to itself. This
will not be stated again.

A fully known medium

First, we describe a fully known medium. This discussion will parallel the discussion of
a fully known physical channel in Section 2.5.2.
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A fully known physical medium is one whose action as a transition probability is known.
This is mathematically abstracted as follows:

We want to use a very general medium model. The output of the medium can depend
on all past medium inputs and all past medium outputs. The medium input at user i is
denoted by ιi and the medium output at user i is denoted by oi. Let the block-length
be n. The medium transition probability at time k is denoted by mk:

mk(oni (k), 1 ≤ i ≤ N | ιni (1..k − 1), 1 ≤ i ≤ N, on(1..k − 1), 1 ≤ i ≤ N) if ifk ≤ n
mk(oni (k), 1 ≤ i ≤ N | ιni , 1 ≤ i ≤ N, on(1..k − 1), 1 ≤ i ≤ N) if k > n (3.2)

is the probability that the medium output at time k at user i is oni (k), 1 ≤ i ≤ N , given
that past medium inputs at various users are ιni (1..k − 1) (or ιni , 1 ≤ i ≤ N if k > n)
and the past medium outputs at the various users are oni (1..k − 1), 1 ≤ i ≤ N .

See Figure 3.3.

For each k, the medium input ιni (k) is assumed to belong to some finite set Ii and
medium output oni (k) is assumed to belong to some finite set Oi.
Note that mk is independent of the block-length n. When the block-length is n, the
medium evolves until some time tn ≥ n where tn is an increasing function of n. The
medium is mn = (m1,m2, . . . ,mtn).

Note that the medium model is nested.

Over various block-lengths, the medium evolution is m =< mn >∞1 .

In general, there is a dependence of mk on the initial channel state. However, we do
not show this dependence. This is because, the model of the medium that we will use
is a partially known medium, in that, the medium can belong to a family. For that
reason, we will treat the same medium with different initial states as different media and
assume that all these media belong to the family which make up the partially known
medium. A partially known medium is discussed next.

A partially known medium

Since the medium initial state might not be entirely known, and also, the exact action
of the medium mn as a transition probability might not be entirely known, we will
model the medium as a partially known medium:

A partially known medium is one which belongs to a family of transition probabilities
A. We will denote this by m ∈ A.
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ιi

oi

ιj

oj

ι1

o1

ιN

oN

......

......

m

Figure 3.3. The medium

Modems

There is a modem hi at each user i. Each modem takes various inputs and outputs.
For block-length n, the modem acts as hni . As the encoders and decoders in the point-
to-point setting, the modems hni need not be nested. Thus, hi =< hni >

∞
1 . The action

of a modem is described below. See also, Figure 3.4.

When the block-length is n, the modem hni at user i takes various inputs:
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Figure 3.4. The modem at user i

1. The source input sequence xnij , 1 ≤ j ≤ N , that user i wants to communicate to
user j. xnij is a realization of Xn

ij . x
n
ij(k) belongs to some set Xij for all k

2. The input oni from the medium m. The notation is oi because oi is an output of
the medium.

3. Common randomness input r. r is input to all hi, 1 ≤ i ≤ N . r is a realization of
a continuous-valued random variable R.

The modem hi produces various outputs:

1. The source reproduction output ynji 1 ≤ j ≤ N , that user j wants to communicate
to user i. ynji(k) belongs to some set Yji ∀k.
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Note the ordering of i and j in xij and yji. The modems and the medium act
causally. We should think of yij as a reproduction of xij, but with a time delay.
The nth source symbol of the source xij may be reproduced at some time n′ > n.
Thus, yn

′
ij (n′) might be the reproduction of xnij(n) for some n′ > n.

2. The output ιni into the medium from the modem. The notation is ιi because ιi is
an input to the medium.

Note 3.1. Sources, modem inputs and outputs, and source reproduction outputs are all
random processes. The corresponding notation is described later.

The modem hni is a transition probability. At time k, the transition probability is hni (k)
and it acts as:

hni (k)(ynji(k), 1 ≤ j ≤ N, ιni (k) |
xnij , 1 ≤ j ≤ N, oni (1..k − 1), ιni (1..k − 1), ynji(1..k − 1), 1 ≤ j ≤ N, r), (3.3)

is the probability that when the block-length is n, the modem outputs at time k are

• source reproduction outputs ynji(k), 1 ≤ j ≤ N and

• modem output ιni (k) which is an input to the medium

given that

• source inputs are xnij ,

• medium outputs (into the modem) until time k − 1 are oni (1..k − 1),

• the common randomness input is r, and

• the past modem outputs until time k−1 are ynji(1..k−1), 1 ≤ j ≤ N and ιni (1..k−1)

The modems evolve until time tn. tn is the same time which we discussed when talking
about media. The reproduction of the source input xnij(k) will happen at some time
tn,k ≥ k. Thus xnij(k) is reproduced as ynij(tn,k). When the block-length is n, the modem

hni = (hni (1), hni (2), . . . , hni (tn)) (3.4)

hni need not be nested.

In the point-to-point case, when the encoders and decoders were separate, the model
was less complex. We could just define a block-length n encoder as en(in | xn) and
block-length n decoder as fn(yn | on). Since, the modem acts as both a modulator
and a demodulator, we need to take into account the causality of the interaction of the
medium inputs (which are outputs of the modems) and medium outputs (which are
inputs to the modems), and this leads to the above model where we need to describe
hnij(k) separately for each k.
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Interconnection of medium and modems

The medium m and modems hi, 1 ≤ i ≤ N are interconnected as shown in Figure 3.2.
Note, in this figure, that the common randomness input r is the same for all modems.

The sources xij , as stated before, are realizations of random processes Xij . With
these inputs, and the common randomness input variable R, the interconnected system
evolves stochastically. After marginalizing out the common randomness variable R, for
each initial state s, this leads to a joint random variable on the space of source, medium
input, medium output and source reproduction random variables:

Xn
ijI

n
i O

n
i Y

n
ij , 1 ≤ i, j ≤ N (3.5)

Note that for all i, j, Xn
ij is a vector of length n, whereas Ini , Oni , Y n

ij are vectors of
length tn. xnij(k) is reproduced at a time tn,k > k as ynij(tn,k).

We will re-label ynij(tn,k) as ynij(k). This way, ynij(k) will be the reproduction of xnij(k)
and this would lead to simpler notation. The rest of the ynij(t) such that t is not equal
to tn,k for any k are not represented in this notation. That is fine because these ynij(t)
do not serve any purpose anyway.

Thus, now, in (3.5), Xn
ij and Y n

ij are vectors of length n whereas Ini and Oni are vectors
of length tn.

See Figure 3.2, except that in the more rigorous notation, Xij(t) would be denoted by
Xn
ij when the block-length is n and similarly for other inputs and outputs, and the

modem hi is denoted by hni , and similarly for other modems.

The end-to-end or the abstract system

With the interconnection of the medium and the modems, we can think of the end-to-
end system consisting only of source inputs and and source reproduction outputs and
not looking at the medium inputs and outputs. When the block-length is n, at time k,
the source input xnij(k) is reproduced as ynij(k).

� 3.3.3 Resource consumption in the multi-user communication system

Th following discussion of resource consumption builds on top of the corresponding
discussion for the point-to-point setting in Subsection 2.6.7.

Consider two multi-user communication systems s1 and s2. Let the various random-
variables of (3.5) for system s1 when the block-length is n be Xn

ijI
n
i,1O

n
i,1Y

n
ij,1, 1 ≤ i, j ≤

N , and let these random-variables for system s2 be Xn
ijI

n
i,2O

n
i,2Y

n
ij,2. Note that as in

the point-to-point setting of Subsection 2.6.7, the inputs Xij , the same for both the
systems.
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A sufficient condition for the two systems s1 and s2 to consume the same system re-
sources is that for each block-length n, the joint distribution of Ini,1, 1 ≤ i ≤ N is the
same as the joint distribution of Ini,2, 1 ≤ i ≤ N . Note the parallel with the definition in
the point-to-point setting. Also, as in the point-to-point setting, this is a sufficient con-
dition for two systems to consume the same system resources, not a necessary condition.
This sufficient condition for equality for consumption of system resources makes sense
for reasons similar to the point-to-point setting, discussed in Subsection 2.6.7; a discus-
sion is omitted here. For our purposes, when making digital architectures corresponding
to general analog architectures, we will maintain the medium input distributions, and
for that reason, this is the only condition which we will need.

The following discussion of the consumption of “lesser” system resources is precisely
the same as in the point-to-point setting:

Suppose a communication system needs to be built to meet certain communication
guarantees. Suppose this can be done with certain consumption of system resources.
Then, we will say, abstractly, that the same guarantee can be met by consumption of
the same or “lesser” system resources. This, again, is an abstract definition because we
have not defined the consumption of a system resource; we have only stated a sufficient
condition for the equality of consumption of the same system resources by two systems.
However, the reason for this abstract use of the word “lesser” is done because for
physical systems where resource consumption can in fact be defined, this would be the
right usage of “the same guarantee can be met by consumption of the same or lesser
system resources.”

� 3.4 A multi-user digital communication system

A multi-user communication system is one where each modem is digital. We only
provide a high-level description, which is the same as the description of Section 1.6.

A digital modem hi is portrayed in Figure 1.4. At user i, the sources Xi1, Xi2, . . .,
XiN are first converted to random binary sequences by the source encoders. These
binary sequences are communicated reliably over the medium with the help of medium
modems at the various users. Finally, at user i, the source decoders help produce the
reproductions Y1i, . . ., YNi, of X1i, . . ., XNi, respectively. The story is the same at each
modem hi.

Resource consumption in a digital communication system is defined in exactly the same
way as in a general communication system: this is because the sufficient condition that
we have stated for equality of consumption of system resources depends only on the
medium inputs.

A rigorous description is omitted.
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� 3.5 Spirit of the question: the idea that we will use to reduce proving
optimality of digital communication in multi-user setting to proving
the optimality of digital communication in the point-to-point setting

In this section, we describe the idea that we will use to reduce proving the optimality
of digital communication for the multi-user setting to the point-to-point setting. This
section just describes the idea: the high-level methodology for proving the optimality of
digital communication in multi-user communication problems is discussed in the next
section.

Given a multi-user communication system which is known to communicate random
sources Xij(t) from user i to user j, 1 ≤ i, j ≤ N over a medium m with the help of
modems hi at user i. Further, let s and r be two particular users. It is known that
source Xsr(t) is communicated from user s to user r over the system to within some
guarantee. Denote the guarantee by G. See Figure 3.5.. Xsr(t) is received as Ysr(t).
An example of a guarantee and the one we will use is that Xsr(t) is communicated to
within some distortion level.

We ask a question about the communication of another random source X ′sr(t) evolving
in time from user s to user r, in place of the source Xsr(t). The source X ′sr(t) should
be received with some other guarantee G′. An example of gaurantee G′ and the one we
will use is that X ′sr(t) needs to be communicated to within some distortion level. By
“X ′sr(t) should be communicated in place of Xsr(t) with guarantee G,” we mean that
the source Xsr(t) need not be communicated to with guarantee G any more in the new
communication system which communicates X ′sr(t) with guarantee G.

We will assume that the sources Xij are independent of each other ∀i, j. This assump-
tion is crucial.

We will also assume that the source X ′sr(t) is independent of sources Xij(t)∀i, j. We
are uncertain about the cruciality of this assumption for our results. In order to
prove the result concerning optimality of digital communication in the multi-user set-
ting that we do in the next section, this assumption is okay to make; in fact, we will
make X ′sr(t) have the same distribution as Xsr(t) but independent of all Xij(t)∀i, j,
in particular, independent of Xsr(t). X ′sr(t) is primitive in the sense that it evolves in
time, independently of the rest of the system.

We require that changes made in the system for the desired communication of X ′sr(t)
from user s to user r should not change the communication of Xij(t) from user i to user
j for (i, j) 6= (s, r). Mathematically, this means that Xij(t) should be received precisely
as Yij(t) in distribution for (i, j) 6= (s, r). Of course, as stated and emphasized before,
instead of Xsr(t), X ′sr(t) now, needs to be communicated from user s to user r.

Each user only has local knowledge. At time τ , user i has knowledge of the source
realization xij(t),−∞ ≤ t < τ, 1 ≤ j ≤ N , the modem hi, medium input realization
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Figure 3.5. Spirit of the question: given that source Xsr is communicated with guarantee G over the
medium from user s to user r
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ιi(t),−∞ < t < τ , medium output realization oi(t),−∞ < t < τ , the realization
of reproduction of sources from various users destined for user i, yji(t),−∞ < t <
τ, 1 ≤ j ≤ N and the common randomness input r. User i also has knowledge of any
guarantees associated with sources at user i, that is, sources Xij , 1 ≤ j ≤ N . There is
knowledge at each user that the sources Xij , 1 ≤ i, j ≤ N,X ′sr are all independent of
each other.

Users do not have knowledge of the action of the medium as a transition probability.
In particular, the setting is universal.

System architecture can be changed, only locally. hs and hr can be changed in order to
communicate the source X ′sr. All other modems should remain the same: that is, for
i 6= s, r, hi should remain unchanged.

Question: When can X ′sr(t) be communicated to within the required guarantee G′ in
place of Xsr(t) which is known to be communicated with guarantee G, and how?

We have not stated the definitions of guarantees G and G′. In this section, we only
state the view that we are going to take.

The communication of X ′sr(t) in place of Xsr(t) will be accomplished in the following
way:

Since there is no knowledge of the medium transition probability, we would like to
mantain the input-output behavior of the medium. We want to use this method because
if the joint input distribution of the medium inputs Ii(t), 1 ≤ i ≤ N is changed, in the
absence of the knowledge of medium transition probability, it is impossible to know
the evolution of the medium outputs. In order to mantain the medium joint input
distribution, we would mantain the distribution Xsr(t). We would build an encoder
e which would map the source X ′sr(t) into an encoded input whose distribution is
precisely the same as the source process Xsr(t). We will thus simulate Xsr(t). Denote
this simulated source by Xs

sr(t). The guarantee G will be satisfied between the simulated
source Xs

sr(t) and output which we denote by Y s
sr(t). We will then use this output Y s

sr(t)
to make a decoding Y ′sr(t) with the use of a decoder f . See Figure 3.6.

Notation 3.1 (Simulated source). The simulated source at the input to modem hs at
the point where the input was Xsr is Xs

sr. The corresponding “simulated output” is
Y s
sr.

This encoding procedure can be thought of as embedding information about X ′sr into
Xsr.

Note that with this encoding-decoding procedure, we will not be “breaking” the modems
hs and hr. The new modem h′s at user s is the composition of hs and e. The new modem
h′r at user r is the composition of d and hr. In other words, we are building “on top
of” the existing architecture to accomplish the required communication. Note that e is
a random code. Note that the encoder-decoder (e, f) is a random code.
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By requirement, the modem h′i is the same as hi for i 6= s, r.

The joint distribution of the inputs to modems hi has been mantained. This is because
Xij(t) is unchanged for (i, j) 6= (s, r). For (i, j) = (s, r), the input, now is Xs

sr(t)
instead of Xsr(t). Xs

sr(t) has the same distribution as Xsr(t). Xs
sr(t) is independent

of Xij(t), (i, j) 6= (s, r) by construction and because of the assumption that X ′sr(t) is
independent of Xij(t). Thus, the joint distribution at the inputs to modems hi has been
mantained. As a result, Xij(t) is received precisely as Yij(t) for (i, j) 6= (s, r) (note that
this is a statement about random processes and what we mean is that in distribution,
Xij(t) is received precisely as Yij(t) for (i, j) 6= (s, r)). Of course, Xsr(t) is not received
as Ysr(t) because Xsr(t) does not need to be communicated any more. The goal is to
communicate X ′sr(t) instead of Xsr(t). Instead of Xsr(t), thus, its simulated version
Xs
sr(t) is transmitted.

We stated before that we would like the joint medium input and output distributions
to be mantained. By mantaining the distribution of Xsr(t), this has automatically
happened.

Note 3.2. We are using this way of simulating Xsr(t) and “building on top” of the
already existing architecture in order to communicate X ′sr(t) from user s to user r.
Other ways may exist. This is the view and method that we use.

The assumption of independence of sources Xij is required in the above construction
for the following reason:

Let Xij(t) and Xsr(t), (i, j) 6= (s, r) be dependent. In order to communicate X ′sr(t), we
simulate Xsr(t) as described above. This would mean that Xij(t) would also need to
be, atleast partially simulated in order to respect the joint distribution of Xsr(t) and
Xij(t). This would mean that the system behavior would change for the transmission
of Xij(t) from user i to user j. This is not permitted.

By construction, the joint distribution of the medium inputs has been maintained. By
the discussion in Subsection 3.3.3. consumption of systems resources at each modem
and the consumption of system resources in total is unchanged.

Note that it is not yet unclear if such a system for communication of X ′sr with guarantee
G′ in place of Xsr exists. We are just describing the view that we will take. A similar
procedure can potentially be followed for communication of other sources X ′ij(t) from
a user i to user j, 1 ≤ i, j ≤ N in place of source Xij , with some other guarantee. This
results in a decentralized system for communication of various sources between various
users over a medium.

Note further that in order to construct e and f , we did not require the knowledge of the
medium transition probability. Thus, the medium might only be partially known. We
are thus, solving the universal problem, where universality is over the medium.

In Section 3.7, we will use the reasoning described in this section to prove universal
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source-channel separation for rate-distortion in the multi-user setting by making the
source X ′sr(t) have the same distribution as the source Xsr(t). First, we make a precise
statement in the next section.

� 3.6 A precise statement of the optimality of digital communication for
universal multi-user communication with fidelity criteria

Theorem 3.1 (Universal source channel separation or the optimality of digital com-
munication for universal multi-user communication with fidelity criteria in the unicast
setting). Let there be N users which want to communicate with each other over a par-
tially known medium m. User i wants to universally communicate source Xij over the
medium m to user j to within a distortion level Dij under an additive distortion metric
dij. Assuming that sources Xij are independent and assuming that random-coding is
permitted, it is sufficient to consider separation architectures: each user i, 1 ≤ i ≤ N
first compresses the sources Xij, 1 ≤ j ≤ N , to within distortion levels Dij under the
distortion metric dij, followed by the universal reliable communication of all the com-
pressed at various users over the partially known medium. There is sufficiency in the
sense if there exists some architecture to communicate the random sources to within
the required distortion levels universally over the partially known medium, and which
consumes certain system resources (like energy and bandwidth) at each user, then there
exists a separation architecture to universally communicate the random sources to within
the same distortion levels universally over the partially known medium, and which con-
sumes the same or lesser system resources at each user as in the original architecture.

� 3.7 The proof of Theorem 3.1

Using the point-to-point formalism of Chapters 2 and the methodology described in the
previous section, we provide an outline of how to generalize universal source-channel
separation from the point-to-point setting to the multi-user setting. The proof is written
in discursive style and is essentially complete.

Let Xij =< Xn
ij >

∞
1 , 1 ≤ i, j ≤ N be independent sources.

Given that there exists a system consisting of a partially known medium m and modems
hi at user i, 1 ≤ i ≤ N , interconnected to each other as in Figure 3.2, such that
independent sources Xij are communicated from user i to user j and received as Yij
with the help of modems < hni >

∞
1 at user i, 1 ≤ i ≤ N , where the modem at user i is

hni when the block-length is n.

Let s and r be two particular users.

Let the source Xsr be i.i.d. Note that for now, this i.i.d. assumption is made only for
the source Xsr and not for the other sources Xij , (i, j) 6= (s, r). It is known that with
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the above system architecture, the source Xsr is communicated to within a probability
of excess distortion Dsr under an additive distortion metric dsr from user s to user r
over the partially known medium m . That is, for some ωsr =< ωsr,n >

∞
1 , ωsr,n → 0 as

n→∞, end-to-end,

pXn
srY

n
sr

(
1
n
dnsr(X

n
sr, Y

n
sr) > Dsr

)
< ωsr,n → 0 as n→∞ (3.6)

We will keep referring to Figure 3.7.

Question: assuming that there is common randomness, can sourceXsr be communicated
to within a distortion D from user s to user r by using a separation architecture, that
is, by using an architecture which first compresses the source Xsr to within distortion
level Dsr followed by reliable communication of the compressed source over the medium
in such a way that consumption of system resources is unchanged, and such that the
communication of the rest of the sources in the system is unchanged in distribution?

We will answer this question in the affirmative by using the methodology of Section 3.5
by using the results from the point-to-point setting of Chapter 2.

For now, neglecting the communication of the rest of the sources, and thinking of
the communication of source Xsr from user s to user r to within a probability of
excess distortion Dsr as a point-to-point system, by using the results from Chapter 2,
it follows that there exist source encoder-decoder < sne , s

n
f >

∞
1 and channel encoder-

decoder < e′n, f ′n >∞1 (see Figure 3.7) such that the source Xsr is communicated,
end-to-end, to within a distortion Dsr by use of a digital architecture. However, the
question arises whether in this new architecture, the communication of the rest of the
sources has been affected. The answer is that it has not been affected and this follows
from the construction of e′n. Recall from Chapter 2 that e′n generates i.i.d. Xsr

codes. Thus, the input to hns in the new architecture which we denote by Xs,n
sr has

the same distribution as Xsr. From the arguments of Section 3.5, it follows that the
communication of the rest of the sources has not been affected in distribution, nor has
the consumption of system resources been increased. Since we do not require the exact
knowledge of the medium, we are also solving the universal problem.This answers the
question raised above in the affirmative.

Next assume that all sources Xij are i.i.d. In general, source Xij needs to be communi-
cated from user i to user j to within a probability of excess distortion Dij , 1 ≤ i ≤ N .
By comments from Section 3.5, it follows that the same procedure carried out from user
s to user r can be carried out for any two pair of users.

The independence assumption on sources Xij is required for reasons of Section 3.5.

Thus, optimality of digital communication for universal multi-user communication with
fidelity criteria when the sources are independent of each other and random-coding is
permitted, follows.
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Figure 3.7. Source Xsr can be universally communicated from user s to user r to within a distortion
Dsr over the partially known medium m by using a digital architecture, using the methodology described
in Section 3.5
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� 3.8 Recapitulation

We have proved the optimality of digital communication for communication with fidelity
criteria in multi-user settings. There are two crucial assumptions:

1. The sources which the various users want to communicate are independent of each
other (the setting is unicast)

2. There is common randomness, that is, random-coding is permitted.

Without these assumptions, the results are false.

The proof is a simple generalization of the point-to-point universal source-channel sep-
aration theorem for rate-distortion discussed in Chapter 2: we do an induction over all
source pairs in the network. This needs to be done with care, and we do this by main-
taining the marginals at the inputs to the medium by using the methodology described
in Section 3.5.

Since the proofs just build on the point-to-point proofs, many comments made in Chap-
ter 2 also hold here, and we omit a discussion.

� 3.9 In the next chapter ...

In the next chapter, we discuss, to what extent, the results of this chapter are applicable
to the traditional wireless telephony problem.



Chapter 4

Optimality of digital
communication: Partial applicability
of result from the previous chapter
to the traditional wireless telephony
problem

� 4.1 In this chapter ...

� 4.1.1 Introduction

In this chapter, we see the application of results from the previous chapter to the
problem of traditional wireless telephony. The results will only be partially applicable
but lend some insight into the use of separation architectures in traditional wireless
telephony. In the rest of this chapter, when we say wireless, we will be referring to the
problem of traditional wireless telephony.

� 4.1.2 Chapter outline

In Section 4.2, we discuss the features of traditional wireless telephony problem. We also
prove that under certain assumptions that are not necessarily true, digital communica-
tion is optimal for the traditional wireless telephony problem. We do this to understand,
to what extent digital communication is optimal for the traditional wireless telephony
problem.

One crucial assumption that we make which is not true is that the voice signals of all
the users are independent of each other. Why this assumption is not true is discussed in
Section 4.2 in brief. In Section 4.3, we discuss a toy problem, an understanding of which
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can help understand what happens when correlated sources need to communicated over
a medium and to what extent if at all, will separation hold in such a scenario.

In Section 4.4, we recapitulate this chapter.

� 4.2 Partial application to the wireless problem

In this section, we discuss the traditional wireless telephony problem and the partial
applicability of the optimality of digital communication to this problem.

� 4.2.1 The wireless telephony problem

There are 2N users, S1, S2, . . ., SN , and S′1, S′2, . . ., S′N . For all i, users Si and S′i wish
to talk to each other. The voice signal of user Si is Vi and the voice signal of user S′i is
V ′i .

The question is: how does one design wireless architectures to maximize the number
of users communicating at the same time over the wireless medium under certain con-
straints on resource consumption.

� 4.2.2 The features of the wireless problem and the assumptions that we
make

The wireless problem has the following features:

1. Pairwise independence of voice signals: Vi is independent of Vj , V ′j for j 6= i. This
is because what two users talk to each other is independent of what other users are
talking amongst each other. They might be talking about the same subject. For
example, if it is close to the elections or valentines day, a lot of conversations will
revolve around these particular topic. What we are saying is that the conversation
between a pair of users is independent of the conversation between another pair of
users.

However, Vi and V ′i are dependent of each other. This is because the conversation
between two users will depend on what they are saying to each other.

For our result on separation to be applicable, we require that all signals be inde-
pendent of each other. In particular, we require that Vi be independent of V ′j for
all j. As discussed above, this is not true for j 6= i. This is a crucial assumption
which is not true which we will make in order to prove the optimality of digital
communication for the traditional wireless telephony problem.

2. The wireless medium is time varying and only partially known: Wireless medium,
that is, the atmosphere, changes with time and the exact operation of transmis-
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sion of electromagnetic waves through the atmosphere might not be known. The
communication methodology should work irrespective of the state of the atmo-
sphere. Of course, there will be certain “very bad” states of the atmosphere under
which the communication will not be possible at all; however, we would want the
communication to happen for some states of the atmosphere.

3. Voice admits distortion: Voice admits distortion in the sense that what the listener
hears need not be exactly the same as what the speaker speaks in order for the
listener to make out, what the speaker spoke.

4. Other concerns: There are other important features and concerns, for example,
security and delay. Voice communication happens in real-time and only delays
of the order of milli-seconds are permitted. Voice communication should happen
securely. There are other concerns which we do not talk about here.

We make the following assumptions:

1. All the voice signals Vi, V ′j , 1 ≤ i, j ≤ N are independent of each other, not just
pairwise. As stated above, this is not true. However, we assume that this is the
case.

2. Distortion measure on voice is permutation invariant

3. Delays do not matter

� 4.2.3 Optimality of digital communication for wireless

With the above assumptions, it follows from results from the previous chapter that
separation holds: assuming random coding is permitted, it is sufficient to consider
separation based architectures where each user first compresses its voice signal and this
is followed by the universal reliable communication of the compressed voice signals over
the wireless medium. There is sufficiency in the sense that if voice communication of
certain number of users can be accomplished over the wireless medium with certain
energy, bandwidth and other resource consumption, the same can be accomplished
using a separation based architecture, too. In other words, there exists a “best possible”
digital architecture.

� 4.3 The assumption that all the voice signals are independent

As stated above, we assumed that all voice signals Vi, V ′j are independent of each other.
However, as we said, this is not true in that Vi and V ′i are not independent of each
other.
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Universal multi-user communication with fidelity criteria 35

V

V̂

V ′

V̂ ′ hs hs′m

User s User s′

Figure 4.1. How do we build modems hs and hs′ for communication of sources V and V ′ which may
be dependent? To what extent, if at all, and maybe approximately, does separation hold?

To understand what happens when signals are dependent, it would be helpful to consider
the problem only with two users s and s′. User s wants to communicate a source
V to user s′ with some distortion D under distortion metric d and user s′ wants to
communicate a source V ′ to S with some distortion D′ under some distortion metric
d′. The sources V and V ′ may be dependent on each other. See Figure 4.3. V̂ denotes
the reconstruction of V at user s′ and V̂ ′ denotes the reconstruction of V ′ at user s.

If this problem is understood, this would lend further insight into the ramifications of
the dependence between Vi and V ′i in the wireless problem. As we discussed in Section
3.2, Gastpar, in [Gas02] discusses two examples where separation does not hold if the
sources are correlated. We do not expect separation to hold in the example discussed
above. However, we have not worked this out.

Even if separation does not hold, it would be insightful to understand, to what extent
separation holds in the above example, and in general, when sources are correlated and
the medium is only partially known. [TCDS] does consider the question of approximate
optimality in the case when a user wants to communicate the same source (multi-cast)
to various users to within different distortion levels. This is a special

As we stated in Section 3.2, [TCDS] proves, in certain scenarios, approximate optimality
results when the sources are correlated with each other. It would be interesting to see
if one can do the same for the setting described in this section. The setting in [TCDS]
to prove approximate optimality results is very different from the example described in
this section: [TCDS] has the the setting where a user wants to communicate the same
source to within possibly different distortion levels to other users, and thus, this can be
thought of as the case when sources at a particular user are perfectly correlated with
each other. In particular, the correlated sources are at the same user. The example
in this section has correlated sources at different users. In spite of these differences,
it would be interesting to see if approximate optimality results can be proved for the
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example in this section, and for the most general scenario of correlated sources at
multiple users.

� 4.4 Recapitulation

In this chapter, we proved the partial applicability of the optimality of digital communi-
cation to the traditional wireless telephony problem. This requires certain assumptions
which are not true: the main such assumption is that the voice signals which users
want to communicate to each other are independent of each other. Some of the other
assumptions are that the distortion metric that can be put on voice are permutation
invariant and that, delays do not matter, but we do not consider these serious assump-
tions compared to the assumption of voice signals being independent.

Because of the assumptions that we have to make which are not true, the applicability
of our results to the wireless telephony problem is partial and not full.

� 4.5 In the next chapter ...

In the next chapter, we change gears. We discuss an operational perspective on the
optimality of digital communication for universal communication with fidelity criteria.
This was discussed partly in Chapter 2 and will be discussed further in the next chapter.
I think of this as the second flavor of my thesis.



142
CHAPTER 4. OPTIMALITY OF DIGITAL COMMUNICATION: PARTIAL APPLICABILITY OF RESULT FROM

THE PREVIOUS CHAPTER TO THE TRADITIONAL WIRELESS TELEPHONY PROBLEM



Chapter 5

Optimality of digital
communication: operational
view-point

Work on a proof until it is as evident as 2 + 2 = 4.
-Paraphrased from a source which I do not remember

� 5.1 In this chapter ...

� 5.1.1 Introduction

In this chapter, we switch gears and discuss the second flavor of this thesis as discussed
in Chapter 1: a rigorous operational view of the optimality of digital communication for
communication with a fidelity criterion in the point-to-point setting. Since the proof
for the multi-user setting was a simple generalization of the proof in the point-to-point
setting, this also provides an operational view of the optimality of digital communication
for communication with fidelity criteria in the multi-user setting.

