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Abstract 

 
Systems engineering1 is rapidly assuming a prominent role in neuroscience that 

could unify scientific theories, experimental evidence, and medical development.  In this 
three-part work, I study the neural representation of targets before reaching movements 
and the generation of prosthetic control signals through stochastic modeling and 
estimation. 

In the first part, I show that temporal and history dependence contributes to the 
representation of targets in the ensemble spiking activity of neurons in primate dorsal 
premotor cortex (PMd).  Point process modeling of target representation suggests that 
local and possibly also distant neural interactions influence the spiking patterns observed 
in PMd. 

In the second part, I draw on results from surveillance theory to reconstruct 
reaching movements from neural activity related to the desired target and the path to that 
target.   This approach combines movement planning and execution to surpass estimation 
with either target or path related neural activity alone. 

In the third part, I describe the principled design of brain-driven neural prosthetic 
devices as a filtering problem on interacting discrete and continuous random processes.  
This framework subsumes four canonical Bayesian approaches and supports emerging 
applications to neural prosthetic devices.  Results of a simulated reaching task predict that 
the method outperforms previous approaches in the control of arm position and velocity 
based on trajectory and endpoint mean squared error. 

These results form the starting point for a systems engineering approach to the 
design and interpretation of neuroscience experiments that can guide the development of 
technology for human-computer interaction and medical treatment. 
 
Thesis Supervisors: 

Emery N. Brown, Professor of Brain & Cognitive Sciences and Health Sciences & Technology 
Sanjoy K. Mitter, Professor of Electrical Engineering & Computer Science and Engineering Systems 

                                                 
1 Here “systems engineering” is a surrogate term for a growing intersection between many fields: statistics, 
control, information theory, inference, and others. 

 3



Acknowledgments 
This work was made possible by the generous support of advisors, collaborators, 
colleagues, teachers, funding agencies, friends, and family.  Thank you all. 
 
Financial Support 
The research stipends granted or offered by the NIH Medical Scientist Training Program (MSTP) 
Grant (Ruth L. Kirschstein National Research Service Award, T32 GM07753-27), MIT 
Presidential Fellowship, and NSF Graduate Research Fellowship made it possible for me to think 
broadly about possible research directions.  This research was additionally supported by NSF 
Grant CCR-0325774 to Sanjoy Mitter, NIDA Grant R01 DA015644 to Emery Brown, 
and NINDS Grant R01 NS045853-01 to Nicholas Hatsopoulos. 
 
Advisors 
Through critical review and discussion, my advisors Emery Brown and Sanjoy Mitter emphasized 
a systematic and comprehensive approach to research and communication.  At the same time, 
they generously allowed me the freedom to develop and pursue the problems described in this 
thesis.  Committee member Steve Massaquoi offered a distinct perspective that incorporated 
clinical considerations in movement control.  Nancy Kanwisher, my master’s thesis advisor, 
introduced me to experimental design in cognitive neuroscience.  I received expert academic 
advice from my course advisors Richard Mitchell, Martha Gray, and John Wyatt. 
 
Collaborators 
Nicholas Hatsopoulos, at the University of Chicago, graciously shared his expertise on dorsal 
premotor cortex and the recordings from his primate electrophysiology experiments that are the 
data analyzed in Chapter 4.  I spent countless days learning about estimation and point processes 
from Uri Eden, a graduate student and postdoctoral fellow with Emery Brown until September 
2006 when he joined the faculty at Boston University.  Uri composed the independent increments 
proof that is reproduced in Chapter 5.5.  Discussions with Alan Willsky about my term project for 
his course on recursive estimation (MIT course 6.433) developed into Chapter 5. 
 
Colleagues 
Members of the Mitter and Brown research labs have fostered an atmosphere of creativity in their 
discussions.  Lav Varshney at MIT, Patrick Purdon at MGH, and Todd Coleman, now at UIUC, 
have helped me to begin looking beyond the boundaries of this thesis.  Andrew Richardson, 
Simon Overduin, and Emilio Bizzi  helped me understand my work in the context of the canon of 
primate motor physiology. 
 
Friends 
I had the good fortune to befriend many labmates and classmates at MIT and Harvard Medical 
School -  I am especially indebted to Benjie Limketkai for our weekly excursions and Ali Shoeb 
for days of soul-searching discussions.  Agedi Boto and Robb Rutledge bolstered my spirits from 
JHMI and NYU.  Conversations with Krishna Shenoy, now at Stanford, continue to help me 
navigate my pursuit of nirvana. 
 
Family 
My family has been a constant source of emotional support and scientific inspiration, including 
my father Rengaswamy, mother Uma, and brother Shyam. 

 4



Contents 
 
1. Introduction         8 

1.1. Problem statement 

1.2. Contributions of the thesis 

 

2. Neurons and the Control of Movement     11 

2.1. Cells of the nervous system and the action potential 

2.2. Functional anatomy of motor control 

2.2.1. Basic Anatomical Orientation 

2.2.2. Historical Context of Motor Anatomy 

2.2.3. Structure and Connectivity in the Sensorimotor System 

2.2.4. Spinal Cord and Muscle 

2.2.5. Cortical Motor Regions 

2.3. Movement plans and the instructed-delay reach experiment 

2.4. Previous studies of PMd in movement planning 

2.5. The neural prosthetics design problem 

2.6. References 

 

3. Modeling and Filtering Point Processes     36 

3.1. The point process in continuous time 

3.2. The point process in discrete time 

3.3. The point process with generalized linear models (GLM) 

3.4. Relative model quality with Akaike Information Criterion 

3.5. Absolute model quality with the time-rescaling theorem 

3.6. Simulating spikes with the time-rescaling theorem 

3.7. Discrete-time point process filtering 

3.8. References 

 

 

 5



4. Delay Period Target Representation in Dorsal Premotor Cortex  46 

4.1. Introduction 

4.2. Methods 

4.2.1. Behavioral task 

4.2.2. Electrophysiology 

4.2.3. Model forms and fitting 

4.2.4. Relative model quality:  Akaike Information Criterion (AIC) 

4.2.5. Absolute model quality:  time-rescaling statistics 

4.2.6. Decoding:  recursive estimation of targets from ensemble PMd spiking 

4.3. Results 

4.4. Discussion 

4.5. References 

 

 

5. A State-Space Analysis for Reconstruction of Goal-Directed Movements Using 

 Neural Signals        65 

5.1. Introduction 

5.2. Theory 

5.2.1. State Equation to Support Observations of Target Before Movement 

5.2.2. Augmented State Equation to Support Concurrent Estimation of Target 

5.3. Results 

5.3.1. Sample Trajectories 

5.3.2. Reconstructing Arm Movements During a Reach 

5.4. Discussion 

5.5. Appendix:  Proof of Independent Increments in the Reach State Equation 

5.6. References 

 

 6



 

6. General-Purpose Filter Design for Neural Prosthetic Devices  103 

6.1. Introduction 

6.2. The hybrid framework 

6.3. Point process models of ensemble spiking activity 

6.4. Filtering spikes with the hybrid framework 

6.5. Filtering continuous field potentials with the hybrid framework 

6.6. Emerging applications 

6.6.1. Application 1:  Free arm movement w/ definitive moving versus stopping 

6.6.2. Application 2:  Reaching movements with variable arrival time 

6.6.3. Application 3:  Reaching to discrete targets that switch during movement 

6.7. Discussion 

6.8. Methods 

6.8.1. (Section A)  Approx.  point process filter for Gauss-Markov process 

6.8.2. (Section B)  Gaussian approximation to Mixture of Gaussians 

6.9. Supplementary Information 

6.9.1. (Section 1)  Derivation of a Point Process Hybrid Filter to Map Spikes to 

Hybrid Prosthetic Device States 

6.9.2. (Section 2)  Corollary 

6.9.3. (Section 3)  Laplace approximation of   

6.9.4. (Section 4) Spike filtering with the hybrid framework:  practical note on 

numerical issues 

6.10. References 

 

 

7. Conclusions         143 

7.1. Summary of Results 

7.2. Continuing Research 

 

 7



 8

Chapter 1 

Introduction 

 

1.1  Problem statement 

 

Our ability to complete everyday tasks such as drinking a glass of water or assembling a 

bookshelf relies on the coordination of sensation and actuation through the estimated 100 

billion neurons that compose the human nervous system.  Most of us go about our daily 

routines effortlessly.  The true underlying difficulty of these purposeful movements 

becomes apparent in the attempt to treat diseases such as stroke, Parkinson’s disease, and 

spinal cord injury that lead to severe incapacitation.  Research in humanoid robotics also 

underscores the difficulty of generating systems that produce robust, dexterous, and 

efficient movement. 

 

The neuroscience of movement control attempts to discover simplifying principles behind 

how this complex nervous system solves challenging motor tasks.  The scientific 

endeavor attempts to explain and predict empirical observations, while the engineering 

discipline works to develop medical treatments for motor deficits.  This thesis relates to 

both the scientific and medical engineering concerns of neural movement control. 

 

The research presented here begins in Chapter 4 with a focus on directed reaching 

movements made with the arm.  This study investigates the role of neural activity  in 

dorsal premotor cortex in the representation of visually presented target positions during 

an instructed delay period before the reaching movement begins.  We then examine 

(Chapter 5) how this target information could be used to constrain estimates of the entire 

reaching movement trajectory and subsequently be combined with neural activity related 

to the intended path.  Finally, we develop (Chapter 6) a general approach to the design of 

neural prosthetic devices that may one day enable dexterous control of assistive 

technology specified directly by neural activity. 
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1.2  Contributions of the thesis 

 

This thesis contributes to both the scientific and medical engineering aspects of neural 

movement control.  In this section, we describe those contributions in general terms, 

while a more technical description is provided in the conclusion (Chapter 7). 

 

The average spiking rate of neurons in dorsal premotor cortex (PMd) was previously 

understood to relate to visually-presented targets before reaching movements.  Here 

(Chapter 4), we clarify this concept, demonstrating that the spiking dependence on the 

timing of post-target-onset and the history of spiking contribute to target position 

representation beyond average spiking rates alone.  Furthermore, this study represents the 

first statistical modeling study of PMd spiking that incorporates model selection methods 

to determine the best description of spiking behavior from a selection of competing 

models.  This analysis reveals that the physical processes that contribute to the structure 

of spiking activity in PMd include spatially local phenomena such as membrane 

properties, and possibly distant interactions such as reciprocal connections to other brain 

regions.  Furthermore, the analysis represents a canonical approach to the interpretation 

of experiments that relate spiking responses to defined stimuli. 

 

Previous studies of reaching movements presented estimation procedures to decode target 

related neural activity separately from path related neural activity in the brain.  This 

previous work reinforced a view that certain brain regions during particular time intervals 

relative to a reaching movement are exclusively related to either the target or path to the 

target.  Here (Chapter 5), we instead emphasize the dependence between target and path 

through a probabilistic description of reaching movements.  The resulting analysis 

represents the first recursive filtering procedure that is capable of combining path and 

target related neural activity to generate estimates of the entire arm movement, including 

real time estimates of the target as the movement proceeds. 

 

Estimation procedures for neural prosthetic devices attempt to map neural activity to 

estimates of the user-intended device state.  Previously, these estimation procedures were 
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developed for specific applications, such as arm movement, or typing.  Here (Chapter 6), 

we unify existing approaches for estimation in prosthetic devices to address a wide range 

of current and emerging applications. 

 

Our contributions to the scientific and engineering aspects of neural movement control 

develop an approach for approximate estimation based on models using point processes 

where the sample space has both discrete and continuous components.  The relation 

between these technical contributions and the study of neural movement control are 

further described in the conclusion (Chapter 7). 
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Chapter 2 

Neurons and the Control of Movement 

 

 

This chapter introduces concepts in neuroscience that are relevant to subsequent chapters 

which study target position representation in PMd spiking (Chapter 4), the estimation of 

reaching movements (Chapter 5), and general-purpose filter design for neural prosthetic 

devices (Chapter 6). 

 

2.1  Cells of the nervous system and the action potential 

 

The nervous system is composed of neurons, support cells (glia), blood supply 

(vasculature), and extracellular material (matrix). Each cell in the nervous system is 

composed of basic elements that are common to all cells.  A lipid bilayer membrane 

defines the boundaries of the cell. Within the cell, organelles are involved in the 

controlled production and interaction of proteins, sugars, nucleotides, and other 

molecular constituents.  The processes that define the state of the nervous system occur 

on multiple scales, from molecular interactions to meter-length electrical events.  

Ultimately, a unified theory of the nervous system would involve phenomena across all 

these scales.  Intermediate steps towards reaching this objective include the statistical 

characterization of empirical observations, and the development of various biophysical 

models, each with different explanatory scope. This section describes the electrical 

potentials that facilitate interactions between neurons and with the world that is external 

to the nervous system.  This discussion is drawn primarily from [1-3]. 

 

Protein and protein-sugar channels, receptors, and molecular pumps form a fluid mosaic 

in the cell membrane, regulating molecular transport and chemical signalling across the 

lipid bilayer.  Each neuron consists of a cell body between 4 and 100 mm in diameter.  
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Several short roots, called dendrites, and one long trunk, called the axon, extend from the 

cell body of a typical neuron.  A single axon can extend to hundreds of centimeters in 

length, as with motor neurons that reach from the surface of the brain to the lower 

sections of the spinal cord. 

 

The action of pumps and channels maintains an ionic concentration gradient across the 

cell membrane, resulting in a transmembrane electrical potential.  In neurons, potassium, 

sodium, and calcium ions, together with the resistivity of their corresponding ion-

selective membrane channels, are the principle determinants of the membrane potential.  

Among all cell types, neurons are especially capable of rapidly propogating local changes 

in this membrane potential across the length of the cell through travelling waves called 

action potentials or spikes.  This is due to the dynamics of voltage-sensitive potassium, 

sodium, and calcium channels.  The response is “all-or-nothing,” meaning that the 

membrane potential in any given location along the cell must exceed a threshold to 

generate a spike.  Spikes typically travel away from the cell body along the axon, but 

possibly also into the dendrites.  At the end of the axon, spikes induce the release of 

chemical neurotransmitters that diffuse across an extracellular gap called the synaptic 

cleft.  These neurotransmitters then bind to receptors on the dendrite of a post-synaptic 

neuron.  The binding of neurotransmitter modulates membrane potentials in the dendrites, 

that combine and pass a threshold value at the cell body to induce a spike in the post-

synaptic neuron. 

 

A set of helper cells called glia also regulate neuron membrane potentials.  These include 

astrocytes, schwann cells, and oligodendrocytes.  Astrocytes participate in the uptake of 

neurotransmitter at the synapse.  These cells also form the blood-brain barrier that 

determines the molecules that diffuse from capillaries to extracellular space surrounding 

cells.  Schwann cells and oligodendrocytes surround axons in a process called 

myelination.  This increases the propagation velocity of a spike and decreases metabolic 

demand by increasing resistance and decreasing capacitance of the membrane in regular 

segments.  This effectively creates an axon that is composed of passive wires (myelinated 
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segments) that rapidly transmit the membrane potential, interleaved with slower repeaters 

(unmyelinated segements) that boost the signal. 

 

Neurons that are modulated by a given neuron are described as “downstream” with 

relation to that neuron.  Downstream neurons may be just one synapse away, or 

modulated via an intervening network of many neurons. Colloquially, the modulation of 

membrane potentials is referred to as “information processing” when examined within a 

neuron or network, and “communication” when described as occuring between neurons 

or networks.  These word choices have inspired the analysis of neural systems in analogy 

to computation and data transmission problems. 

 

A spike generates a transient millivolt or picoampere surge in a measurement electrode 

that is placed within or outside the cell.  An intracellular recording provides observations 

of isolated spikes that can unambiguously be attributed to an individual neuron.  

However, intracellular recordings are challenging in live-animal studies because the 

electrode tip must be stabilized within the cell body while brain matter pulses by 

millimeters with each heart beat.  In contrast, extracellular recordings from a single 

electrode allow the simultaneous observation of spikes from multiple neurons (typically 

three).  Because the electrode can be placed anywhere within proximity to the cell, it is 

feasible to stabilize even an array of hundreds of electrodes for recording in live, moving 

animals. However, the spikes cannot be unambiguously assigned to different neurons 

simply because the electrodes are not definitively placed within cells.  In a process called 

spike sorting, the differences in action potential shape that arise with distance and other 

factors, are used to assign detected spikes to individual neurons. 

 

Recordings of neural activity are also available on whole-brain scales, with coarser 

resolution, and through different modalities. Extracellular recordings from the same 

electrodes that observe spikes are low-pass filtered to provide local field potentials, 

which are believed to represent coordinated dendritic input averaged over hundreds of 

neurons in the vicinity.  By adjusting electrode impedence and positioning, averaged 

activity can be gathered over millions of neurons.  This is the case with 
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electrocorticoencephalography (EcoG), electroencephalography (EEG), and other 

variants that describe electrode placement relative to the dura (the leathery sheath 

surrounding the brain), the skull, and the scalp.  Electrodes placed closer to the brain are 

able of accessing higher frequency electric potentials without attenuation.  Other 

modalities that support whole-brain imaging on millimeter or coarser scales include 

magnetoencephalography (MEG) which employs magnetometers, and functional 

magnetic resonance imaging (fMRI), a variant of MRI anatomical imaging that provides 

blood flow information that is believed to relate to neural activity. 

  

With current technology, it is virtually impossible to unambiguously verify the 

anatomical connectivity of a set of neurons in conjunction with electrophysiological 

recording from those neurons.  This makes it diffult to understand how patterns of neural 

activity are generated from the underlying architecture.  Functional magnetic resonance 

imaging can provide blood flow measurements related to averaged activity of tens of 

thousands of neurons, complementing diffusion tensor imaging which provides gross-

anatomical connectivity.  Retrograde electrical stimulation can verify connectivity 

between neurons separated by a single synapse in conjuntion with electrophysiology, but 

is currently practical for only a few to tens of neuron pairs.  Microscope-based techniques 

with voltage-contrast dyes are currently being developed to possibly allow detailed 

functional and anatomical information of a set of hundreds or thousands of neurons. 

 

To circumvent this present-day disjunction between recordings of membrane potentials 

and precise anatomy, the analysis of electrophysiological data can be made in the context 

of general anatomical connections that have been previously documented through 

dissection, staining, microscopy, MRI, diffusion tensor imaging, and other anatomical 

techniques.  In the following section, we discuss the most prominent connections of the 

brain with a focus on the neural control of movement. 
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2.2  Functional anatomy of motor control 

 

How does the nervous system work with skeletal muscle and sensory organs to produce 

controlled movements?  This is the central question in motor neuroscience.  A detailed 

enumeration of the cellular and molecular constituents and phenomena of the nervous 

system is only a starting point in answering this question.  Just as in physics, the ultimate 

goal here is a simple but powerful explanation for a partial or full set of phenomena that 

are observed.  Such a theory of motor control would extract only the essential 

components of the physiology to reveal operating principles and bounds on performance. 

 

Nevertheless, the initial phase of inquiry involves a cataloging of phenomena placed in 

the context of anatomical structure. This chapter introduces the nervous system involved 

in motor control through a description of the anatomy.  While in this thesis, we work with 

electrophysiological phenomena of specific brain regions in relation to behavior, this 

more general anatomical framework will be important to subsequently interpreting the 

phenomena in the larger context of interconnected regions and motor control. 

 

2.2.1  Basic Anatomical Orientation 

 

The central nervous system encompasses the brain and spinal cord, while the peripheral 

nervous system includes nerves that connect the spinal cord to the rest of the body.  The 

brain alone weighs approximately 1.3 kg and contains an estimated 100 billion neurons.  

On crossection, the brain appears to be segmented into grey and white matter, composed 

of neuronal cell bodies and myelinated axons, respectively.  “Brain regions” correspond 

to sections of grey matter, while “tracts” and “connections” refer to white matter.  The 

major brain regions are denoted in Figure 2.1.  The cortex, latin for bark, includes the 

outermost layer of brain.  Subcortical regions include the thalamus and basal ganglia.  