In Section 2.14 of Chapter 2, we gave a proof of the universal source-channel separation
for communication with a fidelity criterion holds in the point-to-point setting for the
uniform X source when the distortion measure is permutation invariant. This proof was
based on the assumption that RPU (D) = RPU (D, inf). This proof, as we said in Section
2.14 is operational: it uses only the definitions of channel capacity as the maximum rate
of reliable communication and the rate-distortion function as the minimum rate needed
to compress a source to within a certain distortion level. It does not use the definitions
of channel capacity as a maximum mutual information and the rate-distortion function
as a minimum mutual information. Note that when we use the word operational, it does
not have to do anything with something being physically operational or practical. What
we mean is that we want to try to deal only with mathematical structures which reflect
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the real meaning of the quantities rather than simplified mathematical structures.

One of the things that we will prove in this chapter is RPU (D) = RPU (D, inf). We do this
operationally. This will just provide an operational perspective on universal source-
channel separation without any technical assumptions. This proof will require steps
which go through the i.i.d. X source. Some readers would question the use of the
uniform X source. Traditional information theory literature uses the i.i.d. X source.
In my opinion, the uniform X source captures all the ideas: it is simpler than an i.i.d.
X source, in that it consists of only one type class and yet, is “close to” an i.i.d. X
source because most of the probability of an i.i.d. X source rests on sequences with
type “close to” pX . In my opinion, this is enough.

However, for the reader unsatisfied with the uniform X source, we will generalize the
results to the i.i.d. X source. However, for the i.i.d. X source, we will provide an
operational proof of pseudo-universal source-channel separation for rate-distortion for
additive distortion measures instead of universal source-channel separation for rate-
distortion. Pseudo-universal differs from universal in that we will not require a unifor-
mity in the rate at which probability of excess distortion → 0 as block-length → ∞
when communicating over the channel:

The partially known channel k ∈ A is said to be capable of pseudo-universally commu-
nicating i.i.d. X source to within a distortion D if there exists an encoder-decoder pair
< en, fn >∞1 independent of the particular k ∈ A such that under the joint distribution
pXnY n as described above,

pXnY n

(
1
n
dn(Xn, Y n) > D

)
→ 0 as n→∞ ∀ k ∈ A (5.1)

The reader should compare this definition with the definition of a partially known chan-
nel which is capable of universally communicating i.i.d. X source to within a distortion
level D in Definition 2.25: there is no ω =< ωn >∞1 sequence in the definition anymore
which was introduced to enforce the uniformity over the partially known channel k ∈ A
in the rate at which the probability of excess distortion → 0 as n → ∞. Now, we do
not ask for this uniformity.

We defined in Chapter 2, a channel which is capable of communicating i.i.d. X source
to within a distortion D. Note that we in fact defined a partially known channel which
is capable of communicating i.i.d. X source to within a distortion D. However, let
k ∈ A denote a partially known channel which is capable of universally communicating
i.i.d. X source to within a distortion D. Thus, there exist encoder-decoder < en, fn >∞1
such that for the composition of the encoder, channel and decoder < en ◦ k ◦ fn >∞1 ,
(2.25) holds for some ω =< ωn >

∞
1 , ωn → 0 as n → ∞. We can think of c ∈ CA =<

en ◦ k ◦ fn >∞1 as a composite channel with input space X and output space Y, and we
can think of this partially known channel as directly communicating i.i.d. X source to
within a distortion D.
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We define CX,D to be the set of channels which pseudo-directly communicates the i.i.d.
X source to within a distortion D. c ∈ CX,D can then be thought of as a partially known
channel. Note that the ω sequence for different channels in CX,D might be different, and
for this reason we call it pseudo-direct communication and not direct communication.

We will define what we call the pseudo-universal capacity of the set of channel CX,D.
The pseudo-universal capacity differs from universal capacity in the sense that we do
not ask for a uniformity in the rate at which error probability → 0 as block-length
n → ∞ over the set of channels; it can be different for different channels; of course,
as in the definition of universal capacity, the same encoder-decoder should work for
all channels in the set. Similarly, we will define what it means for a partially known
channel k ∈ A to be capable of pseudo-universally communicating a random source to
within a distortion level D: again, the only difference will be that we will not ask for
uniformity in the rate at which the probability of excess distortion → 0 as block-length
n→∞ over the particular k ∈ A; of course, as in the definition of universal capability
of a channel to universally communicate a source to within a certain distortion level,
the same encoder-decoder should work for all k ∈ A.

We prove operationally that the pseudo-universal capacity of the set of channels CX,D is
≥ REX(D) = RPX(D). From this, will follow the optimality of digital communication for
communication with a fidelity criterion where we use pseudo-universal communication
for communication to within a distortion D instead of universal communication to
within a distortion D. We will call this the An operational view-point on optimality
of digital communication for pseudo-universal communication with a fidelity criterion
or An operational view-point on pseudo-universal source-channel separation for rate-
distortion.

On the way, we will need to define the corresponding channel set for the uniform X
source which we will denote by CU,D and we will derive relation between pseudo-universal
capacities of various channel sets and the various rate-distortion functions.

We believe that the above steps can also be carried out with universal capacity in-
stead of pseudo-universal capacity with only minor modifications; however, we have
not worked them out. For the reader unhappy with this explanation, the reader can
think of this as an operational view of the non-universal view on the optimality of
digital communication, that is the channel is a fully known channel: for a fully known
channel, pseudo-universal capacity and the universal capacity are the same because
uniformity is trivial for a channel set which consists of just one channel.

Another consideration that we do not have in this chapter is that of resource con-
sumption. We prove the optimality of digital communication but do not look at the
resource consumption in the digital architecture as opposed to a more general archi-
tecture. Again, this is something I believe is something that should be possible quite
easily but I have not done it. For the reader unhappy with this explanation, the reader
should think of it as the way things are done in the usual information theory literature
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in the discrete case where resource consumption is not considered at all. I should add
that I do not agree with this approach in the literature because resource consumption
is a very important issue, and when proving optimality of digital communication, one
should prove that it can be done with the same or lesser resource consumption as com-
pared to other architectures; in our case in this chapter, I quite strongly believe that it
can be done; just that I have not done it.

We will in fact prove that the pseudo-universal capacity of the set of channels CX,D
is precisely RPX(D), and not just ≥ RPX(D). We will use this to give the idea for an
alternate proof of the rate-distortion theorem for those i.i.d. sources X for which pX(x)
is rational ∀x ∈ X . I believe that our proof is more insightful than the original proof
of Shannon [Sha59]. This also leads to connections between source and channel coding
which was talked about in brief Subsection 2.14.10, and is elaborated on a bit more in
this chapter.

� 5.1.2 Chapter outline

In Section 5.3, we discuss the i.i.d. X and the uniform X sources: the two sources
which we use in this chapter, and the to sources for which the theorems interplay with
each other.

In Section 5.4, we discuss the rate-distortion source-coding problem. We define source-
codes and what we call, jump source codes. The definitions of source-codes are made for
coding both the i.i.d. X and the uniform X sources. We define various rate-distortion
functions for the i.i.d. and the uniform X sources and prove the equality of all the rate-
distortion functions. The proof of the equality of the various rate-distortion functions
is operational.

In Section 5.5, we discuss the channel-coding problem. We define channels and what
we call jump channels. We define, what we means for these channels to pseudo-directly
communicate i.i.d. X and uniform X sources to within certain distortion levels, and
correspondingly define various sets of channels or jump channels which pseudo-directly
communicate the i.i.d. X and the uniform X sources to within certain distortion levels.
We define the pseudo-universal capacities of these sets of channels and derive relations
between these capacities. The derivation of these relations is operational.

In Section 5.6, we link the source-coding and the channel-coding problem. We prove that
the pseudo-universal capacity of the set of channels which pseudo-directly communicate
the uniform X source to within a distortion D is equal to the minimum rate required
to compress the i.i.d. X source to within a distortion D. A similar statement is proved
for the i.i.d. X source. The derivation of this result is operational.

In Section 5.7, we state the pseudo-universal source-channel separation theorem for
rate-distortion and use the result of the previous section to finish the final step in
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proving operationally, the pseudo-universal source-channel separation theorem for com-
munication with a fidelity criterion. Comments are made that we do not take into
account resource consumption unlike Chapter 2, and that, we are operationally proving
a pseudo-universal, not universal source-channel separation theorem for communica-
tion with a fidelity criterion. We also discuss the operational nature of the proof and
compare our proof with Shannon’s non-operational proof.

Out of our operational proof, also come out connections between source and channel
coding. These connections are discussed In Section 5.8. Also, we provide an alternate
proof of the rate-distortion theorem for those i.i.d. X sources for which pX(x) is rational
∀x ∈ X . Comments are made on why this proof is in our opinion, more insightful and
more operational than Shannon’s.

In this chapter, we have proved operationally, a pseudo-universal, not a universal source-
channel separation theorem for rate-distortion. In Section 5.9, we comment briefly on
what changes might be needed in order to prove a universal source-channel separation
theorem for rate-distortion. Further, in this chapter, we have not taken into account re-
source consumption in the system when constructing the digital architecture. In Section
5.10, we comment very briefly on how we could also take into account, the resource con-
sumption in the system, when proving the universal source-channel separation theorem
for rate-distortion.

In Section 5.11, we recapitulate this chapter and make some final remarks on this
chapter.

� 5.2 A note on definitions

We will, en-route, be re-defining many quantities, that have already been defined in
Chapter 2. We do this for two reasons:

• To make this chapter complete in itself

• Some definitions like those of random source-codes and random channel-codes will
look different from those of Chapter 2 but will be the same in spirit as those of
Chapter 2

� 5.3 Sources

We consider 2 kinds of sources: i.i.d. and uniform. These are defined below.

Let X be a finite set.

Definition 5.1 (i.i.d. X source). Let X be a random-variable on X . Let Xn denote
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i.i.d. X sequence of block-length n. Xn is a random-variable on X n. < Xn >∞1 is the
i.i.d. X source. By abuse of notation, we denote X =< Xn >∞1 .

Definition 5.2 (Uniform X source). Let X be a random variable on X . Let pX(x) be
rational ∀x. Let n0 be the least positive integer for which n0pX(x) is an integer ∀x ∈ X .
Let Un denote the set of sequences with (exact) empirical distribution (type) pX . Un is
non-empty if and only if n0 divides n. Let n′ , n0n. Let Un

′
denote a random variable

which is uniform on Un′ and zero elsewhere. Then, < Un
′
>∞1 is the uniform X source

and is denoted by U . Intuitively, the uniform X source is the source which puts uniform
distribution on the set of all sequences whose empirical distribution is pX .

Note 5.1. The superscript n′ in Un′ denotes that the block-length is n′. It does not
mean that Un′ is the cartesian product of some set U with itself n times. Infact, the
set U = U1 is empty unless n0 = 1. Similarly, the superscript n′ in Un

′
denotes block-

length. It does not mean that Un
′

is i.i.d. U source for some random variable U .

Definition 5.3 (n0). n0 is the least positive integer for which n0pX(x) is an integer
∀x ∈ X .

Definition 5.4 (n′). n′ , n0n.

Note 5.2. Uniform X source is defined only for those block-lengths which are divisible
by n0.

Note 5.3. If pX(x) is irrational for some x ∈ X , Un is empty ∀n. Thus, in order to define
the uniform X source, the assumption that pX(x) be rational ∀x ∈ X is necessary.

Note 5.4. Let pX(x) be rational ∀x ∈ X . The uniform X source and the i.i.d. X source
are “close” to each other in the following sense. The uniform X source puts mass only
only sequences with empirical distribution exactly pX . For large n, i.i.d. X source
puts “most of” its mass on sequences with empirical distribution “close to” pX . We
are interested in i.i.d. X source. Uniform X source is introduced only because some
arguments can be made can rigorous for the uniform X source, which, we do not know,
how to make rigorous for the i.i.d. X source.

� 5.4 The rate-distortion problem

In this section, we discuss the rate-distortion problem of source-coding (compressing)
the i.i.d. and the uniform X sources. We define source-codes and jump source-codes
We define various rate-distortion functions for the i.i.d. X and the uniform X sources
with the expected and the probability of excess distortion definitions, taking limits as
lim inf and lim sup, and allowing jump source codes when source-coding the i.i.d. X
source. We prove the continuity, convexity and the equality of various rate-distortion
functions defined.
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� 5.4.1 Source codes

Source-codes are sequences for various block-lengths.

This subsection defines deterministic and random source-codes and jump source-codes
for the i.i.d. X source, and deterministic and random source-codes for the uniform X
source. The output space of the source-codes will be a finite set Y.

Source codes to encode the i.i.d. X source

When the block-length is n, the input space is X n, the cartesian product of X with
itself n times, and the output space is Yn, the cartesian product of Y with itself, n
times.

Let EnX (R) denote the set of all functions with domain Xn and range {1, 2, . . . , 2bnRc}.
Let FnY(R) denote the set of all functions with domain {1, 2, . . . , 2bnRc} and range Yn.

Definition 5.5 (Rate R deterministic source-code). Rate R deterministic source-code
is a sequence s =< sn >∞1 =< en, fn >∞1 . en ∈ EnX (R) and fn ∈ FnY(R). This is
interpreted as follows. When the block-length is n, xn ∈ X n is encoded as en(xn) and
a ∈ {1, 2, . . . , 2bknRc} is decoded as fn(a). fn(en(xn)) is the actual encoding of xn by
the source-code.

Note 5.5. In the definition of a rate R deterministic source-code, the set {1, 2, . . . , 2bnRc}
can be replaced by any set of cardinality 2bnRc.

Random source codes, which consist of a random source encoder and a random source
decoder were defined in Section 2.7.2 as transition probabilities. In this chapter, we
will view them in another, equivalent way: as a joint distribution on the space of
deterministic source encoders and decoders

Definition 5.6 (Rate R random source-code with common randomness). A rate R
random source-code with common randomness is a sequence s =< sn >∞1 which should
be interpreted as follows. psn is a probability distribution on EnX (R)×FnY(R). That is,
psn ∈ P(EnX (R) × FnY(R)). This is interpreted as follows. When block-length is n, the
deterministic source-code (en, fn), en ∈ EnX (R), fn ∈ FnY(R) is used as the source-code
with probability psn((en, fn)).

Note 5.6. If a source-code s has rate R, it also has rate > R.

Definition 5.7 (Transition probability corresponding to a source-code). Let Axn,yn
denote the set of all deterministic encoder-decoder pair (en, fn) which encode xn as
yn. That is, Axn,yn , {(en, fn)|fn(en(xn)) = yn}. psn(Axn,yn) is the probability that
xn is encoded as yn by the source-code s. This can be used to define a stochastic ker-
nel/transition probability matrix qns : X n → P(Yn) as follows. qns (yn|xn) = psn(Axn,yn).
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qns (yn|xn) is the probability that xn is encoded as yn by the source code s. The sequence
qs =< qns >

∞
1 is the transition probability corresponding to a source-code s =< sn >∞1 .

Note 5.7. The sequence qs =< qns >
∞
1 is important because the distortion incurred by

source-code s depends only on qs. This will become clear later.

Definition 5.8 (Rate R deterministic jump source-code). Rate R deterministic source-
code is a sequence s =< skn >∞1 =< ekn, fkn >∞1 where k > 0 is some positive integer,
where definitions of ekn, fkn and the interpretation of the source-code is exactly as in
Definition 5.5. The only difference is that quantitities in a jump block-code are defined
only for block-lengths kn, 1 ≤ n ≤ ∞.

Note 5.8. In the above definition, when we say < kn >∞1 refers to < kn >∞n=1. k
remains fixed. This will be the case throughout the rest of the thesis: for n′ = f(n),
< an

′
>∞1 refers to < af(n) >∞n=1.

Definition 5.9 (Rate R random jump source-code). This is defined exactly as definition
5.6, except that quantities are defined only for block lengths kn, 1 ≤ n ≤ ∞, for some
positive integer k.

Note 5.9. Jump source-codes do not have physical significance. We define them because
proof of some equalities concerning rate-distortion functions require the introduction of
jump source-codes. This will be clarified in more detail, later.

Definition 5.10 (Transition probability corresponding to a a jump source-code). This
is exactly the same as Definition 5.7, except that quantities are defined only for block-
lengths kn, 1 ≤ n ≤ ∞, for some positive integer k.

Source-codes to encode the uniform X source

Recall the definitions of n0 and n′.

When the block-length is n′, the input space is Un′ . The output space is Yn′ , the
cartesian product of Y with itself, n′ times.

Let En′U (R) denote the set of all functions with domain Un′ and range {1, 2, . . . , 2bn′Rc}.
Let Fn′Y (R) denote the set of all functions with domain {1, 2, . . . , 2bn′Rc} and range Y n′ .

Definition 5.11 (Rate R deterministic source-code). Rate R deterministic source-code
is a sequence s =< sn

′
>∞1 =< en

′
, fn

′
>∞1 . en

′ ∈ En′U (R) and fn
′ ∈ Fn′Y (R). This is

interpreted as follows. When the block-length is n′, un
′ ∈ Un′ is encoded as en

′
(un

′
)

and a ∈ {1, 2, . . . , 2bn′Rc} is decoded as fn
′
(a). fn

′
(en

′
(xn

′
)) is the actual encoding of

xn
′

by the source-code.

Note 5.10. In the definition of a rateR deterministic source-code, the set {1, 2, . . . , 2bn′Rc}
can be replaced by any set of cardinality 2bn

′Rc.
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Definition 5.12 (Rate R random source-code with common randomness). A rate R
random source-code with common randomness is a sequence s =< sn

′
>∞1 which should

be interpreted as follows. psn′ is a probability distribution on En′U (R) × Fn′Y (R). That
is, psn′ ∈ P(En′U (R) × Fn′Y (R)). This is interpreted as follows. When block-length is
n′, the deterministic source-code (en

′
, fn

′
), en

′ ∈ En′U (R), fn
′ ∈ Fn′Y (R) is used as the

source-code with probability psn′ ((e
n′ , fn

′
)).

Note 5.11. Since the uniform source is defined only for block-lengths n′ = n0n, source-
codes to encode the uniform X source are also defined only for block-lengths n′ = n0n.
This does not mean that these source-codes are jump source-codes.

Note 5.12. If a source-code s has rate R, it also has rate > R.

Definition 5.13 (Transition probability corresponding to a source-code). Let Aun′ ,yn′
denote the set of all deterministic encoder-decoder pair (en

′
, fn

′
) which encode un

′
as

yn
′
. That is, Aun′ ,yn′ , {(en

′
, fn

′
)|fn′(en′(un)) = yn

′}. psn′ (Aun′ ,yn′ ) is the probability
that un

′
is encoded as yn

′
by the source-code s. This can be used to define a stochastic

kernel/transition probability matrix qn
′
s : Un → P(Yn′) as follows. qn

′
s (yn

′ |un′) =
psn′ (Aun′ ,yn′ ). qn

′
s (yn

′ |un′) is the probability that un
′

is encoded as yn
′

by the source
code s. The sequence qs =< qn

′
s >∞1 is the transition probability corresponding to a

source-code s =< sn
′
>∞1 .

Note 5.13. The sequence qs =< qns >
∞
1 is important because the distortion incurred by

source-code s depends only on qs. This will become clear later.

Note 5.14. We do not need to define jump source-codes for encoding the uniform X
source.

� 5.4.2 Distortion produced by a source-code and a jump source-code

In this subsection, we define the distortion produced by a source-code. We consider two
definitions of distortion: the expected distortion and the probability of excess distortion.
Both the expected distortion and the probability of excess distortion can be defined by
taking limits in two ways: lim inf and lim sup. When the source is i.i.d. X, distortion
is defined for both source-codes and jump source-codes. For the uniform X source,
distortion is defined only for source-codes: we would not need the definition with jump
source-codes.

Assume that X = Y. This assumption will be used throughout the rest of this chapter.

d : X × Y → [0,∞) is the distortion function. Let x ∈ X and y ∈ Y. d(x, y) should
be thought of as the distortion between x and y, or as the distortion incurred if x is
received as y.

Let d be such that d(x, x) = 0∀x ∈ X . This assumption will be used throughout the rest
of this chapter.
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For xn ∈ X n and yn ∈ Yn, the distortion between xn and yn is defined additively:

dn(xn, yn) ,
n∑

i=1

d(xn(i), yn(i)) (5.2)

Denote Dmax , maxx∈X ,y∈Y d(x, y).

Distortion produced by a source code which encodes i.i.d. X source

Consider a source-code s =< sn >∞1 .

The action of sn on source Xn results in a joint probability distribution on the input-
output X n × Yn space. This action is that of the kernel qns on the source Xn. The
output random-variable is Y n. The joint random-variable on the X n × Y n space is
XnY n.

Definition 5.14. [Achievability of expected distortion D by source-code s when encod-
ing i.i.d. X Source] Distortion D is achievable in the expected sense (or that, distortion
D is E-achievable, or that expected distortion D is achievable ) by the source-code s
for the i.i.d. X source if there exists

lim sup
n→∞

EXnY n

[
1
n
dn(Xn, Y n)

]
≤ D (5.3)

Note 5.15. By definition, if distortion D is achievable in the expected sense (or that,
distortion D is P-achievable) by the source-code s for the i.i.d. X source, then distortion
D′ > D is also achievable in the expected sense by the source-code s for the i.i.d. X
source.

Definition 5.15. [Achievability of probability of excess distortion D by source-code s
when encoding i.i.d. X Source] Distortion D is achievable in the probability of excess
distortion sense (or that, distortion D is P-achievable) by the source-code s for the i.i.d.
X source if

lim
n→∞

pXnY n

(
1
n
dn(Xn, Y n) > D

)
= 0 (5.4)

Note 5.16. In the above definition, we use lim
n→∞

and not lim sup
n→∞

because both definitions

are the same. This is because, if an ≥ 0, 1 ≤ n <∞, then, lim sup
n→∞

an = 0 if and only if

lim
n→∞

an = 0.

Note 5.17. By definition, if distortion D is achievable in the probability of excess dis-
tortion sense by the source-code s for the i.i.d. X source, then distortion D′ > D is
also achievable in the probability of excess distortion sense by the source-code s for the
i.i.d. X source.
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Definition 5.16. [Inf-achievability of expected distortion D by source-code s when
encoding i.i.d. X Source] Expected distortion D is inf -achievable by the source-code s
for i.i.d. X source if

lim inf
n→∞

EXnY n

[
1
n
dn(Xn, Y n)

]
≤ D (5.5)

Note 5.18. By definition, if expected distortion D is inf-achievable by the source-code
s for the i.i.d. X source, then expected distortion D′ > D is also inf-achievable by the
source-code s for the i.i.d. X source.

Note 5.19. When we say that expected distortion D is achievable, we would mean that
expected distortion D is achievable with Definition 5.14. When we want to talk about
achievability of probability of excess distortion D in the sense of Definition 5.16, we
would explicitely refer to it as inf-achievability.

Definition 5.17. [inf-achievability of probability of excess distortion D by source-code
s when encoding i.i.d. X Source] Probability of excess distortion D is inf -achievable
by the source-code s for i.i.d. X source if

lim inf
n→∞

pXnY n

(
1
n
dn(Xn, Y n) > D

)
= 0 (5.6)

Note 5.20. By definition, if probability of excess distortion D is inf-achievable by the
source-code s for the i.i.d. X source, then probability of excess distortion D′ > D is
also inf-achievable by the source-code s for the i.i.d. X source.

Note 5.21. When we say that expected distortion D is achievable, we would mean that
probability of excess distortion D is achievable with Definition 5.15. When we want to
talk about achievability of probability of excess distortion D in the sense of Definition
5.17, we would explicitely refer to it as inf-achievability.

Distortion produced by a jump-source code which encodes i.i.d. X source

Consider a jump source-code s =< skn >∞1 . Denote n′′ = kn

The action of sn
′′

on source Xn′′ results in a joint probability distribution on the input-
output X n′′ ×Yn′′ space. This action is that of the kernel qn

′′
s on the source Xn′′ . The

output random-variable is Y n′′ . The joint random-variable on the X n′′ × Y n′′ space is
Xn′′Y n′′ .

Definition 5.18. [Achievability of expected distortion D by the jump source-code s
when encoding i.i.d. X Source] This definition is the same as Definition 5.14 except
that limits are taken along n′′instead of n.

Note 5.22. Note 5.15 holds for jump source-codes.
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Definition 5.19. [Achievability of probability of excess distortion D by jump source-
code s when encoding i.i.d. X Source] This definition is the same as definition 5.15
except that limits are taken along n′′ instead of n.

Note 5.23. Note 5.16 holds for jump block-codes.

Note 5.24. Note 5.17 holds for jump source-codes.

Note 5.25. We do not talk about inf-achievability with jump block codes. This is
because of the following reason. Suppose we are given a jump source-code s =< skn >∞1
for which we want to define inf-achievability. Thus, there would be some subsequence
kni along which limits are taken. Now, consider a source-code t =< tn >∞1 which
is the same as source-code s for block-lengths kn and arbitrarily defined, for other
block-lengths. Limits can then be taken along the same block-lengths kni for this code
without jump. Thus, for the definition of inf-achievability, a jump code can first be
converted into a code without jump by the above procedure. Thus, one does not gain
anything by allowing jumps when considering inf-achievabilty.

Distortion produced by a source-code which encodes uniform X source

Let X be such that pX(x) is rational ∀x ∈ X .

Recall that the uniform X source is defined only for block lengths which are multiples
of n0. Recall that n′ , n0n. Also, source-codes for coding the uniform X source are
defined only for block-lengths n′.

Consider a source-code s =< sn
′
>∞1 .

The action of sn
′

on source Un
′

results in a joint probability distribution on the input-
output Un′ × Yn′ space. This action is that of the kernel qn

′
s on the source Un

′
. The

output random-variable is Y n′ . The joint random-variable on the Un′ × Y n′ space is
Un

′
Y n′ .

Definition 5.20. [Achievability of expected distortion D by source-code s when encod-
ing uniform X Source] This definition is the same as Definition 5.14 except that limits
are taken along n′, and that, expectation is taken with respect to the joint random
variable Un

′
Y n′ .

Note 5.26. Note 5.26 holds for the uniform X source.

Definition 5.21. [Achievability of probability of excess distortion D by source-code s
when encoding uniform X Source] This definition is the same as Definition 5.15 except
that limits are taken along n′, and that, probability is taken with respect to the joint
random variable Un

′
Y n′ .

Note 5.27. Note 5.16 holds.

Note 5.28. Note 5.17 holds for the uniform X source.
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Definition 5.22. [Inf-achievability of expected distortion D by source-code s when
encoding uniform X Source] This definition is the same as Definition 5.16 except that
limits are taken along n′, and that, expectation is taken with respect to the joint random
variable Un

′
Y n′ .

Note 5.29. Note 5.18 holds for the uniform X source.

Note 5.30. When we say that expected distortion D is achievable, we would mean that
expected distortion D is achievable with Definition 5.20. When we want to talk about
achievability of probability of excess distortion D in the sense of Definition 5.22, we
would explicitely refer to it as inf-achievability.

Definition 5.23. [inf-achievability of probability of excess distortion D by source-code
s when encoding uniform X Source] This definition is the same as Definition 5.17 except
that limits are taken along n′, and that, probability is taken with respect to the joint
random variable Un

′
Y n′ .

Note 5.31. Note 5.31 holds for the uniform X source.

Note 5.32. When we say that expected distortion D is achievable, we would mean that
probability of excess distortion D is achievable with Definition 5.21. When we want to
talk about achievability of probability of excess distortion D in the sense of Definition
5.23, we would explicitely refer to it as inf-achievability.

Note 5.33. As stated before, jump source-codes are not considered, when encoding the
uniform X source.

Note 5.34. Recall the assumptions that X = Y and d(x, x) = 0∀x ∈ X . By this assump-
tion, distortion D = 0 is achievable for all the above definitions, and REX(0), RPX(0),
REX(0, inf), RPX(0, inf), REX(0, j), RPX(0, j), REU (0), RPU (0), REU (0, inf), and RPU (0, inf), are
all ≤ log |X |. In particular, REX(0), RPX(0), REX(0, inf), RPX(0, inf), REX(0, j), RPX(0, j),
REU (0), RPU (0), REU (0, inf), and RPU (0, inf) are all defined for D ∈ [0,∞).

� 5.4.3 The rate-distortion function

In this subsection, we define the rate-distortion function when encoding the i.i.d. X and
the uniform X sources. The rate-distortion function can be defined for the expected
distortion definition and the probability of excess distortion definition, under both the
lim inf and the lim sup definitions.

For i.i.d. X sources, the rate-distortion function can be defined when jump source-codes
are allowed or when only source-codes are allowed. This leads to six different definitions
of the rate-distortion function when encoding the i.i.d. X source: REX(D), REX(D, inf),
REX(D, j), RPX(D), RPX(D, inf), andRPX(D, j).

For the uniform X source, rate-distortion function is defined when source-codes are
allowed. This leads to four different definitions of the rate-distortion function when
encoding the uniform X source: REU (D), REU (D, inf), RPU (D), and RPU (D, inf)
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Rate-distortion function corresponding to source-codes which encode the i.i.d. X source

Definition 5.24 (Rate-distortion function REX(D)). Rate R is E-achievable correspond-
ing to distortion level D for the i.i.d. X source if there exists a rate R source code s
which achieves expected distortion D when encoding the i.i.d. X source. The infimum
of all E-achievable rates for distortion level D is the rate-distortion function REX(D).

Definition 5.25 (Rate-distortion function RPX(D)). Rate R is P-achievable correspond-
ing to distortion level D for the i.i.d. X source if there exists a rate R source code s
which achieves probability of excess distortion D for the i.i.d. X source. The infimum
of all P-achievable rates for distortion level D is the rate-distortion function RPX(D).

Definition 5.26 (Rate-distortion function REX(D, inf)). Rate R is inf-E-achievable for
the i.i.d. X source if there exists a rate R source code s which inf-achieves expected
distortion D for the i.i.d. X source. The infimum of all E-achievable rates for distortion
level D is the rate-distortion function REX(D, inf).

Definition 5.27 (Rate-distortion function RPX(D, inf)). Rate R is inf-P-achievable for
the i.i.d. X source if there exists a rate R source code s which inf-achieves probability
of excess distortion D for the i.i.d. X source. The infimum of all E-achievable rates for
distortion level D is the rate-distortion function RPX(D, inf).

Rate-distortion function corresponding to jump source-codes which encode the i.i.d. X
source

Definition 5.28 (Rate-distortion function REX(D, j)). Rate R is E-achievable corre-
sponding to distortion level D for the i.i.d. X source if there exists a rate R jump
source code s which achieves expected distortion D when encoding the i.i.d. X source.
Jump source-codes with all possible jump sizes k are under consideration. The infimum
of all E-achievable rates for distortion level D is the rate-distortion function REX(D, j).

Definition 5.29 (Rate-distortion function RPX(D, j)). Rate R is P-achievable corre-
sponding to distortion level D for the i.i.d. X source if there exists a rate R jump
source code s which achieves probability of excess distortion D for the i.i.d. X source.
Jump source-codes with all possible jump sizes k are under consideration. The infimum
of all P-achievable rates for distortion level D is the rate-distortion function RPX(D, j).

Rate-distortion function corresponding to source-codes which encode the uniform X source

Definition 5.30 (Rate-distortion function REU (D)). REU (D) is defined analogously to
REX(D).

Definition 5.31 (Rate-distortion function RPU (D)). RPU (D) is defined analogously to
RPX(D).
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Definition 5.32 (Rate-distortion function REU (D, inf)). REU (D, inf) is defined analo-
gously to REX(D, inf).

Definition 5.33 (Rate-distortion function RPU (D, inf)). RPU (D, inf) is defined analo-
gously to RPX(D, inf).

� 5.4.4 Properties and equalities of the various rate-distortion functions for
i.i.d. and uniform sources

In this subsection, we prove various the convexity, continuity, and equality of various
rate-distortion functions. Our goal is to prove 2 results

1. For X such that pX(x) is rational ∀x ∈ X , for D ∈ (0,∞), REX(D), RPX(D),
REX(D, j), RPX(D, j), REX(D, inf), RPX(D, inf), REU (D), RPU (D), REU (D, inf), and
RPU (D, inf) are convex, continuous functions of D and are all equal

2. For arbitrary X, for D ∈ (0,∞), REX(D), REX(D, j), REX(D, inf), RPX(D), RPX(D, j),
and RPX(D, inf) are all convex continuous functions of D and are all equal

Proving the above will be carried out in various steps which the reader might want to
refer to now, or in the future, as the proofs progress. The statements below are not
precise, in particular, they do not mention the range of D for which the results hold.

1. Results concerning achievability with deterministic source-codes

2. Construction of time-sharing code. As a consequence, the proof of convexity and
continuity of REX(D, j) and RPX(D, j)

3. Construction of interpolation code. As a consequence, the proof of REX(D) =
REX(D, j) and RPX(D) = RPX(D, j)

4. Construction of jump repetition code. As a consequence, the proof of REX(D, inf) =
REX(D, j) and RPX(D, inf) = RPX(D, j)

5. Thus, REX(D) = REX(D, j) = REX(D, inf) and RPX(D) = RPX(D, j) = RPX(D, inf)

6. Description of two constructions describing how to construct a jump source-code
for i.i.d. X ′ source given a source-code for the uniform X source, and how to
construct a source-code for the uniform X source given a source-code for the i.i.d.
X ′ source. As a consequence, the proofs of REX(D) = REU (D), RPX(D) = RPU (D),
REX(D, inf) = REU (D, inf) and RPX(D, inf) = RPU (D, inf).

7. Proof of REU (D) = RPU (D)

8. Thus, the proof of equality of REX(D), RPX(D), REX(D, j), RPX(D, j), REX(D, inf),
RPX(D, inf), REU (D), RPU (D), REU (D, inf), and RPU (D, inf)
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9. The proof of equality of REX(D), REX(D, j), REX(D, inf), RPX(D), RPX(D, j), and
RPX(D, inf) by use of limiting arguments

First we prove that there is no loss of generality if one restricts attention to deterministic
source-codes and jump source-codes.

Achievability with deterministic codes

We prove that if rate R is E- achievable with expected distortion D for a source,
rate R is also E achievable with distortion D with a deterministic source-code for the
source. Similarly, if rate R is P-achievable with distortion D for a source, rate R is also
P-achievable with probability of excess distortion D with a deterministic source-code.

Lemma 5.1. 1. Let expected distortion D be achievable for the i.i.d. X source with
some rate R source code. Then, expected distortion D is also achievable for the
i.i.d. X source with a rate R deterministic source-code

2. Let expected distortion D be inf-achievable for the i.i.d. X source with some rate
R source code. Then, expected distortion D is also inf-achievable for the i.i.d. X
source with a rate R deterministic source-code

3. Let expected distortion D be achievable for the i.i.d. X source with some rate R
jump source code. Then, expected distortion D is also achievable for the i.i.d. X
source with a rate R deterministic jump source-code

4. Let expected distortion D be achievable for the uniform X source with some rate
R source code. Then, expected distortion D is also achievable for the uniform X
source with a rate R deterministic source-code

5. Let expected distortion D be inf-achievable for the uniform X source with some rate
R source code. Then, expected distortion D is also inf-achievable for the uniform
X source with a rate R deterministic source-code

Proof. We prove the first statement above. The proofs of the rest of the statements are
similar; the only difference is that limits might be taken along particular block-lengths
or that, the source might be different.

Let expected distortion D be achievable for the i.i.d. X source with rate R source-code
s =< sn >∞1 . That is,

EXnY n

[
1
n
dn(Xn, Y n)

]
= Dn where lim sup

n→∞
Dn ≤ D (5.7)

EXnY n

[
1
n
dn(Xn, Y n)

]
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=
∑

(en,fn)∈EnX (R)×FnX (R)

psn((en, fn))EXnY n

[
1
n
dn(Xn, Y n)|sn = (en, fn)

]

=
∑

(en,fn)∈EnX (R)×FnX (R)

psn((en, fn))EXn

[
1
n
dn(Xn, fn(en(Xn)))

]
≤ Dn (5.8)

Thus, there exists an (en∗ , f
n
∗ ) ∈ EnX (R)×FnX (R) such that

EXn

[
1
n
dn(Xn, fn∗ (en∗ (X

n)))
]
≤ Dn (5.9)

For the deterministic source-code < en∗ , f
n
∗ >

∞
1 ,

lim
n→∞

EXn

[
1
n
dn(Xn, fn∗ (en∗ (X

n)))
]
≤ lim

n→∞
Dn ≤ D (5.10)

Since s has rate R, < en∗ , f
n
∗ >

∞
1 also has rate R. < en∗ , f

n
∗ >

∞
1 is thus a deterministic

rate R source-code with expected distortion D for the i.i.d. X source.

Note 5.35. It follows from the above lemma that the rate-distortion function REX(D),
REX(D, inf), REX(D, j), REU (D), and REU (D, inf) are unchanged by restriction to deter-
ministic source-codes.

Note 5.36. With appropriate definitions, the above lemma infact holds for arbitrary
sources, not just i.i.d. and uniform.

Lemma 5.2. 1. Let probability of excess distortion D be achievable for the i.i.d. X
source with some rate R source code. Then, probability of excess distortion D is
also achievable for the i.i.d. X source with a rate R deterministic source-code

2. Let probability of excess distortion D be inf-achievable for the i.i.d. X source
with some rate R source code. Then, probability of excess distortion D is also
inf-achievable for the i.i.d. X source with a rate R deterministic source-code

3. Let probability of excess distortion D be achievable for the i.i.d. X source with
some rate R jump source code. Then, probability of excess distortion D is also
achievable for the i.i.d. X source with a rate R deterministic jump source-code

4. Let probability of excess distortion D be achievable for the uniform X source with
some rate R source code. Then, probability of excess distortion D is also achievable
for the uniform X source with a rate R deterministic source-code

5. Let probability of excess distortion D be inf-achievable for the uniform X source
with some rate R source code. Then, probability of excess distortion D is also
inf-achievable for the uniform X source with a rate R deterministic source-code
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Proof. We prove the first statement above. The proofs of the rest of the statements are
similar; the only difference is that limits might be taken along particular block-lengths
or that, the source might be different (or jump source-codes, as the case may be).

Let probability of excess distortion D be achievable for the i.i.d. X source with rate R
source-code s =< sn >∞1 . That is,

pXnY n

(
1
n
dn(Xn, Y n) > D

)
= εn where lim

n→∞
εn = 0 (5.11)

pXnY n

(
1
n
dn(Xn, Y n) > D

)

=
∑

(en,fn)∈EnX (R)×FnX (R)

psn((en, fn))pXnY n

(
1
n
dn(Xn, Y n) > D|sn = (en, fn)

)

=
∑

(en,fn)∈EnX (R)×FnX (R)

psn((en, fn))pXn

(
1
n
dn(Xn, fn(en(Xn))) > D

)

=εn (5.12)

Thus, there exists an (en∗ , f
n
∗ ) ∈ EnX (R)×FnX (R) such that

pXn

(
1
n
dn(Xn, fn∗ (en∗ (X

n))) > D

)
≤ εn (5.13)

For the deterministic source-code < en∗ , f
n
∗ >

∞
1 ,

lim
n→∞

pXn

(
1
n
dn(Xn, fn∗ (en∗ (X

n))) > D

)
≤ lim

n→∞
εn = 0 (5.14)

Since s has rate R, < en∗ , f
n
∗ >

∞
1 also has rate R. < en∗ , f

n
∗ >

∞
1 is thus a deterministic

rate R source-code with probability of excess distortion D for the i.i.d. X source.

Note 5.37. It follows from the above lemma that the rate-distortion function RPX(D),
RPX(D, inf), RPX(D, j), RPU (D), and RPU (D, inf) are unchanged by restriction to deter-
ministic source-codes(or jump source-codes, as the case may be).
Note 5.38. With appropriate definitions, the above lemma infact holds for arbitrary
sources, not just i.i.d. and uniform.

Next we prove theconvexity and continuity of various rate-distortion functions for D ∈
(0,∞).

Convexity and continuity of rate-distortion functions

We prove the convexity of REX(D, j) and RPX(D, j) for D ∈ [0,∞). As a consequence,
will follow, the continuity of REX(D, j) and RPX(D, j) for D ∈ (0,∞). For this, we first
define equal time sharing between jump source-codes.



Sec. 5.4. The rate-distortion problem 161

Definition 5.34 (Equal time sharing between deterministic jump source-codes which
code the i.i.d. X source). Let s =< skn >∞1 =< ekn, fkn >∞1 be a rate R deterministic
jump source-code to code the i.i.d. X source. Let s′ =< s′k

′n >∞1 be a rate R′

deterministic source-code to code the i.i.d. X source . The jump source-code code
t =< t2kk

′n >∞1 =< g2kk′n, h2kk′n >∞1 which time-shares equally between s and s′ is
defined as follows

Denote n′′ = kk′n.

Let

g2n′′(x2n′′) ,(ekn(x(1..kn)), ekn(x(kn+ 1..2kn)), . . . , ekn(x(k(k′ − 1)n+ 1..n′′)),

e′k
′n(x(n′′..n′′ + k′n)), e′k

′n(x(n′′ + k′n+ 1..n′′ + 2k′n)), . . . ,

e′k
′n(x(n′′ + k′(k − 1)n..2n′′)))

(5.15)

The range of g2n′′ is {1, 2, . . . 2bknRc}k′×{1, 2, . . . 2bk′nR′c}k. For ak
′+k, a vector of length

k′ + k, ∈ {1, 2, . . . 2bnRc}k′ × {1, 2, . . . 2bnR′c}k, define

h2n′′(ak
′+k) ,(fkn(ak+k′(1)), fkn(ak+k′(2)), . . . , fkn(ak+k′(k′)),

f ′k
′n(ak+k′(k′ + 1)), f ′k

′n(ak+k′(k′ + 2)), . . . , f ′k
′n(ak+k′(k′ + k)))

(5.16)

Lemma 5.3. The jump source-code t has rate
R+R′

2
.

Proof. The range of g2n′′ has cardinality 2k
′bknRc+k′bk′nR′c. k′bknRc + k′bk′nR′c ≤

bk′knR + kk′nR′c = n′′(R + R′). It follows that the cardinality of the image of g2n′′

≤ 2bn
′′(R+R′)c = 2b2n

′′ R+R′
2
c. Thus, the jump source-code t has rate R+R′

2 .

Note 5.39. By an extension of the above definition, equal time sharing can be defined
for random jump source codes. We would have no need for it, and the notation becomes
complicated; hence, we do not define it.

Lemma 5.4. ∀X, REX(·, j) is a convex function of D for D ∈ (0,∞). As a corollary,
REX(D, j) is continuous function of D for D ∈ (0,∞).

Proof. Let s =< skn >∞1 be a rate R jump source-code such that expected distortion
D is achievable when encoding i.i.d. X source. By Lemma 5.1, there exists a rate
R deterministic jump source-code with expected distortion D when encoding i.i.d. X
source. Thus, without loss of generality, assume that s is deterministic. Let s′ =<
s′k

′n >∞1 be a rate R′ jump source-code such that expected distortion D′ is achievable
when encoding the i.i.d. X source. By Lemma 5.1, there exists a rate R deterministic
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jump source-code with expected distortion D′ when encoding i.i.d. X ′ source. Thus,
without loss of generality, assume that s′ is deterministic. Denote n′′ = kk′n. Define
the random variables

D1,kn ,
1
kn
dkn

(
(X2n′′(1..kn)), Y 2n′′(1..kn)

)
(5.17)

D2,kn ,
1
kn
dkn

(
(X2n′′(kn+ 1..2kn)), Y 2n′′(kn+ 1..2kn)

)
(5.18)

...

Dk′,kn ,
1
kn
dkn

(
(X2n′′(k(k′ − 1)n+ 1..n′′)), Y 2n′′(k(k′ − 1)n+ 1..n′′)

)
(5.19)

and

D′1,k′n ,
1
k′n

dk
′n
(
X2n′′(n′′ + 1..n′′ + k′n), Y 2kk′n(n′′ + 1..n′′ + k′n)

)
(5.20)

D′2,k′n ,
1
k′n

dk
′n
(
X2n′′(n′′ + k′n+ 1..n′′ + 2k′n), Y 2kk′n(n′′ + k′n+ 1..n′′ + 2k′n)

)

(5.21)
...

D′k,k′n ,
1
k′n

dk
′n
(
X2n′′(n′′ + k′(k − 1)n..2n′′), Y 2kk′n(n′′ + k′(k − 1)n..2n′′)

)
(5.22)

The expected distortion produced by the jump source-code t which equally time shares
between s and s′ satisfies, by construction,

lim sup
n→∞

E[Di,kn] ≤ D, 1 ≤ i ≤ k′ and lim sup
n→∞

E[D′j,k′n] ≤ D′, 1 ≤ j ≤ k (5.23)

The expected distortion produced by the jump source-code t is

lim sup
n→∞

E

[
1

2n′′
d2n′′

(
X2n′′ , Y 2n′′

)]

= lim sup
n→∞

E



k′∑

i=1

Di,kn

2k′
+

k∑

j=1

Dj,k′n

2k




= lim sup
n→∞




k′∑

i=1

1
2k′

E[Di,kn] +
k∑

j=1

1
2k
E[Dj,k′n]




≤
k′∑

i=1

1
2k′

lim sup
n→∞

E[Di,kn] +
k∑

j=1

1
2k

lim sup
n→∞

E[Di,k′n]

≤
k′∑

i=1

1
2k′

D +
k∑

j=1

1
2k
D′
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=
D +D′

2
(5.24)

Thus, expected distortion D+D′

2 is achievable with the rate R+R′

2 jump source-code t
when encoding the i.i.d. X source. It follows that REX(D, j) is mid-point convex for
D ∈ [0,∞). REX(D, j) is a decreasing function of D, and hence, the inverse image
of an interval is an interval. Thus, REX(D, j) is a measurable function of D. Thus,
REX(D) is mid-point convex for D ∈ [0,∞) and Lebesgue measurable for D ∈ [0,∞).
By Sierpinski’s theorem, REX(D, j) is a convex function of D for D ∈ (0,∞). As a
corollary, REX(D, j) is a continuous function of D for D ∈ (0,∞).

Note 5.40. The above proof does not hold for the uniform X source. The special
structure of the i.i.d. X source is used.

Note 5.41. Sierpenski’s theorem says that a Lebesgue measurable, mid-point convex
function on an open interval is convex. Sierpinski’s theorem was invoked above to prove
that REX(D, j) is convex. In fact, we do not need to use Sierpinski’s theorem. There’s
another theorem which says that a mid-point convex function on an open interval which
is not convex is everywhere discontinuous. Now, REX(D, j) is a decreasing function of D
and thus, has at most countably many discontinuities. Also, as proved above, REX(D, j)
is a mid-point convex function of D. Thus, REX(D, j) is convex for D ∈ (0,∞).

Lemma 5.5. Let (Ω,F , P ) be a probability space. Let A1,A2, . . . ,Ar be measurable
sets such that Pr(Ai) ≥ 1− δi. Then Pr(∩ri=1Ai) ≥ 1−∑r

i=1 δi.

Proof.

Pr(A1 ∩ A2) =
Pr(A1) + Pr(A2)− Pr(A1 ∪ A2) ≥ (1− δ1) + (1− δ2)− 1 = 1− (δ1 + δ2)

(5.25)

By induction,

Pr(∩ri=1Ai) ≥ 1−
r∑

i=1

δi (5.26)

Lemma 5.6. ∀X, RPX(D, j) is convex on D ∈ (0,∞). As a corollary, RPX(D, j) is
continuous for D ∈ (0,∞).

Proof. Let s =< skn >∞1 be a rate R jump source-code such that probability of excess
distortion D is achievable when encoding i.i.d. X source. By Lemma 5.1, there exists
a rate R deterministic jump source-code with probability of excess distortion D when
encoding i.i.d. X source. Thus, without loss of generality, assume that s is deterministic.
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Let s′ =< s′k
′n >∞1 be a rate R′ jump source-code such that probability of excess

distortion D′ is achievable when encoding the i.i.d. X source. By Lemma 5.1, there
exists a rate R deterministic jump source-code with probability of excess distortion D′

when encoding the i.i.d. X ′ source. Thus, without loss of generality, assume that s′

is deterministic. Denote n′′ = kk′n. Define the random variables Di,kn, 1 ≤ i ≤ k′,
Dj,k′n, 1 ≤ j ≤ k as in Lemma 5.4. Then probability of excess distortion produced
by the jump source-code t which equally time shares between s and s′ satisfies, by
construction,

Pr (Di,kn > D) = εkn → 0 as n→∞ ∀1 ≤ i ≤ k′ (5.27)
Pr
(
Dj,k′n > D′

)
= εk′n → 0 as n→∞ ∀1 ≤ j ≤ k (5.28)

Thus,

Pr (Di,kn ≤ D) = 1− εkn (5.29)
Pr
(
Dj,k′n ≤ D′

)
= 1− εk′n (5.30)

For the jump source-code t, when the block-length n,

Pr
(

1
n
d2n′′(X2n′′ , Y 2n′′) ≤ D +D′

2

)

= Pr




k′∑

i=1

Di,kn

2k′
+

k∑

j=1

Dj,k′n

2k
≤ D +D′

2




≤Pr
(
Di,kn

2k′
≤ D

2k′
, 1 ≤ i ≤ k′ and

Dj,kn

2k
≤ D′

2k
, 1 ≤ j ≤ k

)

= Pr
(
Di,kn ≤ D, 1 ≤ i ≤ k′ and Dj,kn ≤ D′, 1 ≤ j ≤ k

)

= Pr
(
∩k′i=1 {Di,kn ≤ D} ∩kj=1

{
Dj,k′n ≤ D′

})

≥1−



k′∑

i=1

εkn +
k∑

j=1

εk′n)


 by Lemma 5.5

=1− (kεk′n + k′εkn)→ 1 as n→∞ (5.31)

Thus,

lim
n→∞

Pr
(

1
n
d2n′′(X2n′′ , Y 2n′′) >

D +D′

2

)
= 1 (5.32)

Thus, probability of excess distortion D+D′

2 is achievable with the rate R+R′

2 jump
source-code t when encoding the i.i.d. X source. It follows that RPX(D, j) is mid-point
convex for D ∈ [0,∞). RPX(D, j) is a decreasing function of D. By an argument similar
to Lemma 5.4, it follows that RPX(D, j) is a convex function of D for D ∈ (0,∞) and
hence, also, a continuous function of D for D ∈ (0,∞).
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Note 5.42. The above proof does not hold for the uniform X source. The special
structure of the i.i.d. X source is used.

Note 5.43. The proofs of Lemmas 5.4 and 5.6 provided above do not work for the func-
tions REX(D) and RPX(D). This is one of the reasons for defining the jump source-codes
and the jump rate-distortion functions REX(D, j) and RPX(D, j). There are other reasons
which will be provided at the right place.

Next we prove the equality of the rate-distortion function with jump source-codes and
when jumps are not allowed.

Equality of rate-distortion function with jump and usual source-codes: REX(D, j) = REX(D)
and RPX(D, j) = RPX(D)

We prove results concerning relations between achievable distortion levels and rates for
source-codes and jump source-codes for the i.i.d. X source, and as a consequence, prove
that REX(D, j) = REX(D) and RPX(D, j) = RPX(D).

For this, we first need to define an interpolation code.

Definition 5.35 (Interpolation code). Let s =< skn >∞1 be a jump source-code. We
construct the interpolation code t =< tn >∞1 as follows:

Let r ∈ {0, 1, 2, . . . , k − 1}.
Let (ekn, fkn) ∈ EknX (R) × FknX (R). Fix a y ∈ Y arbitrarily. Define (ekn+r, fkn+r) ∈
Ekn+r
X (R)×Fkn+r

X (R) as follows.

ekn+r(xkn+r) = ekn(xkn) (5.33)
(5.34)

Note that the range of ekn+r is {1, 2, . . . , 2bknRc} ⊂ {1, 2, . . . , 2b(kn+r)Rc}. If a ∈
{1, 2, . . . , 2bknRc},

fkn+r(a) = (fkn(a), y, y, . . . , y) (5.35)

where, in the above expression, the number of y is r. If a ∈ {2bknRc+1, . . . , 2b(kn+r)Rc},
define

fkn+r(a) = (y, y, . . . , y) (5.36)

where the number of y in the above expression is kn+ r.

Define ptkn+r(ekn+r, fkn+r) = pskn(ekn, fkn) where (ekn, fkn) ∈ EknX (R) × FknX (R) and
(ekn+r, fkn+r) is as above.

This defines the source-code t =< tn >∞1 .

Note that tkn = skn.
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Note 5.44. In the interpolation code, one can think of interpolation as being done in
the trivial way. Also, for r ∈ {0, 2, . . . , k − 1}, tkn+r acts as skn on the initial block of
length kn.

Lemma 5.7. If s =< skn >∞1 has rate R, the interpolation code t =< tn >∞1 also has
rate R.

Proof. This is clear from the definition of the interpolation code.

Lemma 5.8. If expected distortion D is achievable with a jump source-code s =<
skn >∞1 for the i.i.d. X source, expected distortion D is also achievable with the inter-
polation source-code t =< tn >∞1 for the i.i.d. X source.

Proof. Expected distortion D is achievable with jump source-code s =< skn >∞1 for
the i.i.d. X source. That is, for the source-code s,

EXknY kn

[
1
kn
dkn(Xkn, Y kn)

]
= Dkn where lim sup

n→∞
Dkn ≤ D (5.37)

For the interpolation code t, for r ∈ {0, 1, 2, . . . , k − 1}, for block length kn+ r,

EXkn+rY kn+r

[
1

kn+ r
dkn+r(Xkn+r, Y kn+r)

]

=EXkn+rY kn+r

[
1

kn+ r

(
dkn(Xkn+r(1..kn), Y kn+r(1..kn))+

dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r))
)]

=
kn

kn+ r
EXkn+rY kn+r

[
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

]

+
1

kn+ r
EXkn+rY kn+r

[
dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r))

]

≤EXkn+rY kn+r

[
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

]
+
rDmax

kn+ r
(5.38)

By construction of the interpolation-code, tkn+r acts as skn on the initial block of length
kn. It follows that

EXkn+rY kn+r

[
1

kn+ r
dkn+r(Xkn+r, Y kn+r)

]
≤ Dkn +

rDmax

kn+ r
(5.39)

It follows that

lim sup
n→∞

EXkn+rY kn+r

[
1

kn+ r
dkn+r(Xkn+r, Y kn+r)

]
≤ D (5.40)

Thus, expected distortion D is achievable for the interpolation source-code t for the
i.i.d. X source.
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Lemma 5.9. If probability of excess distortion D is achievable with a jump source-code
s =< skn >∞1 for the i.i.d. X source, probability of excess distortion D+ ε is achievable
with the interpolation source-code t =< tn >∞1 for the i.i.d. X source, ∀ε > 0.

Proof. Probability of excess distortion D is achievable with jump source-code s =<
skn >∞1 for the i.i.d. X source. That is, for the source-code s,

pXknY kn

(
1
kn
dkn(Xkn, Y kn) > D

)
= εkn where lim

n→∞
εkn = 0 (5.41)

For the interpolation code t, for r ∈ {0, 1, 2, . . . , k − 1}, for block length kn+ r,

pXkn+rY kn+r

(
1

kn+ r
dkn+r(Xkn+r, Y kn+r) > D + ε

)

=pXkn+rY kn+r

(
1

kn+ r

(
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

+ dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r))
)
> D + ε

)

=pXkn+rY kn+r

(
1

kn+ r
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

+
1

kn+ r
dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r)) > D + ε

)

≤pXkn+rY kn+r

(
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

+
1

kn+ r
dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r)) > D + ε

)

(5.42)

1
kn+ r

dr(xr, yr) ≤ rDmax

kn+ r
≤ ε for n sufficiently large, ∀xr ∈ X r, yr ∈ Yr . It follows

that for n sufficiently large,

pXkn+rY kn+r

(
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn))

+
1

kn+ r
dr(Xkn+r(kn+ 1..kn+ r), Y r(kn+ 1..kn+ r)) > D + ε

)

≤pXkn+rY kn+r

(
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) + ε > D + ε

)

=pXkn+rY kn+r

(
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) > D

)
(5.43)

By construction of the interpolation code, t, for the first kn block, tkn+r behaves as
skn. It follows that for n sufficiently large,

pXkn+rY kn+r

(
1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) > D

)
= εkn → 0 as n→∞ (5.44)
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Thus, for n sufficiently large,

pXkn+rY kn+r

(
1

kn+ r
dkn+r(Xkn+r, Y kn+r) > D + ε

)
≤ εkn → 0 as n→∞ (5.45)

(5.46)

Thus, ∀ε > 0 probability of excess distortion D is achievable for the interpolation
source-code t for the i.i.d. X source.

Lemma 5.10. For D ∈ [0,∞), REX(D) = REX(D, j) and for D ∈ (0,∞), RP (D) =
RPX(D, j). RPX(D) and REX(D) are convex and continuous functions of D for D ∈
(0,∞).

Proof. For every rate R, the set of rate R source codes which code the i.i.d. X source is
a subset of the set of rate R jump source-codes which code the i.i.d. X source. It follows
that REX(D) ≥ REX(D, j). From Lemmas 5.7 and 5.8, it follows that REX(D) ≤ REX(D, j).
Thus, REX(D) = REX(D, j). From Lemma 5.4, it follows that REX(D) is a convex and
continuous function of D for D ∈ (0,∞).

For every rate R, the set of rate R source codes which code the i.i.d. X source is
a subset of the set of rate R jump source-codes which code the i.i.d. X source. It
follows that RPX(D) ≥ RPX(D, j). From Lemmas 5.7 and 5.9, it follows that∀ε > 0,
RPX(D + ε) ≤ RPX(D, j). In other words, RPX(D) ≤ RPX(D − ε, j). Taking limit as
ε → 0, and by the continuity of RPX(D) for D ∈ (0,∞) (Lemmma 5.6), it follows that
for D ∈ (0,∞), RPX(D) = RPX(D, j). Since RPX(0) ≥ RPX(D, j) and since RPX(D) is
convex for D ∈ (0,∞) (Lemma 5.6), it follows that RPX(D) is convex for D ∈ (0,∞).
By the continuity of RPX(D, j) for D ∈ (0,∞) (Lemma 5.6), it follows that RPX(D) is a
continuous function of D for D ∈ (0,∞).

Next we prove the equality of the rate-distortion function when jump source-codes are
allowed and with the inf definition

Proofs that REX(D, inf) = REX(D, j) and RPX(D, inf) = RPX(D, j)

Next we compare achievable distortions levels and rates for jump source-codes with inf-
achievable distortions and inf-achievable rates for source-codes, and as a consequence,
will follow that REX(D, inf) = REX(D, j) and RPX(D, inf) = RPX(D, j). For this, we need
to define jump repetition code.

Definition 5.36 (Jump repetition code). Let sk = (ek, fk) ∈ EkX (R) × FkX (R). We
construct a jump repetition source-code s =< skn >∞1 =< ekn, dkn >∞1 as follows:

Let xkn ∈ X kn. Define

ekn(xkn) = (ek(xkn(1..k)), ek(xkn(k + 1..2k)), . . . , ek(xkn((n− 1)k + 1..nk))) (5.47)
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For an ∈ {1, 2, . . . , 2bkc}n, define

fkn(an) = (fk(an(1)), fk(an(2)), . . . , fk(an(n))) (5.48)

This defines the jump repetition code s.

Note 5.45. The jump repetition s code can be defined, analogously if sk ∈ P(EkX (R)×
DkX (R). In this case, the jump repetition code will be random. We will not have need
for this, and hence, we omit a precise definition.

Lemma 5.11. If sk = (ek, fk) ∈ EkX (R) × FkX (R), the jump repetition code s =<
skn >∞1 =< ekn, fkn >∞1 corresponding to sk has rate R

Proof. The image space of ekn is the set {1, 2, . . . , 2bkc}n. The cardinality of this set is
2nbkc ≤ 2bknc. Thus, the jump repetition code s has rate R.

Lemma 5.12. Let s be a rate R source-code for which expected distortion D is inf-
achievable when encoding the i.i.d. X source. Then, ∀ε > 0, there exists a rate R jump
source-code for which expected distortion D + ε is achievable when encoding the i.i.d.
X source.

Proof. Let s =< sn >∞1 be a rate R source-code such that expected distortion D
is inf-achievable when coding the i.i.d. X source. By Lemma 5.1, there exists rate R
deterministic source-code such that expected distortion D is inf-achievable when coding
the i.i.d. X source. Without loss of generality, assume that s is deterministic. There
exists a sequence ni ↗∞ such that for the source-code s,

EXniY ni

[
1
ni
dni(Xni , Y ni)

]
≤ D + εi, where εi → 0 as ni ↗∞ (5.49)

Denote

Dni ,
1
ni
dni(Xni , Y ni) (5.50)

Let tni =< tninni >∞1 denote the jump repetition code corresponding to sni . Fix ni and
denote nin , n′′. For the source-code tni , denote,

Dn,1 ,
1
ni
dni(Xnin(1..ni), Y nin(1..ni)) (5.51)

Dn,2 ,
1
ni
dni(Xnin(ni + 1..2ni), Y nin(ni + 1..2ni)) (5.52)

...

Dn,ni ,
1
ni
dni(Xnin((n− 1)ni + 1..nni), Y nin((n− 1)ni + 1..nni)) (5.53)
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By the definition of the jump repetition code, Dn,k, 1 ≤ k ≤ ni are independent and
identically distributed random variables, each having distribution Dni . For the source-
code tni ,

EXninY nin

[
1
nin

dnin(Xnin, Y nin)
]

=E




n∑

j=1

Dj,ni




=
1
n

n∑

j=1

EDj,ni

=
1
n

n∑

j=1

EDni

=EDni

≤D + εi (5.54)

Thus, expected distortion D + εi is achievable by use of the rate R jump source-code
tni when source-coding the i.i.d. X source. Note that εi → 0 as ni ↗ ∞. It follows
that ∀ε > 0, there exists a rate R jump source-code such that expected distortion D+ ε
is achievable when source-coding the i.i.d. X source.