The brainstem extends from the spinal cord into the core of the cerebrum, where it 

terminates at the thalamus.  The cerebellum connects to the cerebrum through the 

brainstem, and contains more cells in a smaller volume than the cerebrum and brainstem 

together.  White matter tracts coarse between and through all of these regions.  
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Supporting tissue includes the dura which surrounds the brain, vessels which perfuse the 

brain with blood, and ventricles which communicate cerebrospinal fluid (CSF). 

 

Figure 2.1.  Major brain regions.  The cortex includes five lobes:  frontal, 

parietal, occipital, temporal, and insular (not visible).  Other major brain 

structures include the cerebellum, brainstem, and basal ganglia (not visible). 

Adapted from [3]. 

 

2.2.2  Historical Context of Motor Anatomy 

 

The modern study of motor control is strongly influenced by a compartmental view of the 

brain that emerged in the late eighteenth century.  Forwarded by German physician 

Francis Gall, the theory of phrenology described the brain as a composite of 35 organs, 

each with a different function.  The specific claims of this theory have largely been 

discredited, including the hypothesized functions of brain regions such as “hope” and 

“veneration.”  Nevertheless, Gall’s notion of compartmentalization was reinforced in the 

mid-ninteenth and early twentieth century by anatomical and lesion studies that suggested 

that individual neurons were organized into distinct ensembles to serve specific functions.  

The proponents of this theory of cellular connectionism include Jackson, Wernicke, 

Sherrington, and Ramón y Cajal, some of the most vaunted neurophysiologists in history. 

 

In the early twentieth century, Korbinian Brodmann developed a comprehensive 

anatomical segmentation of the brain.  Based on detailed studies of cell types and 
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layering, Brodmann designated 52 brain areas without specifically attributing functions to 

these areas.  This segmentation has been influential in guiding electrophysiological 

exploration, where it has reinforced the notion of functional homogeneity among 

anatomically localized brain regions.  As a result, the brain is typically described as a 

circuit consisting of modular brain regions with distinct functions. 

 

Within the past fifteen years, Peter Strick and collegues have employed special staining 

techniques to provide greater detail with regards to the connectivity of specific brain 

regions that project motor axons to the spinal cord [4].  Special tracers are injected into a 

region of interest to selectively follow axons that lead towards or project away from that 

brain region.  One technique based on neurotropic viruses allows the tracer to cross 

synapses and follow more extended patterns of connectivity.  In conjunction with 

previous anatomical studies, this work has helped to clarify the architecture of brain 

regions that are located within a few synapses of lower motor neurons which drive 

skeletal muscle. 

 

Most recently, cubic-millimeter-resolution MRI has enabled longitudinal studies of 

anatomy in normal living humans.  For example, changes in brain anatomy have recently 

been described with relation to learning, including piano practice [5] and meditation [6].  

Diffusion tensor imaging (DTI) is a related technique that allows the segmentation of 

white matter tracts.  The use of fMRI in combination with MRI and DTI holds the 

promise of inspiring biologically grounded models of phenomena in the normal living 

human brain that occur at a coarse but broad spatiotemporal scale compared to cellular 

electrophysiology. 

 

The modern study of neuroanatomy is a nontrivial exercise in deductive reasoning.  The 

brain is an intricate three dimensional structure, composed of more than 100 billion 

neurons.  Within minutes of death, the brain undergoes liquifactive necrosis which 

destroys anatomy.  Typically, fixing agents or cryogenics are employed to preserve 

structure in a post-mortem preparation.  As with most tissue preparations, staining is 

necessary to make cell structures visible under light microscopy.  Various staining 
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procedures interact with the tissue to accentuate different nonspecific features of the 

cellular structure.  Antibody based staining preparations can additionally allow the 

detection and localization of specific proteins within the tissue.  Mass spectroscopy and 

other methods for sample analysis are able to characterize the molecular constituents of 

tissue. 

 

All of these methods, from staining procedures to DTI, require inferences to be drawn 

about the underlying structure and composition of the brain based on measurements.  

This inference stage is particularly subjective and unverifiable in the case of staining and 

imaging.  Should a spectrum of cell shapes be described in two categories or three?  Does 

a cross-section contain four cell layers or none?  Does a pattern of staining represent two 

distinct regions or one contiguous area?  Some assay results are unanimously interpreted, 

whereas other results require years of training in accepted conventions to provide 

conformity in interpretation.  Consequently, it is essential to qualify the following 

sections on the anatomy of motor control with the caveat that the brain regions and 

connections that are described were inferred based on a heterogeneous set of standards 

that draw on historical precident and were largely verified based on consistency rather 

than ground truths. 

 

2.2.3  Structure and Connectivity in the Sensorimotor System 

 

The neural control of movement requires the contraction of muscles in coordination with 

behavioral objectives (goals) and sensory feedback.  Classically, motor areas designate 

neurons that are two synapses away from the muscle, and sensory areas refer to neurons 

that are one or several synapses from sensory organs, but generally farther from muscle.  

This distinction has been increasingly weakened by the understanding that in this 

interconnected “sensorimotor” system, no neuron is exclusively involved in either 

sensory feedback or muscle contraction.  In the following sections, we trace the anatomy 

of motor control from the sensory organs and muscular actuators of the periphery into the 

layers of neural structures that govern the relationship between contraction, behavioral 

objectives, and sensory feedback. 
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2.2.4  Spinal Cord and Muscle 

 

In total, the spinal cord is an extension of the brain, with long, segregated axonal tracts 

that relay action potentials towards and away from the brain, and a core of neural cell 

bodies that include lower motor neurons that extend towards muscle, and secondary 

sensory neurons that extend towards various parts of the brain (Figure 2.2). 

 

Skeletal muscle is composed of oblong multinucleated cells that are 50-100 µm in 

diameter and 2-3 cm in length.  Each cell is packed with contractile units called 

sarcomeres that are chained in serial and parallel.  Each lower motor neuron in the spinal 

cord extends its axon to between 100 and 1000 muscle cells, although each muscle cell is 

innervated by only one lower motor neuron.  Lower motor neurons that innervate the 

same muscle also have cell bodies that cluster into columns within the spinal cord. 

 

The synapse between a lower motor neuron and a muscle cell is called a neuromuscular 

junction.  When the lower motor neuron spikes, acetylcholine is released from the neuron 

onto the muscle fiber.  Receptors on the fiber induce a sequence of molecular events that 

increase intracellular calcium and initiates contraction of the cell.  Energy for this 

contraction is provided by adenosine triphosphate (ATP) which also drives many other 

cellular processes. 

 

Peripheral neurons also extend into the spinal cord, modulated by stretch, pressure, and 

other sensations.  These sensations are described as proprioceptive (relating to joint 

position) or exteroceptive (relating to pressure, pain, or other stimuli applied to the skin).  

This somatosensory information can be combined with visual and other sensory feedback 

to guide movements. 

 

Inhibitory interneurons complete a network that connects peripheral sensory neurons, 

lower motor neurons and additional neurons that both descend from the brain (upper 

motor neurons) and extend towards the brain (secondary sensory neurons).  Reflexive 

behaviors represent the interaction of peripheral sensory neurons with lower motor 
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neurons through inhibitory interneurons that connect them.  To demonstrate the patellar 

reflex, a subject sits with the thigh supported and leg dangling from a chair.  A rubber 

hammer strikes the tendon of the rectus femoris, resulting in an uninstructed raising of 

the leg.  This behavior can be explained by peripheral sensory activity that directly 

excites motor neurons to the rectus femoris, and relaxes opposing hamstring muscles 

through inhibitory interneurons.  Several lines of research suggest that spinal cord 

networks might also allow the execution of more complex motor patterns that are 

modulated by the brain.  For example, cats with full spinal cord transection between the 

upper and lower leg regions, are still capable of coordinating leg movements while 

walking on a treadmill, although this effect is not generally observed in analogous 

injuries to humans. 

 

 

Figure 2.2. Major connections between spinal cord, brain, and periphery. 
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2.2.4  Cortical Motor Regions 

 

The earliest definition of cortical motor regions in the brain was functional rather than 

anatomical.  In the late ninteenth century, it was discovered that electrical stimulation in 

areas of the frontal cortex could induce skeletal muscle contraction.  These areas were 

designated as cortical motor regions.  It is now known that other brain regions can be 

stimulated to induce muscle contraction, including the mesencephalic locomotor region 

in the brainstem that is involved in walking.  Conversely, several brain regions are 

implicated in motor control, although electrical stimulation of those regions does not 

induce muscle contraction.  These include neurons in the basal ganglia, cerebellum, 

brainstem, somatosensory cortex, posterior parietal cortex, and visual cortex.  These 

regions are collectively denoted “sensorimotor” to describe their involvement in control, 

although some of these regions are classically described as exclusively sensory or motor 

based on their proximity to sensory organs or muscle respectively. 

 

A comprehensive view of motor control will likely include all these major sensorimotor 

areas.  However, cortical motor regions continue to dominate the study of voluntary 

movement due to their expansive connections with other brain regions and especially 

lower motor neurons and interneurons in the spinal cord.  The cortical motor regions are 

discussed in greater detail here only because this thesis involves a characterization of 

those neurons as described in subsequent sections. The connectivity of motor cortical 

regions is also included below, with relation to the other major brain structures involved 

in motor control. 

 

The current definition of cortical motor regions is both functional and anatomical, and no 

unequivocal universal standard exists. One definition applies the ninteenth century 

standard to frontal cortex, and further subdivides motor cortices into primary motor (MI) 

and premotor (PM) regions based on the minimum level of current injection required to 

induce muscle contraction, while PM regions require increased thresholds.  This 

approach is convenient for electrophysiologists when detailed post-mortem anatomy is 



 22

unavailable.  However, it is unknown what the relevance of injected current threshold is 

for the physiological control of movement. 

 

An alternate definition, forwarded by Strick, describes MI based on the level of current 

injection, but describes PM regions based on anatomical grounds.  By injecting 

retrograde tracers into MI, Strick claimed six distinct brain regions that projected to MI 

[4].  These regions were labeled dorsal premotor (PMd), ventral premotor (PMv), 

supplementary motor area (SMA), and rostral, dorsal, and ventral cingulate motor areas 

(CMAr, CMAd, and CMAv).  However, the published staining sections that support this 

claim have an ambiguous segmentation pattern.  This illustrates the difficulty in 

interpreting tissue stains in terms of anatomical organization.  Based on a composite 

anatomical view, the cortical motor regions are extensively interconnected and linked to 

other brain regions (Figure 2.3). 

 

 

Figure 2.3.  Prominent connections among sensorimotor areas of the brain, with detail on 

cortical structures.  This diagram is not complete.  For example, other brain regions exist 

in the brainstem that are involved in motor control and project to the spinal cord.  The 

word clique in the premotor areas box indicates that these circumscribed brain regions are 

fully interconnected.  This diagram is a composite based on [4, 7]. 
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Cells in MI and primary somatosensory cortex (SI) demonstrate somatotopy, a relation 

between functional characteristics and anatomical location.  Somatotopy specifically 

refers to the pattern of organization by which neigboring cells tend to respond to 

stimulation of localized sensory organelles or induce contraction in a localized region of 

musculature.  This is the case with muscle contractions induced from current injection in 

MI, and spiking activity induced in MI through SI and in SI alone from cutaneous 

stimulation.  For example, neurons in one region of MI can be stimulated to induce hand 

movements.  Moreover, the regions of MI that respond to cutaneous stimulation of the 

hand can also induce contractions in hand muscles with current injection.  Neurons in SI 

project to somatotopically corresponding regions in MI, explaining the somatotopic 

sensory response in MI.  However, the interconnection between SI and MI is not 

sufficient to explain the coincidence between somatotopies related to sensory stimulation 

and muscle contraction in MI. 

 

These anatomical relationships alone have inspired models based on control theory that 

feature a heirarchical and distributed architecture.  By definition, anatomy is not 

sufficient to determine functional properties.  Molecular constituents such as channels 

and neurotransmitter receptors determine the response properties of neurons.  

Consequently, neurons that appear to be connected in histological sections could instead 

possibly operate independently.  Nevertheless, anatomy at the supra-molecular level 

represents constraints on the structure of the nervous system that begin to provide a 

physical context for the various electrophysiological measurements that are commonly 

made in stimulus-reponse or behavioral experiments. 

 

A comprehensive review of all electrophysiological experiments related to motor control 

would require several volumes.  The following section focuses on the classical delayed 

reach experiment and previous results that characterize and interpret spiking activity in 

dorsal premotor cortex during the moments before reaching movements to visually-

acquired targets. 
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2.3  Movement plans and the instructed-delay reach experiment 
 

Motor control experiments are interpreted based on basic themes in control theory and 

robotics.  Elementary control tasks that machines must solve to achieve a goal include 

choosing a behavior, movement planning, and executing a movement by coordinating the 

goal with sensory feedback and actuation.  Neurophysiologists have sought to attribute 

each of these tasks to separate groups of neurons in the brain.  One prevalent approach 

involves the characterization of neural activity recorded from a monkey while it is 

engaged in a task with its arms or hands. 

 

Through analogy with robotic control, neurophysiologists postulated that brain activity 

related to movement planning could be observed after the target was displayed but before 

the movement was initiated.  Experiments were designed to extend the planning period, 

presumably to expand the time for which movement planning could be observed.  This 

was the rationale for the delayed reach experiment which is described in the sequel. 

 

The instructed-delay reach experiment is a classical task used in primate 

electrophysiology to study motor control.  In our variant of this task (Figure 2.4), a 

monkey (Macaca mulatta) controls a cursor that it views on a horizonal computer 

display, through a two-joint manipulandum.  Each trial that the monkey must complete 

involves three stages that choreograph a reaching movement to one of typically eight 

target locations.  The first stage is the hold period, where the monkey is required to place 

the cursor over a central point.  The second stage is the instructed delay period, where a 

target position is visually indicated, but the monkey is required to maintain the central 

cursor position for typically 500 to 1000 milliseconds.  The third stage is the go period, 

where the target begins to flash, telling the monkey to proceed to generate a reaching 

movement that places the cursor at the target.  If the target is acquired within 2 seconds of 

the go signal and held for 500 milliseconds, a water drop reward is delivered to the 

monkey’s mouth. 
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Figure 2.4.  One trial of the instructed-delay task as in [8]. 

 

We do not naturally pause for any appreciable time before reaching movements.  

Nevertheless, some neurophysiologists believe that the delay period is an opportunity to 

study the planning of arm movements.  From this perspective, it is important to guarantee 

that no target-related stimulus is provided during a substantial portion of the delay period.  

Accordingly, the instructed-delay experiment is modified so that the target is displayed 

for 150 to 300 milliseconds and then extinguished for the remaining 800 or more 

milliseconds of the instructed delay period [9].  Without this precaution, neural activity 

that is observed cannot be attributed to reach planning in exclusion of activity that is 

directly driven by the visual stimulus. 

 

Although important from this perspective, the extinguished target precaution may not be 

essential to conduct a realistic study of motor control, because many natural 

circumstances involve reaching to targets that are visually accessible throughout the 

entire reaching movement.  Reaching movements to an extinguished target may require 

different neural components than reaching to a continually cued target, but both scenarios 

could still be relevant to mechanisms of motor planning, and both essentially still involve 

some period of visual stimulus.  The analysis presented in this thesis circumvents this 

issue by explicitly describing the visually-presented target position as an input to the 

neural system during the delay period.  The assertion is that delay period activity is being 
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characterized under different conditions, but that considering this activity in the context 

of target position representation is not precluded in either case. 

 

The tracking of eye movements is another consideration in experiment design that is 

emphasized by some neuroscientists.  The rationale for this emphasis is the notion that 

planning activity related to the spatial location of the target must exist in some reference 

frame relative to the animal.  This reference frame could potentially be retinotopic, where 

the represented coordinates of the target change with eye position.  Alternatively, the 

reference frame could be body centered, or some other intermediate or arbitrary reference 

frame.  From this view, it might ultimately be desireable for the brain to represent the 

target in body-centered or other coordinates to allow arm movements to be easily related 

to the goal.  The concept of sensorimotor transformation postulates that an important 

function of the nervous system is to solve this change of coordinates.  This concept has 

driven efforts to characterize any target-related brain activity in terms of its coordinate 

frames.  Consequently, both eye and hand position, measured during the delay period, are 

considered important covariates that explain the observed patterns of neural activity. 

 

Eye movements were not recorded in the PMd experiment that is analyzed in this thesis. 

Hence, they are not available as explanatory variables in constructing models of delay 

period neural activity.  Moreover, eye movements or positions were not specifically 

constrained.  This will add to the potential sources of variation in the patterns of spiking 

activity that were recorded on multiple trials of the same target presentation.  Such a 

characterization where eye movements are unconstrained could prove especially useful in 

the context of neural prosthetic devices where it would be particularly taxing to require 

that the user control their eye position, or intrusive and algorithmically nontrivial to track 

and correct for eye movements.  Additionally, the modulation of PMd spiking by eye 

position is known to be slight when eye positions are unconstrained [10]. 

 

The following sections review qualitative and quantitative studies that were previously 

performed to understand the representation of visually-instructed target positions in the  

instructed-delay spiking activity of dorsal premotor cortical neurons.  Other brain regions 
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that have been studied in this regard include posterior parietal cortex [11], frontal cortex 

[12], and subthalamic nucleus [13]. 

 

2.4  Previous studies of PMd in movement planning 

 

Premotor dorsal cortex (PMd) and other brain regions have been extensively studied with 

relation to movement planning in general, and the spiking representation of target 

position before visually guided reaching movements in particular.  Lesions in PMd result 

in deficits of visually guided arm movements [14].  Specific features of the PMd delay 

period spiking response vary systematically with aspects of the movement or task.  

Average delay period firing rates change between trials where different target locations 

are presented [15].  A mean-normalized measure of across-trial variability decreases over 

the delay period, and covaries with reaction time [16]. 

 

Probability distributions have been used to describe the number of spikes (or other 

specific features of the response) in a delay period interval for each of a discrete set of 

targets.  Several decoding methods have demonstrated target estimation from the average 

delay period spiking response of an ensemble of PMd neurons with varying degrees of 

success [8, 17].  Nevertheless, these studies typically employ unverified Poisson 

statistical models, and batch estimation procedures in their characterization of PMd target 

representation. 

 

In contrast, the PMd study described in Chapter 4 of this thesis proceeds with a broader 

collection of statistical models, coupled to a model selection procedure that assesses both 

relative and absolute model quality.  The resulting analysis demonstrates the extent to 

which various aspects of the PMd spiking response contribute to target representation, 

and sheds light on the possible physical processes that might be important to the structure 

observed in the PMd response. 
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2.5  The neural prosthetics design problem 

 

Several neurological conditions dramatically restrict voluntary movement, including 

amyotrophic lateral sclerosis, spinal cord injury, brainstem infarcts, advanced-stage 

muscular dystrophies, and diseases of the neuromuscular junction.   A growing set of 

technologies is being developed to allow brain-driven control of assistive devices for 

individuals with severe motor deficits.  Variously called brain-machine interfaces [18, 

19], motor neural prostheses [20-22], and cognitive prostheses [23, 24], they represent a 

communication link that bypasses affected channels of motor output. 

 

Many alternative technologies are available that utilize remaining motor function rather 

than neural activity to generate control signals.  Movements of the eye or tongue can be 

tracked to control a cursor.  Suction on a straw can navigate a wheelchair.  Contractions 

or electromyographic signals of larger muscle groups such as the platysma or pectoralis 

major can be monitored to activate joints in a prosthetic arm [25].  Volitional grasping 

with a prosthetic hand can be achieved through mechanical cabling to the contralateral 

shoulder [26].  Although they represent practical solutions for many patients, these 

alternatives provide restricted control to any user.  Moreover, they may not be feasible for 

individuals with profound motor deficits. 

 

Brain-driven interfaces have the potential to provide users with control that is more 

dexterous, natural to use, and less susceptible to fatigue than existing muscle-based 

alternatives.  In principle, these interfaces would be available even for individuals with 

near-complete loss of voluntary motor function, such as with locked-in syndrome where 

only blinking and vertical gaze remain. 