Lemma 5.13. Let s be a rate R source-code for which probability of excess distortion
D is inf-achievable when encoding the i.i.d. X source. Then, ∀ε > 0, there exists a rate
R jump source-code for which probability of excess distortion D + ε is achievable when
encoding the i.i.d. X source.

Proof. Let s =< sn >∞1 be a rate R source-code such that probability of excess dis-
tortion distortion D is inf-achievable when coding the i.i.d. X source. By Lemma 5.1,
there exists rate R deterministic source-code such that probability of excess distortion
distortion D is inf-achievable when coding the i.i.d. X source. Without loss of gener-
ality, assume that s is deterministic. There exists a sequence ni ↗∞ such that for the
source-code s,

pXniY ni

(
1
ni
dni(Xni , Y ni) > D

)
= εi, where εi → 0 as ni ↗∞ (5.55)

Denote Dni as in the previous lemma.

EDni ≤ (1− εi)D + εiDmax and Dni has finite variance.

Let tni be as in the previous lemma. Denote Dn,n1 , Dn,n2 , . . . , Dn,ni , as in the previous
lemma.

By the definition of the jump repetition code, Dn,k, 1 ≤ k ≤ ni are independent and
identically distributed random variables, each having distribution Dni .
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Let δ > 0.

For the source-code tni ,

Pr
(

1
nin

dnin(Xnin, Y nin) > (1− εi)D + εiDmax + δ

)

= Pr




n∑

j=1

Dj,ni > (1− εi)D + εiDmax + δ




→0 as n→∞ by the weak law of large numbers (5.56)

Thus, probability of excess distortion (1 − εi)D + εiDmax + δ is achievable by use of
the rate R jump source-code tni when source-coding the i.i.d. X source. Note that
εi → 0 as ni ↗ ∞ and δ > 0 is arbitrary. It follows that ∀ε > 0, there exists a rate
R jump source-code such that probability of excess distortion D+ ε is achievable when
source-coding the i.i.d. X source.

Lemma 5.14. For D ∈ (0,∞), REX(D, inf) = REX(D, j) and RPX(D, inf) = RPX(D, j).
REX(D, inf) and RPX(D, inf) are convex and continuous functions of D for D ∈ (0,∞).

Proof. First, we prove that REX(D, inf) = REX(D, j). By definition of REX(D, inf) and
REX(D, j), it follows that ∀D ∈ [0,∞), REX(D, inf) ≤ REX(D, j). By Lemma 5.12, it fol-
lows that ∀ε > 0, REX(D+ ε, j) ≤ REX(D, inf). By Lemma 5.4, REX(D, j) is a continuous
function of D for D ∈ (0,∞). It follows that by taking ε → 0, that for D ∈ (0,∞),
REX(D, inf) = REX(D, j). By Lemma 5.4, REX(D, inf) is a convex and continuous function
of D for D ∈ (0,∞).

Next, we prove that RPX(D, inf) = RPX(D, j). By definition of RPX(D, inf) and RPX(D, j),
it follows that ∀D ∈ [0,∞), RPX(D, inf) ≤ RPX(D, j). By Lemma 5.13, it follows that
∀ε > 0, RPX(D + ε, j) ≤ RPX(D, inf). By Lemma 5.6, RPX(D, j) is a continuous function
of D for D ∈ (0,∞). It follows that by taking ε→ 0, that for D ∈ (0,∞), RPX(D, inf) =
RPX(D, j). By Lemma 5.6, RPX(D, inf) is a convex and continuous function of D for
D ∈ (0,∞).

Note 5.46. Another reason for the introduction of jump source-codes is that in order
to prove that REX(D) = REX(D, inf) and RPX(D) = RPX(D, inf), in our proof technique,
we need to pass through jump-source-codes: we prove that REX(D) = REX(D, j) and
REX(D, inf) = REX(D, j) from which it follows that REX(D) = REX(D, inf), and similarly,
we prove that RPX(D) = RPX(D, j) and RPX(D, inf) = RPX(D, j) from which it follows
that RPX(D) = RPX(D, inf). This is because, in order to prove that REX(D) = REX(D, j),
we convert a jump source-code into an interpolation-code, and in order to prove that
REX(D, inf) = REX(D, j), we convert a code for the inf problem into a repetition code,
which is a sequence of jump source codes. Exactly the same happens with the probability
of excess distortion criterion. Passing through jump source-codes cannot be avoided in
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our proof technique. There is one more reason for the introduction of jump source-codes
which will be provided at the right time.

Next, we prove relations between the rate-distortion functions for i.i.d. X and uniform
X sources.

Relation between the rate-distortion functions of the i.i.d. X and uniform X sources,

and proofs of REX(D) = REU (D) and RPX(D) = RPU (D), REX(D, inf) = REU (D, inf) and

RPX(D, inf) = RPU (D, inf)

Let X be such that pX(x) is rational ∀x ∈ X . We prove relations concerning rates
and achievable distortions for i.i.d. X and uniform X sources. As a consequence,
we prove that REX(D) = REU (D) and RPX(D) = RPU (D). Similarly, we prove relations
concerning rates and inf-achievable distortions for i.i.d. X and uniform X sources, and
as a consequence, prove that REX(D, inf) = REU (D, inf) and RPX(D, inf) = RPU (D, inf).

Definition 5.37 (Hamming distance between codewords). For x, x′ ∈ X , dH(x, x′) = 0

if x′ = x and dH(x, x′) = 1 if x′ 6= x. For xn, x′n ∈ X n, dnH(xn, x′n) ,
n∑

i=1

dH(xn(i), yn(i)).

Lemma 5.15. For xn, x′n ∈ X n, yn ∈ Yn, dn(xn, yn) ≤ Dmaxd
n
H(xn, x′n) + dn(x′n, yn)

Proof.

dn(xn, yn) =

=
∑

{i|x′n(i)6=xn(i)}
d(xn(i), yn(i)) +

∑

{i|x′n(i)=xn(i)}
d(xn(i), yn(i))

=
∑

{i|x′n(i)6=xn(i)}
d(xn(i), yn(i)) +

∑

{i|x′n(i)=xn(i)}
d(x′n(i), yn(i))

≤ dnH(xn, x′n)Dmax + dn(x′n, yn) (5.57)

Definition 5.38 (l1 distance between probability distributions). Let p and q be proba-
bility distributions on X . The l1 distance between p and q is d1(p, q) ,

∑

x∈X
|p(x)− q(x)|

Let X ′ be an arbitrary random variable on X . X ′ =< X ′n >∞1 is the i.i.d. X ′ source.

The following two constructions will be needed. Let X be such that pX(x) is rational
∀x ∈ X .

1. Given a source-code s for uniform X source, construct a jump source-code s′ for
i.i.d. X ′ source. This construction is such that if X ′ has the same distribution as
X, the source-code s′ is “close to” s
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2. Given a source-code t for i.i.d. X ′ source, construct a source-code t′ for uniform
X source. This construction is such that if X ′ has the same distribution as X, the
source-code t′ is “close to” t

The two constructions are described in detail below.

Construction 5.1. Let X ′ is arbitrary. Let X satisfy that pX(x) is rational ∀x ∈ X .
Recall that n0 is the least positive integer for which n0pX(x) is rational ∀x ∈ X .Recall
that n′ = n0n.

Let s =< sn
′
>∞1 be a (possibly random) rate R source-code used for source-coding

uniform X.

Definition 5.39. Let ε > 0. For xn
′ ∈ X n′ , define

ξn
′

ε (xn
′
) =

{
un

′ ∈ Un′ :
1
n′
dn

′
H (xn

′
, un

′
) ≤ d1(pX , pX′) + ε

}
(5.58)

Definition 5.40. The transition probability k′n
′

: X n′ → P(Un′) defined as

k′n
′
(un

′ |xn′) =





1
|ξn′ε (xn′ )| if un

′ ∈ ξn′ε (xn
′
) and ξn

′
ε (xn

′
) 6= φ

0 if un
′
/∈ ξn′ε (xn

′
) and ξn

′
ε (xn

′
) 6= φ

uniform on Un′ if ξn
′

ε (xn
′
) = φ

(5.59)

Definition 5.41 (Construction of jump source-code s′ from source-code s). Consider
the transition probability q′n

′
: X n′ → P(Yn′) defined as q′n

′
= k′n

′ ◦ qn′s . Recall
Definition 5.7 for the definition of transition probability qs corresponding to a source-
code s.

There exist rate R jump source-codes s′ =< s′n
′
>∞1 with input space < X n >∞1 and

output space < Yn >∞1 , such that qn
′
s′ = q′n

′
. One such jump source-code is the follow-

ing. Let < en
′
, fn

′
>∞1 be a deterministic jump source-code with domain < Un′ >∞1 and

range < Yn >∞1 . The source-code s gives a probability to this deterministic source-code
given by psn′ (e

n′ , fn
′
). Let < gn

′
>∞1 be a sequence of deterministic functions where

gn
′

has domain X n′ and range Un′ . Then, < gn
′ ◦ en′ , fn′ >∞1 is a deterministic jump

source-code with input space < X n >∞1 and output space < Yn >∞1 . Define the jump
source-code s′ as

ps′n′ (g
n′ ◦ en′ , fn′) ,


 ∏

xn
′∈Xn′

k′n
′
(gn

′
(xn

′
)|xn′)


 psn′ (e

n′ , fn
′
) (5.60)

Note that

∑

xn′ ,en′ ,fn′ ,gn′

ps′n′ (g
n′ ◦ en′ , fn′) ,


 ∏

xn′∈Xn′
k′n

′
(gn

′
(xn

′
)|xn′)


 psn′ (e

n′ , fn
′
) = 1 (5.61)

(5.60), thus, defines a jump source-code with input space < X n′ >∞1 and output space
< Yn′ >∞1 . It can be checked that qs′n′ = q′n

′
.
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ε (xn)

1

Figure 5.1. Construction of jump source-code s′ from source-code s

See Figure 5.1.

Lemma 5.16. Jump source-code s′ has rate R

Proof. The only deterministic jump source-codes on which s′n
′

possibly puts posi-
tive mass are those of the form (gn

′ ◦ en′ , fn′). gn
′ ◦ en′ has domain X n′ and range

{1, 2, . . . , 2bn′Rc} and fn
′

has domain {1, 2, . . . , 2bn′Rc} and range Yn′ . Thus, the only
deterministic functions that s′n

′
possibly puts positive mass on ∈ En′(R)×Fn′(R), where

En′(R) and Fn′(R) are defined in Subsection 5.4.1 It follows that the jump source-code
s′ has rate R.

Lemma 5.17. Pr(ξn
′

ε (X ′n
′
) = φ)→ 0 as n→∞.

Proof. The idea of the proof is the following. If xn
′

is generated i.i.d. X ′, with high
probability, we will show the existence of a un

′
such that

1
n′
dn

′
H (xn

′
, un

′
) ≤ d1(pX , pX′) + ε (5.62)

Let xn
′ ∈ X n′ . Define:

X1 , {x|pxn′ (x) ≤ pX}
X2 , {x|pxn′ (x) > pX}
Px , {i|xn

′
(i) = x}
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If x ∈ X1,Qx , Px
If x ∈ X2, define Qx ⊂ Px such that |Qx| = n′pX(x)

Consider a un
′

which satisfies the following:

1. If i ∈ Qx for some x, un
′
(i) , x

2. If i /∈ Qx for any x, define un
′
(i) in such a way that the empirical distribution of

un
′

is pX . This is possible by definitions of Px and Qx and the relations between
the cardinalities of these sets. un

′
can be thought of as a function, un

′
(xn

′
) of xn

′
.

1
n′
dn

′
H (xn

′
, un

′
)

=
1
n′

∑

x∈X
|n′pxn′ (x)− n′pX(x)|

=
∑

x∈X
|pxn′ (x)− pX(x)|

≤
∑

x∈X
[|pxn′ (x)− pX′(x)|+ |pX′(x)− pX(x)|]

=
∑

x∈X
[|pxn′ (x)− pX′(x)|] +

∑

x∈X
[|pX′(x)− pX(x)|]

=
∑

x∈X
[|pxn′ (x)− pX′(x)|] + d1(pX , pX′) (5.63)

Thus,

Pr
(

1
n′
dn

′
H (X ′n

′
, un

′
(X ′n

′
)) > d1(pX , pX′) + ε

)

≤Pr

(∑

x∈X
[|pX′n′ (x)− pX′(x)|] ≤ ε

)

→1 as n→∞ by weak law of large numbers (5.64)

Definition 5.42. If the input to the jump source-code s′ is i.i.d. X ′ sequence, for
block-length n′, we get a joint random-variable X ′n

′
V n′Y n′ on X n′ × Un′ × Yn′ with

the corresponding joint probability distribution pJ = pX′n′V n′Y n′ given by

pn
′
J (xn

′
, un

′
, yn

′
) = pX′n′ (xn

′
)k′n

′
(un

′ |xn′)qsn′ (yn
′ |un′) (5.65)

V n′ is the marginal random variable on Un′ .
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Next, we want to prove that V n′ has the same distribution as the uniform X source of
block-length n′, Un

′
. For this, we need a few definitions and lemmas.

Definition 5.43 (Permutations). Let πn
′

be a permutation of (1, 2, . . . , n′). For i ∈
{1, 2, . . . , n′}, πn′(i) is the image of i under the permutation πn

′
. The set of all permu-

tations of (1, 2, . . . , n′) is denoted by Πn′ . For xn
′ ∈ X n′ , yn′ ∈ Yn′ , define,

πn
′
(xn

′
) , (xn

′
(πn

′
(1)), xn

′
(πn

′
(2)), . . . , xn

′
(πn

′
(n′))) (5.66)

πn
′
(yn

′
) , (yn

′
(πn

′
(1)), yn

′
(πn

′
(2)), . . . , yn

′
(πn

′
(n′))) (5.67)

For a set A, πn
′
A , {πn′a|a ∈ A}.

Lemma 5.18. If xn
′
, x′n

′ ∈ X n′, xn′ 6= x′n
′
, then πn

′
(xn

′
) 6= πn

′
(x′n

′
)

Proof. xn
′ 6= x′n

′ ⇒ ∃i such that xn
′
(i) 6= x′n

′
(i) ⇒ xn

′
(πn

′
(i)) 6= x′n

′
(πn

′
(i)) ⇒

πn
′
(xn

′
) 6= πn

′
(x′n

′
).

Lemma 5.19. |ξn′ε (xn
′
)| depends only on the type of xn

′
.

Proof. Let xn
′

and x′n
′

have the same type. Thus, x′n
′

= πn
′
xn

′
for some permutation

πn
′
. For un

′ ∈ Un′ , dn′H (un
′
, xn

′
) = dn

′
H (πn

′
un

′
, πn

′
xn

′
). Thus, πn

′
ξn

′
ε (xn

′
) ⊂ ξn

′
ε (x′n

′
).

By Lemma 5.18, |πn′ξn′ε (xn
′
)| = |ξn′ε (xn

′
)|. Thus, |ξn′ε (xn

′
)| ≤ |ξn′ε (x′n

′
)|. The same

argument with x′n
′

interchanged with xn
′

proves that |ξn′ε (x′n
′
)| ≤ |ξn′ε (xn

′
)|. Thus,

|ξn′ε (x′n
′
)| = |ξn′ε (xn

′
)|.

Definition 5.44. |ξn′ε (q)| , |ξn′ε (xn
′
)| if xn

′
has type q, which by the above lemma,

depends only on the type of xn
′
.

Definition 5.45. For un
′ ∈ Un′ , ηn′ε,q(un

′
) , {xn′ |xn′ ∈ X n′ , xn′ has type q, un

′ ∈
ξn

′
ε (xn

′
)}.

Lemma 5.20. |ηn′ε,q(un
′
)| is independent of the particular un

′ ∈ Un′.

Proof. All sequences un
′ ∈ Un′ have the same type pX . The proof of this lemma follows

exactly as the proof of Lemma 5.20.

Definition 5.46. |ηn′ε (q)| , |ηn′ε,q(un
′
)| for un

′ ∈ Un′ , which, by the above lemma, is
independent of un

′
.

Lemma 5.21. The random variable V n′, defined in Definition 5.42 has the same dis-
tribution as Un

′
, that is, uniform on Un′.
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Proof. For xn
′ ∈ X n′ , pX′n′ (xn

′
) depends only on the type q of xn

′
. pX′n′ (xn

′
) is denoted

by pX′n′ (q).

pV n′ (u
n′) =

∑

xn
′∈Xn′

pX′n′ (xn
′
)k′n

′
(un

′ |xn′)

=
∑

xn′∈Xn′ ,ξn′ε (xn′ )6=φ

pX′n′ (xn
′
)k′n

′
(un

′ |xn′)+

∑

xn′∈Xn′ ,ξn′ε (xn′ )=φ

pX′n′ (xn
′
)k′n

′
(un

′ |xn′)

=
∑

q

∑

xn
′ ∈ X n′ , ξn′ε (xn

′
) 6= φ

xn
′

has type q

pX′n′ (xn
′
)k′n

′
(un

′ |xn′)+

∑

xn′∈Xn′ ,ξn′ε (xn′ )=φ

pX′n′ (xn
′
)k′n

′
(un

′ |xn′)

=
∑

q

pX′n′ (q)
|ηn′ε (q)|
|ξn′ε (q)| +

∑

xn′∈Xn′ ,ξn′ε (xn′ )=φ

pX′n′ (xn
′
)

1
|Un′ |

which is independent of un
′

(5.68)

Thus, pV n′ is uniform on Un′ .

This construction ends here.

Construction 5.2. Let X ′ be arbitrary and X satisfies that pX(x) is rational ∀x ∈ X .
Recall that n0 is the least positive integer for which n0pX(x) is integer ∀x ∈ X . Recall
that n′ = n0n.

Consider the joint random variable X ′n
′
V n′ on X n′×Un′ with corresponding probability

distribution pX′n′V n′ given by

pX′n′V n′ (x
n′ , un

′
) = pX′n′ (xn

′
)k′n

′
(un

′ |xn′) (5.69)

Recall Lemma 5.21 that pV n′ is uniform on Un′ .

Definition 5.47. pX′n′V n′ can be factored the other way:

pX′n′V n′ (x
n′ , un

′
) = pV n′ (u

n′)l′n
′
(un

′ |xn′) (5.70)

Let t =< tn >∞1 be a rate R source-code used for source-coding i.i.d. X ′ source.

Definition 5.48 (Construction of source-code t′ from source-code t). Consider the
transition probability r′n

′
: Un′ → P(Yn′) defined as r′n

′
= l′n

′ ◦ qn′t . Recall Definition
5.7 for the definition of the transition probability qt corresponding to a source-code t.
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1

Figure 5.2. Construction of source-code t′ from source-code t

There exists a rate R source-code t′ =< t′n
′
>∞1 with input space < Un′ >∞1 and

output space < Yn′ >∞1 such that qn
′
t′ = r′n

′
. The construction of such a source-code t

is analogous to the construction described in Definition 5.41 and hence, omitted.

Lemma 5.22. Source-code t′ has rate R

Proof. The proof is analogous to the proof of Lemma 5.16, and hence, omitted.

Definition 5.49. If the input to the source-code t′ is uniform X sequence, for block-
length n′, we get a joint random-variable Un

′
Tn

′
Y n′ on Un′ × X n′ × Yn′ with the

corresponding joint probability distribution pK = pUn′Tn′Y n′ given by

pn
′
K(un

′
, xn

′
, yn

′
) = pUn′ (u

n′)l′n
′
(xn

′ |un′)qtn′ (yn
′ |xn′) (5.71)

Tn
′

is the marginal random variable on X n′ .

Lemma 5.23. Tn
′

has the same distribution as X ′n
′
, that is, pTn′ = pXn′

Proof. This follows from Definition 5.47

See Figure 5.2.

This construction ends here.



Sec. 5.4. The rate-distortion problem 179

Lemma 5.24. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which expected distortion D is achievable
when source-coding the uniform X source, then, there exists a rate R source-code for
which expected distortion D+Dmaxd1(pX , pX′) + δ is achievable when source-coding the
i.i.d. X ′ source.

Proof. Let s be a rate R source code using which, expected distortion D is achievable
when source-coding the uniform X source. Recall the construction of jump source code
s′ in Construction 5.1 which is used to source-code the i.i.d. X ′ source. First, we get a
bound on achievable expected distortion for jump source code s′ when coding the i.i.d.
X ′ source.

Recall Definition 5.42 for the definition of pJ .

1
n′
dn

′
(xn

′
, yn

′
) ≤ 1

n′
dn

′
H (xn

′
, un

′
)Dmax +

1
n′
dn(un

′
, yn

′
) by Lemma 5.15

⇒
∑

xn′ ,un′ ,yn′

pJ(xn
′
, un

′
, yn

′
)
[

1
n′
dn

′
(xn

′
, yn

′
)
]
≤

∑

xn′ ,un′ ,yn′

pJ(xn
′
, un

′
, yn

′
)
[

1
n′
dn

′
H (xn

′
, un

′
)Dmax

]

+
∑

xn′ ,un′ ,yn′

pJ(xn
′
, un

′
, yn

′
)
[

1
n′
dn(un

′
, yn

′
)
]

(5.72)

That is,

E

[
1
n′
dn

′
(X ′n

′
, Y n′)

]
≤ E

[
1
n′
dn

′
H (X ′n

′
, V n′)Dmax

]
+ E

[
1
n′
dn

′
(V n′ , Y n′)

]

= E

[
1
n′
dn

′
H (X ′n

′
, V n′)

]
Dmax + E

[
1
n′
dn

′
(V n′ , Y n′)

]

≤ Pr(ξn
′

ε (X ′n
′
) 6= φ)(d1(pX , pX′) + ε)Dmax+

Pr(ξn
′

ε (X ′n
′
) = φ)Dmax+

E

[
1
n′
dn

′
(V n′ , Y n′)

]

≤ (d1(pX , pX′) + ε)Dmax + E

[
1
n′
dn

′
(V n′ , Y n′)

]
+

Pr(ξn
′

ε (X ′n
′
) = φ)Dmax (5.73)

Thus,

lim sup
n→∞

E

[
1
n′
dn

′
(X ′n

′
, Y n′)

]
≤

lim sup
n→∞

(d1(pX , pX′) + ε)Dmax+



180 CHAPTER 5. OPTIMALITY OF DIGITAL COMMUNICATION: OPERATIONAL VIEW-POINT

lim sup
n→∞

E

[
1
n′
dn

′
(V n′ , Y n′)

]
+

lim sup
n→∞

Pr(ξn
′

ε (X ′n
′
) = φ)Dmax

(5.74)

lim sup
n→∞

E

[
1
n′
dn

′
(X ′n

′
, Y n′)

]
is the expected distortion produced by the jump source-

code s′ for the i.i.d. X ′ source. pV n′ is uniform and thus, lim sup
n→∞

E

[
1
n′
dn

′
(V n′ , Y n′)

]

is the expected distortion produced by the source-code s for the uniform X source.
Pr(ξn

′
ε (X ′n

′
= φ) → 0 as n → ∞ by Lemma 5.17. It follows that if s is a rate

R source-code for which expected distortion D is achievable when source-coding the
uniform X source, then, s′ is a jump source-code for which expected distortion D +
Dmax(d1(pX , pX′)+ ε) is achievable, when source-coding the i.i.d. X source.The source-
code s′ can be interpolated to get a rate R source-code s′′ for which expected distortion
D +Dmax(d1(pX , pX′) + ε) is achievable when source-coding the i.i.d. X ′ source. Such
a source-code s′′ exists for each ε > 0. By choosing ε such that Dmaxε = δ, the lemma
follows.

Note 5.47. This brings us to the final reason for the introduction of jump source-codes
for source-coding i.i.d. X source. In the above lemma, we derive relations between
REU (D) and REX′(D). This is done by the use of Construction 5.1 Construction 5.1
constructs a jump source-code for source-coding i.i.d. X ′ source given a source-code
for source-coding the uniform X source. A direct construction of a source-code for the
i.i.d. X ′ source from a source-code for the uniform X source is not possible because
a source-code for the uniform X source is defined only for certain block-lengths. This
also justifies, why we do not need to define jump source-codes for the uniform X source.
Given a source-code for the i.i.d. X ′ source, we can directly construct a source-code for
the uniform X source by use of Construction 5.2: this is a source-code for the uniform X
source, not a jump source-code. Two other reasons were given previously for defining
jump source codes for source-coding i.i.d. X source. Firstly, to prove convexity and
continuity of REX(D) and RPX(D), we have to first prove the same for the jump rate-
distortion function. Secondly, to prove that rate-distortion functions for i.i.d. sources
with lim inf and lim sup definitions are the same, we have to go through jump rate-
distortion function. These reasons do not exist for the uniform X source because these
results are not proved directly for the uniform X source: they are proved indirectly by
proving equality with the corresponding rate-distortion functions for the i.i.d. X source
and then invoking these results for the i.i.d. X source.

Lemma 5.25. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which expected distortion D is achievable
when source-coding the i.i.d. X ′ source, then, there exists a rate R source-code for
which expected distortion D+Dmaxd1(pX , pX′) + δ is achievable when source-coding the
uniform X source.
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Proof. Let t be a rate R source-code using which, expected distortion D is achievable
when source-coding the i.i.d. X ′ source. Recall the construction of the source-code
t′ in Construction 5.2 which is used to source-code the uniform X source. We get a
bound on the achievable expected distortion for the source-code t′ when source-coding
the uniform X source.

Recall Definition 5.49 for the definition of pK .

1
n′
dn

′
(un

′
, yn

′
) ≤ 1

n′
dn

′
H (un

′
, xn

′
)Dmax +

1
n′
dn(xn

′
, yn

′
) by Lemma 5.15

⇒
∑

un′ ,xn′ ,yn′

pK(un
′
, xn

′
, yn

′
)
[

1
n′
dn

′
(un

′
, yn

′
)
]
≤

∑

un′ ,xn′ ,yn′

pK(un
′
, xn

′
, yn

′
)
[

1
n′
dn

′
H (un

′
, xn

′
)Dmax

]

+
∑

un′ ,xn′ ,yn′

pK(un
′
, xn

′
, yn

′
)
[

1
n′
dn(xn

′
, yn

′
)
]

(5.75)

That is,

E

[
1
n′
dn

′
(Un

′
, Y n′)

]
≤ E

[
1
n′
dn

′
H (Un

′
, Tn

′
)Dmax

]
+ E

[
1
n′
dn

′
(Tn

′
, Y n′)

]

= E

[
1
n′
dn

′
H (Un

′
, Tn

′
)
]
Dmax + E

[
1
n′
dn

′
(Tn

′
, Y n′)

]

= E

[
1
n′
dn

′
H (Tn

′
, Un

′
)
]
Dmax + E

[
1
n′
dn

′
(Tn

′
, Y n′)

]

≤ Pr(ξn
′

ε (Tn
′
) 6= φ)(d1(pX , pX′) + ε)Dmax+

Pr(ξn
′

ε (Tn
′
) = φ)Dmax+

E

[
1
n′
dn

′
(Tn

′
, Y n′)

]

≤ (d1(pX , pX′) + ε)Dmax + E

[
1
n′
dn

′
(Tn

′
, Y n′)

]
+

Pr(ξn
′

ε (Tn
′
) = φ)Dmax (5.76)

Thus,

lim sup
n→∞

E

[
1
n′
dn

′
(Un

′
, Y n′)

]
≤

lim sup
n→∞

(d1(pX , pX′) + ε)Dmax+

lim sup
n→∞

E

[
1
n′
dn

′
(Tn

′
, Y n′)

]
+

lim sup
n→∞

Pr(ξn
′

ε (Tn
′
) = φ)Dmax

(5.77)
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lim sup
n→∞

E

[
1
n′
dn

′
(Un

′
, Y n′)

]
is the expected distortion produced by the source-code t′

for the uniform X source. Recall that pTn′ is the same distribution as pX′n′ and thus,

lim sup
n→∞

E

[
1
n′
dn

′
(Tn

′
, Y n′)

]
is the expected distortion produced by the jump source-

code < tn
′
>∞1 for the i.i.d. X ′ source. The expected distortion produced by the jump

source-code < tn
′
>∞1 is less than or equal to the expected distortion produced by the

source-code t =< tn >∞1 . Pr(ξn
′

ε (Tn
′

= φ) → 0 as n → ∞ since Tn
′

has the same
distribution as X ′n

′
and by Lemma 5.17. It follows that if t is a rate R source-code

for which expected distortion D is achievable when source-coding the i.i.d. X ′ source,
then, t′ is a rate R source-code for which expected distortion D+Dmax(d1(pX , pX′ + ε)
is achievable, when source-coding the uniform X source. Such a source-code t′ exists
∀ε > 0. By choosing ε such that Dmaxε = δ, the lemma follows.

Lemma 5.26. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which probability of excess distortion D is
achievable when source-coding the uniform X source, then, there exists a rate R source-
code for which probability of excess distortion D + Dmaxd1(pX , pX′) + δ is achievable
when source-coding the i.i.d. X ′ source.

Proof. Let s be a rate R source-code using which, probability of excess distortion D is
achievable when source-coding the uniform X source. Recall the construction of jump
source-code s′ in Construction 5.1 which is used to source-code the i.i.d. X ′ source.
First, we get a bound on the achievable probability of excess distortion for the jump
source-code s′ when source-coding the i.i.d. X ′ source.

Recall Definition 5.42 that pJ = pX′n′V n′Y n′ is the joint distribution on X n′ ×Un′ ×Yn′

induced by k′n
′

and the source-code s when the distribution on X n′ is i.i.d. X ′. Recall
also that V n′ is a uniform random variable on Un′ . Also, by Lemma 5.15,

1
n′
dn

′
(xn

′
, yn

′
) ≤ 1

n′
dn

′
H (xn

′
, un

′
)Dmax +

1
n′
dn(un

′
, yn

′
) (5.78)

Thus,

1
n′
dn

′
(X ′n

′
, Y n′) ≤ 1

n′
dn

′
H (X ′n

′
, V n′)Dmax +

1
n′
dn

′
(V n′ , Y n′) (5.79)

Let probability of excess distortion D be achievable with source-code s for uniform X
source. Then,

Pr
(

1
n′
dn

′
(X ′n

′
, Y n′) > D +Dmax(d1(pX , pX′) + ε)

)

≤Pr
(

1
n′
dn

′
H (X ′n

′
, V n′)Dmax +

1
n′
dn

′
(V n′ , Y n′) > Dmax(d1(pX , pX′) + ε) +D

)
(5.80)



Sec. 5.4. The rate-distortion problem 183

Pr
(

1
n′
dn

′
H (X ′n

′
, V n′) > d1(pX , pX′) + ε

)
= εn

′
1 → 0 as n′ →∞

since Pr(ξn
′

ε (X ′n
′
) = φ)→ 0 as n→∞

⇒Pr
(

1
n′
dn

′
H (X ′n

′
, V n′)Dmax > (d1(pX , pX′) + ε)Dmax

)
= εn

′
1 → 0 as n→∞ (5.81)

Recall that pV n′ = pUn′ . Also, it is assumed that probability of excess distortion D is
achievable with source-code s for uniform X source. That is,

Pr
(

1
n′
dn

′
(V n′ , Y n′) > D

)
= εn

′
2 → 0 as n→∞ (5.82)

Thus,

Pr
(

1
n′
dn

′
H (X ′n

′
, V n′)Dmax +

1
n′
dn

′
(V n′ , Y n′) ≤ Dmax(d1(pX , pX′) + ε) +D

)

≥Pr
(

1
n′
dn

′
H (X ′n

′
, V n′)Dmax ≤ Dmax(d1(pX , pX′) + ε) and

1
n′
dn

′
(Un

′
, Y n′) ≤ D

)

= Pr
({

1
n′
dn

′
H (X ′n

′
, V n′)Dmax ≤ Dmax(d1(pX , pX′) + ε)

}
∩
{

1
n′
dn

′
(V n′ , Y n′) ≤ D

})

≥1− (εn
′

1 + εn
′

2 ) by Lemma 5.5 (5.83)

Thus,

Pr
(

1
n′
dn

′
H (X ′n

′
, V n′)Dmax +

1
n′
dn

′
(V n′ , Y n′) > D +Dmax(d1(pX , pX′) + ε)

)

≤ εn′1 + εn
′

2 → 0 as n→∞
(5.84)

Thus,

Pr
(

1
n′
dn

′
(X ′n

′
, Y n′) > Dmax(d1(pX , pX′) + ε) +D

)
→ 0 as n→∞ (5.85)

Thus, probability of excess distortion D+Dmax(d1(pX , pX′)+ε) is achievable for coding
i.i.d. X ′ source with rate R jump source-code s′. For each ε′ > 0, the jump source-code
s′ can be interpolated to form a rate R source-code s′′ using which probability of excess
distortion D+Dmax(d1(pX , pX′) + ε) + ε′ is achievable when source-coding the i.i.d. X ′

source. ε > 0 and ε′ > 0 are arbitrary. Choosing ε and ε′ such that Dmaxε+ ε′ = δ, the
lemma follows.

Lemma 5.27. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀xinX . Let
δ > 0. If there exists a rate R sourc-code for which probability of excess distortion D is
achievable when source-coding the i.i.d. X ′ source, then, there exists a rate R source-
code for which probability of excess distortion D + Dmaxd1(pX , pX′) + δ is achievable
when source-coding the uniform X source.
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Proof. Let t be a rate R source-code using which, probability of excess distortion D is
achievable when source-coding the i.i.d. X ′ source. Recall the construction of source-
code t′ in Construction 5.2 which is used to source-code the uniform X source. We get
a bound on the achievable probability of excess distortion for the source-code t′ when
sourc-coding the uniform X source.

Recall Definition 5.49 that pK = pUn′Tn′Y n′ is the joint distribution on Un′ ×X n′ ×Yn′

induced by l′n
′

and the source-code t when the distribution on Un′ is uniform. Recall
also that Tn

′
has the same distribution as i.i.d. X ′ source of block-length n′, X ′n

′
. Also,

by Lemma 5.15,

1
n′
dn

′
(un

′
, yn

′
) ≤ 1

n′
dn

′
H (un

′
, xn

′
)Dmax +

1
n′
dn(xn

′
, yn

′
) (5.86)

Thus,

1
n′
dn

′
(Un

′
, Y n′) ≤ 1

n′
dn

′
H (Un

′
, Tn

′
)Dmax +

1
n′
dn

′
(Tn

′
, Y n′) (5.87)

Let probability of excess distortion D be achievable with source-code t for the i.i.d. X ′

source. Then,

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > D +Dmax(d1(pX , pX′) + ε)

)

≤Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax +

1
n′
dn

′
(Tn

′
, Y n′) > Dmax(d1(pX , pX′) + ε) +D

)
(5.88)

Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
) > d1(pX , pX′) + ε

)

= Pr
(

1
n′
dn

′
H (Tn

′
, Un

′
) > d1(pX , pX′) + ε

)
= εn

′
1 → 0 as n′ →∞

since Pr(ξn
′

ε (Tn
′
) = φ)→ 0 as n→∞

⇒Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax > (d1(pX , pX′) + ε)Dmax

)
= εn

′
1 → 0 as n→∞ (5.89)

Recall that pTn′ = pX′n′ . Also, it is assumed that probability of excess distortion D is
achievable with source-code t for i.i.d. X ′ source . That is,

Pr
(

1
n′
dn

′
(Tn

′
, Y n′) > D

)
= εn

′
2 → 0 as n→∞ (5.90)

Thus,

Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax +

1
n′
dn

′
(Tn

′
, Y n′) ≤ Dmax(d1(pX , pX′) + ε) +D

)

≥Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax ≤ Dmax(d1(pX , pX′) + ε) and

1
n′
dn

′
(Tn

′
, Y n′) ≤ D

)
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= Pr
({

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax ≤ Dmax(d1(pX , pX′) + ε)

}
∩
{

1
n′
dn

′
(Tn

′
, Y n′) ≤ D

})

≥1− (εn
′

1 + εn
′

2 ) by Lemma 5.5 (5.91)

Thus,

Pr
(

1
n′
dn

′
H (Un

′
, Tn

′
)Dmax +

1
n′
dn

′
(Tn

′
, Y n′) > D +Dmax(d1(pX , pX′) + ε)

)

≤ εn′1 + εn
′

2 → 0 as n→∞
(5.92)

Thus,

Pr
(

1
n′
dn

′
(Un

′
, Y n′) > Dmax(d1(pX , pX′) + ε) +D

)
→ 0 as n→∞ (5.93)

Thus, probability of excess distortion D+Dmax(d1(pX , pX′)+ε) is achievable for coding
uniform X source with rate R source-code t′. Such a source-code t′ exists ∀ε > 0.
Choosing ε such that Dmaxε = δ, the lemma follows.

Lemma 5.28. Let X satisfy that pX(x) is rational ∀X. For D ∈ (0,∞), REX(D) =
REU (D) and RPX(D) = RPU (D). In particular, REU (D) and RPU (D) are convex and con-
tinuous functions of D for D ∈ (0,∞).

Proof. First, we prove that REX(D) = REU (D).

By taking the distribution of X ′, the same as the distribution of X in Lemma 5.24, it
follows, that ∀δ > 0,

REX(D + δ) ≤ REU (D) (5.94)

By taking the distribution of X ′, the same as the distribution of X in Lemma 5.25, it
follows that ∀δ > 0,

REU (D + δ) ≤ REX(D) (5.95)

From the above two equations,

REX(D + δ) ≤ REU (D) ≤ REX(D − δ)∀0 < δ < D (5.96)

From Lemma 5.4, REX(D) is a continuous function of D for D ∈ (0,∞). By taking
δ → 0 in the above equation, it follows that ∀D ∈ (0,∞), REX(D) = REU (D). Since
REX(D) is convex and continuous for D ∈ (0,∞), so is REU (D).

Next, we prove that RPX(D) = RPU (D).
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By taking the distribution of X ′, the same as the distribution of X in Lemma 5.26, it
follows that ∀δ > 0,

RPX(D + δ) ≤ RPU (D) (5.97)

By taking the distribution of X ′, the same as the distribution of X in Lemma 5.27, it
follows that ∀δ > 0,

RPU (D + δ) ≤ RPX(D) (5.98)

From the above two equations,

RPX(D + δ) ≤ RPU (D) ≤ RPX(D − δ)∀0 < δ < D (5.99)

From Lemma 5.6, RPX(D) is a continuous function of D for D ∈ (0,∞). By taking
δ → 0 in the above equation, it follows that ∀D ∈ (0,∞), RPX(D) = RPU (D). Since
RPX(D) is convex and continuous for D ∈ (0,∞), so is RPU (D).

Lemma 5.29. Given a rate R source-code s for which expected distortion D is inf-
achievable when source-coding the i.i.d. X ′ source. Then, there exists a rate R source-
code s1 for which expected distortion D is inf-achievable when source-coding the i.i.d.
X ′ source, where limit is taken along a sequence where the block-lengths are divisible by
n0 to achieve the required inf-expected distortion.

Proof. Let s =< sn >)∞1 be a rate R source-code for which expected distortion D is
inf-achievable when source-coding the i.i.d. X ′ source. By Lemma 5.1, there exists
a rate R deterministic source-code for which expected distortion D is inf-achievable
when source-coding the i.i.d. X ′ source. Without loss of generality, assume that s is
deterministic. That is, there exists a sequence ni ↗∞ such that

E

[
1
ni
dni(Xni , Y ni)

]
≤ D + εi, where εi → 0 as ni ↗∞ (5.100)

Assume that ni+1 − ni > n0. If this were not the case, consider a subsequence of ni
such that this is the case, and re-label it to call it ni. Let n′i denote the least integer
≥ ni such that n′i is divisible by n0. Note that 0 ≤ n′i − ni < n0. Note that n′i are
distinct because of the assumption that ni+1 − ni > n0.

Form s
n′i
1 from sni as skn+r in the same way that from skn in the interpolation-code

Definition 5.35.

Consider the source-code s1 =< sn1 >
∞
1 which is such that sn

′
i

1 is defined as above and
sn1 is defined arbitrarily for other block lengths. It can be proved that this code satisfies
the requirements of the lemma by an argument similar to the argument in the proof of
Lemma 5.8.



Sec. 5.4. The rate-distortion problem 187

Lemma 5.30. Given a rate R source-code s for which probability of excess distortion
D is inf-achievable when source-coding the i.i.d. X ′ source. Let ε > 0. Then, there
exists a rate R source-code s1 for which probability of excess distortion D + ε is inf-
achievable when source-coding the i.i.d. X ′ source, where limit is taken along a sequence
where the block-lengths are divisible by n0 to achieve the required inf probability of excess
distortion.

Proof. Let s =< sn >)∞1 be a rate R source-code for which probability of excess distor-
toin D is inf-achievable when source-coding the i.i.d. X ′ source. By Lemma 5.1, there
exists a rate R deterministic source-code for which probability of excess distortion D
is inf-achievable when source-coding the i.i.d. X ′ source. Without loss of generality,
assume that s is deterministic. That is, there exists a sequence ni ↗∞ such that

Pr
(

1
ni
dni(Xni , Y ni) > D

)
→ 0 as ni ↗∞ (5.101)

Assume that ni+1 − ni > n0. If this were not the case, consider a subsequence of ni
such that this is the case, and re-label it to call it ni. Let n′i denote the least integer
≥ ni such that n′i is divisible by n0. Note that 0 ≤ n′i − ni < n0. Note that n′i are
distinct because of the assumption that ni+1 − ni > n0.

Form s
n′i
1 from sni as skn+r in the same way that from skn in the interpolation-code

Definition 5.35.

Consider the source-code s1 =< sn1 >
∞
1 which is such that sn

′
i

1 is defined as above and sn1
is defined arbitrarily for other block lengths. It can be proved by an argument similar
to the argument in the proof of Lemma 5.9 that this code satisfies the requirements of
the lemma.

Lemma 5.31. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which expected distortion D is inf-
achievable when source-coding the uniform X source, then, there exists a rate R source-
code for which expected distortion D+Dmaxd1(pX , pX′)+δ is inf-achievable when source-
coding the i.i.d. X ′ source.

Proof. Let s be a rate R source code using which, expected distortion D is inf-achievable
when source-coding the uniform X source. Recall the construction of jump source code
s′ in Construction 5.1 which is used to source-code the i.i.d. X ′ source.

Rest of the proof is similar to the proof of Lemma 5.24, except that limits are taken along
some subsequence ni ↗∞ instead of along n′, and that, the interpolation argument is
not needed.
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Lemma 5.32. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which expected distortion D is inf-
achievable when source-coding the i.i.d. X ′ source, then, there exists a rate R source-
code for which expected distortion D+Dmaxd1(pX , pX′)+δ is inf-achievable when source-
coding the uniform X source.

Proof. Let t be a rate R source-code using which, expected distortion D is inf-achievable
when source-coding the i.i.d. X ′ source. That is, there exists a sub-sequence ni ↗ ∞
such that for the source-code t,

E
[

1
ni
dni(Xni , Y ni)

]
≤ D + εi where εi → 0 as ni ↗∞ (5.102)

Construct a source-code ti from t as s1 is constructed from s in Lemma 5.29. For the
source-code t1,

E

[
1
n′i
dn

′
i(Xn′i , Y n′i)

]
≤ D + εi where εi → 0 as n′i ↗∞ and n′i is divisible by n0∀i

(5.103)

Rest of the argument follows the argument in the proof of Lemma 5.25 by looking at
the source-code t′1 which is constructed from t1 by using Construction 5.2, except that
limits are taken along n′i ↗∞ instead of n′.

The reason why we need to go from t to t1 in this argument is that if none of the ni is
divisible by n0, t′ni is not defined for any ni, and thus, taking limits along ni would not
make sense for the source-code t′, which is the main part of the argument in the proof
of Lemma 5.25.

Lemma 5.33. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀x ∈ X . Let
δ > 0. If there exists a rate R source-code for which probability of excess distortion
D is inf-achievable when source-coding the uniform X source, then, there exists a rate
R source-code for which probability of excess distortion D + Dmaxd1(pX , pX′) + δ is
inf-achievable when source-coding the i.i.d. X ′ source.

Proof. Let s be a rate R source-code using which, probability of excess distortion D
is inf-achievable when source-coding the uniform X source. Recall the construction
of jump source-code s′ in Construction 5.1 which is used to source-code the i.i.d. X ′

source.

Rest of the proof is similar to the proof of Lemma 5.26, except that limits are taken along
some subsequence ni ↗∞ instead of along n′, and that, the interpolation argument is
not needed.
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Lemma 5.34. Let X ′ be arbitrary and X satisfy that pX(x) is rational ∀xinX . Let
δ > 0. If there exists a rate R sourc-code for which probability of excess distortion
D is inf-achievable when source-coding the i.i.d. X ′ source, then, there exists a rate
R source-code for which probability of excess distortion D + Dmaxd1(pX , pX′) + δ is
inf-achievable when source-coding the uniform X source.

Proof. Let t be a rate R source-code using which, probability of excess distortion D
is inf-achievable when source-coding the i.i.d. X ′ source. That is, there exists a sub-
sequence ni ↗∞ such that for the source-code t,

Pr
(

1
ni
dni(Xni , Y ni) > D

)
= εi where εi → 0 as ni ↗∞ (5.104)

Construct a source-code ti from t as s1 is constructed from s in Lemma 5.30. For the
source-code t1,

Pr

(
1
n′i
dn

′
i(Xn′i , Y n′i)

〉
D) = εi where εi → 0 as n′i ↗∞ and n′i is divisible by n0∀i

(5.105)

Rest of the argument follows the argument in the proof of Lemma 5.27 by looking at
the source-code t′1 which is constructed from t1 by using Construction 5.2, except that
limits are taken along n′i ↗∞ instead of n′.

The reason why we need to go from t to t1 in this argument is that if none of the ni is
divisible by n0, t′ni is not defined for any ni, and thus, taking limits along ni would not
make sense for the source-code t′, which is the main part of the argument in the proof
of Lemma 5.27.

Lemma 5.35. Let X satisfy that pX(x) is rational ∀X. For D ∈ (0,∞), REX(D, inf) =
REU (D, inf) and RPX(D, inf) = RPU (D, inf). In particular, REU (D, inf) and RPU (D, inf) are
convex and continuous functions of D for D ∈ (0,∞).

Proof. The proof is analogous to the proof of Lemma 5.28.

Next, we want to prove the equality of the rate-distortion functions with the expected
distortion and the probability of excess distortion definitions for the uniform X source.

Equality of the rate-distortion function for the uniform X source with the expected and the

probability of excess distortion definitions: REU (D) = RPU (D)

We prove that REU (D) = RPU (D). This is the bridge between our results for the i.i.d.
X and the uniform X sources. This result is interesting in its own right, and so is the
proof technique.
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Lemma 5.36. Let X satisfy that pX(x) is rational ∀x. Then, for D ∈ (0,∞), REU (D) =
RPU (D)

Proof. First, we prove that REU (D) ≤ RPU (D). The idea of the proof is that the proba-
bility of excess distortion criterion is “stronger” than the expected probability of error
criterion. That is, if a particular probability of excess distortion level is achievable for
some source, the same expected distortion is also achievable by the same source-code
for the same source. A rigorous proof is the following:

Recall the definitions of n0 and n′.

Let probability of excess distortion D be achievable for the uniform X source with
source-code s =< sn

′
>∞1 . Then, for the source-code s,

Pr
[

1
n′
dn

′
(Un

′
, Y n′) > D

]
= εn

′ → 0 as n→∞ (5.106)

It follows from the above equation that

E

[
1
n′
dn

′
(Un

′
, Y n′)

]
≤ (1− εn′)D + εn

′
Dmax → D as n→∞ (5.107)

Thus, the expected distortion D is achievable for the uniform X source by use of the
same source-code, and in particular, by a source-code of the same rate. It follows that
REU (D) ≤ RPU (D).

Next, we prove that RPU (D) ≤ REU (D).

Let expected distortion D be achievable by a rate R source-code t =< tn
′
>∞1 when

encoding the uniform X source. By Lemma 5.1, there exists a rate R deterministic
source-code s =< sn

′
>∞1 =< en

′
, fn

′
>∞1 using which expected distortion D is achiev-

able for the uniform X source. That is, for the source-code s,

lim sup
n→∞

∑

un′∈Un′
pUn′ (u

n′)Dun′ ≤ D where Dun′ ,
1
n′
dn

′
(un

′
, fn

′ ◦ en′(un′))

⇒ 1
|Un′ |

∑

un′∈Un′
Dun′ ≤ D + εn

′
where εn

′ → 0 as n→∞ (5.108)

Let ε > 0, 0 < δ < 1 be such that (1− δ)|Un′ | out of the |Un′ | many Dun′ are ≥ D + ε.
We find a relation between ε and δ below. From the above equation, it follows that

(1− δ)(D + ε) ≤ D + εn
′

⇒δ ≥ ε− εn′

D + ε
≥ ε

2(D + ε)
for n′ sufficiently large since εn

′ → 0 as n→∞ (5.109)
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Thus, for sufficiently large n′, possibly depending on ε, ≥ δ|Un′ | =
ε|Un′ |

2(D + ε)
out of the

|Un′ | many un
′

satisfy Dun′ ≤ D + ε. Note that this is true for all ε > 0 and that, δ is
independent of n.

Let Un′δ be a set of cardinality δ|Un′ | such that for sufficiently large n′, Dun′ ≤ D +
ε∀un′ ∈ Un′δ . Note that pUn′ (Un

′
δ ) = δ, by definition. Let Un

′
δ denote the source which

puts a uniform distribution on Un′δ . Denote Uδ =< Un′δ >∞1 . Denote Uδ =< Un
′

δ >∞1 .

The source-code s =< sn
′
>∞1 =< en

′
, fn

′
>∞1 can be used to code the source Uδ by just

restricting the source-code input space to Uδ. s still has rate R and when coding the
source Uδ. With source-code s, probability of excess distortion D+ε is achievable for the

source Uδ. In fact, the stronger condition is true that
1
n′
dn

′
(un

′
δ , f

n′
δ ◦ en

′
δ (un

′
δ )) ≤ D+ ε

∀un′δ ∈ Un
′

δ . Thus, it follows that RPV (D + ε) ≤ REU (D) for any source V =< V n′ >∞1
on Uδ =< Un′δ >∞1 . In particular, RPUδ(D + ε) ≤ REU (D).

We now cover the whole space Un by polynomially many “copies” of Unδ and conse-
quently, ∀β > 0, construct a rate R+ β source-code for which the probability of excess
distortion D + ε achievable when coding the uniform X source, U . Precisely, this is
done as follows:

Recall Definition 5.43 for the definition of permutations.

πn
′Un′δ , {un

′ ∈ Un′ : un
′

= πn
′
un

′
δ for some un

′
δ ∈ Un

′
δ }. πn

′Un′δ is, what we call, a copy
of Un′δ , got by permuting the entries of each element of Un′δ by the permutation πn

′
.

Note that ∪πn′∈Πn′π
nUn′δ = Un′ . Let An′ be a subset of Πn′ of smallest cardinality such

that ∪πn′∈An′πn
′Un′δ = Un′ . We will prove that

|An′ | ≤ n′ log(|X |)
log 1

1−δ
(5.110)

Assuming this, we first finish the proof that RPU (D) ≤ REU (D).

For πn
′ ∈ An′ , let Bπn be disjoint sets such that Bπn ⊂ πnUnδ and ∪πn∈ABπn = U .

For πn
′ ∈ An′ , let Kπn′ denote arbitrary sets, each of cardinality 2bn

′Rc. Let

iπn′ : {1, 2, . . . , 2bn′Rc} → Kπn′ (5.111)

be arbitrary bijective maps.

Define maps (πn
′
en

′
, πn

′
fn

′
) as follows:

πn
′
en

′
: Bπn′ → Kπn′

πn
′
fn

′
: Kπn′ → Yn

′
(5.112)
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πn
′
en

′
(πn

′
un

′
δ ) = iπn′ (e

n′(un
′
δ )), for πn

′
un

′
δ ∈ Bπn′

πn
′
fn

′
(kπn′ ) = fn

′
(i−1
πn′

(kπn′ )) (5.113)

Define source-code s∗ =< sn
′
∗ >∞1 =< en

′
∗ , f

n′
∗ >∞1 as follows.

en
′
∗ : Un′ → ∪πn′∈An′Kπn′
fn

′
∗ : ∪πn′∈An′Kπn′ → Yn

′
(5.114)

en
′
∗ (un

′
) = πn

′
en

′
(un

′
) if un

′ ∈ Bπn′
fn

′
∗ (k) = πn

′
fn

′
(k) if k ∈ Kπn′ (5.115)

Let β > 0. For sufficiently large n′,

| ∪πn′∈An′ Kπn′ | = |An
′ ||Kπn′ | =

n′ log(|X |)
log 1

1−δ
2bn

′Rc

≤ 2bn
′(R+β)c for n′ > z for some integer z (5.116)

The source-code s∗ can be suitably modified for block-lengths n′ < z in an arbitrary
way such that the source-code s∗ has rate R+ β. For n′ > z, it follows by construction
that ∀un′ ∈ Un′ ,

1
n′
dn

′
(un

′
, fn

′
∗ (en

′
∗ (un

′
))) ≤ D + ε (5.117)

It follows that for an arbitrary source V =< V n′ >∞1 on U , probability of excess
distortion D + ε is achievable with rate R + δ source-code s∗. Thus, RPV (D + ε) ≤
REU (D) + β. This is true for all β > 0. Thus, RPV (D + ε) ≤ REU (D).

In particular, RPU (D + ε) ≤ REU (D). By Lemma 5.28, RPU (D) is continuous for D ∈
(0,∞). It follows that RPU (D) ≤ REU (D) for D ∈ (0,∞).

It remains to prove that

|A| ≤ n log(|X |)
log 1

1−δ
(5.118)

This is proved below.

Let un
′
, u′n

′ ∈ Un′ .
First, we want to calculate

Pr(un
′

= Pn
′
u′n

′
) (5.119)
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Fix u′n
′
. The above probability is independent of un

′
by symmetry. An elaborate

argument which shows how this symmetry works is the following:

Denote Bun′ , {πn
′ ∈ Πn′ | un′ = Pn

′
u′n

′}. Let un
′

1 , u
n′
2 ∈ Un

′
. Thus, there are

the corresponding sets B
un
′

1
and B

un
′

2
. un

′
2 = πn

′
0 u

n′
1 . Thus, if u′n

′
= πn

′
un

′
2 , then,

u′n
′

= πn
′
πn

′
0 u

n′
1 . It follows that {πn′πn′0 | πn

′ ∈ B
un
′

2
} ⊂ B

un
′

1
. If πn

′
1 6= πn

′
2 , then,

πn
′

1 π
n′
0 6= πn

′
2 π

n′
0 . It follows that |B

un
′

1
| ≥ |B

un
′

2
|. By interchanging un

′
1 and un

′
2 , it

follows that |B
un
′

1
| ≤ |B

un
′

2
|. Thus, |B

un
′

1
| = |B

un
′

2
|. It follows that Pr(un

′
= Pn

′
u′n

′
) is

independent of un
′
. Thus,

Pr(un
′

= Pn
′
u′n

′
) =

1
|Un′ | (5.120)

Let un
′
, u′n

′
, u′′n

′ ∈ Un′ . From Lemma 5.18, it follows that πn
′
u′n

′
= πn

′
u′′n

′ ⇒ u′n
′

=
u′′n

′
. Thus,

Pr(un
′ ∈ Pn′Un′δ ) =

|Un′δ |
|Un′ | = δ (5.121)

Let Pn
′

1 , Pn
′

2 , . . . , Pn
′

t be independent, uniform random variables on Πn′ . Then,

Pr(un
′
/∈ Pn′1 Un

′
δ ∪ Pn

′
2 Un

′
δ ∪ · · · ∪ Pn

′
t Un

′
δ )

= Pr({un′ /∈ Pn1 Un
′

δ } and {un′ /∈ Pn2 Un
′

δ } and . . . and {un′ /∈ Pn′t Un
′

δ })
= Pr({un′ /∈ Pn′1 Un

′
δ } ∩ {un

′
/∈ Pn′2 Un

′
δ } ∩ . . . ∩ {un

′
/∈ Pn′t Un

′
δ })

= Pr(un
′
/∈ Pn′Un′δ )× Pr(un

′
/∈ Pn′Un′δ )× · · · × Pr(un

′
/∈ Pn′Un′δ )

=(1− δ)t (5.122)

Pr(Pn
′

1 Un
′

δ ∪ Pn
′

2 Un
′

δ ∪ · · · ∪ Pn
′

t Un
′

δ 6= Un
′
)

= Pr(∃un′ ∈ Un′ such that un
′
/∈ Pn′1 Un

′
δ ∪ Pn

′
2 Un

′
δ ∪ · · · ∪ Pn

′
t Un

′
δ )

= Pr(∪un′∈Un′{un
′
/∈ Pn′1 Un

′
δ ∪ Pn

′
2 Un

′
δ ∪ · · · ∪ Pn

′
t Un

′
δ })

≤
∑

un′∈Un′
Pr({un′ /∈ Pn′1 Un

′
δ ∪ Pn

′
2 Un

′
δ ∪ · · · ∪ Pn

′
t Un

′
δ }) by the union bound

=|Un′ |(1− δ)t

≤|X n′ |(1− δ)t

<1 if t >
n′ log |X |
log 1

1−δ
(5.123)

It follows that there exists a subset An′ of the set of permutations Πn′ of cardinality

≤ n′ log |X |
log 1

1−δ
, such that ∪πn′∈An′πn

′Un′δ = Un′ . This completes the proof.
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We now integrate the above results to prove the equality of all rate-distortion functions
when X satisfies that pX(x) is rational ∀x ∈ X

Equality of all possible rate-distortion functions for sources which satisfy pX(x) is rational

∀x ∈ X

The following theorem proves equality of all possible rate distortion functions for the
i.i.d. and uniform X sources when X satisfies that pX(x) is rational ∀x ∈ X .

Theorem 5.37. For X such that pX(x) is rational ∀x ∈ X . Then, for D ∈ (0,∞),
REX(D) = RPX(D) = REX(D, j) = RPX(D, j) = REX(D, inf) = RPX(D, inf) = REU (D) =
RPU (D) = REU (D, inf) = RPU (D, inf).

Proof. This follows from Lemmas 5.10, 5.14, 5.28, 5.35, and 5.36.

Note 5.48. Note that we do not directly prove that REX(D) = RPX(D). We prove
REU (D) = RPU (D), REX(D) = REU (D), and RPX(D) = RPU (D), in order to prove that
REX(D) = RPX(D). This can be thought of as one reason for the introduction of the
uniform X source. However, this is not the most important reason for the introduction
of the uniform X source. As stated before, the main reason for the introduction of
the uniform X source is that we do not know, how to prove Theorems 5.46 and 5.47,
directly for the i.i.d. X source.

Finally, we prove the equality of the rate-distortion functions for arbitrary X.

Equality of all possible rate-distortion functions for the i.i.d. X source: proofs that

REX(D) = RPX(D) = REX(D, inf) = RPX(D, inf)

Theorem 5.37 proves equality of all possible rate-distortion functions for the i.i.d. X
source when X is such that pX(x) is rational ∀x. Note that uniform X sources are
undefined for arbitrary X. For this, we will carry out limiting arguments with random
variables Xn → X where Xn is such that pXn(x) is rational ∀x ∈ X . This is the
final step in this subsection, after which, we will move on to channels. The limiting
arguments will be useful in their own right, when we consider channels.

Lemma 5.38. For arbitrary X, for D ∈ (0,∞), 0 < ε < D,

REX(D)−REX(D + ε) ≤ ε log |X |
D

(5.124)

RPX(D)−RPX(D + ε) ≤ ε log |X |
D

(5.125)

(5.126)
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For X such that pX(x) is rational ∀x, D ∈ (0,∞), 0 < ε < D,

REU (D)−REU (D + ε) ≤ ε log |X |
D

(5.127)

RPU (D)−RPU (D + ε) ≤ ε log |X |
D

(5.128)

Proof. By Lemma 5.4, REX(D) is convex for D ∈ [0,∞). It follows that

REX(D)−REX(D + ε)
ε

≤ REX(0)−REX(D)
D

≤ log |X |
D

⇒REX(D)−REX(D + ε) ≤ ε log |X |
D

(5.129)

This proves the first statement in the lemma.

By Lemma 5.6, RPX(D) is convex for D ∈ [0,∞). The second statement in the lemma
follows exactly as above.

For X such that pX(x) is rational ∀x, by Lemma 5.28, for D ∈ (0,∞), REU (D) = REX(D)
and RPU (D) = RPX(D). The third and fourth statements in the lemma, now follow by
using the first and second statements in the lemma which have been proved above.

Lemma 5.39. Let X be an arbitrary random variable on X . Let Xn, 1 ≤ n ≤ ∞ be
a collection of random-variables on X such that pXn(x) is rational ∀x ∈ X ,∀Xn. Also,
let Xn → X in distribution. That is, ∀x ∈ X, lim

n→∞
pXn(x) = pX(x). Un is the uniform

Xn source. Let δn > 0 and let δn → 0 as n → ∞ Define εn , Dmaxd1(pX , pXn) + δn.
Then, for D ∈ (0,∞),

lim
n→∞

REUn(D + εn) = lim
n→∞

REXn(D + εn) =

lim
n→∞

RPUn(D + εn) = lim
n→∞

RPXn(D + εn) = REX(D) (5.130)

Proof. Note that εn → 0 as n→∞.