 

The four common elements of existing brain-driven interfaces are a method to monitor 

neural activity, an algorithm to map this activity to control signals, a device to be 

controlled, and a feedback mechanism that informs the user about the state of the device 

(Figure 2.5).  This design problem is multifaceted.  The nascent neural prosthetics 
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literature already spans issues related to recording hardware, signal processing, robotics, 

functional electrical stimulation, clinical care, and surgical techniques. 

 

 

 

Monitoring approaches balance finer spatial resolution and broader frequency bands 

against the invasiveness of electrode placement.  Scalp leads provide waveforms up to 40 

Hertz (Hz), integrating activity from square-centimeters of cortex [27].  Subdural leads 

provide electrocorticographic (ECoG) signals up to 200 Hz that are collected from an 

estimated area of fractions of a square millimeter [27].  Cortical electrode arrays have 

access to local field potentials similar to EcoG, but also monitor action potentials, which 

are transient one-millisecond electrical spikes from micrometer-scale neurons.  These 

arrays typically record from tens but up to hundreds of individual neurons spread over 

one square millimeter. 

 

Figure 2.5.  Complete circuit diagram of a neural prosthetic device. 
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Signal pre-processing is typically employed in all of these approaches, including band-

pass filtering and spike sorting [28-31], where action potentials are grouped by shape in 

an effort to localize spiking events to distinct neurons.  Various algorithms can then be 

employed to map neural signals to control signals.  This mapping can be made adaptive, 

changing so as to minimize performance errors even as neurons fade out [32] and the 

subject learns to use the interface.  Feedback in existing prototypes is predominantly 

limited to visualization of the device state and juice rewards [20-24], or auditory cues, but 

somatosensory cortical electrodes have also been proposed. 

 

Challenges remain on all fronts in the design of brain-driven interfaces.  Cortical 

electrode arrays have only preliminarily been evaluated for chronic recording in humans 

[33].  To endure long-term use, monitoring approaches must achieve low power 

consumption, mechanical stability, biocompatibility, and otherwise reliable access to 

relevant neural signals.  Movements generated by existing prototypes are either slow and 

deliberate, or fast and uncontrolled.  The evaluation of learning is not standardized.  

Reported training times range from minutes [19] to months [18] for acquiring proficiency 

with a device, depending on the device and method of performance evaluation.  

Algorithms must be developed to enable increased dexterity, faster learning, and robust 

performance.  Finally, the optimization of real time feedback and training regimens is 

largely unexplored. 

 

The mapping of preprocessed neural activity to device control signals is typically 

approached in two steps (Figure 2.6).  First, an algorithm estimates the user’s intention 

for the device based on neural activity that serves as a noisy observation of that intention.  

Second, a controller acts to bring the device state close to this estimate of the user’s 

intention.  This second stage is often implicitly assumed in literature on algorithms for 

neural prosthetic devices. 

 

The development of neural prosthesis estimation procedures parallels the earlier 

development of estimation procedures in electrical engineering and later applications to 

neurophysiology:  manually adjusted linear combinations of power spectral band energies 



 31

[34], population vectors for automated but sub-optimal linear mappings [35], linear 

regression for optimized linear mappings [36], and most recently, recursive Bayesian 

estimation procedures [37-39].  This last advance in particular has allowed dramatically 

better tracking than linear regression in off-line data analyses.  In decoding trajectories or 

sequences of intentions, this improvement is largely due to the introduction of a state 

equation, a mathematical expression of underlying structure in the intention, such as 

continuity.  Variants have evolved to progressively account for the true statistical nature 

of spiking activity: the Kalman filter [39], particle filter [37], and point process filter 

[38].  Bayesian estimation [23, 24], support vector machines, and other classification 

methods have also been used with neural observations of discrete intentions that are 

relevant to prosthetic applications such as icon selection from an on-screen menu. 

Figure 2.6.  Standard approach to the design of neural prosthetic devices.  The user expresses 

neural activity (A) to communicate an intended state for the prosthetic device.  An estimator 

converts this neural activity into an estimate of the intended state (B).  A controller generates 

inputs (C) to drive the prosthetic device to this estimate in coordination with feedback (D) 

that informs the controller about the device state.  The user receives sensory information (E) 

that serves as an additional level of feedback for guiding the device to the user-intended state. 

 

Two of the chapters in this thesis relate closely to the estimation problem in prosthetic 

devices.  In Chapter 5, an estimation procedure is developed to drive reaching 

movements of a prosthetic limb from the combination of target-related information (such 

as from PMd instruted-delay activity) and path related information (such as from MI 

activity that corresponds to intended velocities) regardless of the specific recording 

modality.  In Chapter 6, a general-purpose estimation framework is developed for a 

variety of prosthetic devices while incorporating either spiking activity or continuous 

field potentials. 
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Chapter 3 

Modeling and Filtering Point Processes 
 

This chapter introduces concepts in statistical modeling and estimation that are applied in 

subsequent chapters to the study of target position representation in PMd spiking 

(Chapter 4), the estimation of reaching movements (Chapter 5), and general-purpose 

filter design for neural prosthetic devices (Chapter 6). 

 

3.1   The point process in continuous time 
 

Consider a recording of spiking activity from a single neuron over a time interval [ )0,T , 

where the sequence of spike times is given by 1 20 ... mw w w T< < < < < .  Let the 

counting process  represent the cumulative spike count from the start of the interval 

up to time .  The evolution of this counting process may depend causally on continuous 

random processes 

( )N t

t

( )x t , discrete random processes ( )s t , or counting processes  that 

describe the state of the biological neural network or its inputs, including the neuron’s 

own spiking history.  Define the history of these random processes as 

( )L t

{ }( ), ( ), ( ) | [0, )tH x s L tτ τ τ τ= ∈ . 

 

We describe this spiking activity as a point process [1-5].  The point process is 

completely specified by its conditional intensity function [2], defined as follows: 
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This conditional intensity function characterizes the joint data probability of observing a 

particular experimental outcome represented by the realized counting process , over 

the interval [ : 

( )N t

)0,T

 { }( )
0 0

( ) | [0, ) exp log ( | ) ( ) ( | )
T T

P N T H dN H dσ σσ σ λ σ σ λ σ σ
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∫ ∫  (3.2) 

where  is a Riemann-Stieltjes integral [2]. 
10

log ( | ) ( ) log ( | )
i

T m

i w
i

H dN w Hσλ σ σ λ
=
∑∫

 

3.2  The point process in discrete time 
 

We now introduce additional notation to represent the point process in discrete time, and 

to describe the spiking activity of an ensemble of neurons instead of just one neuron.  

Divide the recording interval [ )0,T  into  discrete time steps, each of length k /T kδ =  

seconds, so that the  timestep is thk [ )( 1) ,k kδ δ− .  Define the number of spikes that 

arrive for neuron c  in the  timestep as thk
( 1)

( )
k

c
k

k

n N
δ

δ

dσ σ
−

= ∫ .  The ensemble spiking 

activity of  neurons at the  timestep is denoted .  Let C thk ( )1: 1 2, ,...,C C
k k k kn n n n=

( ( 1) )kx x k δ= −  and ( ( 1) )ks s k δ= − .  Define ( )1: 1 2, ,...,k kx x x x= , and similarly for .  

The discrete-time history is accordingly 

1:ks

( )1: 1: 1:
1 2 1 1: 1 1: 1, ,..., , ,C C C

k k kH n n n x s− − −= k . 

 

The conditional intensity of neuron c  evaluated in discrete time is given by 

 in units of spikes per second.  Consider time steps ( ( 1) | )c c t
k k Hλ λ δ= − δ  that are 

chosen to be smaller than the refractory period, typically 31 10−×  seconds, so that  is 

either 0 or 1.  The discrete-time joint data probability is then approximated [6] to 

resemble the continuous-time data likelihood 

c
kn

(3.2) as follows: 

 

 1: 1: 1:
1 2

1 11

( , ,..., ) exp log
C K K

C C C c c c
K k k

k kc

p n n n n kλ δ λ
= ==

δ⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑∏  (3.3) 
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The corresponding discrete-time probability density of the ensemble spiking activity at 

time  conditioned on the history and the discrete and continuous states at time  is 

given by: 

k k

 

 1:

1

( | , , ) exp( log( ) )
C

C c c
k k k k k k k k k

c

p n x s H n cλ δ λ δ
=

∝∏ −  (3.4) 

 

This quantity is the point of departure for applying discrete-time nonlinear filtering 

algorithms to point process observations. 

 

3.3  The point process with generalized linear models (GLM) 
 

This section overviews the generalized linear model (GLM) approach [7] used in this 

thesis to describe neuronal activity with point processes.  The most pervasive approach to 

modeling spiking neural activity in the neuroscience literature is to relate stimuli and 

spiking through a Gaussian linear model [8]: 

 

 y X β ε= +  (3.5) 

 

Here, 
'

1 2, ,...,c c c
Ky n n n⎡= ⎣ ⎤⎦  is a column vector of binned spike times for one neuron, 

[ ] '
1 2, ,..., Rβ β β β=  is a column vector of R  parameters, X  is a  matrix of 

covariate signals.  Each column of 

K R×

X  includes the discrete-time sequence of values 

realized by a one-dimensional covariate signal, such as an attentional state 

[ ] '
1 20, 1,..., 1Ks s s= = = .  The term [ ] '

1 2, ,..., Kε ε ε ε=  is a column vector of independent, 

identical, zero mean Gaussian random variables with an unknown variance. 

 

This approach typically uses δ  of tens to hundreds of milliseconds that produce a large 

set of possible binned spike counts , because  conditioned on the random variables kn kn
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corresponding to the  row of thk X  are described as Gaussian under the model in (3.5).  

In contrast, the point process modeling approach allows for millisecond-resolution 

modeling. 

 

Generalized linear models extend the linear Gaussian model  in (3.5) to the exponential 

family of distributions, making it possible to relate covariates to responses that are not 

necessarily Gaussian.  The exponential family includes distributions of the following 

form: 

 

 
1

( | ) exp{ ( ) ( ) ( ) ( )}
K

k k
k

f y T y C H y Dβ β
=

= +∏ β+  (3.6) 

 

where ky  denotes the  element of thk y , and  are known functions.  The GLM 

describes the linear combination of covariates as some function of 

, , ,T C H D

μ , which refers to the 

mean of the distribution in (3.6) for Gaussian and Poisson distributions, but the standard 

parameter for the binomial distribution [7]: 

 

 ( )g Xμ β=  (3.7) 

 

The link function  is any monotonic differentiable scalar function where ( )g ⋅

[ ]1 2( ) ( ), ( ),..., ( )Kg g g gμ μ μ μ= .  A specific choice of link function, the canonical link, 

results in a convex likelihood, which permits a standard gradient-ascent-based maximum 

likelihood parameter fitting procedure [7].  The canonical link function is obtained by 

equating ( )C Xβ β= .  The canonincal link function for the Poisson model with mean λ  

is ( )log Xλ β= . 

 

Parameter fitting for GLMs is commonly solved by iterative reweighted least-squares, a 

gradient-ascent approach which includes the Fisher scoring method and the Newton-

Raphson method.  The Matlab function glmfit automated this procedure for the 
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maximum likelihood (ML) parameter fitting steps of our study on dorsal premotor cortex 

(Chapter 4). 

 

To connect the GLM framework with the point process approach, we model the 

distribution of  as Poisson when conditioned on the covariate random variables 

corresponding to the  row of 

kn

thk X .  δ  is chosen small (typically 1 ms) relative to 

changes in kλ .  The natural log is the canonical link function for the Poisson distribution.  

Accordingly, our generalized linear models are of the form: 

 

 log Xλ β=  (3.8) 

 

where [ ] '
1 2log log( ), log( ),..., log( )Kλ λ λ λ= . 

 

3.4  Relative model quality with Akaike Information Criterion  
 

With multiple models specified in the form given in (3.8), a procedure was desired to 

select the model that would best conform with the data on average.  The Akaike 

Information Criterion (AIC) captures this notion, because it is derived as an 

approximation to the expected log likelihood ( )( ) log ;g YE f Y θ⎡ ⎤⎣ ⎦ , for the data-generating 

distribution  and the model ( )g Y ( );f Y θ  parameterized by θ . 

 

The AIC can also be considered as an approximation to the part of the Kulback-Liebler 

(K-L) information 
( )( )
( )log

;g Y
g YE

f Y θ
⎡ ⎤
⎢
⎣ ⎦

⎥  that differs between competing models.  The 

expected log likelihood is identically this deciding term when two models are compared 

based on K-L distance to the data-generating distribution.  See [9] for a derivation and 

[10] for a discussion of small-sample corrections and other properties of the AIC, 

including its equivalence to crossvalidation. 
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The formula for the AIC balances goodness-of-fit against model complexity.  It credits a 

model for large data likelihood, and penalizes for the number of parameters in the model: 

 

  (3.9) 1: 1: 1:
1 2

ˆ2 log ( , ,..., | ) 2C C C
KAIC p n n n Rβ⎡= − +⎣

⎤
⎦

 
where β̂  is the ML estimate of β  given the data, and 1: 1: 1:

1 2
ˆ( , ,..., | )C C C

Kp n n n β  is the data 

likelihood in (3.3) evaluated with ML parameters.  The term R  denotes the number of 

parameters, as with our GLM given in (3.8). 

 

3.5  Absolute model quality with the time-rescaling theorem 

 

Although AIC was used to assess relative model quality, we additionally required that the 

observed data was sufficiently typical under the minimum AIC model.  The time-

rescaling theorem, specific to point processes, provided statistics with confidence 

intervals to allow us to characterize the typicality of the deviation between a model and 

the spiking data. 

 

The theorem can be stated as follows.  Given spike times 1 20 ... mw w w T< < < < <  for a 

point process specified by ( )| tt Hλ , define the random variables  for : iz 1, 2,..., 1i m= −

  (3.10) ( )
1

|
i

i

w

i
w

z t Hλ
+

= ∫ t dt

Then the  are independent, unit-mean exponentially distributed random variables. iz

 

The  represent the original interspike intervals (ISI), rescaled with respect to the 

conditional intensity function of the model.  Statistics based on the time-rescaling 

theorem verify the extent to which the rescaled ISI are consistent with a set of 

independent and exponentially distributed random variables. 

iz
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The  can be further transformed to independent uniform iz [ ]0,1  random variables : iu

 1 exp( )iu iz= − −  (3.11) 

 

and then to independent standard Gaussian random variables  using the inverse CDF of 

the standard Gaussian,  : 

ig

1( )iu−Φ

  (3.12) 1( )ig −= Φ iu

 

where the standard Gaussian CDF is: 

 
21( ) exp

22

x ux du
π −∞

⎛ ⎞
Φ = −⎜ ⎟

⎝ ⎠
∫  (3.13) 

 

For a proof, refer to [11]. 

 

The standard Kolmogorov-Smirnov test was used to compare the cumulative density 

function (CDF) of the  against that of the iu [ ]0,1  uniform distribution [11].  The statistic 

is the maximum deviation of the empirical CDF from the uniform CDF.  In a cartesian 

plot of the empirical CDF as the y  coordinate versus the uniform CDF as the x  

coordinate, the 95% (99%) confidence interval lines are: 

 

 1/ 2 1/ 2

1.36 1.63
( 1) ( 1)

y x y x
m m

⎛
= ± = ±⎜− −⎝ ⎠

⎞
⎟

i

 (3.14) 

 
The one-lag autocorrelation  (as a function of the number of spikes m ) was used as a 

preliminary test of independence.  Here, the empirical autocorrelation is calculated on the 

standard Gaussian rescaled ISIs  because uncorrelated Gaussian random variables are 

independent: 

ma

ig

 
1

1
1

m

m i
i

a g g
−

+
=

= ×∑  (3.15) 
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Confidence intervals were calculated by Monte Carlo, where the distribution on  was 

assumed Gaussian, and a variance on the one-lag autocorrelation was estimated from 

multiple sets of simulated draws of  independent identically distributed standard 

Gaussian random variables. 

ma

m

 

3.6  Simulating spikes with the time-rescaling theorem 

 

The converse of the time-rescaling theorem is also true [11].  This allows us to simulate 

point processes in discrete time from a model specification of the conditional intensity 

function kλ  by solving (3.10) for  given .  Spike simulation is employed in a type of 

model validation that is described further in the study on dorsal premotor cortex (Chapter 

4).  Additionally, we simulate spikes for off-line evaluation of neural prosthesis 

estimation algorithms (Chapters 5 and 6), where spiking activity is converted into an 

estimate of the user-intended device trajectory. 

iw iz

 

The procedure is described as follows.  To generate the  simulated spike, draw a unit-

mean exponential waiting time .  Step forward in discrete time steps  of 1 millisecond 

duration, summing the values of 

thi

iz k

kλ  until a time step where the summed value equals or 

exceeds .  Generate a spike corresponding to that time step and reset the sum to zero.  

Repeat this procedure until the discrete-time point process has been simulated for the 

desired time interval. 

iz

 

 

3.7  Discrete-time point process filtering 

 

In the discrete-time point process filtering problem, the posterior density of an underlying 

random process must be estimated from observations of a point process whose 

conditional intensity is a function of the underlying random process itself.  In this thesis, 

we apply discrete-time point process filtering to understand the representation of target 
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position in dorsal premotor cortex spiking (Chapter 4), and to estimate user-intended 

device states from spikes for neural prosthetic devices (Chapters 5, 6). 

 

As mentioned in Section 3.2, the critical element for filtering point processes in discrete 

time is the discrete-time probability density in equation (3.4) of the ensemble spiking 

activity at time  conditioned on the history , discrete state , and continuous state k kH ks

kx .  With this quantity, any of a variety of nonlinear discrete-time filtering procedures 

can be adapted to point process filtering of an underlying Markov process.  An exact 

discrete-time posterior density can be calculated in the case of a discrete-valued Markov 

process by applying a recursive form of Bayes' Rule, as employed in this thesis to study 

the representation of a discrete set of target positions in ensemble spiking activity 

recorded from dorsal premotor cortex (Chapter 4).  The Gaussian approximation to the 

posterior density, also called the Laplace approximation, is used in this thesis (Chapters 5 

and 6) for estimation of continuous-valued and hybrid (continuous and discrete valued) 

Markov processes.  Other general nonlinear filtering techniques are available in the 

literature, including particle filters [12]. 
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Chapter 4 

Delay Period Target Representation 

in Dorsal Premotor Cortical Spiking 
 

 

Premotor dorsal cortex (PMd) is believed to be involved in the representation of target 

position during the enforced delay period prior to visually-instructed reaching 

movements.  In this chapter, we seek to understand the structure of the PMd response and 

demonstrate the extent to which aspects of the response contribute to target 

representation.  Because of its extensive connectivity with other cortical and subcortical 

regions, it is unclear whether the PMd target representation can be adequately described 

with simple statistical models.  Moreover, although various algorithms have 

demonstrated target decoding from PMd neurons, it remains an open question as to what 

extent various aspects of the PMd response contribute to the representation of targets. 

 

In this study, we apply generalized linear models based on point process statistical 

methods to determine how elapsed time (time post-target-onset) and spiking history relate 

to the PMd response, and the extent to which these factors contribute to target 

representation.  Action potentials are obtained from a population of 61 simultaneously 

recorded PMd neurons from a macaque monkey during a instructed-delay center out 

reaching task to one of 8 fixed target positions arranged evenly on a circle of 6 

centimeters radius.  PMd neurons span a diverse set of representations, of which more 

than 70% demonstrate both history and elapsed-time dependence.  Log-linear point 

process statistical models adequately describe all target representations in 38 of the 61 

recorded cells.  Both history and elapsed-time dependencies contribute to faster, more 

efficient target position representations than the average firing rate that is typically 

summarized in tuning curves. 
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4.1  Introduction 

 

The generation of voluntary movements involves multiple brain regions that coordinate 

goals with sensory input to determine muscle activation patterns. The functions of these 

brain regions are classically described in terms of planning and execution.  Presented 

with an object to reach, a subject develops an estimate of the target position, and 

contracts musculature in concert with somatosensory and visual feedback to bring the 

hand to the target.  The delayed reach experimental paradigm enforces movement phases 

that can be interpreted as planning and execution.  Here, the subject is required to wait 

during a “delay period” for a cue before initiating movement to the target. 