By Lemma 5.24, and by an argument similar to that used in Lemma 5.28, for all
deltan > 0,

REX(D +Dmaxd1(pX , pXn) + δn) ≤ REUn(D)

⇒REX(D) ≤ REUn(D − (Dmaxd1(pX , pXn) + δn)) (5.131)

By Lemma 5.25, and by an argument similar to that used in Lemma 5.28, ∀δn > 0,

REUn(D +Dmaxd1(pX , pXn) + δn) ≤ REX(D) (5.132)
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Thus,

REUn(D + εn) ≤ REX(D) ≤ REUn(D − εn)

⇒0 ≤ REX(D)−REUn(D + εn) ≤ REUn(D − εn)−REUn(D + εn)

⇒0 ≤ REX(D)−REUn(D + εn) ≤ [REUn(D − εn)−REUn(D)] + [REUn(D)−REUn(D + εn)]

⇒0 ≤ REX(D)−REUn(D + εn) ≤ δn log |X |
D − εn

+
εn log |X |

D
by Lemma 5.38 (5.133)

Taking limit as n→∞, and recalling that εn → 0 as n→∞, it follows that

lim
n→∞

REUn(D + εn) = REX(D) (5.134)

By Theorem 5.37, REUn(D+ εn) = REXn(D+ εn) = RPUn(D+ εn) = RPXn(D+ εn). It thus
follows that

lim
n→∞

REUn(D + εn) = lim
n→∞

REXn(D + εn) =

lim
n→∞

RPUn(D + εn) = lim
n→∞

RPXn(D + εn) = REX(D) (5.135)

The lemma follows.

Lemma 5.40. Let X be an arbitrary random variable on X . Let Xn, 1 ≤ n ≤ ∞ be
a collection of random-variables on X such that pXn(x) is rational ∀x ∈ X , ∀Xn. Also,
let Xn → X in distribution. That is, ∀x ∈ X, lim

n→∞
pXn(x) = pX(x). Un is the uniform

Xn source. Let δn > 0 and let δn → 0 as n → ∞. Define εn , Dmaxd1(pX , pXn) + δn.
Then, for D ∈ (0,∞),

lim
n→∞

REUn(D + εn) = lim
n→∞

REXn(D + εn) =

lim
n→∞

RPUn(D + εn) = lim
n→∞

RPXn(D + εn) = RPX(D) (5.136)

Proof. Note that εn → 0 as n→∞.

By Lemma 5.26, and by an argument similar to that used in Lemma 5.28, for all δn > 0,

RPX(D +Dmaxd1(pX , pXn) + δn) ≤ RPUn(D)

⇒RPX(D) ≤ RPUn(D − (Dmaxd1(pX , pXn) + εn)) (5.137)

By Lemma 5.27, and by an argument similar to that used in Lemma 5.28, ∀δn > 0,

RPUn(D +Dmaxd1(pX , pXn) + δn) ≤ RPX(D) (5.138)

Thus,

RPUn(D + εn) ≤ RPX(D) ≤ RPUn(D − εn)
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⇒0 ≤ RPX(D)−RPUn(D + εn) ≤ RPUn(D − εn)−RPUn(D + εn)

⇒0 ≤ RPX(D)−RPUn(D + εn) ≤ [RPUn(D − εn)−RPUn(D)] + [RPUn(D)−RPUn(D + εn)]

⇒0 ≤ RPX(D)−RPUn(D + εn) ≤ εn log |X |
D − εn

+
εn log |X |

D
by Lemma 5.38 (5.139)

Taking limit as n→∞, and recalling that εn → 0 as n→∞, it follows that

lim
n→∞

RPUn(D + εn) = RPX(D) (5.140)

By Theorem 5.37, RPUn(D+ εn) = RPXn(D+ εn) = REUn(D+ εn) = REXn(D+ εn). It thus
follows that

lim
n→∞

RPUn(D + εn) = lim
n→∞

RPXn(D + εn) =

lim
n→∞

REUn(D + εn) = lim
n→∞

REXn(D + εn) = RPX(D) (5.141)

The lemma follows.

Lemma 5.41. For arbitrary X, for D ∈ (0,∞), RPX(D) = REX(D).

Proof. This follows from Lemmas 5.39 and 5.40.

The following is the theorem which proves the equality of all possible rate-distortion
functions for the i.i.d. X source when X is arbitrary.

Theorem 5.42. For arbitrary X, for D ∈ (0,∞), REX(D) = REX(D, j) = REX(D, inf) =
RPX(D) = RPX(D, j) = RPX(D, inf)

Proof. This follows from Lemmas 5.10, 5.14, and 5.41.

This ends this section. To re-capitulate, we proved the equality of various rate-distortion
functions for the i.i.d. X and the uniform X sources. Many of the results and proof
techniques are interesting in their own right. More importantly, we will require these
results, in particular, the equality of the rate-distortion functions for the i.i.d. X and
uniformX sources when proving the desired result of the equality of the pseudo universal
channel capacity of the set of channels CX,D and the rate-distortion function for the
i.i.d. X source under the expected and the probability of excess distortion definitions.
Before we do that, we first define, rigorously, the set of channels and prove various
results concerning channels.
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� 5.5 The channel-coding problem

In this section, we discuss the channel-coding problem. We define channels and jump
channels. Then, we define what it means for a channel or a jump channel to pseudo-
directly communicate a source to within a particular distortion level. This is followed
by the definition of the pseudo-universal capacity of the set of channels which pseudo-
directly communicate i.i.d. X source and uniform X source to within particular distor-
tion levels. Finally, we derive relations between the various pseudo-universal capacities
defined in this section.

� 5.5.1 Channels

We will consider 3 sets of channels:

1. Channels with input space < X n >∞1 and output space < Yn >∞1 . We will see,
what it means to communicate i.i.d X source pseudo-directly over a channel to
within a particular distortion level.

2. For some k, channels with input space < X kn >∞1 and output space < Ykn >∞1 .
These are jump channels with jump k.

3. Channels with input space < Un′ >∞1 and output space < Yn′ >∞1 . Recall that
n′ = n0n where n0 is the least positive integer for which n0pX(x) is an integer
∀x ∈ X for some random variable X on X . Thus, for channels of this kind, one
should think of an underlying random variable X which is such that pX(x) is
rational ∀x ∈ X . This random-variable will come into the picture when defining
pseudo-direct communication of the uniform X source over a channel to within a
particular distortion level.

Definition 5.50 (Channels with input space < X n >∞1 and output space < Yn >∞1 ).
A channel is a sequence c =< cn >∞1 where cn : X n → P(Yn) is a transition probabil-
ity/stochastic kernel. This should be interpreted as follows. When the block-length is
n, the channel acts as cn. For xn ∈ X n, yn ∈ Yn, cn(yn|xn) is the probability that the
channel output is yn given that the channel input is xn.

Note 5.49. The definition of transition probability corresponding to a source-code s, qs,
defined in Definition 5.7 is exactly the same as that of a channel defined above.

Definition 5.51 (Channels with input space < X kn >∞1 and output space < Ykn >∞1 :
jump channels with jump k). A channel is a sequence c =< ckn >∞1 where ckn : X kn →
P(Ykn) is a transition probability/stochastic kernel. This should be interpreted as
follows. When the block-length is n, the channel acts as ckn. For xkn ∈ X kn, ykn ∈ Ykn,
ckn(ykn|xkn) is the probability that the channel output is ykn given that the channel
input is xkn. These will be called jump channels with jump k.
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Note 5.50. The definition of transition probability corresponding to a jump source-code
s, qs, defined in Definition 5.10 is exactly the same as that of a channel defined above.

Definition 5.52 (Channels with input space < Un′ >∞1 and output space < Yn′ >∞1 ).
A channel is a sequence c =< cn

′
>∞1 where cn

′
: Un′ → P(Yn′) is a transition proba-

bility/stochastic kernel. This should be interpreted as follows. When the block-length
is n′, the channel acts as cn

′
. For un

′ ∈ Un′ , yn′ ∈ Yn′ , cn′(yn′ |xn′) is the probability
that the channel output is yn

′
given that the channel input is un

′
.

Note 5.51. The definition of transition probability corresponding to a source-code s, qs,
defined in Definition 5.13 is exactly the same as that of a channel defined above.

� 5.5.2 Channels which communicate sources to within various particular
distortion levels

In this subsection, we define channels which pseudo-directly communicate i.i.d. X
source to within a distortion level D and channels which pseudo-directly communicate
uniform X source to within a distortion level D.

Definition 5.53 (CX,D). Let X be arbitrary. Consider a channel c =< cn >∞1 with
input space < X n >∞1 and output space < Yn >∞1 . Let the input to this channel be
the i.i.d. X source. That is, when the block-length is n, the input to cn is Xn. The
channel produces an output Y n. This leads to a joint random variable XnY n on the
input-output space. The channel c is said to pseudo-directly communicate i.i.d. X
source to within a distortion level D if

lim
n→∞

pXnY n

(
1
n
dn(Xn, Y n) > D

)
= 0 (5.142)

The set of all channels which pseudo-directly communicate i.i.d. X source to within a
distortion level D is denoted by CX,D.

Note 5.52. Let c be a channel with input space < X n >∞1 and output space < Yn >∞1 .
Let s be a source-code such that qs = c. Then, c ∈ CX,D if and only if probability of
excess distortion D is achievable with source-code s when encoding the i.i.d. X source.

Definition 5.54 (CX,D,k). Let X be arbitrary. Consider a channel c =< ckn >∞1 with
input space < X kn >∞1 and output space < Ykn >∞1 . Let the input to this channel be
the i.i.d. X source. That is, when the block-length is n, the input to ckn is Xkn. The
channel produces an output Y kn. This leads to a joint random variable XknY kn on the
input-output space. The jump channel c with is said to pseudo-directly communicate
i.i.d. X source to within a distortion level D if

lim
n→∞

pXknY kn

(
1
kn
dkn(Xkn, Y kn) > D

)
= 0 (5.143)

The set of all jump channels with jump kwhich pseudo-directly communicate i.i.d. X
source to within a distortion level D is denoted by CX,D,k.
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Note 5.53. Let c be a channel with input space < X kn >∞1 and output space < Ykn >∞1 .
Let s be a source-code such that qs = c. Then, c ∈ CX,D,k if and only if probability of
excess distortion D is achievable with jump source-code s when encoding the i.i.d. X
source.

Definition 5.55 (CU,D). Let X be such that pX(x) is rational ∀x ∈ X . Consider a
channel c =< cn

′
>∞1 with input space < Un′ >∞1 and output space < Yn′ >∞1 . Let the

input to this channel be the uniform X source. That is, when the block-length is n′, the
input to cn

′
is Xn′ . The channel produces an output Y n′ . This leads to a joint random

variable Un
′
Y n′ on the input-output space. The channel c is said to pseudo-directly

communicate uniform X source to within a distortion level D if

lim
n→∞

pUn′Y n′

(
1
n′
dn

′
(Un

′
, Y n′) > D

)
= 0 (5.144)

The set of all channels which pseudo-directly communicate uniform X source to within
a distortion level D is denoted by CU,D.

Note 5.54. Let c be a channel with input space < Un′ >∞1 and output space < Yn′ >∞1 .
Let s be a source-code such that qs = c. Then, c ∈ CU,D if and only if probability
of excess distortion D is achievable with source-code s when encoding the uniform X
source.

Note 5.55 (Channel sets and partially known channels). In Chapter 2, we considered
partially known channels k ∈ A. In this chapter, we will refer to partially known
channels simply as channel sets.

� 5.5.3 Pseudo-universal capacity of the set of channels CX,D, CX,D,j, and
CU,D

In Chapter 2, we defined the universal capacity of a partially known channel k ∈ A.
In this chapter, instead of the universal capacity, we will consider the pseudo-universal
capacity of a partially known channel, or equivalently, a set of channels. The pseudo-
universal capacity of a set of channels differs from universal capacity in that we do not
ask for a uniformity in the rate at which error probability → 0 as block-length n→∞
over the set of channels. This will become clearer in the rigorous definition.

We will prove universal source channel separation theorem for rate-distortion by using
pseudo-universal capacity instead of universal capacity, in this chapter. We are quite
sure that the results can be generalized to the case when we use the universal capacity.
The reason we have not proved the results using universal capacity is that this is the
way we ended up proving the results. For the reader unsatisfied with this explanation,
the reader can think of this chapter as an operational view-point of the optimality of
digital communication for communication over a fully known channel. This is because
pseudo-universal capacity and universal capacity are same if the channel is fully known:
the uniformity over the set of channels becomes trivial.
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We define the pseudo-universal capacity of the set of channels CX,D, CX,D,j , and CU,D.

Pseudo-universal capacity of the set of channels CX,D

Recall the definitions of EnX (R) and FnY(R). In a similar vein, let FnX (R) denote the set
of all deterministic functions with domain {1, 2, . . . , 2bnRc} and range X n and let EnY(R)
denote the set of all deterministic functions with domain Yn and range {1, 2, . . . , 2bnRc}.

Definition 5.56 (Encoder-Decoder). A deterministic encoder-decoder pair is a se-
quence < en, fn >∞1 where en ∈ FnX (R) and fn ∈ EnY(R). A random encoder-decoder
pair is a probability distribution on FnX (R)×EnY(R), which we denote by < En, Fn >∞1 :
pEnFn is the probability distribution on FnX (R)× EnY(R).

Note that in Section 2.7.3, we had defined a random channel code consisting of a random
channel encoder and a random channel decoder as transition probabilities. The above
definition is an equivalent definition of a channel code as a probability distribution on
the set of deterministic channel encoders and decoders.

Let c =< cn >∞1 be a channel with input space < X n >∞1 and output space < Yn >∞1 .
The composition of encoder, channel and decoder, which we denote by < Dn ◦ cn ◦
En >∞1 is a transition probability/stochastic kernel: Dn ◦ cn ◦ En : {1, 2, . . . , 2bnRc} →
P({1, 2, . . . , 2bnRc}). For a, b ∈ {1, 2, . . . , 2bnRc},

Dn ◦ cn ◦ En(b|a) =
∑

{xn∈Xn,yn∈Yn}

∑

{en,dn:en(a)=xn,dn(yn)=b}
(5.145)

cn(yn|xn)pEnFn(en, fn) (5.146)

Let Mn
R , {1, 2, . . . , 2bnRc}. Let Mn

R be some distribution on Mn
R. With input Mn

R to
the composition of the encoder, channel and decoder Fn ◦ cn ◦ En, there is an output
distribution M̂n

R on {1, 2, . . . , 2bnRc}, which will depend on the channel c, though this
dependence on c is not shown in the notation M̂n

R.

Definition 5.57 (Pseudo-universal achievability of rate R over channel set CX,D with
encoder-decoder < En, Fn >∞1 ). Rate R is said to be pseudo-universally achievable
over the channel set CX,D by use of encoder-decoder < En, Fn >∞1 if

sup
mn∈Mn

R

Pr(M̂n
R 6= Mn

R |Mn
R = mn)→ 0 as n→∞∀c ∈ CX,D (5.147)

As we said in Section 2.11, the above definition is independent of the particular distri-
bution Mn

R; it only depends on the channel transition probability.

Note 5.56. The reader is urged to compare the above definition of pseudo-universal
achievability of rate R with Definition 2.31 of the universal achievability of rate R, and
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note the absence of uniformity requirement over the particular channel at the rate at
which error probability→ 0 as block-length n→∞ in the definition of pseudo-universal
achievability of rate R as opposed to the definition of universal achievability of rate R

Definition 5.58 (Pseudo-universal achievability of rate R over channel set CX,D).
Rate R is said to be pseudo-universally achievable over the channel set CX,D if rate R is
pseudo-universally achievable over CX,D with some encoder-decoder pair < En, Fn >∞1 .

Definition 5.59 (Pseudo-universal capacity of CX,D, pCrc(CX,D)). The supremum of
all pseudo-universally achievable rates over CX,D is the pseudo-universal capacity of
CX,D, and is denoted by pCrc(CX,D).

Pseudo-universal capacity of the set of channels CX,D,k

Encoders and decoders are defined as in Definition 5.56, except that they are defined
only for block-lengths kn.

The composition of encoder, channel and decoder is < F kn ◦ ckn ◦ Ekn >∞1 .

Definition 5.60 (Pseudo-universal achievability of rate R over channel set CX,D,k with
encoder-decoder < Ekn, F kn >∞1 ). This is defined analogously to Definition 5.57, expect
that limits are taken along block-lengths kn. Rate R is said to be pseudo-universally
achievable over the channel set CX,D,k by use of encoder-decoder < Ekn, F kn >∞1 if

sup
mkn∈Mkn

R

Pr(M̂kn
R 6= Mkn

R | Mkn
R = mkn)→ 0 as n→∞∀c ∈ CX,D,k (5.148)

Definition 5.61 (Pseudo-universal achievability of rate R over channel set CX,D,k).
This is defined analogously to Definition 5.5.3, expect that limits are taken along block-
lengths kn. Rate R is said to be pseudo-universally achievable over the channel set
CX,D,k if rate R is pseudo-universally achievable over CX,D with some encoder-decoder
pair < En, Fn >∞1 .

Definition 5.62 (Pseudo-universal capacity of CX,D,k, pCrc(CX,D,k)). This is defined
analogously to Definition 5.59, expect that limits are taken along block-lengths kn. The
supremum of all pseudo-universally achievable rates over CX,D,k is the pseudo-universal
capacity of CX,D,k, and is denoted by pCrc(CX,D,k).

Pseudo-universal capacity of the set of channels CU,D

Recall the definitions of En′U (R) and Fn′U (R). A deterministic encoder-decoder pair is
a sequence < en

′
, fn

′
>∞1 where en

′ ∈ Fn′U (R) and fn
′ ∈ En′U (R). A random encoder-

decoder pair is a probability distribution on Fn
′
X (R) × En

′
X (R), which we denote by

< En
′
, Fn

′
>∞1 : pEn′Fn′ is the probability distribution on Fn

′
X (R)× En′X (R).



Sec. 5.5. The channel-coding problem 203

Let c =< cn
′
>∞1 be a channel with input space < X n′ >∞1 and output space < Yn′ >∞1 .

The composition of encoder, channel and decoder, which we denote by < Dn′ ◦ cn′ ◦
En

′
>∞1 is a transition probability/stochastic kernel: Dn′◦cn′◦En′ : {1, 2, . . . , 2bn′Rc} →

P({1, 2, . . . , 2bn′Rc}). For a, b ∈ {1, 2, . . . , 2bn′Rc},

Dn′ ◦ cn′ ◦ En′(b|a) =
∑

{xn′∈Xn′ ,yn′∈Yn′}

∑

{en′ ,dn′ :en′ (a)=xn′ ,dn′ (yn′ )=b}

cn
′
(yn

′ |xn′)pEn′Fn′ (en
′
, fn

′
) (5.149)

As before, Mn′
R denotes the set {1, 2, . . . , 2bn′Rc}. Let Mn′

R denote some distribution
on Mn′

R . With input Mn′
R to the composition of the encoder, channel and decoder

Fn
′ ◦ cn′ ◦ En′ , there is an output distribution M̂n′

R on {1, 2, . . . , 2bn′Rc}, which will
depend on the particular channel, though this dependence on c is not shown in the
notation M̂n′

R .

Definition 5.63 (Pseudo-universal achievability of rate R over channel set CU,D with
encoder-decoder < En

′
, Fn

′
>∞1 ). Rate R is said to be pseudo-universally achievable

over the channel set CU,D by use of encoder-decoder < En
′
, Fn

′
>∞1 if

sup
mn′∈Mn′

R

Pr(M̂n′
R 6= Mn′

R | Mn′
R = mn′)→ 0 as n→∞∀c ∈ CU,D (5.150)

Definition 5.64 (Pseudo-universal achievability of rate R over channel set CU,D). Rate
R is said to be pseudo-universally achievable over the channel set CU,D if rate R is
pseudo-universally achievable over CU,D with some encoder-decoder pair < En

′
, Fn

′
>∞1 .

Definition 5.65 (Pseudo-universal capacity of CU,D, pCrc(CU,D)). The supremum of all
pseudo-universally achievable rates over CU,D is the pseudo-universal capacity of CU,D,
and is denoted by pCrc(CU,D).

Note 5.57. We will not require the notion of jump pseudo-universal capacity for the set
of channels CU,D.

� 5.5.4 Relation between the pseudo-universal capacities of the set of chan-
nels CU,D, CX,D, and CX,D,k

In this subsection, we prove relations between pseudo-universal capacities of the sets of
channels CU,D, CX,D, and CX,D,k.
The results, not stated entirely precisely here, but stated more precisely in the lemmas
that follow, are:
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1. pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CU,D). This is proved by interpreting chan-

nels as source-codes and using Construction 5.1 to construct a channel correspond-
ing to every channel ∈ CU,D.

2. pCrc(CU,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CX′,D). This is proved by interpreting chan-

nels as source-codes and using Construction 5.2 to construct a channel correspond-
ing to every channel ∈ CX,D,n0 .

In order to prove the above two results, we first prove that pCrc(CX,D+ε,k) ≤ pCrc(CX,D)
≤ pCrc(CX,D,k). This is proved by defining interpolation encoder-decoder< E′n, F ′n >∞1
for the set of channels CX,D given an encoder-decoder < Ekn, F kn >∞1 for the set of
channels CX,D,k.

Lemma 5.43. ∀k, ∀ε > 0, pCrc(CX,D+ε,k) ≤ pCrc(CX,D) ≤ pCrc(CX,D,k)

Proof. If rate R is pseudo-universally achievable for the set of channels CX,D by using
an encoder-decoder < En, Fn >∞1 , then rate R is pseudo-universally achievable for the
set of channels CX,D,k by using the subsequence < Ekn, F kn >∞1 as the encoder-decoder.
Thus, pCrc(CX,D) ≤ pCrc(CX,D,k).
Let rate R be pseudo-universally achievable for the set of channels CX,D+ε,k. That is,
there exists encoder-decoder < Ekn, F kn >∞1 such that

Pr(M̂kn
c 6= Mkn)→ 0 as n→∞∀c ∈ CX,D+ε,k (5.151)

We will modify encoder-decoder < Ekn, F kn >∞1 into encoder-decoder < E′n, F ′n >∞1
for the set of channels CX,D. This code will be such that rates< R are pseudo-universally
achievable for the set of channels CX,D.

The idea is the following: Let r ∈ {0, 1, 2, . . . , k − 1}. For block-length kn + r, the
channel is ckn+r. Use only the first block of length kn to communicate. Precisely, this
is done as follows:

Let (ekn, fkn) ∈ FknX (R)×EknY (R). Let r ∈ {0, 2, . . . , k−1}. Let m ∈ {1, 2, . . . , 2bknRc}.
Define

e′kn+r(m) = (ekn(m), xr) (5.152)

where xr ∈ X r is arbitrary. For ykn+r ∈ Ykn+r, define,

f ′kn+r(ykn+r) = fkn(ykn) (5.153)

The domain of the function e′kn+r is the set {1, 2, . . . , 2bknRc} and the range of e′kn+r

is the set X kn+r. The domain of the function f ′kn+r is Ykn+r and the range of the
function f ′kn+r is the set {1, 2, . . . , 2bknRc}.
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If (Ekn, F kn) ∈ P(FknX (R) × EknY (R)), for r ∈ {0, 1, 2, . . . , k − 1}, for sufficiently large
n, define (E′kn+r, F ′kn+r) ∈ P(Fkn+r

X (R)× Ekn+r
Y (R− β)), defined by

pE′kn+r,F ′kn+r(e′kn+r, f ′kn+r) = pEknFkn(ekn, fkn) (5.154)

where (e′kn+r, f ′kn+r) is constructed from (ekn, fkn) as above.

Given < Ekn, F kn >∞1 , we construct a code < E′n, F ′n >∞1 as above. < E′n, F ′n >∞1 is
the interpolation channel-code corresponding to < Ekn, F kn >∞1 .

We prove that by using < E′n, F ′n >∞1 , rate R− β is pseudo-universally achievable for
set of channels CX,D.

Let c =< cn >∞1 ∈ CX,D. For block-length kn+ r, r ∈ {0, 1, 2, . . . , r − 1},

1
kn+ r

dkn+r(Xkn+r, Y kn+r) =

1
kn+ r

dkn(Xkn+r(1..kn), Y kn+r(1..kn))+

1
kn+ r

dr(Xkn+r(kn+ 1..kn+ r), Y kn+r(kn+ 1..kn+ r))

≤ 1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) +

rDmax

kn+ r

≤ 1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) + ε for sufficiently large n (5.155)

It follows that for channels ∈ CX,D, for r ∈ {0, 1, 2, . . . , k − 1},

Pr
(

1
kn
dkn(Xkn+r(1..kn), Y kn+r(1..kn)) > D + ε

)
→ 0 as n→∞ (5.156)

Let block-length be kn + r. Let the message set be {1, 2, . . . , 2bknRc}. The channel
is ckn+r, where c ∈ CX,D. Let the encoder-decoder be E′kn+r, F ′kn+r. It follows by
construction that error probability → 0 as block length →∞.

Note that the cardinality of the message set is 2bknRc. For β > 0, for sufficiently large n,
2b(kn+r)(R−β)c ≤ 2bknRc. It follows that rates< (R−β) are pseudo-universally achievable
achievable over the set of channels CX,D. It follows that pCrc(CX,D+ε, k) ≤ pCrc(CX,D).

The lemma follows.

Lemma 5.44. Let X be such that pX(x) is rational ∀x ∈ X . Let X ′ be arbitrary. Then,
∀ε > 0,

pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CU,D) (5.157)
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Proof. Recall the notation n′ = n0n. Let c =< cn
′
>∞1 ∈ CU,D. Consider a source-

code s such that qs = c. Then, probability of excess distortion D is achievable by the
source-code s when encoding the uniform X source. Let ε > 0. From Lemma 5.26,
by use of Construction 5.1, it follows that there exists a jump source-code s′ for which
probability of excess distortion D+Dmax(d1(pX , pX′) + ε) is achievable when encoding
the i.i.d. X source. qs′ can be thought of as a jump channel c′ with jump n0. Then,
c′ ∈ CX′,D+Dmax(d1(pX ,pX′ )+ε),n0

.

Denote C′ = {c′ | c ∈ CU,D}, where c′ is constructed, as above, from c.

Note that c′ = qs′ =< k′n
′ ◦ qn′s >∞1 =< k′n

′ ◦ cn′ >∞1 . Thus, if rate R is pseudo-
universally achievable for the set of channels C′ by using a possibly random encoder-
decoder sequence < gn

′
, hn

′
>∞1 , rate R is also pseudo-universally achievable for the set

of channels CU,D by using the encoder-decoder sequence < gn
′ ◦ k′n′ , hn′ >∞1 . It follows

that pCrc(C′) ≤ pCrc(CU,D).

Also, C′ ⊂ CX′,D+Dmax(d1(pX ,pX′ )+ε),n0
.

Thus, pCrc(C′) ≥ pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε),n0
).

It follows that pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε),n0
) ≤ pCrc(CU,D).

By Lemma 5.43, pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε),n0

).

Thus, pCrc(CX′,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CU,D)

Lemma 5.45. Let X be such that pX(x) is rational ∀x ∈ X . Let X ′ be arbitrary. Then,
∀ε > 0,

pCrc(CU,D+Dmax(d1(pX ,pX′ )+ε)
) ≤ pCrc(CX′,D) (5.158)

Proof. Recall the notation n′ = n0n. Let c =< cn
′
>∞1 ∈ CX′,D,n0 . Consider a jump

source-code t such that qt = c. Then, probability of excess distortion D is achievable
by the jump source-code t when encoding the i.i.d. X ′ source. Let ε1 > 0. From
Lemma 5.27, by use of Construction 5.2, it follows that there exists source-code t′

for which probability of excess distortion D + Dmax(d1(pX , pX′) + ε1) is achievable
when encoding the uniform X source. qt′ can be thought of as a channel c′. Then,
c′ ∈ CU,D+Dmax(d1(pX ,pX′ )+ε1).

Denote C′ = {c′ | c ∈ CX′,D}, where c′ is constructed, as above, from c.

Note that c′ = qt′ =< l′n
′ ◦ qn′t >∞1 =< l′n

′ ◦ cn′ >∞1 . Thus, if rate R is pseudo-
universally achievable for the set of channels C′ by using a possibly random encoder-
decoder sequence < gn

′
, hn

′
>∞1 , rate R is also pseudo-universally achievable for the

set of channels CX′,D,n0 by using the encoder-decoder sequence < gn
′ ◦ k′n′ , hn′ >∞1 .

It follows that pCrc(C′) ≤ pCrc(CX′,D,n0). By Lemma 5.43, ∀ε2 > 0, pCrc(CX′,D,n0) ≤
pCrc(CX′,D−ε2). Thus, pCrc(C′) ≤ pCrc(CX′,D−ε2).
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Also, C′ ⊂ CU,D+Dmax(d1(pX ,pX′ )+ε1). Thus, pCrc(C′) ≥ pCrc(CU,D+Dmax(d1(pX ,pX′ )+ε1)).

Thus, ∀ε1 > 0, ε2 > 0, pCrc(CX′,D−ε2) ≥ pCrc(CU,D+Dmax(d1(pX ,pX′ )+ε1)). It follows that
∀ε > 0, pCrc(CX′,D) ≥ pCrc(CU,D+Dmax(d1(pX ,pX′ )+ε))

.

Note 5.58. The reason for the introduction of jump channels which communicate i.i.d.
X ′ source is the following. Given a channel which communicates the uniform X source,
we can only draw a relation to it for jump channels with jump n0. This is because
channels which communicate uniform X source are defined only for block-lengths which
are multiples of n0. Then, by use of Lemma 5.43, we relate the capacities of channels
and jump channels which communicate i.i.d. X source.

This ends this section. To re-capitulate, we defined the set of channels and jump
channels which pseudo-directly communicate the i.i.d. X source to within a distortion
D and the set of channels which pseudo-directly communicate the uniform X source
to within a distortion D. We proved various relations between the pseudo-universal
capacities of these sets of channels. We use these results along with the results from the
previous section in the next section to prove the main result: the equality of the pseudo-
universal channel capacity of the set of channels CX,D and the rate-distortion function for
the i.i.d. X source under the expected and the probability of excess distortion criteria.
As we shall see, we will crucially use the relations between the rate-distortion functions
for the i.i.d. and uniform X sources, and also, the pseudo-universal channel capacities
of the set of channels which pseudo-directly communicate the i.i.d. X source to within
a distortion level D and the set of channels which pseudo-directly communicate the
uniform X source to within a distortion level D.

� 5.6 Relation between pseudo-universal channel capacity and the rate-
distortion function: equality of the pseudo universal channel capacity
and the rate distortion function

In this section, we prove: pCrc(CX,D) = REX(D) = RPX(D) = REX(D, inf) = RPX(D, inf).
To this end, we first prove that RPU (D) ≥ pCrc(CU,D) ≥ RPU (D, inf). This proof is
independent of all past results in this chapter. Then, we integrate this with the results
from the previous two sections relating rate-distortion functions for the i.i.d. X and
uniform X sources and the results relating the pseudo-universal channel capacities of
the set of channels which pseudo-directly communicate the i.i.d. X source to within a
distortion D and the set of channels which pseudo-directly communicate the uniform
X source to within a distortion D, in order to prove the desired result.
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� 5.6.1 Proof of RP
U (D) ≥ pCrc(CU,D) ≥ RP

U (D, inf)

Theorem 5.46. Let X be such that pX(x) is rational ∀x ∈ X . Then, for D > 0,

RPU (D) ≥ pCrc(CU,D) ≥ RPU (D, inf) (5.159)

Proof. This proof is independent of all past lemmas and theorems in this chapter, and
the proof of pCrc(CU,D) ≥ RPU (D, inf) is essentially the same as Step 1 of Subsection
2.14.9.

This is followed by a proof of RPU (D) ≥ pCrc(CU,D).

This theorem and its proof is the main idea of this whole chapter; the rest are just
mathematical details which are necessary and have some ideas but are not the main
idea.

First, we prove that pCrc(CU,D) ≥ RPU (D, inf). Most of the argument of Step 1 of
Subsection 2.14.9 is reproduced here with the minor necessary changes.

This is done via parallel random-coding arguments for

• the pseudo-universal capacity of the set of channels CU,D, and

• the rate-distortion source-coding problem of finding the minimum rate needed to
compress the uniform X source to within a distortion D under the inf probability
of excess distortion criterion.

The random coding arguments are similar, yet different from the ones used in the
information theory literature. We want to derive a connection between the above two
problems in order to prove the desired result, and we are not interested in simplified
functional expressions for the pseudo-universal capacity of the set of channels CX,D or
simplified expressions for the rate-distortion function RPU (D, inf).

The two problems:

• The channel-coding problem: The channel-coding problem is that of computing
the pseudo-universal capacity of the set of channels CU,D
• The source-coding problem: The source-coding problem that we consider is to

derive an upper bound on RPU (D, inf), the minimum rate needed to compress the
uniform X source to within a distortion level D under the inf-probability of excess
distortion criterion

Block length: For both the channel coding and the source coding problems, let the
block-length be n′. Towards the end of the argument we will take the limit n′ → ∞.
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Recall that n′ = n0n is the set of all integers for which the uniform X source makes
sense.

Codebook generation:

• Codebook for the channel-coding problem: Let communication be desired at rate
R. Generate 2bn

′Rc sequences independently and uniformly from the set Un′ , the
set of all sequences ∈ X n which have empirical distribution precisely pX .

This is the code book Kn′ . Note that the codewords ∈ Un′ . The encoder is denoted
by < En

′
>∞1 . Note that the encoder is random.

• Codebook for the source-coding problem: Let q be an empirical distribution (type)
on Y, that is q ∈ P(Y). Let q be an achievable type when the block-length is
n′. In other words, n′q(y) is an integer ∀y ∈ Y. Let Un′q ⊂ Yn

′
denote the set of

all sequences with empirical distribution, precisely q. Generate 2bn
′Rc codewords

independently and uniformly from the set Un′q .

This is the code book Ln′ . Note that the codewords ∈ Un′q ⊂ Yn
′
. Note that the

codebook is random.

Joint typicality:

• Joint typicality for the channel coding problem: Sequences (un
′
, yn

′
) ∈ the channel

input-output space Un′ × Yn′ are said to be jointly typical if

1
n′
dn

′
(un

′
, yn

′
) ≤ D (5.160)

• Joint typicality for the source coding problem: Sequences (un
′
, yn

′
) ∈ the source

input - source reconstruction space Un′ × Yn′ are said to be jointly typical if

1
n′
dn

′
(un

′
, yn

′
) ≤ D (5.161)

Note that the definition of joint-typicality for both the channel-coding and the source-
coding problems is the same.

Decoding:

• Decoding for the channel coding problem: Let the sequence yn
′
be received. If there

exists unique codeword un
′

in the code book Kn′ for which (un
′
, yn

′
) are jointly

typical, declare that un
′

is transmitted, else declare error. The decoder is denoted
by Fn

′
. Note that the encoder-decoder En

′
, Fn

′
is random
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Note 5.59. This decoding rule can be thought of as a variant of minimum distance
decoding

• Encoding for the source coding problem: Let the sequence un
′ ∈ Un′ needs to be

source-coded. If there exists some sequence yn
′

in the code book Ln′ for which
(un

′
, yn

′
) are jointly typical, encode un

′
to one such yn

′
, else declare error. Note

that the encoder-decoder is random

Note 5.60. Note that “unique” in the channel coding problem gets converted to “some”
in the source coding problem

Some notation:

• Notation for the channel coding problem: We will do the analysis assuming that a
particular message is transmitted. The message set is

Mn′
R = {1, 2, . . . , 2bn′Rc} (5.162)

Assume that message mn′
i ∈Mn′

R is transmitted.

Let the codeword corresponding to message mn′
i be denoted by un

′
c . Let the non-

transmitted codewords be denoted by u′n
′

1 , u′n
′

2 , u′n
′

2bn′Rc−1.

un
′
c is a realization of Un

′
c . By the random code book generation, Un

′
c has uniform

distribution on Un′ .
u′n

′

i is a realization of U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1. By the random code book

generation, U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1, has uniform distribution on Un′ .

By the random code book generation, the codewords are generated independently
of each other, and thus, Un

′
c , U ′n

′

i , 1 ≤ i ≤ 2bn
′Rc − 1 are all independent of each

other as random variables.

The action of the channel c ∈ CU,D on the transmitted codeword un
′
c produces an

output yn
′
.

yn
′

is the realization of some random variable Y n′ which is got by the action of the
channel c on Un

′
c . Note that Y n′ will be different for different c ∈ CU,D. Assume

that some particular c ∈ CU,D happens, and Y n′ is the corresponding channel
output random variable. Our argument will hold for all c ∈ CU,D.

yn
′

depends on un
′
c .

By the codebook generation, the codewords are generated independently of each
other, and there is no dependence between yn

′
and u′n

′

1 , u′n
′

2 , u′n
′

2bn′Rc−1. That is,

yn
′
, and Y n′ are independent of U ′n

′

i , 1 ≤ i ≤ 2bn
′Rc − 1.
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• Notation for the source coding problem: We will do the analysis assuming that a
particular un

′ ∈ Un′ needs to be coded.

The source is the uniform X source. Thus, un
′

is a realization of Un
′

where Un
′

has uniform distribution on Un′ .
The codebook is

Ln′ = {yn′1 , y
n′
2 , . . . , y

n′

2bn′Rc
} (5.163)

For all i, yn
′
i is a realization of the random variable V n′

i . By the random codebook
generation, V n′

i is the uniform distribution on the set Un′q ⊂ Yn
′

of all sequences
with precise type q.

By the random code book generation, the codewords are generated independently
of each other, and thus, V n′

i , 1 ≤ i ≤ 2bn
′Rc are independent of each other as

random variables.

Also, the codewords are of course, independent of the source sequence, and thus,
un

′
and Un

′
are independent of V n′

i , 1 ≤ i ≤ 2bn
′Rc.

Analysis:

• Error analysis for the channel coding problem: We analyze the probability of
correct decoding.

We analyze the probability that a message is correctly received given that a par-
ticular message is transmitted. Think of some probability distribution Mn′ on the
message set Mn′

R . This probability distribution will not matter for the calcula-
tion. In fact, the calculation that we do can be done even if there is no probability
distribution on the set of messages. We calculate

Pr(M̂n′
R = Mn′

R |Mn′ = mn′
i ) where mn′

i ∈Mn′
R (5.164)

The code book generation is symmetric. For this reason, the above probability
will be independent of the particular message mn′ ∈Mn′

R .

From the decoding rule, it follows that for correct decoding, the following should
happen:

–

1
n′
dn

′
(un

′
c , y

n′) ≤ D (5.165)

–

1
n′
dn

′
(u′n

′

i , y
n′) > D, 1 ≤ i ≤ 2bn

′Rc − 1 (5.166)
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Thus, the event of correct decoding is:
{

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

}
(5.167)

• Error analysis for the source coding problem: We analyze the probability of error.

The analysis is done assuming that a particular sequence un
′ ∈ Un′ needs to be

source-coded. As we shall see, this error is independent of the particular source
sequence because of the same empirical distribution of the source sequences, the
symmetric nature of the code book construction, and permutation invariant dis-
tortion measure.

An error happens if there exists no yn
′

in the code book Ln′ such that (un
′
, yn

′
)

are jointly typical, that is, an error happens if

1
n′
dn

′
(un

′
, yn

′
) > D∀yn′ ∈ Ln′ (5.168)

The event of error is

∩2bn
′Rc

i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

}
(5.169)

Note 5.61. Note that in the channel coding problem, we analyze the probability
of correct decoding and in the source coding problem we analyze the probability
of error

Calculation:

• Calculation of probability of correct decoding for the channel coding problem:

The correct decoding event is:
{

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

}
(5.170)

We wish to calculate the probability of the above event.

Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∩ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

= Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
})

+ Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})
−

Pr
({

1
n′
dn

′
(Un

′
c , Y

n′) ≤ D
}
∪ ∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

≥(1− ωn′) + Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})
− 1

=− ωn′ + Pr
(
∩2bn

′Rc−1
i=1

{
1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})
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=− ωn′ +
2bn

′Rc−1∏

i=1

Pr
({

1
n′
dn

′
(U ′n

′

i , Y
n′) > D

})

(since U ′n
′

i , 1 ≤ i ≤ 2bn
′Rc − 1, Y n′ are independent random variables)

=− ωn′ +
[
Pr
({

1
n′
dn

′
(Un

′
, Y n′) > D

})]2bn
′Rc−1

(where Un
′

has the same distribution as U ′i
n′ and is independent of Y n′)

=− ωn′ +


 ∑

yn
′∈Yn′

pY n′ (y
n′) Pr

(
1
n′
dn

′
(Un

′
, Y n′) > D | Y n′ = yn

′
)


2bn
′Rc−1

=− ωn′ +


 ∑

yn′∈Yn′
pY n′ (y

n′) Pr
(

1
n′
dn

′
(Un

′
, yn

′
) > D | Y n′ = yn

′
)


2bn
′Rc−1

=− ωn′ +


 ∑

yn′∈Yn′
pY n′ (y

n′) Pr
(

1
n′
dn

′
(Un

′
, yn

′
) > D

)


2bn
′Rc−1

(since Un
′

and Y n′ are independent)

≥− ωn′ +

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

(5.171)

Rate R is achievable if

−ωn′ +

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

→ 1 as n′ →∞ (5.172)

It is known that ωn′ → 0 as n′ →∞. It follows that rate R is achievable if

[
inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})]2bn
′Rc−1

→ 1 as n′ →∞ (5.173)

• Calculation of probability of error for the source coding problem:

The error event is:

∩2bn
′Rc

i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

}
(5.174)

We wish to calculate the probability of this event.

Pr
(
∩2bn

′Rc
i=1

{
1
n′
dn

′
(un

′
, V n′

i ) > D

})
(5.175)
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=
2bn

′Rc∏

i=1

Pr
({

1
n′
dn

′
(un

′
, V n′

i ) > D

})
=
[
Pr
({

1
n′
dn

′
(un

′
, V n′) > D

})]2bn
′Rc

(5.176)

where V n′ is a random variable which is uniformly distributed on Un′q and is inde-
pendent of un

′
for all un

′ ∈ Un′ .
The type q with which the codewords are generated can be chosen by us. For
block-length n′, we can choose the best possible achievable q for which the above
error probability is the minimum. Let the set of all possible achievable types q for
block-length n′ be denoted by Gn′ . The least possible error probability is given by

[
inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′) > D

})]2bn
′Rc

(5.177)

To show the above dependence of the distribution of V n′ on q, we denote it by
V n′
q . Thus, the least possible error probability is

[
inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})]2bn
′Rc

(5.178)

Since we are using the inf-probability of excess distortion criterion, it follows that rate
R is achievable if


 inf
q∈Gn

′
i

Pr

({
1
n′i
dn

′
i(un

′
i , V

n′i
q ) > D

})


2bn
′
i
Rc

→ 0 for some n′i = n0ni for some ni →∞

(5.179)

Connection between channel coding and source coding:

It turns out that the main calculation we need to do in the channel coding problem is

inf
yn′∈Yn′

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
(5.180)

and the main calculation we need to do in the source coding problem is

inf
q∈Gn′

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
(5.181)

We will prove that the above two expressions are equal.
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We will prove more generally, that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
, if yn

′
has type q

(5.182)

Let yn
′

have type q.

First we prove for the channel coding problem that if yn
′

and y′n
′

have the same type
q, then

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, y′

n′) > D

})
(5.183)

Since Un
′

is the uniform distribution on Un′ , it follows that it is sufficient to prove that
the cardinalities of the sets

{
un

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
and

{
un

′
:

1
n′
dn

′
(un

′
, y′n

′
) > D

}
(5.184)

are equal

Since yn
′

and y′n
′

have the same type, y′n
′

is a permutation of yn
′
. Let y′n

′
= πn

′
yn

′
.

Denote the sets

Byn′ ,
{
un

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
(5.185)

and

By′n′ ,
{
un

′
:

1
n′
dn

′
(un

′
, y′n

′
) > D

}
(5.186)

Let un
′ ∈ Byn′ . Since the distortion measure is permutation invariant, dn

′
(πn

′
un

′
, πn

′
yn

′
)

= dn
′
(un

′
, yn

′
). Thus, πn

′
un

′ ∈ By′n′ . If un
′ 6= u′n

′
, πn

′
un

′ 6= πn
′
u′n

′
. It follows

that |By′n′ | ≥ |Byn′ |. yn
′

and y′n
′

in the above argument can be interchanged. Thus,
|Byn′ | ≥ |By′n′ |. It follows that |Byn′ | = |By′n′ |. Thus, it follows that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, y′n

′
) > D

})
(5.187)

V n′
q denotes the uniform random variable on the set of all sequences of all type q. Let
V n
q be independent of Un

′
. It follows, by use of 5.187 that

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, V n′

q ) > D

})
(5.188)
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Next, we prove for the source-coding problem that if un
′
, u′n

′ ∈ Un′ (in particular, they
have the same type), then

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(u′n

′
, V n′

q ) > D

})
(5.189)

Since V n′
q is the uniform distribution on the set of sequences Un′q of type q, it follows

that it is sufficient to prove that the cardinalities of the sets
{
yn

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
and

{
yn

′
:

1
n′
dn

′
(u′n

′
, yn

′
) > D

}
(5.190)

are equal.

Since un
′

and u′n
′

belong to the set Un′ , u′n′ is a permutation of un
′
. Let u′n

′
= πn

′
un

′
.

Denote the sets

Dun′ ,
{
yn

′
:

1
n′
dn

′
(un

′
, yn

′
) > D

}
(5.191)

and

Du′n′ ,
{
yn

′
:

1
n′
dn

′
(u′n

′
, yn

′
) > D

}
(5.192)

Let yn
′ ∈ Dyn′ . Since the distortion measure is permutation invariant, dn

′
(πn

′
un

′
, πn

′
yn

′
)

= dn
′
(un

′
, yn

′
). Thus, pin

′
yn

′ ∈ Du′n′ . If yn
′ 6= y′n

′
, πn

′
yn

′ 6= πn
′
y′n

′
. It follows that

|Du′n′ | ≥ |Dun′ |. un
′

and u′n
′

in the above argument can be interchanged. Thus,
|Dun′ | ≥ |Du′n′ |. It follows that |Du′n′ | = |Dun′ |. Thus, it follows that

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(u′n

′
, V n′

q ) > D

})
(5.193)

Un
′

denotes the uniform random variable on Un′ . Let Un
′

be independent of V n′
q . It

follows from 5.193 that

Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
= Pr

({
1
n′
dn

′
(Un

′
, V n′

q ) > D

})
(5.194)

From (5.189) and (5.194), it follows that if yn
′

has type q,

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= Pr

({
1
n′
dn

′
(un

′
, V n′

q ) > D

})
(5.195)

It follows that

inf
yn′∈Yn′

Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= inf

q∈Gn′
Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})
(5.196)
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This proves what we had set out to prove in the connection between source and channel
coding.

Denote

Fn
′
, inf

yn′∈Yn′
Pr
({

1
n′
dn

′
(Un

′
, yn

′
) > D

})
= inf

q∈Gn′
Pr
({

1
n′
dn

′
(un

′
, V n′

q ) > D

})

(5.197)

Pseudo-universal capacity of the channel set CU,D is ≤ the rate-distortion function
RPU (D, inf)

• Channel coding problem: From (5.173), it follows that rate R is achievable if

[Fn
′
]2
bn′Rc−1 → 1 as n′ →∞ (5.198)

• Source coding problem: From (5.179), it follows that rate R is achievable if

[Fn
′
i ]2

bn′
i
Rc → 0 as n′i →∞ for some n′i = n0ni, for some ni →∞ (5.199)

If rate R is achievable for the channel-coding problem, so is any rate < R. Define:

α , sup{R|rate R is achievable for the channel coding problem
by use of the above random-coding method} (5.200)

Then,

lim
ni→∞

(Fni)2bniR
′c−1 < 1 ∀ R′ > α for some sequence ni →∞ (5.201)

Thus,

lim
ni→∞

(Fni)2bniR
′′c−1 = 0 for R′′ > R′ (5.202)

Note that R′′ > R′ > α, but other than that, R′ and R′′ are arbitrary. It follows that
rates ≤ α are achievable for the source coding problem.

Note that the above random-coding method is just one possible method to generate
codes for the channel coding problem. In general, it is possible that there exists another
coding method which performs better than the above random-coding method, that is,
for which rates > α are achievable for the channel coding problem. Thus, what we can
claim from the above argument is that rates < α are achievable for the channel-coding
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problem. Thus, pCrc(CU,D) ≥ α. Similarly, the above random-coding method is just
one possible method to generate codes for the source coding problem. In general, it is
possible that there exists another coding method which performs better than the above
random-coding method, that is, for which rates < α are achievable for the source-
coding problem when we use the probability of excess distortion criterion with the inf
definition. That is, RPU (D, inf) ≤ α. Thus, pCrc(CU,D) ≥ α and RPU (D, inf) ≤ α. In
particular, pCrc(CU,D) ≥ RPU (D, inf).

Definition 5.66 (α). Note, from the above proof α is equal to the answer to the
random-coding argument described in the above proof for both the channel-coding
problem of the pseudo-universal capacity of the set of channels CU,D and the rate-
distortion function for compressing the uniform X source under the inf-probability of
excess distortion criterion. The answer to these random-coding arguments is then, our
definition of α.

Next, we prove that pCrc(CU,D) ≤ RPU (D). The main idea of the proof here is to think
of the transition probability corresponding to a “good” source-code as a “bad” channel.

Let s =< sn
′
>∞1 be a rate RPU (D) + ε source-code which compresses the uniform X

source, U , to within a probability of excess distortion D. By Lemma 5.2 , we can
assume that s =< sn

′
>∞1 =< en

′
, fn

′
>∞1 is deterministic. Thus, the cardinality of the

image of fn
′ ◦ en′ is ≤ 2n

′[RPU (D)+ε].

Consider the channel cε =< cnε >∞1 =< fn
′ ◦ en′ >∞1 . Then, cε ∈ CU,D. Since the

cardinality of the image of fn
′ ◦ en′ is ≤ 2n

′[RPU (D)+ε], the capacity of cε ≤ RPU (D) + ε
(this is quite intuitive; however, a rigorous proof is proved below, after a few lines).

Such a channel cε exists for all ε > 0. Recall that cε ∈ CU,D. It follows that pCrc(CU,D) ≤
RPU (D) + ε ∀ε > 0. It follows that pCrc(CU,D) ≤ RPU (D).

It remains to prove that the capacity of cε ≤ RPU (D) + ε. Note that we have defined
capacity with the maximal block error probability criterion

sup
mn′∈Mn′

Pr(M̂n′ 6= Mn′ | Mn′ = mn′)→ 0 as n′ →∞ (5.203)

Note also, that the maximal block error probability criterion is a stronger criterion than
the average block error probability criterion

Pr(M̂n′ 6= Mn′)→ 0 as n′ →∞, where Mn′ is uniform (5.204)

Let rate R be achievable with a possibly random channel-code < En
′

0 , F
n′
0 >∞1 over the

channel cε under the maximal block error probability criterion. Then, rate R is also
achievable over the channel cε by using the same channel code < En

′
, Fn

′
>∞1 under

the average block error probability criterion. For the average block error probability
criterion, if rate R is achievable by using a random-code, rate R is also achievable by
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use of a deterministic code. Thus, rate R be achievable over the channel cε under
the average block error probability criterion by use of a deterministic channel code
< en

′
0 , f

n′
0 >∞1 . An exercise in [CK97] tells that there exists a way of throwing away

half the codewords such the maximal block error probability is less than or equal to
twice the average block error probability for each block length. Let ξ > 0. It follows
that there exists a deterministic source code < en

′
1 , f

n′
1 >∞1 such that rate R − ξ is

achievable over the channel cε under the maximal block error probability criterion by
use of the deterministic source code < en

′
1 , f

n′
1 >∞1 . Now, cardinality of the image of

fn
′ ◦ en′ is ≤ 2n

′[RPU (D)+ε], and another way of thinking about this is that when the
block-length is n′, the output space of the channel cnε has cardinality ≤ 2n

′[RPU (D)+ε].
With the deterministic code < en

′
1 , f

n′
1 >∞1 , it follows that the cardinality of the image

of en
′

1 ◦ cn
′
ε ◦ fn

′
1 is ≤ 2n

′[RPU (D)+ε]. If R− ξ were greater than RPU (D) + ε, it follows that
some message mn′ will not have an image in en

′
1 ◦ cn

′
ε ◦ fn

′
1 and the maximal block error

probability will be 1. Thus, R− ξ ≤ RPU (D) + ε. ξ > 0 is arbitrary. It follows that rates
> RPU (D) + ε would lead to a maximal block error probability of 1 over the channel cε.
Thus, the capacity of the channel cε ≤ RPU (D) + ε. It follows, as we said above, that
pCrc(CU,D) ≤ RPU (D).

Thus, we have proved that RPU (D) ≥ pCrc(CU,D) ≥ RPU (D, inf). This completes the
proof.

Next, we go on to prove one of the main theorems of this chapter: the equality of the
pseudo-universal capacity and the rate-distortion functions.

� 5.6.2 Proof of pCrc(CX,D) = RE
X(D) = RP

X(D) = RE
X(D, inf) = RP

X(D, inf)

First, we prove that pCrc(CU,D) = RPU (D) = RPU (D, inf)

Theorem 5.47. pCrc(CU,D) = RPU (D) = RPU (D, inf)

Proof. By Theorem 5.46, RPU (D) ≥ pCrc(CU,D) ≥ RPU (D, inf). By Theorem 5.37,
RPU (D, inf) = RPU (D). It follows that pCrc(CU,D) = RPU (D) = RPU (D, inf). This com-
pletes the proof.

Note 5.62. We have defined the rate-distortion function with both the lim inf and the
lim sup definitions. Most literature defines the rate-distortion function with the lim sup
definition. One of the reasons why we have defined the rate-distortion function with
both the lim inf and the lim sup definitions is for the sake of completeness. Another
reason why we have defined the rate-distortion function with the lim inf definition is
because the tabular proof in Theorem 5.46 works only with the lim inf definition: we
do not know, how to prove pCrc(CU,D) = RPU (D without involving the definition of
RPU (D, inf) . Then, we use the equality of the rate-distortion functions RPU (D) and
RPU (D, inf) proved in Theorem 5.37 to prove Theorem 5.47.
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Finally, we prove the desired result: pCrc(CX,D) = REX(D) = RPX(D) = REX(D, inf) =
RPX(D, inf). This is done by taking limits alongXn → X whereXn are random-variables
which satisfy pXn(x) is rational ∀x ∈ X , and X is arbitrary.

Theorem 5.48. Let X be an arbitrary random variable on X . For D ∈ (0,∞).
pCrc(CX,D) = REX(D) = RPX(D) = REX(D, inf) = RPX(D, inf).

Proof. Let Xn, 1 ≤ n ≤ ∞ be a collection of random variables on X such that pXn(x) is
rational ∀x ∈ X . Let Xn → X in distribution. That is, ∀x ∈ X , lim

n→∞
pXn(x) = pX(x).

Un is the uniform Xn source. Let εn > 0 and εn → 0 as n → ∞. Define δn ,
Dmax(d1(pX , pXn) + εn). First we prove that for D ∈ (0,∞),

lim
n→∞

REXn(D + δn) = pCrc(CX,D) (5.205)

From Lemmas 5.44 and 5.45, it follows that

pCrc(CUn,D+δn) ≤ pCrc(CX,D) ≤ pCrc(CUn,D−δn) (5.206)

By Theorem 5.47, it follows that

REUn(D + δn) ≤ pCrc(CX,D) ≤ REUn(D − δn) (5.207)

Rest of the proof of (5.205) follows exactly as in Lemma 5.39 by replacing REX(D) with
pCrc(CX,D) in the steps (5.133).

The proof of this theorem, now, follows by use of Lemma 5.39 and Lemma 5.41.

We use Theorem 5.48 to prove the main result of this chapter: an operational proof of
the optimality of digital communication for the problem of pseudo-universal communi-
cation with a fidelity criterion.

� 5.7 An operational view of the optimality of digital communication for
pseudo-universal communication with a fidelity criterion, and a dis-
cussion of the operational nature of the proof

By using Theorem 5.48, in almost exactly the same way as Step 2 in Section 2.15, we
will prove, in this section, the optimality of digital communication for pseudo-universal
communication with a fidelity criterion. Because of all the machinery developed in this
chapter, the proof will be operational.

As stated in Subsection 5.1.1,
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• We use pseudo-universal achievability instead of universal achievability in our
proofs. We are quite sure that the proof can be carried out even for universal
achievability but I have not carried it out. For the reader unhappy with this ex-
planation, the reader can think of this as an operational view point on the optimal-
ity of digital communication for a fully known channel because for a fully known
channel, pseudo-universal and universal achievability are the same as argued in
Subsection 5.1.1. Similarly, instead of universal communication with a fidelity cri-
terion over a partially known channel k ∈ A, we will be using pseudo-universal
communication with a fidelity criterion over a partially known channel: we do not
enforce uniformity in the rate at which the probability of excess distortion → 0 as
block-length → ∞ over the particular channel k ∈ A. Generalization to proving
results universal instead of pseudo-universal results operationally is discussed in
Section 5.9.

• We do not take into account resource consumption in the system when constructing
the digital architecture. We are quite sure that a few more arguments can be
made to take into account the resource consumption in the system but I have not
carried out these steps. For the reader unhappy with this explanation, the reader
should think of it as the way things are done in the usual information theory
literature in the discrete case where resource consumption is not considered at
all. I should add that I do not agree with this approach in the literature because
resource consumption is a very important issue, and when proving optimality of
digital communication, one should prove that it can be done with the same or
lesser resource consumption as compared to other architectures; in our case in this
chapter, I quite strongly believe that it can be done; just that I have not done it.
This is commented on vaguely in Section 5.10

With the above constraints, we will carry out the proof of optimality of digital commu-
nication for pseudo-universal communication with a fidelity criterion (in other words,
an operational view of the pseudo-universal source-channel separation theorem for rate-
distortion; the proof is carried out for the i.i.d. X source; of course, essentially the same
proof can be carried out for the uniform X source:

In Subsection 5.7.1, we make a formal definition of what it means for a partially known
channel to be capable of pseudo-universally communicating a random source to within
a certain distortion level. In Sub-section 5.7.2, we state the pseudo-universal source-
channel separation theorem for rate-distortion. The operational proof will crucially use
Theorem 5.48 and the fact that its proof is operational and by use of this theorem, the
final step of the operational proof is carried out in Subsection 5.7.3. This is followed
by a discussion of the operational nature of the proof in Subsection 5.7.4.



222 CHAPTER 5. OPTIMALITY OF DIGITAL COMMUNICATION: OPERATIONAL VIEW-POINT

� 5.7.1 Capability of a partially known channel to pseudo-universally com-
municate a random source to within a certain distortion level

Let k ∈ A be a partially known channel with input space I and output space O as
described in Subsection 2.5.2.

First, we describe the point-to-point communication system which communicates i.i.d.
X source over a channel k ∈ A. Recall the action of a a point-to-point communication
system in described in Subsection 2.6.6.

The input to the encoder is the i.i.d. X source. Thus, when the block-length is n,
the input is the i.i.d. X sequence of length n, Xn. The composition of the encoder,
channel, and decoder, produce an output sequence Y n. This results in a joint random
variable XnY n on the input-output space X n × Yn and the corresponding probability
distribution pXnY n on X n×Yn. Note that when we are talking about a partially known
channel pXnY n will vary depending on the particular k ∈ A.

Definition 5.67 (A partially known channel which is capable of pseudo-universally
communicating i.i.d. X source to within a distortion level D). The partially known
channel k ∈ A is said to be capable of communicating i.i.d. X source to within a
distortion D if there exists an encoder-decoder pair < en, fn >∞1 independent of the
particular k ∈ A such that under the joint distribution pXnY n as described above,

pXnY n

(
1
n
dn(Xn, Y n) > D

)
→ 0 as n→∞ ∀ k ∈ A (5.208)

The reader should compare this definition with the definition of a partially known chan-
nel which is capable of universally communicating i.i.d. X source to within a distortion
level D in Definition 2.25: there is no ω =< ωn >∞1 sequence in the definition anymore
which was introduced to enforce the uniformity over the partially known channel k ∈ A
in the rate at which the probability of excess distortion → 0 as n → ∞. Now, we do
not ask for this uniformity.

A similar definition can be made for the uniform X source which we omit because our
main goal is to prove results for the i.i.d. X source; uniform X source is a good intuitive
as well as a good mathematical tool towards that goal.

� 5.7.2 A statement of the pseudo-universal source-channel separation the-
orem for rate-distortion

Assuming random-coding is permitted, in order to communicate the i.i.d. X source
pseudo-universally over a partially known channel to within a particular distortion
level, it is sufficient to consider source-channel separation based architectures, that is,
architectures which first code (compress) the i.i.d. X source to within the particular
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distortion level, followed by pseudo-universal reliable communication over the partially
known channel. There is sufficiency in the sense if there exists some architecture to com-
municate the random source to within the required distortion level, pseudo-universally
over the partially known channel, there exists a separation architecture which accom-
plishes the same thing.

The same result holds for the uniform X source.