 

Premotor dorsal cortex (PMd) and other brain regions have been extensively studied with 

relation to movement planning.  Lesions in PMd result in deficits of visually guided arm 

movements [1].  Specific features of the PMd delay period spiking response vary 

systematically with aspects of the movement or task:  Average delay period firing rates 

change between trials that present different target locations [2].  A mean-normalized 

measure of across-trial variability decreases over the delay period, and covaries with 

reaction time [3].  Probability distributions have been used to describe the number of 

spikes (or other specific features of the response) in a delay period interval for each of a 

discrete set of targets.  Several decoding methods have demonstrated target estimation 

from the delay period spiking response of an ensemble of PMd neurons with varying 

degrees of success [4, 5]. 

 

A quantitative theory of the role of PMd in movement control requires that we understand 

the whole delay period spiking response of PMd as well as specific features that describe 

it in part.  How complex are theoretical models of PMd spiking that are consistent with 

empirically recorded activity?  To what extent do various aspects of the PMd response 

contribute to rapid, efficient target representation?  An adequate mathematical model of 

PMd spiking must capture the effects of a physical system governed by local neuronal 

properties and anatomical connections with numerous cortical and subcortical areas. 
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This chapter investigates these questions with a point process description of PMd delay 

period spiking activity.  Using a generalized linear model framework, we attempt to 

capture the millisecond-by-millisecond spiking probability of a given neuron in terms of 

its dependence on elapsed time (time post-target-onset) and spiking history.  We 

determine the adequacy of these models in relative and absolute terms, and the extent to 

which elapsed time and spiking history contribute to model quality and the speed and 

efficiency of target position representation with a fixed, discrete target set. 

 

4.2  Methods 

 

4.2.1  Behavioral task 

 

One male macaque monkey (Macaca mulatta) was trained for 11 months to perform the 

instructed-delay center-out reaching task.  The monkey sat in front of a horizontal display 

with its right arm resting in cushioned troughs of a 2-joint robotic arm (KINARM system 

[6]) under the display.  The hand position was projected to a cursor on the display where 

target locations would also subsequently appear.  The task consists of 3 time periods:  

hold, instructed-delay, and go (Figure 4.1).  During the hold period (500 ms), a central 

target location appeared on a horizontal display over which the monkey was required to 

position the cursor.  During the instructed delay period (variable length drawn uniformly 

from 1000 to 1500 ms), the target was displayed as a 1 cm x 1 cm square.  Target 

locations were drawn uniformly from a fixed set of points spaced evenly on a circle of 6 

centimeters radius about the central target.  The monkey was required to continue 

maintaining its hand over the central target during this delay period.  In the go period 

(maximum of 2 seconds allowed), the peripheral target flashed to instruct the monkey to 

initiate and complete a reaching movement to the target.  A water drop reward was 

delivered when the cursor was held over the target for 500 milliseconds. 
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Figure 4.1.  (A)  The instructed-delay center-out task (CO) includes 
three periods:  hold (500 ms), instructed delay (variable 1000 to 1500 
ms), and go (variable, typically 500 to 1500 ms).  See Methods for full 
description of the behavioral task.  (B)  Contrasting responses from 
two PMd neurons.  Activity during the delay period can involve focal 
bursts of up to 20 spikes per second that are repeatable over multiple 
trials (upper row), or sustained firing with temporal dependence that 
approaches 50 spikes per second (lower row).  Each row of panels 
correspond to the response of a different neuron to the eight target 
locations versus time from start of the hold period.  The bottom half of 
each panel is a raster plot of spike times over multiple trials.  The top 
half of each panel displays the corresponding average spike 
histogram, binned at non-overlapping 40 ms intervals.
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4.2.2  Electrophysiology 

 

Multiple single unit extracellular measurements were obtained from the caudal 

subdivision of dorsal premotor cortex (PMd) in the left hemisphere, with a chronically 

implanted array containing a 10x10 grid of electrodes (1 mm shaft lengths) spaced evenly 

over a 4 mm x 4 mm base (Cyberkinetics, Foxborough, MA).  Signals were amplified 

with a gain of 150, sampled at 30 kHz  per channel, and digitized at 14 bits per sample 

with a Cerebus acquisition system (Cyberkinetics, Foxborough, MA).  Sampled 

waveform windows of 1.6 ms surrounding a threshold-exceeding signal were used to sort 

spikes with the Offline Sorter (Plexon, Dallas, TX). 

 

4.2.3  Model forms and fitting 

 

Delay period spiking responses of each neuron corresponding to each target position were 

described as a separate point process.  The neurons were assumed independent in their 

ensemble response, and the quality of this assumption was explicitly tested (see Absolute 

Model Quality below).  

 

A point process description of one neuron’s spiking provides the instantaneous 

probability of firing as a function of elapsed time t  and generally conditioned on other 

signals ( )x t  including spiking history 
t

H , where ( )N t  denotes the total number of spikes 

accumulated since target onset: 

 

 
0

Pr( ( ) ( ) 1| ( ), )
( | ( ), ) lim t

t

N t N t x t H
t x t Hλ

∆→

+ ∆ − =
=

∆
 (4.1) 

 

This is the continuous-time conditional intensity function.  Each PMd point process 

model (one for each neuron/target pair) is expressed in discrete time steps δ  of 1 

millisecond, indexed by k .  The value of the continuous-time conditional intensity 

function at timestep k  is denoted by 
k

λ .  This discrete-time conditional intensity may be 

a function of elapsed time (time post-target-onset) and the history of preceding spikes. 
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Elapsed time is described in terms of 
I

∆  second time intervals post-target-onset.  The 

indicator function ( , , )
I

I i k ∆  denotes whether or not a time step k  falls into the th
i  

interval of elapsed time: 

 

 
1   ( 1)

( , , )
0

I I

I

if i k i
I i k

otherwise

δ− ∆ ≤ < ∆
∆ = 


 (4.2) 

 

Elapsed time represents a surrogate for physical processes that determine firing 

probabilities in intervals of time after the target presentation, apart from history terms. 

 

The discrete-time spiking history 
k

H  of a particular 1 ms time step k  includes both 

short-term and long-term history.  The short-term history includes spike counts in each of 

the last ten milliseconds 1 2 10( , ,..., )
k k k

n n n
− − −

.  The long term history includes spike counts 

between 10 ms and 150 ms, binned at 10 ms intervals, denoted by 

[ 10 1]:[ 20] [ 20 1]:[ 30] [ 140 1]:[ 150]( , ,..., )
k k k k k k

n n n
− − − − − − − − −

.  Short term history is believed to be 

dominated by local physical interactions such as PMd neuronal cell membrane properties 

or local interneuron inhibition, whereas long term history is generally attributed to more 

distant reciprocal connections with conduction delay.  These distinctions are not yet well 

established, and membrane properties alone may exert effects with histories that last 100 

ms [7]. 
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Spike counts in each 1 ms time step k  were modeled with a Poisson distribution 

conditioned on history, elapsed time, and average firing rate parameters.  The mean
k

λ  

depended log-linearly on the elapsed time interval ( , , )
I

I i k ∆  and spiking history 
k

H , 

with model parameters , ,
i i i

α β γ : 

 

Model log( )
k

λ  

1 
1α  

2 
1 1 1k

nα β
−

+  

3 1500

150

1

( , , 150 )
I

ms

ms

i I

i

I i k msα

 
 

∆ = 

=

∆ =∑  

4 1500

150

1 1

1

( , , 150 )
I

ms

ms

i I k

i

I i k ms nα β

 
 
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−

=

∆ = +∑  
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[ 10 1]:[ 10 10)]

1 1 1

( , , 150 )
I
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i I i k i i k j k j

i i i

I i k ms n nα β γ

 
 
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= = =
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i I i k i i k i k i

i i i

I i k ms n nα β γ

 
 
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= = =

∆ = + +∑ ∑ ∑  

 

This is the generalized-linear model (GLM) form that makes maximum likelihood 

parameter estimation easy: a convex optimization problem that can be solved with an 

iteratively reweighed least squares procedure.  We employed the Matlab routine glmfit to 

perform this procedure.  Models 5 and 6 were obtained by further reducing the 

corresponding models in the above table.  Parameters were discarded that were not 

significant at the p=0.10 level based on hypothesis testing with the observed Fisher 

information calculated based on the given model’s likelihood.  While this model 

reduction procedure can result in overfitting [8], all models were subsequently compared 

using AIC and crossvalidation (see below). 
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4.2.4  Relative model quality:  Akaike Information Criterion (AIC) 

 

How important are elapsed time and spiking history versus average firing rate in 

describing the PMd delay period response?  To address this question, we evaluated the 

relative quality of the six model types that captured various aspects of these factors using 

the Akaike Information Criterion (AIC). 

 

See Chapter 3 for an introduction to AIC.  The formula for the AIC using notation from 

this chapter is expressed as follows: 

 

 ( ),, , 1: ,

0:
ˆ2 log | 2n d

r

c d r R n d

T ML
AIC p n Kθ

= = − × +
 

 (4.3) 

 

The first term contains the data likelihood, ( ),, , 1: ,

0:
ˆ|c d

r

c d r R c d

T ML
p n θ

=

, evaluated at the maximum 

likelihood estimate ,ˆc d

ML
θ , where ,, , 1:

0:
c d

r

c d r R

T
n

=

 denotes all delay period one-millisecond time 

bins for neuron c  and target d  over all trials ,1:
c d

r R= , where ,c d
R  is the number of 

trials available for that neuron and target.  The second term includes K , notation used to 

denote the number of parameters that compose the model.  This term penalizes the model 

for complexity.  The same Matlab function glmfit that was used to determine maximum 

likelihood parameter estimates, also returns the deviance with which to calculate the AIC. 

 

4.2.5  Absolute model quality:  time-rescaling statistics 

 

Once minimum AIC models were chosen for each neuron/direction pair, we evaluated 

whether the model sufficiently described the data in an absolute sense.  The time 

rescaling theorem and its associated statistics allow us to determine whether the 

empirically observed spiking data is sufficiently typical under the proposed  point process 

model.  A detailed mathematical description of this procedure was previously reported 

[10].  See Chapter 3 for an introduction to the time rescaling statistics. 
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4.2.6  Decoding:  recursive estimation/classification of targets from ensemble  PMd 

 spiking 

 

How important are elapsed time and history versus average firing rate in the quality of 

target representation among the spiking of an ensemble of PMd neurons?  To address this 

question we applied a discrete time point process filter to provide target estimates that 

would theoretically approximate the minimum classification error assuming our selected 

models were correct.  Because we assumed complete initial uncertainty about the target 

in each decoding trial, this approach was equivalent to choosing the maximum a 

posteriori (MAP) or the maximum likelihood (ML) target. 

 

The filtering problem requires that we calculate the posterior density on the target 

position X  given spike counts from a PMd ensemble of C  neurons, including the first 

1k +  time bins of the delay period.  The target position random variable can take on a 

particular value x  that indicates one of the eight fixed target locations.  The task draws 

targets at random, so that the initial probability of any given target is uniform: 

 

 ( ) 0.125p X x= =  (4.4) 

 

Binned spike counts are updated with each new millisecond bin of ensemble observations 

using the following filtering equation: 

 

 

1 1:

1, , 1, , 1:

11:

1: 1

1

( ) exp( ) ( | )

( | )

c

k

C

n C

k c x k c x k

cC

k

k

p X x n

p X x n
R

λ λ+

+ +

=

+

+

 
− = 

 
= =

∏
 (4.5) 

 

  

 

Here, 1, ,k c x
λ

+
 is the instantaneous probability of firing at time 1k + , specified by the 

model for neuron c  and target position x , and expressed in spikes per bin (here spikes 

per millisecond).  This term captures history or elapsed-time dependence that is 
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represented in the model.  1:

1:

C

k
n  is the set of spikes counts from the first k  one millisecond 

bins of the delay period. 

 

Equation (4.5) simply represents an application of Bayes Rule.  The expression in square 

brackets corresponds to a discrete time approximation of the point process observation 

density, namely ( )
1: 1:

1 1:| , ;C C

k k k
p n X x n θ

+
= .  The normalization constant 1k

R
+

 includes 

1: 1:

1 1:( | )C C

k k
p n n

+
. 

 

The mode of this posterior density (4.5) represents the target estimate that is most 

frequently correct: 

 

 ( )
1:

1 1: 1
ˆ arg max ( | )C

k k

x

x p X x n
+ +

= =  (4.6) 

 

The number of trials for which this target estimate is correct at a given time interval k  is 

reported as “Percent Correct (%)” (Figures 4.4 A,D, and G). 

 

Our use of the point process filter explicitly states its assumptions through the statistical 

model.  In contrast to previous PMd decoding approaches [4, 5], these assumptions are 

verified in the model quality steps (see previous sections).  In an effort to reduce the 

effects of model mismatch, only minimum AIC models of neurons that passed the time 

rescaling statistics were included in the decoding analysis. 

 

The filter allows millisecond-by-millisecond updates of the best target estimate over the 

duration of any given delay period.  By switching between various model assumptions, 

we can demonstrate the extent to which those assumptions are important to target 

representation in PMd. 

 

Model fitting and filtering were coordinated using three approaches. In leave-one-out 

crossvalidation, only the trial being decoded is not used in fitting model parameters.  In 

leave-zero-out validation, all trials are used in fitting model parameters.  In simulated 
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validation, premovement PMd activity was generated using the time rescaling theorem 

from models that were fit using all trials, and decoded with the same models.  See [10] 

for a description of spike simulation using the time rescaling theorem.  The interpretation 

and comparison of these three approaches is explained in subsequent sections. 

 

4.3  Results 

 

We first studied the extent to which elapsed time and spiking history better describe delay 

period PMd activity than average firing rate alone.  Six point process models were 

proposed (see Methods), each of which captured different aspects of average firing rate, 

elapsed time, and spiking history.  After these models were fit to the data, the relative 

importance of these factors in predicting delay period activity could be assessed with the 

Akaike Information Criterion (AIC) (see Methods).  This measure captures the notion 

that models that generalize well to unseen data are careful to balance goodness-of-fit with 

simplicity. 

 

The AIC analysis is summarized in a bar graph (Figure 4.4.2A). These results indicate 

that elapsed time and spiking history together describe PMd delay period responses better 

than any factor alone for more than 70 percent of neuron/direction pairs.  Consistent with 

the contribution of elapsed time, we would expect that the presentation of a target in the 

context of the delayed reach training regimen is associated with physical processes that 

preserve a dynamic temporal structure over multiple trials.  In contrast, roughly 20% of 

neuron/direction pairs were consistent with models that would describe a PMd response 

dictated by physical processes that retain a static structure over the delay period. 

 

History terms distributed throughout the last 150 milliseconds were represented in the 

minimum AIC models (Figure 4.2C), and their contributions tended to be inhibitory (not 

shown).  Taken together, this data suggests that both local and distant neuronal processes 

contribute to the PMd response during the delay period.  Cell membrane properties and 

inhibitory interneuron connections might predominate the short term history, while more 

distant recurrently connecting pathways [11, 12] to parietal cortex, frontal cortex, basal  
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Figure 4.2.  Models are fit across all trials of every neuron, separately for each 
target.  The Akaike Information Criterion (AIC) balances goodness-of-fit against 
generalizability to assess model quality.  (A) Percentage of all models that are best 
described by each model type.  Slightly more than 70 percent of PMd responses 
across 61 neurons and 8 directions were better modeled with history beyond 
absolute refractory periods than with simpler dependencies indicated in the figure 
legend.  Elapsed time (ET) models of varying resolution (Full Delay, 150 ms, 75 ms) 
and other model types are explained under Methods. (B)  Same as in (A), but 
computed among models that correspond to neurons with satisfactory models for all 
8 directions based on the K-S and autocorrelation tests (Figure 2).  (C)  Distribution 
of history intervals that contributed to the minimum-AIC models described in (A), 
including short-term history that extends backwards in time from 1 to 10 ms in 1 ms 
intervals, and long term history that further extends from 11 to 150 ms in 10 ms 
intervals.  (D) Same as in (C), but computed among models that correspond to 
neurons with satisfactory models for all 8 directions based on the K-S and 
autocorrelation tests (Figure 2).  This broad history dependence may arise from 
properties of the individual neuron, recurrent connections of the associated 
network, and temporal correlations in the visually presented stimulus.



 58

ganglia, and cerebellum might contribute to long term history.  This supports the idea that 

a network of neurons distributed throughout cortical and subcortical regions cooperate in 

determining activity that specifically precedes the movement and follows the visually-

directed cue, but that local PMd properties also contribute to history dependence. Indeed, 

delay period activity distinct from activity in other movement phases has been observed 

in posterior parietal cortex [13], frontal cortex [14], and the subthalamic nucleus [15]. 

 

Could PMd responses, determined by both local and distant physical processes, be 

adequately described by these relatively simple models? The time rescaling theorem and 

related statistics (see Methods) allowed us to evaluate our models in this absolute sense.  

We plot sample results from the K-S statistic and one-lag autocorrelation for illustration 

(Figures 4.3A and B).  The threshold for passing the K-S test can be varied to include 

more neurons that have satisfactory models for every target position (Figure 4.3C).  The 

99 percent confidence interval corresponds to the vertical dashed line, where 40 of the 61 

PMd neurons have adequate models in all directions.  Of these 40 neurons, 38 

additionally passed the one-lag autocorrelation test.  Consequently, just over 60 percent 

of the neurons studied could be adequately described (in the sense of time rescaling 

statistics) by these model classes.  The model classes among this passing subset (Figure 

4.2B) tend to include more Poisson models than the original subset (Figure 4.2A).  Short 

and long term history are still represented (Figure 4.2C). 

 

How important are average firing rate, elapsed time and spiking history in the 

representation of targets?  By capturing how quickly and efficiently targets could be 

decoded when each of these factors were incorporated, our analysis characterized the 

extent of advantage that downstream neural networks or prosthetic algorithms would 

acquire by tuning their responses to those factors. 

 

Results of leave-one-out crossvalidation (Figures 4.4 A-C), leave-zero-out validation 

(Figures 4.4 D-F), and simulated validation (Figures 4.4 G-I) were summarized. See 

Methods for definitions.  In all decoding cases, the minimum AIC filter provides better 

results than inhomogeneous Poisson (elapsed time) or Poisson models (Figures 4.4 A,D,  
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Figure 4.3.  Use of the time-rescaling theorem to evaluate the minimum AIC 
models determined in Figure 2C.  The time-rescaling theorem states that the 
correct model of spiking activity will proportion the interspike intervals 
(ISIs) of a spike train into series of independent, exponentially distributed 
random variables of mean 1.  (A) The K-S plot verifies that rescaled ISIs are 
exponentially distributed.  Spikes generated from the Min AIC model of one 
example neuron produce empirical cumulative probability density functions 
that fall within the solid lines 99 percent of the time.  (B) The one-delay-
autocorrelation test checks that neighboring interspike intervals are 
independent, as depicted pictorially with this same model from the uniform 
scatter of ISIs.  (C)  More neurons pass the K-S test when the normalized K-
S statistic is increased.  At the normalized K-S statistic corresponding to 99 
percent confidence intervals (vertical dashed line), 40 out of 61 
(approximately 65%) of the neurons pass the K-S test, of which 38 neurons 
additionally pass the one-delay-autocorrelation test with a confidence 
interval of 3 standard deviations.
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G).  Decisions that are made on the scale of reaction times (200 ms) make more efficient 

use of neurons when both elapsed time and history are incorporated (Figures 4.4 B,E,H).  

Performance improvements appear to diminish substantially as the population size 

approaches 40 neurons.  This effect is likely an artifact of the analysis:  because neurons 

are drawn with replacement from a pool of 38 neurons, fewer independent observations 

are introduced as the tested ensemble size grows.  The simulated validation (Figure 4.4 

H) introduces independent responses, but from the same pool of 38 tuning curves 

(spiking models).  Similarly, projected estimates of performance reported in previous 

studies [4, 5, 16] are expected to under or overestimate the number of neurons needed to 

achieve a particular performance level if the observed set of neurons have a different 

distribution of tuning curves than the general population.  Reliable decisions can 

generally be made more rapidly by considering elapsed time and history structure in 

addition to average firing rate (Figures 4.4 C,F,I). 

 

Why aren’t these decoding results perfect?  The simulated validation (Figures 4.4 G,H,I) 

shows that even when a filter is perfectly matched to spiking activity, decoding errors 

cannot be eliminated entirely during the delay period because the spiking response is 

intrinsically noisy.  However, the error rates can be brought down both by increasing the 

numbers of neurons (Figure 4.4H) and by waiting longer before a decision is made 

(Figure 4.4G).  In practice decoding performance is worse than would be suggested by 

the simulated analysis.  The concepts of overfitting and underfitting capture this notion.  

In overfitting, the model is unable to adequately generalize because it captures features of 

the noise specific to the training data set.  The difference in performance between leave-

zero-out validation (Figure 4.4D) and leave-one-out crossvalidation (Figure 4.4A) 

suggests that the minimum AIC and inhomogeneous Poisson models suffer from 

overfitting to a greater extent than the Poisson model.  In underfitting, the model fails to 

generalize well because it is unable to capture the correct intrinsic structure in the PMd 

response.  The difference in performance between leave-zero-out and simulated 

validation indicates that the Poisson model suffers in part from simplicity: performance 

degradation from poor goodness-of-fit (model mismatch) is indicative of underfitting. 
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Figure 4.4.  Point process filter decoding analysis.  Three model classes were considered for 
decoding, including the minimum AIC model (model 6, black), an inhomogeneous Poisson 
model (model 3, dark gray), and a Poisson model (model 1, light gray).  Three types of analyses 
are displayed: (A,B,C) Leave-one-out crossvalidated empirical decoding performance.  (D,E,F)  
Leave-zero-out empirical decoding performance, and  (G,H,I)  Simulated decoding 
performance.  Three types of graphs are used to summarize the results:  (A,D,G) The percentage 
of trials classified correctly is plotted against time for an ensemble of 40 neurons.  (B,E,H) The 
largest percent correct achieved by each model class in the first 500 ms post-target-onset is 
plotted against ensemble size.  (C,F,I)  The time post-target-onset required to reach 30% correct 
is plotted against ensemble size.  Shaded lines in all graphs indicate 2 standard deviations above 
and below a mean percent correct, calculated from the variance of 10 simulation results, each of 
which runs at least 500 decoding trials.
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4.4  Discussion 

 

The modeling analysis presented in this work suggests that for the majority of PMd 

neurons, the incorporation of elapsed time and history better describes delay period 

activity than the standard average firing rate tuning curve alone.  The delay period 

response of many PMd neurons can be adequately described (in the sense of time-

rescaling statistics) by these relatively simple models despite extensive local and distant 

recurrent connections.  The heterogeneity of physical phenomena associated with PMd is 

reflected in a broad based history dependence over 150 ms. 

 

The decoding analysis highlights that better target representations can be achieved in at 

least three ways:  adjusting the neural code, growing the population of neurons in the 

ensemble, and waiting longer times before decisions are made.  Often we are unable to 

wait longer to generate reliable representations, such as when shooting a basketball in a 

game, or playing a rapid piano piece.  Recruitment of larger population sizes and adjusted 

neural codes are two possible ways in which experts might improve their performance in 

the face of time constraints. 

 

Our simulated validation shows that even Poisson neural codes with realistic firing rates 

and tuning curves are capable of target representation that is far superior to what would 

be inferred from leave-one-out crossvalidation.  The spiking of most PMd neurons is 

better described by elapsed time and history dependence, but a minority of ensemble 

subsets that are sufficiently decoupled from recurrent connections might still contribute 

to target representation in a Poisson-like fashion. 

 

Although we have characterized the relative importance of various factors in contributing 

to high quality target representation in PMd, the best downstream neural systems for 

decoding would need to consider robustness, energy consumption, and other costs in 

addition to expected classification performance.  As a result, the physical instantiation of 

an optimized in vivo decoding algorithm could be very different from what is considered 

optimal with respect to minimum classification error. 
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The minimum AIC models in this report present better generalizability than standard 

PMd models and achieve adequate goodness-of-fit based on the time rescaling statistics.  

However, the statistical description of PMd delay period activity is not complete.  

Subsequent work must achieve stronger generalizability in the statistical description of 

PMd.  The next generation of statistical models should begin to consider known physical 

constraints.  Techniques like diffusion tensor imaging may be able to provide estimates of 

conduction delays related to recurrent connections to the specific PMd neurons being 

investigated in any given study.  A physically constrained approach may allow for 

stronger generalization as well as statements about PMd target representation that can be 

interpreted more directly in the context of the neural architecture. 
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Chapter 5 

A State Space Analysis for 
Reconstruction of Goal-Directed Movements 
Using Neural Signals1

 

 

The execution of reaching movements involves the coordinated activity of multiple brain 

regions that relate variously to the desired target and a path of arm states to achieve that 

target.  These arm states may represent positions, velocities, torques, or other quantities.  

Estimation has been previously applied to neural activity in reconstructing target 

separately from path.  However, target and path are not independent.  Because arm 

movements are limited by finite muscle contractility, knowledge of the target constrains 

the path of states that leads to the target.  In this chapter, we derive and illustrate a state 

equation to capture this basic dependency between target and path.  The solution is 

described for discrete-time linear systems and Gaussian increments with known target 

arrival time.  The resulting analysis enables the use of estimation to study how brain 

regions that relate variously to target and path, together specify a trajectory.  The 

corresponding reconstruction procedure may also be useful in brain-driven prosthetic 

devices to generate control signals for goal-directed movements. 

 

                                                 
1  L. Srinivasan, U.T. Eden, A.S. Willsky, E.N. Brown. Neural Computation, vol. 18, no. 10, October 2006. 
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5.1  Introduction 
 

An arm reach can be described by a number of factors, including the desired hand target 

and the duration of the movement.  We reach when moving to pick up the telephone or to 

lift a glass of water.  The duration of a reach can be specified explicitly (Todorov & 

Jordan, 2002) or emerge implicitly from additional constraints such as target accuracy 

(Harris & Wolpert, 1998).  Arm kinematics and dynamics during reaching motion have 

been studied through their correlation with neural activity in related brain regions, 

including motor cortex (Moran & Schwartz, 1999), posterior parietal cortex (Andersen & 

Buneo, 2002), basal ganglia (Turner & Anderson, 1997), and cerebellum (Greger, Norris, 

& Thach, 2003). Separate studies have developed control models to describe the observed 

movements without regard to neural activity (Todorov, 2004a).  An emerging area of 

interest is the fusion of these two approaches, to evaluate neural activity in terms of the 

control of arm movement to target locations (Todorov, 2000; Kemere & Meng, 2005).  

While several brain areas have been implicated separately in the planning and execution 

of reaches, further study is necessary to elucidate how these regions coordinate their 

electrical activity to achieve the muscle activation required for reaching.  In this chapter, 

we develop state-space estimation to provide a unified framework to evaluate reach 

planning and execution related activity. 

 

Primate electrophysiology during reaching movements has focused on primary motor 

cortex (M1) and posterior parietal cortex, regions that represent elements of path and 

target, respectively.  Lesion studies previously identified M1 with motor execution 

(Nudo, Wise, SiFuentes, & Milliken, 1996) and PPC with movement planning 

(Geschwind & Damasio, 1985).  Several experiments have characterized the relationship 

between M1 neuronal activity, arm positions and velocities (Georgopoulos, Kalaska, 

Caminiti, & Massey, 1982; Schwartz, 1992; Moran & Schwartz, 1999; Paninski, Fellows, 

Hatsopoulos, & Donoghue, 2004), and forces (Georgopoulos, Ashe, Smyrnis, & Taira, 

1992; Taira, Boline, Smyrnis, Georgopoulos, & Ashe, 1995; Li, Padoa-Schioppa, & 

Bizzi, 2001).  PPC is presently described as relating broadly to the formation of intent, 

and specifically to the transformation of sensory cues into movement goals (Andersen & 
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Buneo, 2002).  More recent experiments are beginning to elucidate the role of premotor 

cortical areas in motion planning and execution (Schwartz, Moran, & Reina, 2004), 

including interactions with PPC (Wise, Boussaoud, Johnson & Caminiti, 1997).  Explicit 

regression analyses have also been performed to relate motor cortical activity to features 

of both target and path (Fu, Suarez, & Ebner, 1993; Ashe & Georgopoulos, 1994). 

 

In parallel, theoretical models for the planning and execution of reaches have developed 

to include different concepts in control engineering and robotics.  A common starting 

point is the state equation, a differential equation that describes how the arm moves due 

to passive sources like joint tension, and user controlled forces such as muscle activation.  

The state equation is used to prescribe a path or a sequence of forces to complete the 

reach based on the minimization of some cost function that depends on variables such as 

energy, accuracy, or time.  Many reach models specify control sequences computed prior 

to movement that assume a noise-free state equation and perfect observations of arm state 

(Hogan, 1984; Uno, Kawato & Suzuki, 1989; Nakano et al., 1999).  The execution of 

trajectories planned by these models can be envisioned in the face of random 

perturbations by equilibrium-point control, where each prescribed point in the trajectory 

is sequentially made steady with arm tension.  Recently, reach models have been 

developed that explicitly account for noisy dynamics and observations (Harris & 

Wolpert, 1998; Todorov, 2004b).  Based on stochastic optimal control theory, the most 

recent arm models (Todorov & Jordan, 2002; Todorov, 2004b) choose control forces 

based on estimates of path history and cost-to-go, the price associated with various ways 

of completing the reach.  A general review of control-based models is provided in 

Todorov, 2004a. 

 

Estimation has been used to relate neural activity with aspects of free arm movements 

(Georgopoulos, Kettner, & Schwartz, 1988; Paninski, Fellows, Hatsopoulos, & 

Donoghue, 2004).  Alternate models of neural response in a specific brain region can be 

compared by mean squared error (MSE).  Reconstruction of a measured parameter is one 

way to characterize neural activity in a brain region.  Learning rates can be related 

explicitly and simultaneously to continuous and discrete behavioral responses using an 
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estimation framework (Smith et al., 2004).  Mutual information is a related alternative 

that has been prevalent in the characterization of neural responses to sensory stimuli 

(Warland, Reinagel, & Meister, 1997).  Both mean squared error (MSE) and conditional 

entropy (calculated in determining mutual information) are functions of the uncertainty in 

an estimate given neural observations, and mean squared error (MSE) rises with 

conditional entropy for Gaussian distributions.  These two methods were recently coupled 

to calculate the conditional entropy associated with recursively-computed estimates on 

neural data (Barbieri et al., 2004). 

 

Estimation algorithms presently form the interface between brain and machine in the 

control of neural prosthetics, bearing directly on the clinical treatment of patients with 

motor deficits. Prototype systems have employed either estimation of free arm movement 

(Carmena, et al., 2003; Taylor, Tillery, & Schwartz, 2002; Wu, Shaikhouni, Donoghue, 

& Black, 2004), or target location (Musallam, Corneil, Greger, Scherberger, & Andersen, 

2004; Santhanam, Ryu, Yu, Afshar, & Shenoy, 2005).  Most recently, several estimation 

procedures were proposed to combine these two approaches and specifically facilitate 

reaching movements for brain-controlled prosthetics (Srinivasan, Eden, Willsky, & 

Brown, 2005; Cowan & Taylor, 2005; Yu, Santhanam, Ryu, & Shenoy, 2005; Kemere & 

Meng, 2005). 

 

Two probability densities are used implicitly in estimation.  The first density describes 

the probability of neural activity conditioned on relevant covariates like stimulus 

intensities or kinematic variables. This density arises through the observation equation in 

estimation, and as an explicit function in information theoretic measurements.  The 

second density describes the interdependence of the relevant covariates before any neural 

activity is recorded.  This density arises through the state equation in estimation and as a 

prior on stimulus values in the information-theoretic characterization of sensory neurons. 

In experiments that calculate mutual information between neural activity and independent 

stimulus parameters, this second probability density is commonly chosen to be uniform.  

In the study of reaching movements, the complete prior density on target and path 

variables cannot be uniform because the target and the path state at all times in the 
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trajectory are dependent.  A state equation naturally expresses these constraints, and 

serves as a point of departure for analysis based on estimation. 

 

In this chapter, we develop a discrete-time state equation that relates target state and path 

states under weak assumptions about a reach.  Specifically, the result represents the 

extension of the linear state-space description of free arm movement with no additional 

constraints. The states of the target or path refer to any vector of measurements of the 

arm at a particular point in time, such as joint torque, joint angle, hand velocity, and 

elbow position.  This method supports arbitrary order, time-varying linear difference 

equations, which can be used to approximate more complicated state equation dynamics. 

The approach is based on the continuous-time results by Castanon, Levy, & Willsky, 

1985 in surveillance theory, and draws on the discrete time derivation of a backwards 

Markov process described by Verghese & Kailath, 1979.  Unlike existing theoretical 

models of reaching movement, we do not begin with an assumed control model or 

employ cost functions to constrain a motion to target.  The resulting reach state equation 

is a probabilistic description of all paths of a particular temporal duration that start and 

end at states that are specified with uncertainty. 

 

We first develop a form of the reach state equation that incorporates one prescient 

observation on the target state.  We then extend this result to describe an augmented state 

equation that includes the target state itself.  This augmented state equation supports 

recursive estimates of path and target that fully integrate ongoing neural observations of 

path and target.  Sample trajectories from the reach state equation are shown. We then 

demonstrate the estimation of reaching movements by incorporating the reach state 

equation into a point process filter (Eden, Frank, Barbieri, Solo, & Brown, 2004).  We 

conclude by discussing the applicability of our approach to the study of motion planning 

and execution, as well as to the control of neural prosthetics. 
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5.2  Theory 
 

5.2.1  State Equation to Support Observations of Target Before Movement 

 

The objective in this section is to construct a state equation for reaching motions that 

combines one observation of the target before movement with a general linear state 

equation for free arm movement.  The resulting state equation enables estimation of the 

arm path that is informed by concurrent observations and one target-predictive 

observation, such as neural activity from brain regions related to movement execution 

and target planning respectively. We begin with definitions and proceed with the 

derivation. 

 

A reach of duration T  time steps is defined as a sequence of vector random variables 

( 0 1, ,..., T )x x x  called a trajectory.  The state variable tx  represents any relevant aspects of 

the arm at time sample t , such as position, velocity, and joint torque.  The target Tx  is 

the final state in the trajectory.  While we conventionally think of a target as a resting 

position for the arm, Tx  more generally represents any condition on the arm at time T , 

such as movement drawn from a particular probability distribution of velocities. 

 

For simplicity, we restrict our trajectory to be a Gauss-Markov process.  This means that 

the probability density on the trajectory ( )0 1, ,..., Tp x x x  is jointly Gaussian and that the 

probability density of the state at time  conditioned on all previous states t

( )1 2 0| , ,...,t t tp x x x x− −  equals ( )1|t tp x x − , the state transition density.  Although more 

general probability densities might be considered, these special restrictions are sufficient 

to allow for history dependency of arbitrary length.  This is commonly accomplished by 

including the state at previous points in time in an augmented state vector (Kailath, 

Sayed, & Hassibi, 2000).  Figure 5.1A is a schematic representation of the trajectory and 

the target observation, emphasizing that the prescient observation of target Ty  is related 

to the trajectory states tx  only through the target state Tx . 
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The conditional densities of the Gauss-Markov model can alternatively be specified with 

observation and state equations.  For a free arm movement, the state transition density 

( 1|t t )p x x −  can be described by a generic linear time-varying multidimensional state 

equation, 

  -1   t t t tx A x w= +  (5.1) 

 

where the stochastic increment tw  is a zero-mean Gaussian random variable with 

'
t tE w w Q tτ τδ −⎡ ⎤ =⎣ ⎦ .  The initial position 0x  is Gaussian distributed with mean m0 and 

covariance .  The prescient observation 0Π Ty  of the target state Tx  is corrupted by 

independent zero-mean Gaussian noise  with covariance  that denotes the 

uncertainty in target position: 

Tv TΠ

     T T Ty x v= +  (5.2) 

 

The state equation coupled with this prescient observation is described schematically in 

Figure 5.1B. 

 

Restated, our objective is to represent the free movement state equation together with the 

prescient observation on target, as a Gauss-Markov model on an equivalent set of 

trajectory states tx  conditioned on Ty  for 0,1,...,t T= .  The consequent reach state 

equation is of the form: 

  -1     t t t tx A x u tε= + +  (5.3) 
 
where  is a drift term corresponding to the expected value of , and the tu 1| ,t t Tw x y− tε  are 

a new set of independent, zero-mean Gaussian increments whose covariances correspond 

to that of .  This reach state equation generates a new probability density on 

the trajectory of states that corresponds to the probability of the original states 

conditioned on the prescient observation, 

1| ,t t Tw x y−

0( ,..., | )T Tp x x y . 
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Figure 5.1.  Alternate representations of a reaching trajectory and one observation 
on target.  In the Markov model (A), circles represent the state of the arm at various 
times, and the arrangement of directed arrows indicates that the state of the arm at 
time t is independent of all previous states conditioned on knowledge of the state at 
time t-1.  Accordingly, the only state pointing to y , the prescient observation of T

target, is the target state x  itself.   In the system diagram (B), the specific evolution T  

of the arm movement is described.  Consistent with the state equation, the arm state 
x  evolves to the next state in time x  through the system matrix A , with additive t-1 t t

noise w  that represents additional uncertainty in aspects of the arm movement that t

are not explained by the system matrix.  The diagram also specifies that the 
observation y  of the target state x  is corrupted by additive noise v .T T T



To derive this reach state equation, we calculate the state transition probability density 

-1( | , )t t Tp x x y . Because wt is the only stochastic component of the original state equation, 

the new state transition density is specified by 1( | ,t t T )p w x y− .  To compute this 

distribution, we use the conditional density formula for jointly Gaussian random variables 

on the joint density -1( , | )t T tp w y x . The resulting distribution is itself Gaussian with mean 

and variance given by: 

 

  1[ | ,t t tu E w x y−= ]T

1−

Ty

1−

i T

           (5.4) 1
1 1 1[ | ] cov( , | ) cov ( , | )( [ | ])t t t T t T T t T T tE w x w y x y y x y E y x−
− − −= + −

 
  1cov( | , )t t tQ w x −=�

       (5.5) 1 '
1 1 1cov( | ) cov( , | ) cov ( | ) cov ( , | )t t t T t T t t T tw x w y x y x w y x−
− − −= −

 

The mean  corresponds identically to the linear least squares estimate of  

and the variance  equals the uncertainty in this estimate. 

tu 1| ,t t Tw x y−

Q�

 

 

The covariance terms in equations (5.4) and (5.5) can be computed from the following 

equation that relates wt to yT given xt-1, 

 

  1( , 1) ( , )
T

T t
i t

y T t x T i w vφ φ−
=

= − + +∑  (5.6) 

 

 

where ( , )t sφ  denotes the state transition matrix that advances the state at time s to time t, 

 

  

max( , )
( )

1 min( , )

,
( , )

,

t s
sign t s
i

i t s

A t
t s

t s
φ

−

= +

⎧
s≠⎪= ⎨

⎪Ι =⎩

∏  (5.7) 
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The covariance terms are accordingly given by 

 

  1cov( | )t t tw x Q− =  (5.8) 

  1cov( , | ) '( , )t T t tw y x Q T tφ− =  (5.9) 

  1cov( , | ) ( , ) '( , )
T

T T t T i
i t

y y x T i Q T iφ φ−
=

= Π +∑  (5.10) 

For notational convenience, define the following quantity: 

   (5.11) ( , ) ( , ) '( , ) ( , ) '( , )
T

T
i t

t T t T t T t i Q t iφ φ φ φ
=

Π = Π +∑ i

Simplifying and substituting into equations (5.4) and (5.5), we obtain the mean and 

covariance of the old increment given the target observation: 

 

  1
1( , ) ( , )[ ( , 1) ]t t T tu Q t T t T y T t xφ φ−
−= Π − −  (5.12) 

   (5.13)  1( , )t t tQ Q Q t T Q−= − Π� '
t

1))

The density on the initial state conditioned on the target observation is calculated 

similarly. The resulting mean and variance of the initial state is given by 

 

  1 1
0 0( (0,T− −Π = Π +Π� −

T

 (5.14) 

   (5.15) 1 1
0 0 0 0[ | ] (0)( (0, ) (0, ) )TE x y m T T yφ− −= Π Π +Π�

 

A recursion can be obtained for equation (5.11) by writing ( 1, )t TΠ − in terms of ( , )t TΠ : 

 

  ( 1, ) ( 1, ) ( , ) '( 1, )t T t t t T t tφ φΠ − = − Π − +  

                                                      1( 1, ) '( 1, )tt t Q t tφ φ−− −  (5.16) 

with 

  ( , ) TT T QTΠ = Π +  (5.17) 

 

Complementing the new initial conditions (5.14) and (5.15), the reach state equation can 

be written in various equivalent forms.  The following form emphasizes that the old 
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increment wt has been broken into the estimate ut of wt from yT and remaining 

uncertainty εt, 

  t t t-1 tx  = A x  + u  + tε  (5.18) 

   (5.19) (0, )t N Qε �∼ t

 

with ut as given in equation (5.12) and εt distributed as a zero-mean Gaussian with 

covariance . i
tQ

 

This form is suggestive of stochastic control, where ut is the control input that examines 

the state at time 1tx − , and generates a force to place the trajectory on track to meet the 

observed target.  Nevertheless, this form emerges purely from conditioning the free 

movement state equation on the target observation rather than from any specific 

biological modeling of motor control.  Note critically that ut is a function of 1tx − , so that 

the covariance update in a Kalman filter implementation should not ignore this term. 