� 5.7.3 The final step of the operational proof of the pseudo-universal
source-channel separation theorem for rate-distortion for the i.i.d.
X source

Let k ∈ A be a partially known channel which is capable of pseudo-universally commu-
nicating the i.i.d. X source to within a distortion level D. This is accomplished with
the help of an encoder-decoder < en, fn >∞1 . Denote the set of channels

CA , {< en ◦ k ◦ fn >∞1 | k ∈ A} (5.209)

Note that CA is a subset of CX,D. It follows by Theorem 5.48 that the pseudo-universal
capacity of the set of channels CX,D is ≥ the rate-distortion function RPX(D).

It now follows that by source-compression followed by pseudo-universal reliable com-
munication, the i.i.d. X source can be communicated universally and reliably over the
partially known channel k to within a distortion D. A rough argument is the following:
Take the i.i.d. X source. Compress it using a source-encoder < ens >

∞
1 to within a

probability of excess distortion D. The output is a rate RPX(D) message source. This
rate RPX(D) message source can now be communicated pseudo-universally and reliably
over the channel set CA by using a channel encoder-decoder < En, Fn >∞1 . Finally,
the output of the channel decoder is source decoded using a source decoder < fns >

∞
1 .

End-to-end, the i.i.d. X source is pseudo-universally communicated to within a distor-
tion D over the channel set CA. It follows that by using a source-code < ens , f

n
s >

∞
1 and

using a channel code < enc ◦En, Fn ◦ fnc >∞1 , the i.i.d. X source can be communicated
pseudo-universally to within a distortion level D over the partially known channel k,
digitally.

A rigorous argument for the above source-coding followed by channel coding is the
following:

We said above that the pseudo-universal capacity of the channel set CA is ≥ RPX(D).
Assume that the pseudo-universal capacity is strictly > RPX(D). Let the universal
capacity be RPX(D) + δ, δ > 0.

Let ε = δ
2 . By the definition of RPX(D), it follows that there exists a rate RPX(D) + ε

source-code < ens , f
n
s >

∞
1 which compresses the i.i.d. X source to within a probability

of excess distortion D.
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Let the block-length be n.

The action of ens on Xn produces an output random variable Mn
R on the setMn

R, where
the set Mn

R is

Mn
R = {1, 2, . . . , 2bn(RPX(D)+ε)c} (5.210)

Since the pseudo-universal capacity of the channel set CA is strictly greater thanRPX(D)+
ε by assumption, the message Mn

R can be pseudo-universally and reliably communicated
over the partially known channel k in the limit as n → ∞. Finally, the source is re-
constructed by using the source decoder fns .

It follows that end-to-end, in this separation based architecture, in the limit as n→∞,
the i.i.d. X source is communicated pseudo-universally to within a distortion level D
over the channel set CA, and hence, over the partially known channel k.

Note that we assumed that the pseudo-universal capacity of the channel set CA is strictly
> RPX(D), whereas it only follows that the pseudo-universal capacity of the channel set
CA is ≥ RPX(D). It is unclear what will happen if the capacity of the partially known
channel k is precisely RPX(D). This “tension” of what happens if the capacity is precisely
RPX(D) is usual in information theory.

This completes the argument, and thus, rigorously proves the pseudo-universal source-
channel separation theorem for rate-distortion when the source is i.i.d. and the distor-
tion metric is additive.

Note 5.63. In order the prove the pseudo-universal source-channel separation theorem
for rate-distortion we have only used the fact that the pseudo-universal capacity of the
channel set CX,D is ≥ RPX(D). We proved in Theorem 5.48 that the universal capacity
of the channel set CX,D is in fact, precisely RPX(D). We will use this precise equality
to discuss connections between source and channel coding and to give the idea of an
alternate proof of the rate-distortion theorem for certain i.i.d. X sources in Section 5.8.

In the next subsection, we comment on the operational nature of the proof of the
pseudo-universal source-channel separation theorem for rate-distortion.

� 5.7.4 Discussion: Operational nature of our proof of the pseudo-universal
source-channel separation theorem for rate-distortion, and a com-
parison with Shannon’s proof

Our proof of the pseudo-universal source-channel separation theorem for rate-distortion
is operational in the sense that it uses only the definitions of channel capacity as the
maximum rate of reliable communication and the rate-distortion function as the min-
imum rate needed to compress a source to within a certain distortion level. We do
not use functional simplifications, for example, mutual information expressions for the
channel capacity or the rate-distortion function in the proof.
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The proof consists of two steps:

1. Step 1: If there exists some scheme in order to communicate the i.i.d. X source
pseudo-universally over the partially known channel k to within a distortion D
under the probability of excess distortion criterion, then the pseudo-universal ca-
pacity of k is ≥ RPX(D). One main step in this proof is the proof of Theorem 5.48,
which says, in part, that the pseudo-universal capacity of the set of channels CX,D
is equal to the rate-distortion function for the i.i.d. X source. The whole chapter
before the proof of Theorem 5.48 is devoted to proving this theorem rigorously
and operationally. This whole big proof is operational in the sense that we only
use the definitions of source-codes, channel-codes and the operational meanings of
rate-distortion function and channel capacities. We do not rely on mathematical
functional simplifications. This main idea of the proof is Theorem 5.46, random-
coding arguments carried out in parallel for the source-coding and channel-coding
problems where we can “see” that the answers to the two problems is the same
without doing much functional simplifications: this is what makes it operational.
Mathematically, the main idea is (5.182) which is the same equation as (2.66) and
is reproduced below:
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2. Step 2: If the pseudo-universal capacity of a partially known channel k is> RPX(D),
then pseudo-universal communication of the i.i.d. X source to within a probability
of excess distortion D can be accomplished over the channel k by source compres-
sion followed by pseudo-universal reliable communication. Clearly this proof is
operational in that we need to know only the operational meaning of RPX(D) as
the rate at which we can compress the i.i.d. X source to within a distortion D and
we only need to know the definition of pseudo-universal capacity as the maximum
achievable rate at which pseudo-universal reliable communication is possible over
the partially known channel k

I would like to further comment on the operational nature of the proof of Theorem
5.48. First note, that the concept of an operational proof is not a precise concept.
The question of pseudo-universal capacity of the set of channels CX,D, when posed in
mathematical language, is an infinite dimensional optimization program. Similarly, the
rate-distortion problem of the minimum rate needed to compress a source to within a
certain distortion level is an infinite dimensional optimization program. We need to
prove that the answers to both these infinite dimensional optimization programs is the
same. A “truly operational” proof will just prove this without any steps. However,
no proof can be without any steps; otherwise, the result would be trivial. The main
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step that we go through is the parallel random-coding argument where we prove that
pCrc(CU,D) ≥ RPU (D, inf). We do go through some steps where we use a random-coding
argument and make coding schemes for both the channel coding and the source coding
problems. We believe that none of these steps make the proof non-operational; however,
this is a concept which we cannot make precise.

We would like to compare our proof with that of Shannon, which we believe is non-
operational. Shannon’s proof, again, goes in two steps:

1. Achievability, which is the same as our Step 2: This proof is exactly the same as
ours (rather, we should say that our proof is exactly the same as Shannon’s!), and
is operational

2. Converse, which is the same as our Step 1 (though as we discussed in Subsection
2.14.10, we view it as achievability) : This proof is different from ours. Shannon’s
proof relies heavily on the information-theoretic definitions of channel capacity as
a maximum mutual information and the rate-distortion function as a minimum-
mutual information: these mutual information expressions are simplified finite
dimensional optimization programs corresponding to the original infinite dimen-
sional optimization programs.

The following is an outline of Shannon’s proof. Shannon’s proof required the
channel k to be fully known and used the expected distortion criterion instead
of the probability of excess distortion criterion. Let the channel k be a discrete
memoryless channel. Denote the discrete memoryless channel k by pO|I .

We will not be entirely precise: see [Sha59] for the precise details. The converse
consists of two steps:

•

H(Xn|Y n) ≥ H(Xn)− nCI
[
CI , max

pI
I(I;O)

]
(5.212)

This says that since the source Xn communicated over a discrete memoryless
channel, the entropy of the source at the output cannot fall by “too much”.
“Too much” is quantified by the information-theoretic capacity CI of the dis-
crete memoryless channel. The proof of this step uses the definitions of entropy,
mutual information, information theoretic capacity, and inequalities concern-
ing entropy and mutual information.
•

H(Xn|Y n) ≤ H(Xn)− nRI(D)



RIX(D) , inf

X ∼ pX
Ed(X,Y ) ≤ D

I(X;Y )




(5.213)
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This says that since the source Xn has been communicated to within a dis-
tortion D under the expected distortion criterion over the channel (by using
some architecture which does not matter), the entropy of the source should
have fallen by atleast a particular amount, and this particular amount is quan-
tified by the information-theoretic rate-distortion function RIX(D), which was
defined in the above equation and has also been defined in Definition 2.30.
This is proved by using information-theoretic inequalities concerning entropy
and mutual information and the convexity of the RI(D) function.

These two steps imply that

CI ≥ RIX(D) (5.214)

Finally, one invokes the fact that for a discrete memoryless channel, the information-
theoretic capacity is the same as operational capacity, and the information-theoretic
rate-distortion function for an i.i.d. source is the same as the operational rate-
distortion function, and this proves that the capacity of the channel k is greater
than or equal to the rate-distortion function REX(D).

Shannon’s proof of the converse is a brilliant proof but I have never had much intuition
for it, mainly because it goes through first proving the equality of the information
theoretic rate-distortion function and the information-theoretic channel capacity, and
then invoking the equality of the rate-distortion function and the information-theoretic
rate-distortion function, and the equality of channel capacity and the information-
theoretic channel capacity. In this sense, it is not operational.

Our proof, which relies only on the operational meanings and uses a random-coding
achievability argument, we believe, lends much more insight into the nature of separa-
tion, for which, as we said, in Subsection 2.14.10, that the fundamental mathematical
reason is (5.182) which is reproduced below:
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� 5.8 Connections between source and channel coding and an alternate
proof of the source-channel separation theorem for rate-distortion for
those i.i.d. X sources for which pX(x) is rational ∀x ∈ X

In this section, we discuss connections between source and channel coding that come
out of our work and related to this, we give another proof of the rate-distortion theorem
for those i.i.d. X sources for which pX(x) is rational ∀x ∈ X , which we believe is more
insightful than the original proof of Shannon [Sha59].
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� 5.8.1 Connections between source and channel coding

The connection between source and channel coding was discussed in Subsection 2.14.10.
We discuss is further, here. The discussion will be high-level.

We discuss these connections for the uniform X source. Recall that the uniform X
source is defined only for those X for which pX(x) is rational ∀x ∈ X . On the level of
ideas, the proof of pCrc(CU,D) = RPU (D) has the following steps:

• Step 0: Prove that RPU (D) = RPU (D, inf).: This is proved by using the operational
meanings of source codes and the two rate-distortion functions

• Step 1: Prove that RPU (D, inf) ≤ α ≤ pCrc(CU,D): We make random coding ar-
guments for both the channel coding problem and rate-distortion source-coding
problems: the channel-coding problem is the pseudo-universal capacity of the set
of channels CU,D and the rate-distortion problem is the minimum rate needed com-
press the uniform X source to within a distortion level D under the inf-probability
of excess distortion criterion. We note that the answers to both these random-
coding arguments is α. Since the random-coding scheme is just one possible
scheme for pseudo-universal communication over the set of channels CU,D, it is
potentially possible that a scheme exists which performs better than the random-
coding scheme, that is, a scheme for which rates > α might be achievable for the
channel coding problem . Thus, pCrc(CU,D) ≥ α. Similarly, the random-coding
scheme is just one possible scheme for compression of the uniform X source to
within a distortion level D under the inf-probability of excess distortion criterion,
and it is potentially possible that a scheme exists which performs better than the
random-coding scheme, that is, a scheme for which rates α are achievable for the
source-coding problem. Thus, RPU (D, inf) ≤ α.

Thus, RPU (D, inf) ≤ α ≤ pCrc(CU,D)

• Step 2: Prove that pCrc(CU,D) ≤ RPU (D): This is done by noting that the transition
probability corresponding to a “good source-code” for the problem of compressing
the uniform X source to within a distortion D under the probability of excess
distortion criterion. is a “bad channel” for the purpose of reliable communication.
The transition probability corresponding to this “good source code”, when thought
as a channel has capacity RPU (D), and hence, the infimum capacity of the channel
class ≤ RX(D).

From these steps, it follows that RPU (D) = α = pCrc(CU,D). In particular, pCrc(CU,D) =
RPU (D).

If one notes the parallel tabular argument for the channel-coding and source-coding
problems, there is a kind of “duality” in the two arguments. These are random coding
arguments, and one can, at least to some extent, interpret this as a covering-packing
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connection, maybe a random-coding covering-packing connection. The proofs here shed
light on connection between the two problems. It should be possible to make this con-
nection/duality precise; however, we do not know, how to. As we stated in Subsection
2.14.10, the precise mathematical reason for this duality is (5.182), which is reproduced
below:
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� 5.8.2 An alternate proof of the rate-distortion theorem for those i.i.d. X
sources for which pX(x) is rational ∀x ∈ X

The original rate-distortion theorem of Shannon [Sha59], stated as Theorem 2.1 in this
thesis, says that a simplified expression for REX(D) is RIX(D), where RIX(D) is defined
in Definition 2.30, and this definition is reproduced below:

RIX(D) , inf
{pY |X :

∑
x∈X ,y∈Y pX(x)pY |X(y|x)≤D}

I(X;Y ) (5.217)

We give an alternate proof that a expression for RPX(D) is RIX(D) for those i.i.d. X
sources for which pX(x) is rational ∀x ∈ X which goes through the channel-coding
problem and which, I believe is more insightful than the original proof of Shannon for
reasons which will follow. Of course, since we have proved the equality of RPX(D) and
REX(D), this will also prove that a simplified expression for REX(D) is RIX(D).

First, let us look at Shannon’s argument for the i.i.d. X source, more details of which
can be found in [Sha59]:

In a nut-shell, Shannons proof goes as follows: by using the same random coding
argument, it is proved that REX(D) ≤ α. Then one does a computation for α and
proves that it is equal to RIX(D). This, then, proves that REX(D) ≤ RIX(D). The proof
of RIX(D) ≤ REX(D) uses information-theoretic inequalities and properties of mutual
information. The functional form of RIX(D) is thus used crucially in Shannons proof:
one has to compute α = RIX(D); only then is the proof complete. Unlike Shannon, our
proof of converse does not use information-theoretic inequalities or properties of mutual
information, but rather, rests on connections between our channel coding problem and
the rate-distortion problem. Following is a summary of the steps:

1. Prove REX(D) ≤ α (random-coding argument)

2. Compute α = RIX(D) (mathematical computation)

3. Thus, REX(D) ≤ RIX(D)
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4. Prove RX(D) ≥ RIX(D) (information theoretic inequalities)

5. Thus, REX(D) = RIX(D)

Next, we look at our argument of the proof of the rate-distortion theorem for those
sources X for which pX(x) is rational ∀x ∈ X . Recall that U is the uniform X Source
corresponding to X. Some of these steps are the same as the ones of the previous
subsection. The steps are:

1. Prove that RPU (D, inf) ≤ α ≤ pCrc(CU,D) (random-coding arguments)

2. Prove that pCrc(CU,D) ≤ RPU (D) (the transition probability corresponding to a
“good” source-code is a “bad” channel)

3. Prove that RPU (D) = RPU (D, inf) (definition of rate-distortion functions and par-
ticular source code constructions)

4. Thus, RPU (D) = α

5. Prove that RPU (D) = RPX(D) = REX(D) (definitions of rate-distortion functions
and particular code constructions)

6. Thus, RPX(D) = REX(D) = RPU (D) = REU (D) = α

7. Prove that α = RIX(D) (mathematical calculation using the method of types)

8. Thus, REX(D) = RPX(D) = REU (D) = RPU (D) = RIX(D)

We consider our argument more basic than Shannon’s argument for reason that a mathe-
matical calculation is carried out in the last step in our proof as opposed to in Shannon’s
proof. In our proof, the proof until Step 6 which says, RPX(D) = REX(D) = RPU (D) =
REU (D) = α should be considered operational, where the operational meaning of α is
that it is the answer to the random-coding argument. It is only in Step 7 that we make
a calculation for α and prove that it is indeed the information-theoretic rate-distortion
function RIX(D), and this leads to a proof of the rate-distortion theorem. Step 7 is
essentially the finally step in the argument. Shannon’s proof relies much more crucially
on the fact that an expression for α is RIX(D): it is needed in Step 2. The converse part
in Shannon’s proof which proves that REX(D) ≤ RIX(D) in Step 4 relies very crucially on
the expression for RIX(D). Shannon’s proof thus has a much more crucial dependence
on α = RIX(D) as compared to our proof where this calculation is needed in the last
step. Of course, since the statement of the rate-distortion theorem is a statement about
a simplified expression for the rate-distortion function, a calculation has to be made at
some step: in our proof, this calculation is made in the last step.

Also note that we prove that RPU (D) is equal to α, the answer to the random-coding
argument, without explicitly calculating the answer to the random-coding argument:
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for this reason, as we said above, this proof is operational. This is unlike Shannon in
the sense that Shannon also proves that REX(D) = α, the answer to the random-coding
argument but the proof requires an explicit calculation of the answer to the random-
coding argument. The operational nature of our proof that the rate-distortion function
is equal to the random-coding argument suggests a fundamental relationship between the
two quantities.

Note that our proof holds only for those X for which pX(x) is rational ∀x ∈ X . We
would like to believe that it should be possible to generalize this proof for arbitrary X;
however, we are unsure.

� 5.9 How do we operationally prove the optimality of digital communica-
tion for universal communication with a fidelity criterion instead of
for pseudo-universal communication with a fidelity criterion?

In this chapter, we have proved operationally, the optimality of digital communication
for pseudo-universal communication with a fidelity criterion.

The question arises: can we similarly provide an operational proof of the optimality of
digital communication for universal communication with a fidelity criterion?

Let k ∈ AX be a partially known channel which is capable of universally (note, univer-
sally, not pseudo-universally) communicating the i.i.d. X source to within a distortion
D. Then, we can define the set of channels CAX as in (2.94) which is reproduced below:

c ∈ {< en ◦ kn ◦ fn >∞1 |k =< kn >∞1 ∈ A} , CAX (5.218)

The notation has changed from (2.94), where we used the notation CA instead of CAX :
now, we will be dealing with i.i.d. X and uniform X sources together and for that
reason, we need a notation to distinguish between the set AX and a corresponding set
AU which will come later.

The set of channels CA should be thought of as a set of channels which directly (note,
directly, not pseudo-directly) communicates the i.i.d. X source to within a distortion
D.

We need to carry out proofs for the set of channels CA instead of the set of channels CX,D.
In order to do that, we will require the introduction of another set of channels CAU for
some l ∈ AU , where l is a partially known channel which is capable of communicating
the uniform X source to within a distortion D. The set of channels CAU directly (note,
directly not pseudo-directly) communicates the uniform X source to within a distortion
D.

The main idea of the operational proof is Theorem 5.46 and its proof essentially hold
for the set of channels CAU and using universal capacity instead of pseudo-universal
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capacity: this was the way did things in the idea-level proof in Section 2.14. What we
need is some arguments to relate the universal capacities of channels CAX and CAU : of
course, there has to be some relation between the set of channels AX and the set of
channels AU to do this.

Mainly, this should require changes in Subsection 5.5.4. Of course, whole of Section 5.5
would need to be re-done; however, the main lemmas which would need re-statement
and would need to be re-proved with universal capacity instead of pseudo-universal
capacity are those of Subsection 5.5.4.

We have not carried out these steps; however, we believe they can be carried out.

� 5.10 How do we take into account resource consumption when proving
the pseudo-universal source-channel separation theorem for rate-
distortion, operationally?

When proving the pseudo-universal source-channel separation theorem for rate-distortion
operationally, we did not take into account, resource consumption in the system, unlike
what we did in Chapter 2. This is something that we believe can be done by taking
into account the interplay between how the channels with the uniform X and the i.i.d.
X source inter-play with each other and how the resource consumption is affected in
the arguments in this inter-play. This is vague, but we will leave this here.

� 5.11 Comments and recapitulation

In this chapter, we proved the optimality of digital communication for pseudo-uinversal
communication with a fidelity criterion, operationally. By an operational proof, we
mean that the proof uses only the operational meanings of channel capacity as the
maximum rate of reliable communication and the rate-distortion function as the mini-
mum rate needed to compress a source to within a certain distortion level, that is, uses
only the meanings of channel capacity and rate-distortion function as infinite dimen-
sional optimization programs, and not functional simplifications like finite dimensional
mutual-information expressions for them. I believe that this operational proof sheds
more insight into the nature of separation than the original proof of Shannon which
uses equalities and inequalities concerning entropy and mutual information for proving
the converse.

An operational proof of universal source-channel separation for rate-distortion for per-
mutation invariant distortion metrics for the uniform X source was provided in Section
2.14, under the technical assumption RPU (D) = RPU (D, inf). In this chapter we proved
RPU (D) = RPU (D, inf) operationally for additive distortion metrics. We believe that
this completes the operational story for universal source-channel separation for rate-
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distortion.

However, the traditional information theory literature uses the i.i.d. X source. For the
sake of partial completeness, we proved a pseudo-universal source-channel separation
theorem for rate-distortion for the i.i.d. X source. Pseudo-universality differs from
universality in that we do not require a uniformity in the rate at which the probability
of excess distortion → 0 as the block-length → ∞ over the partially known channel
k ∈ A.

The proof also sheds light on the connections between source-coding and channel-coding.
We also provide an alternate proof of the rate-distortion theorem for those i.i.d. X
sources for which pX(x) is rational ∀x ∈ X which uses functional simplification as the
last step, and I believe, is more insightful than the original proof of Shannon. As a part
of this proof, we also prove that the rate-distortion function is equal to the answer to the
random-coding argument for the source-coding problem, without doing a calculation,
either for the rate-distortion function or the answer to the answer to the random-coding
argument for the source-coding problem. This is thus an operational proof, and suggests
that there might be a fundamental relationship between the rate-distortion function and
the answer to the random-coding argument for the source-coding problem.

The proof of RPU (D) = RPU (D, inf) has required the assumption of additive distortion
metric. We conjecture that an operational proof can also be provided for many per-
mutation invariant distortion metrics true. Similarly, the rigorous proof of the pseudo-
universal source-channel separation for rate-distortion for the i.i.d. X source has re-
quired the assumption of additive distortion metric. We conjecture that an operational
proof can be provided for many permutation invariant distortion measures, too.

We also conjecture that the results can be generalized operationally, to more general
sources, for example, many stationary ergodic sources.

Finally, we emphasize that we have proved the optimality of digital communication for
pseudo-universal communication with a fidelity criterion and not for universal commu-
nication with a fidelity criterion. Also, we have not taken into account the resource
consumption in the system. We believe that these steps can be carried out.

� 5.12 In the next chapter ...

In the next chapter, we recapitulate this thesis and discuss research directions which
come out of this thesis.
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Chapter 6

Conclusion: Recapitulation and
research directions

A thesis is never finished, it is deserted.
-Told to me by Patrick Kreidl, who was probably told this by someone else!

� 6.1 In this chapter ...

In this chapter, we recapitulate what we have done in this thesis, and discuss research
directions which come out of this thesis.

� 6.2 Recapitulation

This thesis has two flavors:

1. Proving the optimality of communication in certain communication scenarios in
the sense of optimality of source-channel separation theorem as stated in Reason
1c in Chapter 1

2. An operational view of rate-distortion theory

One contribution of this thesis is that we proved the optimality of digital communication
in the sense of reason 1c in certain communication scenarios. A digital system is one
where there is a finite interface (usually, a binary interface) between the source and
the channel (point-to-point setting) or between the various sources and the medium
(multi-user setting). Digital communication systems are defined precisely in Chapter
1. Optimality of digital communication is in the sense of reason 1c of Chapter 1.

In Chapter 2 we proved the optimality of digital communication in the point-to-point
setting: a user wants to communicate a random source to another user over a channel.

235
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The channel is assumed to be only partially known in the sense that it might come
from a family of transition probabilities. In other words, the setting is universal over
the channel. We prove the following high-level statement, which is called the universal
source-channel separation theorem for rate-distortion:

Assuming random-coding is permitted, in order to communicate a random source uni-
versally over a partially known channel to within a particular distortion level, it is
sufficient to consider source-channel separation based architectures, that is, architec-
tures which first code (compress) the random-source to within the particular distortion
level, followed by universal reliable communication over the partially known channel.
There is sufficiency in the sense if there exists some architecture to communicate the
random source to within a certain distortion universally over the partially known, and
which consumes certain amount of system resources like energy and bandwidth, then
there exists a separation based architecture to universally communicate the random
source to within the same distortion universally over the partially known channel, and
which consumes the same or lesser system resources as the original architecture.

In order to prove precise results, we assume that the distortion measure is additive.
We sketch an outline of how the results can be generalized to permutation invariant
distortion meaures. Precise assumptions for both the high-level outline and rigorous
proofs can be found in Chapter 2. In proving the result, we assume that the source
statistics are known. In Chapter 2, we also conjecture that this result can be generalized
to the case when the source statistics are not known.

The universal source-channel separation theorem for rate-distortion is generalized to the
multi-user scenario in Chapter 3, in the unicast setting. By unicast setting, we mean
that the sources that various users want to communicate to each other are independent
of each other. Thus, if user i wants to communicate source Xij to user j, the sources Xij

are all independent of each other. We prove the optimality of digital communication
by proving that it is sufficient to consider architectures where each user compresses its
sources to within the corresponding distortion levels and the compressed binary random
sources are universally, reliably communicated over the partially known medium.

Chapter 4 discusses partial applicability of the results of the universal source-channel
separation theorem for rate-distortion in the multi-user scenario to the wireless scenario.
Two of the assumptions which are suspect are:

• The voice signals of various users are independent of each other. As discussed in
Chapter 4, this assumptions is true pairwise, but the voice signals of the two users
talking to each other are not independent of each other. We still assume that the
distortion measure is permutation invariant.

• Distortion measure is permutation invariant: it is unclear, if this is the case for
voice
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Further discussion of the features of the wireless problem and assumptions that we make
are discussed in Chapter 4. With the above assumptions, it follows that restricting
attention to digital architectures is optimal for wireless communication, as discussed in
Chapter 4.

As discussed in Chapter 1, there are various other factors which should determine which
technology is used, and whether, a particular technological should be implemented in
the first place or not. The only factor that we have tried to understand in the thesis
beyond Chapter 1 is Reason 1c.

The other contribution of this thesis is an operational view of rate-distortion theory.
By an operational view of rate-distortion theory, we mean a proof of the separation
theorem which uses only the definition of channel capacity as the maximum rate of
reliable communication and the rate-distortion function as the minimum rate needed
to compress a source to within a certain distortion level. The proof, unlike Shannon’s
proof, does not use the definition of channel capacity as a maximum mutual information
or the rate-distortion function as a minimum mutual information. We believe that our
proof offers more insight into the nature of separation than Shannon’s. This process is
carried out on a high-level for the communication of the uniform X source in Section
2.14. A rigorous proof for the communication of the i.i.d. X source is the subject of
Chapter 5. This also leads to connections between source and channel coding, and an
alternate proof of the rate-distortion theorem for those i.i.d. X sources for which pX(x)
is rational ∀x ∈ X .

� 6.3 Research directions

There are various research directions which come out of this thesis, some of which have
been discussed in previous sections:

1. Section 4.3 discusses a two user abstraction of what happens when the sources are
correlated. In general, separation does not hold. However, it would be interesting
if one could get results for how good does the performance of separation based
schemes approach the performance of a general analog scheme, possibly in the
spirit of [TCDS]. Also, the problem makes sense not just for two users, but for N
users where user i wants to communicate source Xij to user j to within a distortion
Dij under a metric dij , and the distribution of the sources Xij , 1 ≤ i, j ≤ N may
be arbitrary

2. Various research directions come out of Chapter 2, some of which are discussed in
Section 2.19:

(a) We have proved the universal source-channel separation theorem for rate-
distortion where universality is over the channel. We believe, as stated briefly
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in Section 2.19 that the result should be generalizable to universality over the
source, that is, the source statistics are unknown.

(b) Carry out a proof for arbitrary stationary ergodic sources evolving in continu-
ous time, in the methodology of Section 2.14 and discussed further in Section
2.16. Section 2.14 carried out the proof (except for the equality of RPU under
various definitions), and the full rigorous proof for the i.i.d. X source was car-
ried out in Chapter 5. The operational proof in Chapter 5 is fairly technical
and involved; we wonder if we are missing something and the proof can be
simpler.

(c) To research, whether universal source-channel separation holds for sub-additive
distortion measures, as it does in [Han10] when the setting is not universal.

3. We have used the probability of excess distortion criterion instead of the expected
distortion criterion. As we have said in Chapter 2, universal source-channel sep-
aration does not hold with the expected distortion criterion. The example in
Chapter 2 has a highly non-ergodic channel. Amos Lapidoth pointed out to us, in
a note, that universal separation would hold with the expected distortion criterion
for memoryless channels. He also provided us with a proof which should possi-
bly be generalizable to indecomposable channels. The proof used the standard
information theory machinery of mutual informations.

We would like to take another route (if possible). The question is: if the expected
distortion criterion holds, then does that imply that the probability of excess
distortion criterion holds? A mathematical way of formulating this is the following:
Let k ∈ A be a partially known channel such that each k ∈ A satisfies some
ergodicity requirements. Suppose the set of channels k is capable of communicating
i.i.d. X source to within a distortion D with error ω =< ωn >∞1 , ωn → 0 as
n → ∞ under the expected distortion criterion. That is, there exist encoder-
decoder < en, fn >∞1 such that end to end

E

[
1
n
dn(Xn, Y n)

]
≤ ωn ∀k ∈ A (6.1)

Then, is k also capable of communicating i.i.d. X source to within a distortion
D with some other error ω′ =< ω′n >∞1 , ω′n → 0 as n → ∞ under the expected
distortion criterion? That is, do there exist encoder decoder < e′n, f ′n >∞1 such
that end to end

Pr
(

1
n
dn(Xn, Y n) > D

)
< ω′n ∀k ∈ A ? (6.2)

If this were the case, we would have reduced the problem with the expected dis-
tortion criterion to the problem with the probability of excess distortion criterion.
One way to go about this would be to first assume that the set k consists of just
one channel. In that case, our guess is that this is true. Then, one would want to
carry out the procedure for a more general A
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� 6.4 One final thought ...

Finally, I would like to add, to tie up with Chapter 1, that what is really needed is a
more holistic view, a more human view of the problem, than just a mathematical or
engineering understanding of whether separation is optimal or not. Without a human
perspective, any technological or mathematical advances / understanding will only bring
more negative consequences and misery to this world.

u�\ , EtEry\ apAEcn\ ,

yAvtA jgto gEt

smv�E?KtA v DMmAn\

K�DAn\ udy©y\

- iEtv� �k 4 . 111

Above, across or back again,

wherever one goes in the world;

let one carefully scrutinize,

the rise and fall of compounded things.

- Itivuttaka 4.111
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