 

Alternatively, we can group the 1tx −  terms.  This form is more conducive to the standard 

equations for the Kalman filter prediction update. 

 

  t t t-1 tx  = B x  + f  + tε  (5.20) 

  1[ ( ,t t )] tB I Q t T A−= − Π  (5.21) 

  1( , ) ( , )t t Tf Q t T t T yφ−= Π  (5.22) 

 

In both forms, the resulting reach state equation remains linear with independent 

Gaussian errors εt, as detailed in the appendix.  Because tx  is otherwise dependent on 

1tx − or constants, we conclude that the reach state equation in (5.18) or (5.20) is a Markov 

process. 
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5.2.2  Augmented State Equation to Support Concurrent Estimation of Target 

 

Building on the previous result, we can now construct a more versatile state equation that 

supports path and target estimation with concurrent observations of path and target. The 

previous reach state equation incorporates prescient target information into a space of 

current arm state tx .  We now augment the state space to include the target random 

variable Tx .  According to this model, the state of the arm at time  is explicitly 

determined by the target and the state of the arm at time 

t

1t − . 

 

The reach state equation derived above suggests an approach to calculating the state 

transition density 1( , | , )t T t Tp x x x x−  that corresponds to an augmented state equation.  

Because Tx  is trivially independent of tx  conditioned on Tx , we can equivalently 

calculate the transition density of 1( | , )t t Tp x x x− .  This is identical to the reach state 

equation derivation of 1( | , )t t Tp x x y−  with  set to zero.  The resulting state equation can 

be consolidated into vector notation to give the augmented form: 

Tv

 

  1

0 0
t t t

T T

x x
Ix x

ε−Ψ Γ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

+  (5.23) 

  tBΨ =  (5.24) 

   (5.25) 1( , ) ( , )tQ t T t Tφ−Γ = Π

0TΠ =  (5.26)   

The initial condition on the augmented state [ ] '
0 , Tx x  is the joint distribution that 

corresponds to our uncertainty as external observers about the true starting and target 

states chosen by the brain at time zero. 

 

This augmented state equation permits additional features to be incorporated into the 

model relative to the reach state equation.  First, observations of the target can be 

incorporated throughout the duration of the reach to improve arm reconstructions.  In 

contrast, the reach state equation incorporated one target observation before movement.  
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Second, refined estimates of the target can be generated recursively as estimates become 

more informed by reach and target related activity. 

 

 
5.3  Results 
 

5.3.1  Sample Trajectories 

 

We proceed to illustrate the underlying structure of a reach for our goal-directed state 

equation, which appropriately constrains a general linear state equation to an uncertain 

target.  We also explain how the underlying reach structure is affected by parameters of 

the model, namely reach duration, the target state observation, and target uncertainty. 

 

The density on the set of trajectories, -1 0( , ,..., | )t t Tp x x x y , can be calculated by iteratively 

multiplying the transition densities 1( | , )t t Tp x x y−  given by the state equation.  This 

density represents our assumptions about the trajectory before receiving additional 

observations of neural activity during the reach.  Broader probability densities on the set 

of trajectories imply weaker assumptions about the specific path to be executed. 

 

We can visually examine the structure of our assumptions by plotting samples from the 

density on trajectories as well as the average trajectory.  Sample trajectories are generated 

by drawing increments tε  from the density specified in equation (5.19).  The simulated 

increments are accumulated at each step with t t tA x u+ , the deterministic component of 

the state equation (5.18).  The resulting trajectory represents a sample drawn from 

-1 0( , ,..., | )t t Tp x x x y , the probability density on trajectories.  The average trajectory is 

generated from the same procedure, except that the increments tε  are set to their means, 

which equal zero. 
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We first examine sample trajectories that result from small changes in model parameters. 

For illustration, the states were taken to be vectors 
'

, , ,x y t
x y v v⎡ ⎤⎣ ⎦ , representing position 

and velocity in each of two orthogonal directions. The original noise covariance was 

nonzero in the entries corresponding to velocity increment variances: 

 

   (5.27) 

0 0 0 0
0 0 0 0
0 0 0
0 0 0

Q
q

q

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

 

The uncertainty in target state ΠT was also diagonal, with 

 

  

0 0 0
0 0 0
0 0 0
0 0 0

T

r
r

p
p

⎛ ⎞
⎜ ⎟
⎜Π =
⎜
⎜ ⎟
⎝ ⎠

⎟
⎟

 (5.28) 

 

In Figure 5.2, sample trajectories from the reach state equation are generated with 

baseline parameters (Figure 5.2A) from which distance to target, reach duration, and 

increment uncertainty have been individually changed (Figures 5.2B-D).  The baseline 

model parameters are given in the following table: 

 

Parameter Baseline Value 

Reach distance 0.35 m 

Time step 0.01 sec 

Noise covariance ( q ) 1x10-4 m2

Reach duration 2 sec 

Target position uncertainty ( ) r 1x10-6 m2

Target velocity uncertainty ( p ) 1x10-6 m2
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Figure 5.2.  Sample trajectories (grey) and the true mean trajectory (black) 
corresponding to the reach state equation for various parameter choices.  
Appropriate changes in model parameters increase the observed diversity of 
trajectories, making the state equation a more flexible prior in reconstructing arm 
movements from neural signals.  Parameter choices (detailed in section 3.1) were 
varied from (A) baseline, including (B) smaller distance to target, (C) increased time 
to target, and (D) increased increment uncertainty.



Parameters were individually altered from baseline as follows: 

 

Parameter Altered Value Graph 

Reach distance 0.25 m Figure 5.2B 

Reach duration 4 sec Figure 5.2C 

Noise covariance ( ) q 3x10-4 m2 Figure 5.2D 

 

 

In Figure 5.3, sample trajectories are plotted for increasing uncertainty ( ) in target 

position, with variances (A) 1x10

r
-4, (B) 1x10-3, (C) 1x10-2, and (D) 1x10-1 m2. This 

corresponds to scenarios in which observations of neural activity before movement 

initiation provide estimates of target position with varying certainty. 

 

Figures 5.4A-C examines the velocity profiles in one direction generated by the reach 

state equation with various parameter choices. Velocity profiles from the baseline 

trajectory are displayed (Figure 5.4A), and parameters are sequentially altered from the 

baseline values (Figures 5.4B-C) as follows: 

 

Parameter Altered Value Graph 

Reach duration 4 sec Figure 5.4B 

Target position and 
velocity uncertainty 

r=1x103 m2 

p=1x103 m2
Figure 5.4C 

 

Figure 5.4D examines the effect of target information on uncertainty in the velocity 

increment.  The magnitude of one diagonal velocity term of the noise covariance is 

plotted over the duration of the reach for comparison against the noise covariance  of 

the corresponding free movement state equation. 

tQ�

tQ

 

 

 80  



A B

C D

x position (m)

x position (m)x position (m)

y 
p

o
si

tio
n

 (
m

)

x position (m)

y 
p

o
si

tio
n

 (
m

)

y 
p

o
si

tio
n

 (
m

)
y 

p
o

si
tio

n
 (

m
)

Figure 5.3.  Sample trajectories (grey) and the true mean trajectory (black) of the 
reach state equation corresponding to various levels of uncertainty about target arm 
position. Variance in the noise v  of the prescient observation y  is progressively T T

2
increased from (A) 1e-4, to (B) 1e-3, (C) 1e-2, and (D) 1e-1 m .  As target 
uncertainty grows, trajectories become more unrestricted, corresponding to 
increasing flexibility in the prior for reconstruction of arm movements.



5.3.2  Reconstructing Arm Movements During a Reach 

 

The reach state equation can be incorporated into any estimation procedure based on 

probabilistic inference, since it represents a recursively-computed prior.  Because the 

reach state equation minimally constrains the path to the target observation, it may be 

useful in the analysis of coordinated neural activity with respect to planning and 

execution. We illustrate the reconstruction of reaching movements from simulated neural 

activity using a point process filter (Eden, Frank, Barbieri, Solo, & Brown, 2004), an 

estimation procedure that is conducive to the description of spiking activity in particular.  

The extension to variants of the Kalman filter is also direct, because the reach state 

equation (5.20) is written in standard Kalman filter notation. 

 

We first simulated arm trajectories using the reach model as described in the previous 

section.  For comparison, arm trajectories were also generated from a canonical model. 

This canonical model was a family of movement profiles from which specific trajectories 

could be chosen that guaranteed arrival at the desired target location and time: 

 

 2

0

01

01 0 0
00 1 0 1( )( / ) cos( / )

0 0 1 0 2
0 0 0 1

x x T

y y Tt t

x x
y y

T t T
v v x x
v v y y

π π
δ

−

⎛ ⎞ ⎛ ⎞Δ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎟
⎟

 (5.29) 

 

This deterministic equation relates velocities 
'

, , ,x y t
x y v v⎡ ⎤⎣ ⎦  to the time increment δ, the 

current time step t , and the distances in two orthogonal directions between the target and 

starting points, over  time steps. 1T +

 

After generating trajectories, we simulated the corresponding multiunit spiking activity 

from 9 neurons, a typical ensemble size for present-day recording from a focal, single 

layer of cortex (Buzáki, 2004).  Output from each unit in the ensemble was simulated 

independently as a point process with an instantaneous firing rate that was a function of 

the velocity. 
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Figure 5.4.  Sample velocity trajectories (grey) and the true mean velocity 
trajectory (black) generated by the reach state equation.  (A) For baseline 
parameters (detailed in section 3.1) with reach duration of 2 seconds, the velocity 
profile is roughly bell-shaped.  (B) As reach duration increases to 4 seconds, the 
trajectories become more varied.  (C) If uncertainty in the observed target velocity 

2
and position is large (1e3 m  for each variance), velocity trajectories resemble 
samples from the free movement state equation.  (D) Uncertainty in the velocity 
increment decreases with time due to the prescient target observation (solid line) as 
compared to the original velocity increment of the corresponding free movement 
state equation (dashed line).



This function, referred to as the conditional intensity (Eden, Frank, Barbieri, Solo, & 

Brown, 2004), is equivalent to specifying a receptive field.  Our conditional intensity 

function is adapted from a model of primary motor cortex (Moran & Schwartz, 1999): 

 

  2 2 1/ 2
0 1( | , ) exp( ( ) cos( ))x y x y pt v v v vλ β β θ θ= + + −  (5.30) 

  0 1 2exp( )x yv vβ α α= + +  (5.31) 

 

where xv  and  are velocities in orthogonal directions. yv

 

The receptive field parameters were either directly assigned or drawn from uniform 

probability densities on specific intervals as follows: 

 

Parameter Assignment or Interval 

β0 2.28 

β1 4.67 sec/m 

θp [-π,π] 

 

 

The corresponding receptive fields had preferred directions between -π and π, 

background firing rates of 10 spikes/sec, and firing rates of 24.9 spikes/sec at a speed of 

0.2 m/sec in the preferred direction. 

 

Together with the simulated trajectory, this conditional intensity function specifies the 

instantaneous firing rate at each time sample based on current velocity. Spikes were then 

generated using the time rescaling theorem (Brown, Barbieri, Ventura, Kass, & Frank, 

2002), where inter-spike intervals are first drawn from a single exponential distribution 

and then adjusted in proportion to the instantaneous firing rate. This method is an 

alternative to probabilistically thinning a homogeneous Poisson process. 
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The simulated spiking activity served as the input observations for the point process 

filter, described extensively in Eden, Frank, Barbieri, Solo, & Brown, 2004.  The two 

defining elements of this filter are the state equation and observation equation.  Our state 

equation is the reach model, and represents the dynamics of the variables we are 

estimating, specified by ( -1| ,  t t )p x x y .  Our observation equation is the receptive field of 

each neuron, specified by 1: -1(  |  ,  ,  )t t t Tp N N x yΔ Δ . This is the probability of observing 

 spikes at time t , given previous spike observations tNΔ 1: 1tN −Δ , the current kinematic 

state tx , and the observation of target Ty .  Because the spiking activity is described as a 

point process, the conditional intensity function specifies this observation density: 

 

 1 -1 t t( | ,...,  , ,  ) exp[  log( (t|x ) ) (t|x ) ]i
t t t T tp N N N x y N λ δ λ δΔ Δ Δ ≈ Δ −  (5.32) 

where δ  denotes the time increment. 

 

The formulation of a recursive estimation procedure from these two probability densities 

is the topic of Eden, Frank, Barbieri, Solo, & Brown, 2004. As with the Kalman filter, the 

resulting point process filter is comprised of a prediction step to compute 

1: -1( |  ,  )t t T  p x N yΔ  and an update step to compute 1:( |  ,  )t t Tp x N yΔ .  The reach state 

equation determines the mean and variance prediction steps of the point process filter, as 

given by 

  
� �

| 1 1| 1t t t tt tx B x f− − −= +  (5.33) 

  '
| 1 1| 1t t t t t t tB B Q− − −Λ = Λ + �  (5.34) 

 

The update step remains unchanged: 

 [ ] ( )
| 1

2
1 1

| | 1
log log log( ) ( )

t t

t t t t k t k
t t x

N
x x x
λ λλ δ λ δ

t

λ

−

− −
−

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
Λ = Λ + Δ − Δ − Δ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (5.35) 

 

  � � (
| 1

'

| | 1 |
log

t t

t t t t t t t k
t

x

x x N
x
λ λ δ )

−

−

⎡ ⎤⎛ ⎞∂⎢ ⎥= + Λ Δ − Δ⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
 (5.36) 
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Figure 5.5.  Reconstruction of reaching arm movements from simulated spiking 
activity. The reach state equation was used to generate trajectories, from which 
spiking activity was simulated with a receptive field model of primary motor cortex. 
Point process filter reconstructions using a free movement state equation (thin grey) 
and a reach state equation (thick grey) were compared against true movement values 
(black). Trajectories of x and y arm positions were plotted against each other (A), 
and as a function of time (B,C).  Additionally, trajectories of x and y arm velocities 
were plotted against each other (D), and as a function of time (E,F).  In these 
examples, target location is known almost perfectly to the reconstruction that uses 

2the reach state equation, with position and velocity variances of 1e-5 m .



We compared the quality of reconstruction using the reach state equation versus the 

standard free arm movement state equation. The same covariance tQ  from equation 

(5.27) was incorporated into the free arm movement state equation (5.1) and the reach 

state equation (5.20).  Figure 5.5 compares position and velocity decoding results for one 

simulated trial on a trajectory generated from the reach state equation. In this trial, the 

filter employing a reach state equation is provided the target location with relative 

certainty, by setting both the  and r p  parameters of TΠ  to  in equation 5 21 10 m−× (5.28).  

The point process filter appears to track the actual trajectory more closely with the reach 

state equation than with the free movement state equation. 

 

Next, we examined the performance of the reach model point process filter in estimating 

trajectories that were generated from the canonical equation (5.29) rather than the reach 

state equation, to determine whether the reconstruction would still perform under model 

violation. Decoding performance for one trial with the canonical trajectory is illustrated 

in Figure 5.6, using the free movement state equation and the reach state equation with r  

and p  in  set to  as with Figure 5.5.  Again, the point process filter tracks 

the actual trajectory more closely when using the reach state equation than when using 

the free movement state equation. 

TΠ 5 21 10 m−×

 

We then assessed whether incorrect and uncertain target-planning information could be 

refined with neural activity that was informative about the path. We implemented the 

target-augmented state equation and examined the mean and variance of estimates of the 

target position as the reach progressed.  Although the true target coordinates were (0.25 

m, 0.25 m) on the x-y plane, the initial estimate of the target location was assigned to (1 

m, 1 m) with a variance of 1 m2, large relative to the distance between the initial target 

estimate and correct target location.  Decoding performance for one trial is illustrated in 

Figure 5.7. In Figures 5.7 A and B, the estimate of the target location is shown to settle 

close to the true target location relative to the initial target  

 87  



0 0.1 0.2

-0.1

0

0.1

0.2

0.3

x position (m)

y 
p

o
si

tio
n

 (
m

)
0 1 2

0.1

0.2

x 
p

o
si

tio
n

 (
m

)

0 1 2

0.1

0.2

Time (sec.)

y
 p

o
si

tio
n

 (
m

)

A B

C

0 0.1 0.2

0

0.1

0.2

x velocity (m/s)

y 
v
e

lo
ci

ty
 (

m
/s

)

0 1 2
0

0.1

0.2

x 
ve

lo
ci

ty
 (

m
/s

)

0 1 2

0

0.1

0.15

Time (sec.)

y
 v

e
lo

ci
ty

 (
m

/s
)

D E

F

Figure 5.6.  Reconstruction in the face of model violation.  Trajectories are 
generated with an appropriately scaled cosine velocity profile. Again, results are 
compared for point process filtering using free (thin black) and reach (thick grey) 
movement state equations against true values (thick black). As with Figure 5.5, 
trajectories of x and y arm positions were plotted against each other (A), and as a 
function of time (B,C).  Similarly, trajectories of x and y arm velocities were plotted 
against each other (D), and as a function of time (E,F).  Position and velocity 

2
variances of the target observation are 1e-5 m .



estimate within 1.5 seconds of a 2 second reach.  In Figure 5.7C, the variances in the 

position (solid) and velocity (dotted) estimates for target (black) approach the variances 

in estimates for the path (gray) as the reach proceeds. 

 

Finally, we confirmed in simulation that the mean squared error of reconstruction using 

the reach state equation approaches that of the free movement state equation as the 

uncertainty in target position grows. One common simulated set of neural data was used 

to make a performance comparison between the two methods. Mean squared errors were 

averaged over 30 trials for the point process filter using the free and reach state equations 

separately.  The results were plotted in Figure 5.8 for values of r and p in  set equal, 

and over a range from  to 10 m

TΠ

7 21 10 m−× 2, evenly spaced by 0.2 units on a log10(m2) 

scale.  The mean squared error line for the reach state equation approaches that of the free 

movement state equation as  grows large, and also flattens as TΠ TΠ  approaches zero. 

 

5.4 Discussion 

 
We have developed a method for describing reaching arm movements with a general 

linear state equation that is constrained by its target. We first derived a reach state 

equation, which incorporates information about the target that is received prior to 

movement. This derivation was then adapted to explicitly include the target as an 

additional state space variable. The resulting augmented state equation supports the 

incorporation of target information throughout the reach as well as during the planning 

period. 

 

As described in the derivation, the reach state equation is Markov. This property is 

guaranteed in part by the independence of noise increments that is demonstrated in the 

appendix. Consequently, the reach state equation is amenable to recursive estimation 

procedures. With no further alterations, the estimate of tx  can be obtained exclusively 

from the neural observation at time t and the estimate of 1tx −  given data through time 

. 1t −
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Figure 5.7.  Target estimation with the augmented state equation for one trial. The 
initial estimate of the target is intentionally set to be incorrect at (1 m, 1 m) and with 

2variance of 1 m  that is large relative to the distance to the true target location at (0.25 
m, 0.25 m).  Subsequent target estimates are produced using simulated neural 
spiking activity that relates directly to the path rather than the target.  (A) Estimates 
of the target position are plotted in gray on the x-y axis, with the actual target marked 
as a black cross.  (B) Distances from target estimates to the actual target location are 
plotted in meters against time.  (C) Variances in estimates of target (black) and path 
(gray) are plotted on a logarithmic scale over the duration of one reach for position 
(solid) and velocity (dashed). These target estimate variances reduce with 
observations consisting only of simulated primary motor cortical activity relating to 
path.



 

The form of the reach state equation presented in (5.18) is particularly suggestive of 

stochastic control.  In fact, the  component in tu (5.18) is the solution to the standard 

linear quadratic control problem.  This represents a duality between estimation and 

control (Kailath, Sayed, & Hassibi, 2000). In this interpretation, the reach state equation 

is a model for the way in which the subject dynamically plans his path from a current 

position to the target. The stochastic increment εt represents our uncertainty as external 

observers, about the precise control strategy being employed. The variable  takes the 

role of a control input that represents the adjustments that the subject is expected to make 

to return the trajectory to a path that puts it on track to the target. In the reach state 

equation,  is a function of the state 

tu

tu 1tx −  and target observation Ty . In the augmented 

state equation,  is a function of tu 1tx −  and the actual target Tx  rather than the target 

observation Ty . 

 

Various parameters work together to determine our uncertainty in the control strategy, 

including the increment variance in the original free movement state equation, distance to 

target, time to target, and target uncertainty. Together, these parameters determine 

whether the state equation at any given time forces the trajectory towards a particular 

target, or whether the trajectory tends to proceed in a relatively unconstrained fashion.  

Figures 5.2 and 3 describe the variation in trajectories that can be generated by 

modulating these parameters, from very directed movements to paths with nearly 

unconstrained directions. 

 

The reach state equation in its simplest form is sufficient to generate, on average, bell-

shaped velocity profiles that are similar to those observed in natural arm reaching 

(Morasso, 1981; Soechting & Lacquaniti, 1981). Models of reaching movement that are 

based on optimization of specific cost functions, examples of which include Hogan, 

1984, Uno, Kawato, & Suzuki, 1989, Hoff & Arbib, 1993, and Harris & Wolpert, 1998, 

also generate these bell-shaped velocity profiles.  It has been previously noted in a 

literature review (Todorov, 2004a) that these various methods implicitly or explicitly 
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optimize a smoothness constraint. In our reach state equation, the bell-shaped velocity 

profile emerges implicitly from the zero-mean Gaussian increment of the original free 

movement state equation. This probability density sets a probabilistic smoothness 

constraint, where it is more likely that the state at consecutive time steps will be similar. 

 

Additionally, symmetry in the profile emerges from the choice of a constant, invertible 

matrix  in equation tA (5.18) and equal mean starting and ending velocities, as with 

trajectories in Figures 5.4A.  Optimal control models have previously reproduced the 

skewed velocity profiles (Hoff, 1992) that occur in experiments (Milner & Ijaz, 1990) 

where the target must be acquired with increased precision. With the reach state equation, 

skewed profiles may require the appropriate choice of time varying components such as 

 and .  When the arrival time grows longer (Figure 5.4B) or the endpoint becomes 

less constrained (Figure 5.4C) in the reach state equation, the trajectory tends to resemble 

a sample path of the free movement state equation, as intended by construction. 

tA tw

 

As the reaching motion approaches the target arrival time, our sense of the subject's 

control strategy becomes clearer, because we know the intended target with some 

uncertainty. We also know that the path must converge to this target soon.  Furthermore, 

we can calculate the control signal that would achieve this goal based on the system 

dynamics represented by the  matrices in equation tA (5.18).  Figure 5.4D illustrates that 

the uncertainty in the control strategy, represented by the variance in the stochastic 

increment tε , decreases over the duration of the reach based on Ty , the prescient 

observation of target. In contrast, the free movement state equation maintains constant 

uncertainty in the control strategy as the reach progresses because it is not informed about 

the target location. 

 

Because the reach state equation incorporates target information, it is able to perform 

better than the equivalent free movement state equation that is uninformed about target. 

This is illustrated in Figure 5.5, where closer tracking is achieved over the entire reach 

when the state equation is informed about target than otherwise. 
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Figure 5.8.  Performance comparison between two approaches to estimation on the 
same simulated set of neural data.  Mean squared error (MSE) of position 
reconstruction is plotted versus log  of uncertainty (variance) in the prescient 10

observation of target.  For each of 30 trials, receptive field parameters, trajectory, 
and spiking activity were simulated anew. For each target variance, MSE is 
averaged over reconstructions from the thirty trials. In the case of large initial target 
uncertainty, the MSE for reconstruction with the reach state equation (dotted) 
asymptotes to that of the free movement state equation (solid).  The MSE for 
reconstruction with the reach state equation also asymptotes as initial target 
uncertainty diminishes.



This reach model and its augmented form are minimally constrained linear state 

equations.  In a probabilistic sense, this means that the estimation prior at each step is 

only as narrow (or broad) as implied by the original free movement state equation and 

observations of path and target.  In contrast, most reach models based on specific control 

strategies (Todorov, 2004b), cost functions (Todorov, 2004a), or canonical models 

(Kemere, Santhanam, Yu, Shenoy, & Meng, 2002; Cowan & Taylor, 2005), place 

additional constraints on the path that make the estimation prior more exclusive of 

alternate paths to target.  An exception is Kemere & Meng, 2005, which uses the linear 

quadratic control solution that provides identical average trajectories to the reach state 

equation, based on the estimation-control duality (Kailath, Sayed, & Hassibi, 2000) 

although the resulting increment variances are different. As depicted in Figure 5.6, 

estimation with a reach state equation is able to perform under model violation, where 

arm movements are generated by a different model, while still taking advantage of the 

target information. 

 

The target-augmented state equation also allows neural activity related to path to inform 

estimates of the target.  This is illustrated in Figure 5.7, where the initial estimate of 

target position was assigned to be incorrect and with large uncertainty (variance).  

Consequently, the estimate of the target location relied in large part on neural activity that 

related to the path.  The augmented state equation projects current path information 

forward in time to refine target estimates.  As a result, the estimated target location in 

Figure 5.7B settled close to the actual target location 0.5 seconds before completion of 

the 2 second reach.  The remaining distance between the target location estimate and the 

actual target location is limited by the extent to which path-related neurons provide good 

path estimates.  For example, path-related neural activity that is relatively uninformative 

about path will result in poor final estimates of target when combined only with poor 

initial target information.   Because the target in the augmented state equation is simply 

the final point of the path, the variance in the target estimate plotted in Figure 5.7C, 

approaches that of the path estimate as the reach proceeds to the arrival timeT . 
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The reach state equation in (5.18) or (5.20) reduces to the original free movement state 

equation in the limit that the prescient target observation is completely uncertain.  This 

explains the trend in Figure 5.8, where mean squared error in trajectory estimates with the 

reach state equation approaches that of the free movement state equation.  Estimates were 

produced from a common simulated set of neural data to allow performance comparison 

between these two approaches. 

 

Filtering with the reach (5.18) and augmented state equations (5.23) bears resemblance to 

fixed interval smoothing.  Fixed interval smoothing refers to a class of estimation 

procedures that produce maximum a posteriori estimates of trajectory values over an 

interval with observations of the trajectory over the entire interval (Kailath, Sayed, & 

Hassibi, 2000). In filtering with the reach state equation, estimates at a given time  are 

based on data received through time t  and the single prescient observation y

t

T on the 

target state Tx .  In filtering with the augmented state equation, estimates of Tx  are based 

on data received through time t and potentially multiple prescient observations on Tx . 

While these three filter types employ observations of future states in maximum a 

posteriori estimates, there are important distinctions in terms of which observations are 

used and allowance for multiple sequential observations of a single state, such as with Tx  

in the augmented state equation. 

 

Although parallels exist to stochastic control, there is a sharp distinction between the 

results of this chapter and a control-based state equation (Todorov, 2004b; Kemere & 

Meng, 2005). First, the reach state equation was derived as the natural extension of a free 

movement state equation, with no further assumptions. In contrast, control based state 

equations are derived by assuming a specific form for the brain's controller and choosing 

the parameters that optimize some cost function. Second, the increment in the reach state 

equation approaches zero for perfectly known targets. The increment of control-based 

state equations persists, and represents system properties rather than our uncertainty 

about the control signal.  Third, the reach state equation describes the target state in the 

most general sense, including the possibility of non-zero velocities. While this can be 
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accommodated into the control framework, the classical notion of a reaching motion has 

been to a target with zero velocity. 

 

Distinctions between the reach state equation and control-based state equations are 

especially important in considering the study of reaching motions.  Recursive estimation 

coupled with a state equation that relates target to path provides a convenient tool for the 

analysis of neural data recorded during planning and execution of goal-directed 

movements.  The state-space estimation framework can assess the extent to which neural 

data and an observation equation improve the reconstruction beyond information about 

the movement built into the state equation.  Classically, control-based state equations 

have been developed to explain as many features about reaching movements as possible 

without any neural data.  In contrast, the reach state equation was developed to extend the 

free movement state equation with no further assumptions.  Both approaches represent 

different levels of detail in a spectrum of models for the dynamics that drive the observed 

neural activity in brain regions that coordinate movement.  These models can be used to 

clarify the roles of various brain regions or the validity of alternate neural spiking 

relationships. 

 

The reach and augmented state equations may also provide improved control in brain 

machine interfaces (Srinivasan, Eden, Willsky, & Brown, 2005) by allowing the user to 

specify a target explicitly with neural signals, or implicitly through the probability 

density of potential targets in a workspace.  This and other recent approaches (Cowan & 

Taylor, 2005; Yu, Santhanam, Ryu, & Shenoy, 2005; Kemere & Meng, 2005) are hybrids 

between target based control prosthetics (Musallam, Corneil, Greger, Scherberger, & 

Andersen, 2004; Santhanam, Ryu, Yu, Afshar, & Shenoy, 2005) and path based control 

prosthetics (Carmena, et al., 2003; Taylor, Tillery, & Schwartz, 2002; Wu, Shaikhouni, 

Donoghue, & Black, 2004), perhaps most relevant when neither approach alone is 

sufficient for the desired level of control using available recording hardware to complete 

a task.  Additionally, the method could support more robust receptive field estimates in 

the face of disappearing units due to neuronal death or tissue retraction (Eden, Truccolo, 

Fellows, Donoghue, & Brown, 2004).  The flexibility of the reach and augmented state 
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equations over more specific reach models might also allow the user to employ the same 

reaching algorithm to navigate obstacles in acquiring their target. 

 

In developing the method further for scientific and clinical application, it is important to 

consider limitations of the equations presented in this chapter.  Importantly, both the 

augmented and reach state equation are written for the prescient observation of a target 

with known arrival time T .  We are currently developing a principled approach to 

accommodate uncertain arrival time, although uncertainty in the target velocity estimate 

might be a convenient surrogate. Also, the calculations were simplified greatly by 

assuming a linear free-arm-movement state equation with Gaussian increments.  This 

may not be possible if linear approximation is insufficient to describe the nonlinear 

dynamics of a movement.  Finally, additional experimental work will be needed to 

elucidate the appropriate observation equations, recording sites, and patient rehabilitation 

regimen that would enhance the clinical application of this hybrid approach to control 

prosthetics. 
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5.5 Appendix:  Proof of Independent Increments in the 
Reach State Equation 

 
 
The new increments are defined as [ ]1| ,t t t T tw E w y xε −= − .  Substituting equation (5.6) 

into an equation that is equivalent to (5.12), we can rewrite the new increments as 
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Chapter 6 

General-Purpose Filter Design for 
Neural Prosthetic Devices 
 

 

 

Brain-driven interfaces depend on estimation procedures to convert neural signals into 

inputs of automated controllers of prosthetic devices that can assist individuals with 

severe motor deficits. Previous estimation procedures were developed on a case-by-case 

basis for specific applications.  In this chapter, we present a coherent estimation 

framework that unifies these procedures and motivates new applications.  The brain-

driven interface is described as an interaction between neural activity and interacting 

components of a prosthetic device that may take on discrete or continuous values.  To 

support neural prosthetics driven by action potentials, a new filtering estimation 

procedure is developed for point process observations which depend on hybrid state 

dynamics. A corresponding Gaussian process filtering procedure is proposed for 

continuous field potentials.  We test our framework against dominant approaches in a 

motor reaching task using simulated traces of ensemble spiking activity from primary 

motor cortex.  Results predict that the hybrid framework outperforms previous 

approaches in the control of arm position and velocity based on trajectory and endpoint 

mean squared error.  The hybrid framework can be used to operate a diverse set of 

devices including computers, robotic limbs, and muscle-embedded electrodes.  Moreover, 

the approach can be applied to a diverse set of biological signals, such as 

electromyograms (EMG), electroencephalograms (EEG), electrocorticoencephalograms 

(ECoG), local field potentials (LFP), and action potentials. 
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6.1  Introduction 
 

Amyotrophic lateral sclerosis, spinal cord injury, brainstem infarcts, advanced-stage 

muscular dystrophies, and diseases of the neuromuscular junction profoundly disrupt 

voluntary muscle control.  New technologies, variously called brain-computer interfaces 

[1, 2], motor neural prostheses [3-5], and cognitive prostheses [6, 7], represent a 

communication link that bypasses affected channels of motor output.  Functional 

electrical stimulation, manually actuated devices, eye tracking, and other approaches [8, 

9] represent practical solutions for many patients, but may not be feasible for individuals 

with profound motor deficits.  Moreover, brain-driven interfaces have the potential to 

provide dexterous and natural control without muscle fatigue. 

 

A brain-driven interface includes a method to monitor neural activity, an algorithm to 

map neural activity to control signals, a device to be controlled, and a feedback 

mechanism from the device to the user [10-14].  This chapter relates to the optimal 

mapping between preprocessed neural activity and estimates of the user’s intention that 

determine control signals.  The method presented here unifies four canonical approaches, 

demonstrates new applications, and suggests one path to further algorithm development. 

 

In prosthetics literature, the optimal mapping is predominantly described as an estimation 

(filtering) problem followed by a control problem. First, an estimate of the user-intended 

prosthetic device state is calculated based on neural activity that serves as a noisy 

observation of that intention.  Second, a control law determines inputs to the device that 

achieve this estimate of the user-intended device state.  This optimization ignores 

feedback to the user, but provides a practical approach that is accomodated within the 

existing framework of estimation theory or similarly, a tracking problem in stochastic 

control.  Previous approaches to the estimation problem include: manually adjusted linear 

combinations of power spectral band energies [15], population vectors for automated but 

sub-optimal linear mappings [16], linear regression for optimized linear mappings [17], 

support vector machines, and recursive Bayesian estimation procedures, including the 

Kalman filter [18], particle filter [19], and point process filter [20, 21]. 
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Bayesian estimation allows dramatically better tracking than linear regression in off-line 

data analyses.  This approach describes the intended state of a prosthetic device and 

observed neural activity as a sequence of random variables indexed by time.  The 

trajectory model defines a prior on the sequence of intended device states.  The 

observation model defines the relationship between neural activity and intended device 

states.  Actual device states are determined from neural activity based on these trajectory 

and observation models. 

 

In the following sections, we present an estimation framework for brain-driven interfaces 

that explicitly allows the designer to span a full range of device capabilities by employing 

a hybrid state space composed of interacting discrete and continuous valued random 

processes.  This method is shown to generalize previous Bayesian approaches to 

prosthesis design, including finite state machines [6], free arm movement models [18], 

reaching movement trajectory models [22-28] switching observation model [25], and the 

mixture of trajectories model [29].  One possible filtering procedure is derived for point 

process observations on the hybrid state space, and connections are drawn to existing 

literature on hybrid estimation for Gaussian observation processes (switching Kalman 

filters). To demonstrate the versatility of this framework, three emerging prosthetic 

device applications are described:  free arm movement with definitive stopping, reaching 

movements with variable arrival time, and reaching to a target that may change within a 

discrete set of targets over the course of the movement.  This final application is 

demonstrated in simulation with a point process model of primary motor cortical activity. 

 

6.2  The hybrid framework 
 

In the formulation of the neural prosthesis estimation problem, the user communicates the 

intended state of the prosthetic device via neural signals.  The optimal brain-driven 

interface must convert these neural signals into an estimate of the intented device state 

that minimizes some distance metric (cost) to the intended sequence of device states.  The 

cost is commonly assumed to be some form of mean squared error for continuous-valued 
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device states and frequency of proper classification for discrete-valued states [10-14].  

Implicit in this formulation, a controller is subsequently expected to receive the estimate 

and drive the device to the corresponding state with the required precision and response 

time. 

 

To maintain generality, we describe the user-intended device state at time step k  by a 

vector of discrete random variables ks  and continuous random variables kx .  The user 

drives neural activity  from  channels at time step  based on the desired device 

states 

1:C
kn C k

ks  and kx .  Although we refer to  as the activity of the  neuron in the specific 

context of multiple single unit recording,  may correspond more generally to the  

signal of any measurement of activity, including single neuron spiking, multiunit activity, 

continuous electric field measurements, and even eye movements.  The history of activity 

this time step, 

c
kn thc

c
kn thc

( )1: 1: 1:
1 2 1, ,...,C C C

kH n n n −= k , may also affect  due to recurrent neural 

connections and other sources of history dependence. 

1:C
kn

 

As an illustration of these variables, consider driving a car with your EEG instead of with 

your arms.  Your intention to increment or decrement the gear as well as the current gear 

position can be captured by a discrete variable ks , whereas the desired wheel or gas pedal 

angles can be further described by the continuous variable kx  that evolve depending on 

the resulting gear position recorded in 1ks + .  The EEG amplitudes on C  different 

channels, indicated by , may depend on your discrete and continuous-valued 

intentions for the car, but also the history of previous amplitudes 

1:C
kn

kH  because of the 

nature of oscillations.  Note that the intended device state need not correspond literally to 

parts of the car, as with the intention to increment or decrement the gear.  The choice of 

variables can dramatically impact ease of use, just as with the design of an interface to a 

consumer electronic device such as the MP3 player. 

 

The hybrid state space is a joint probability density on the entire temporal sequence 

(trajectory) of intended states and neural activity .  Graphical 1: 1:
1 1 1 2 2 2( , , , , , ,...)C Cp x s n x s n
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models on acyclic graphs are a pictoral description of this joint density.  By describing 

the state space this way, we constrain the form of the joint density to allow a simple and 

consistent prescription.  Consider our specific graphical model of the hybrid state space 

(Figure 6.1a), which illustrates only one segment of the entire trajectory.  The circles, 

called nodes, denote random variables corresponding to the intended states and neural 

activity.  The arrows specify interdependencies between the random variables.  A 

consistent prior distribution on the entire set of nodes is provided by specifying 

distributions for each node conditioned on its parents, which are all nodes at the base of 

arrows that point to that node.  Nodes without parents require unconditioned priors.  The 

graphical model imposes a Markov structure, where any node is independent of all other 

nodes when conditioned on its parents.  The hanging arrows directed towards  and 

 represent history dependence in the neural activity. 

1:C
kn

1:
1

C
kn +

 

The probability distribution 1:( | , ,C
k k k k )p n x s H  associated with this hybrid state space 

corresponds to the observation model, because it relates the present measurement of 

neural activity to the present intention of the user and the history of neural activity.  The 

probability distributions 1( | ,k k k 1)p x x s+ + ) and 1( |k kp s s+  comprise the trajectory model; 

they describe the frequency and types of transitions in user intent for which the prosthetic 

device is designed. 

 

In principle, the observation model should properly describe the relation between neural 

observations and user intent and the trajectory model should accurately reflect the 

distribution of user intents.  Model mismatch describes errors that accumulate from an 

incorrect model specification.  Whereas continuous field potentials (LFP, ECoG, EEG) 

are typically described by Gaussian observation models [30], spiking activity at 

millisecond resolution is better described by point process observation models [31-34].  

The continuous component 1( | ,k k k 1)p x x s+ +

)

 of the trajectory model can often be 

reasonably approximated as Gaussian to anticipate smooth changes in the user’s 

continuous state intent when conditioned on a particular discrete state.  The discrete 

component of the trajectory model 1( |k kp s s+ , also called the state transition density, is 
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generally defined by specifying a probability between 0 and 1 for each possible pair of 

intentions 1( ,k k )s s+ , although parameterization may be relevant to dealing with a large set 

of discrete intentions. 

 

Alternate connections could have been used to describe the hybrid state space.  The 

specific choice of connections made (Figure 6.1a) draws on a standard form used in 

hybrid filtering on Gaussian observations [35], but extends it to accommodate arbitrary 

history dependence. This imposed structure on the state space makes it easy to obtain 

estimates of the intended device state in a recursive fashion, based on the latest set of 

neural activity.  Moreover, the connections are sufficiently general as to accommodate a 

diverse set of applications. 

 

Five previously described Bayesian approaches to neural prosthetics fall within this 

single framework (Figures 6.1 b, c, d, and e).    A finite state machine description of the 

prosthesis [6] consists of a sequence of discrete user-intended states, rules for transitions 

between those states, and a relationship between states and neural signals (Figure 6.1b). 

Free arm movement models [18] and reaching movement trajectory models [22-24, 26-

28, 36], both describe continuous-valued arm movement intentions that drive neural 

activity (Figure 6.1c).  The switching observation model [25] accomodates poorly sorted 

neural activity that might be better described by combinations of single cell receptive 

fields (Figure 6.1d).  The mixture of trajectories model [29] was designed for continuous-

valued reaching movements to a stationary target drawn from a discrete set (Figure 6.1e). 

 

While the hybrid state space depicted (Figure 6.1) unifies these previous conceptions of 

neural prosthesis design, an estimation procedure (filter) must still be specified to 

generate probability densities of intended device states given neural activity from which 

average cost measures can be minimized.  In the following sections, we develop a point 

process filter for spiking observations in the hybrid state space and review the 

corresponding Gaussian process filter for continuous field potentials. 
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Figure 6.1. Graphical models of the hybrid state space framework and four 
canonical approaches to estimation for prosthetic devices.  Nodes represent 
random variables, and one probability density is specified for each node 
conditioned on its parents.  Dashed edges are interactions that are possible in 
the hybrid framework but that are not represented in the canonical approach.  
(a)  The hybrid framework represents a specific relationship between the 
sequence of neural signals (n ), user-intended continuous states (x ) and user-k k

intended discrete states (s ) that encompasses and extends previous k

approaches (b-e).  (b)  The finite state machine description of cognitive 
prostheses [6].  (c)  Free arm movement models [18] and reaching movement 
trajectory models [22-24, 26-28, 36].  (d)  The switching observation model 
[25] for poorly sorted spike trains.  (e)  The mixture of trajectories model [29] 
for movements to stationary discrete targets.



6.3  Point process models of ensemble spiking activity 
 

Neural activity in the form of action potentials is a sequence of transient spiking events.  

We first specify an observation model that captures the quality of temporally localized 

events as well as possible dependencies between neurons in an ensemble. 

 

Signals of this nature are naturally described by point process observation models [31-

34].  The crux of the point process description of a single neuron is its conditional 

intensity function.  This is the instantaneous probability of firing as a function of elapsed 

time  and generally conditioned on continuous-valued signals t ( )x t  discrete-valued 

signals ( )s t , and spiking history , where( )H t ( )N t  denotes the total number of spikes 

generated by the neuron since some arbitary starting time:  

 

  
0

Pr( ( ) ( ) 1| ( ), ( ), ( ))( | ( ), ( ), ( )) lim N t N t x t s t Ht x t s t H tλ
Δ→

+ Δ − =
=

Δ
t  (6.1) 

 

We introduce additional notation to accommodate a population of neurons in a discrete 

time setting.  For the  discrete time step of length thk kδ seconds, the conditional intensity 

of neuron  is represented as c c
kλ , in units of spikes per second.  Spiking activity at the 

 time step is summarized by a vector thk ( )1: 1 2, ,...,C
k k k kn n n n= C  of binned spike counts.  The 

 element of contains the total number of spikes generated by the  neuron in the 

respective 

thc 1:C
kn thc

kδ -second interval.  The observation model for the total spiking activity  of 

each member of an ensemble of C  neurons binned at 

1:C
kn

kδ  second intervals is 

approximated [20] as follows: 

  1:

1

( | , , ) exp( log( )
C

C c c
k k k k k k k k k

c

p n x s H n )cλ δ λ δ
=

∝∏ −  (6.2) 

 where ( )1: 1: 1:
1 2 1, ,...,C C C

kH n n n −= k  is the history of spiking activity at step  for the ensemble.  

This is an approximation in two regards.  First, neurons are assumed to be statistically 

independent conditioned on the history of population activity and current intended device 

state.  This assumption still captures a causal notion of statistical dependence among 

k

 110



neurons, that for example, the spiking history of one neuron might affect the present 

spiking probability of another neuron.  Second, the discrete time observation model in 

(6.2) approximates the exact continuous-time observation model for a point process [37]. 

 

 

6.4  Filtering spikes with the hybrid framework 
 

By combining this observation model and the hybrid state space defined in the previous 

section, we now derive a specific filter to estimate hybrid device states from ensemble 

activity that has been modeled as a point process.  The continuous-time exact solution to 

point process filtering with jump-Markov processes is a partial differential equation [38].  

The method in this section is one possible approximation. 

 

To develop an estimation procedure that maps spikes to hybrid device states, we looked 

to the switching Kalman filter [35, 39] which maps Gaussian signals to hybrid device 

states.  We could possibly bin the spike trains (lump them into sequential intervals of 

time) and then apply a standard switching Kalman filter.  However, spike trains that have 

been binned (lumped into sequential intervals of time) only begin to satisfy the Gaussian 

assumption as the binsize grows.  This results in a tradeoff between the user’s control of 

when an action is supposed to happen versus how it is supposed to happen. 

 

To avoid this tradeoff, we wanted to use the point process observation model (previous 

section) as a statistical description of spiking that is accurate on a millisecond-by-

millisecond time scale [34, 37].  This necessitated the development of a point process 

filter for hybrid states.  Just as there are several approaches to the switching Kalman filter 

that balance computational complexity and accuracy [39], there are several possible ways 

to filter spikes for the hybrid framework.  Our point process filter is adapted from a 

mixture-of-Gaussians switching Kalman filter called the Interacting Multiple Model 

(IMM) [39] that has been a popular choice to balance complexity and accuracy for a 

variety of Gaussian applications.  We summarize the procedure in the box below. 
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Spike filtering with the hybrid framework in nine steps 
 
Each iteration of the point process hybrid filter involves nine basic steps.  The quantities  and 1( | )k kp s H +

1( | , )k k kp x s H +  come from the previous iteration, where  and  are used instead for the first iteration.  A 1( )p s 1( )p x
Gaussian approximation to a probability density on the continuous state tx  is specified by a mean and covariance 

matrix.  A probability mass function on the discrete state ks  is specified by a list of probabilities for each possible value 

of ks .  See (Supplementary Material, Section 4) for a practical note on numerical issues. 
 
Step 1 
Compute  1 1 1 1( | ) ( | ) ( |

k

k k k k k k
s

p s H p s s p s H+ + + += ∑ )

Step 2 

Compute 1 1 1
1 1

1 1

( | , ) ( | )
( | , )

( | , ) ( |
k

k k k k k
k k k

k k k k k
s

p s s H p s H
p s s H

p s s H p s H
+ + +

+ +
+ +

=
∑ 1)+

 

Step 3 
Approximate  with the Gaussian approximation to Mixtures 1 1 1 1 1( | , ) ( | , ) ( | ,

k

k k k k k k k k k
s

p x s H p s s H p x s H+ + + + += ∑ )

of Gaussians (see Methods, Section B). 
 
Step 4 
Calculate the Gaussian approximation to .  Specifically, for each value that 1:

1 1 1 1( | , ,C
k k k kp x s n H+ + + + ) 1ks +  can take on, 

send  through one full iteration of a point process filter (see Methods, Section A) with observation 1 1( | , )k k kp x s H+ +

equation  and state equation .  Retain these densities (one Gaussian for 1:
1 1 1 1( | , ,C

k k k kp n x s H+ + + + ) 1)+1( | ,k k kp x x s+

each possible value of 1ks + ) for the next iteration. 
 
Step 5 

Calculate 1

1
1 1| , 1

1/ 2

1| 1,1:
1 1 1 1 1 1 1 11/ 2

1
1| ,

( | , ) exp( log( ) )k

k
x xk k k sk

C
k k sC c c

k k k k k k k k
c

k k s

p n s H n λ δ λ δ+

+
=+ + +

+ +

+ + + + + + + +
=

+

Λ
≈ −

Λ
∏ c .  Note that 

11| 1, kk k s ++ +Λ  and  are posterior and prediction covariance terms from Step 4 (see also Methods, Section A).  
11| , kk k s ++Λ

This is the Laplace approximation (see Supplementary Material). 
 
Step 6 

Calculate 

1

1:
1: 1 1 1 1 1

1 1 1 1:
1 1 1 1 1

( | , ) ( | )
( | , )

( | , ) ( |
k

C
C k k k k k

k k k C
k k k k k

s

p n s H p s H
p s n H

p n s H p s H
+

+ + + + +
+ + +

+ + + + +

=
∑ )

.  Retain this density for the next iteration. 

 
Step 7 
Calculate  using the results from Step 4 and Step 

1

1: 1: 1:
1 1 1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | ,

k

C C
k k k k k k k k k k

s

p x n H p x s n H p s n H
+

+ + + + + + + + + += ∑ )C

6. 
 
Step 8 
Choose the discrete and continuous device states for step 1k +  based on Steps 6 and 7 and your cost function.  For 
example, to approximately minimize average classification error, choose the value of 1ks +  that maximizes Step 6.  To 

approximately minimize mean squared error, choose the average value of 1kx +  under the density calculated in Step 7. 
 
Step 9 
Return to Step 1 for the next timestep. 
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Our point process filter derivation (Supplementary Material, Section 1) first manipulates 

probability densities without specifying their functional form, and later introduces the 

functional form of the point process observation model given in equation (6.2).  The 

resulting point process filter retains the same flavor as the IMM filter.  Just as the IMM 

filter involves a bank of Kalman filters that run in parallel, our hybrid filter employs a 

bank of stochastic state point process filters [20] that run in parallel, one for each possible 

value of the discrete state at a particular timestep.  A practical note on numerical issues 

for implementation is available (Supplementary Material, Section 4). 

 

 

6.5  Filtering continuous field potentials with the hybrid 
framework 
 

Continuous field potentials are also viable sources for the control of prosthetic devices, 

such as with EEG [1], ECoG [2], and LFP [40].  An EEG based device has the potential 

for wide application because it is completely non-invasive.  The ECoG and LFP 

approaches may allow cheaper and more robust hardware solutions than spike-driven 

interfaces, because skull screws and coarse electrodes may suffice for these signals where 

micromachined multiunit arrays are needed to record stable ensemble spiking activity. 

 

The physiological basis of these continuous field potentials is varied and different from 

that of ensemble spiking activity.  Additional research is needed to understand effective 

training paradigms and hardware design as they pertain to each of these signal sources.  

However, existing filtering procedures are sufficient to incorporate these signals into the 

hybrid framework [39].  This is because continuous field potentials have been extensively 

modeled as Gaussian observation processes, including autoregressive moving average 

(ARMA) models [30].  As a result, the many types of switching Kalman filter can be 

applied directly to accommodate these signals into the hybrid framework. 
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The interacting multiple model (IMM) [39] is the switching Kalman filter that is 

analogous to the point process filter presented in the previous section.  The IMM 

derivation can be written in almost the same fashion, except that the observation model 

(6.2) is now Gaussian.  Consequently, the IMM procedure is simply the point process 

hybrid filter procedure of the previous section, but with Kalman filters used in Step 4 

instead of point process filters.  These are the Gaussian filter equations (6.13) and (6.14) 

(see Methods, Section A). 

 

 

6.6  Emerging applications 
 

6.6.1  Application 1:  Free arm movement with definitive moving versus stopping 

 

In the control of free movements of a neural prosthetic arm, it would be desireable to 

bring the arm to rest without explicitly generating a zero-velocity signal.  Also, if the 

person is no longer attending to the arm, it may be safer to bring the arm to rest rather 

than to allow it to be driven unintentionally.  To enable this functionality, define a set of 

four discrete device states {( , )ks moving attentive∈ , , ( ,moving inattentive)

( , )topped attentive ( , )},s stopped inattentive  and a continuous device state kx  that 

corresponds to arm position and velocity.  Note that instead of defining two discrete 

random processes, this approach merges the two into one.  The discrete device states now 

determine the evolution of the continuous arm movement.  For ( ,k )s moving inattentive= , 

( , )stopped attentive , or ( , )stopped inattentive , the arm velocity in kx  can be safely and 

gradually damped to zero.  In the case where ( ,k )s moving attentive= , a standard isotropic 

Gaussian model [18] could be applied with safety constraints on maximum generated 

velocities and arm compliance.  The discrete state transition probabilities would 

correspond to the expected frequency with which the user would switch between these 

various modes of operation. 
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6.6.2  Application 2:  Reaching movements with variable arrival time 

 

The reaching movement trajectory models [22-24, 26-28, 36] are currently defined for a 

fixed, known arrival time.  Suppose instead that a more flexible device was desired that 

could support two arrival times, 1T T2< , corresponding to a fast reach and a slow reach 

respectively.  We could then define a set of discrete states { ,k }s slow fast∈  with 

appropriately permissive state transition probabilities to allow switching between slow 

and fast reaching.  The continuous state trajectory model 1( | ,k k k 1)p x x s+ +

)

 would 

correspond to a  or  reach state equation conditioned on the discrete state.  The  

reach state equation could be lengthened with damping dynamics to a Markov chain of 

the same length as , for consistency.  Also, the discrete state transition probability 

1T 2T 1T

2T

1( |k kp s fast s slow+ = =  might be chosen equal to  zero for time greater than . 1T

 

 

6.6.3  Application 3:  Reaching to discrete targets that switch during movement 

 

We now apply the hybrid framework to track a mid-flight change in the desired target.  In 

the switching target reach task, the subject is required to reach to targets with a prosthetic 

arm driven by ensemble spiking activity from primary motor cortex (MI).  Each reach 

must be completed within 2 seconds in a two dimensional plane from the origin to one of 

eight targets arranged evenly on a circle of 0.25 meters radius.  In addition, the target 

changes once during the course of the movement, requiring the user to make a corrective 

maneuver to the new target location.  The switch time, unknown to the user, is drawn 

uniformly between 0.2 and 1.2 seconds post-movement-onset.  These parameters are 

chosen to explore reaching movements at a realistic spatial scale for humans, while 

maintaining peak arm velocities that are comparable to those studied in related primate 

electrophysiology experiments of MI [41-43]. 
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How can the hybrid framework solve the switching target reach task?  We begin by 

defining the continuous variable kx  as the arm state and the discrete variable ks  as the 

target identity from a set of R  targets on a 2-dimensional workspace: 

 

  {, 1, 2,...,k k

x positioncoordinate at timestep k
y positioncoordinate at timestep k

}x s
x velocity coordinate at timestep k
y velocity coordinate at timestep k

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

R  (6.3) 

 

For this example, consider neural observations  discribed as binned spikes of a point 

process (see previous section “Filtering on Hybrid Systems: Point Process 

Observations”).  The essential structure of this hybrid state space is depicted by the 

mixture of trajectories model (Figure 6.1e).  To support switching targets, this static 

target diagram is altered by indexing the target 

kn

s  with time as in the switching 

observation model (Figure 6.1d) [25]. 

 

Next, we specify the conditional densities corresponding to each edge.  The density 

1( |k k )p s s+  is defined by a state transition matrix M : 

 

  , 1( |i j k k )M p s i s j+= = =  (6.4) 

 

This notation means that the entry in the  row and  column of thi thj M  corresponds to 

1( |k k )p s i s j+ = = . 

 

The density 1( | ,k k k 1)p x x s+ +  constrains the path of a reaching movement for any given 

target 1ks + .  This conditional density can be obtained from any of several reaching 

movement trajectory models [22, 23, 27, 28, 36], directed specifically to the target 

location corresponding to 1ks + .  In this example, we use the standard (unaugmented) reach 

state equation detailed in [22, 23] based on the following free movement state equation: 

 

  1k k kx Ax w+ = +  (6.5) 
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The point process observation model (6.2) that describes 1:( |C
k k )p n x  is specified by a 

discrete-time conditional intensity function c
kλ  for each neuron .  In this example, we 

choose a conditional intensity adapted from a model of primary motor cortex [42] . 

c

 

  2 2 1/ 2
0 1 2exp( ( ) cos( ))c c c

k x yv v cλ β β θ β= + + −  (6.6) 

  0 1 2exp( )x yv vβ α α= + +  (6.7) 

 

where xv  and  are the velocity components of yv kx  in (6.3).  Here, we assume that any 

lag between neural activity and the user’s intentions is known and has been corrected to 

allow for the zero-lag indexing used above.  In practice, this lag can be estimated as 

another model parameter. 

 

The parameters of the observation model 1:( |C
k k )p n x  can be tuned using point process 

adaptive filtering [20] that also tracks changes due to neural plasticity.  The parameters of 

the trajectory model in 1( | ,k k k 1)p x x s+ + ) and 1( |k kp s s+  can be optimized a priori to reflect 

the types and frequency of behaviors that the neural prosthesis expects to support.  

Alternatively, adaptive methods will need to be developed to track the usage statistics of 

the device and adjust the trajectory model accordingly.  In this example, we give our 

various competing filters an equal footing by providing them the actual trajectory and 

observation model parameters where applicable.  A caveat is the state transition matrix 

M .  In free movement and mixture of trajectories estimation, this parameter is 

nonexistant, or equivalently, equal to the R R×  identity matrix . For the hybrid 

framework, this parameter can be tuned to the expected frequency of target switches.  We 

found that performance was relatively insenstive to a range of choices between 0.9  

 but changed substantially for 

I

I

0.99I M I= .  (Although 0.99 is close to 1, this difference 

is geometrically magnified by successively multiplying 0.99 over multiple timesteps.) 
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With the conditional densities specified, we can now use the hybrid point process 

filtering framework to drive the prosthetic device with ensemble spiking activity from 

motor cortex.  We compare the performance of the hybrid framework against free 

movement estimation and the mixture of trajectories model in a simulated analysis of the 

switching target reach task.  The free movement estimation procedure is implemented 

using a standard point process filter.  This is mathematically equivalent to our hybrid 

framework where each target is given infinite uncertainty.  The mixture of trajectories 

estimation method reported in [29]  is implemented using the same reach state equation 

that our hybrid filter uses to provide equal grounds for comparison.  This is 

mathematically equivalent to the hybrid filter with state transition matrix M I= . 

 

We also examine the effect of premovement instructed delay period activity that may be 

available to the prosthetic device.  Such activity is known to provide information about 

the desired target in posterior parietal cortex [44], premotor cortex [45], frontal cortex 

[46], and other brain regions.  Premovement target information is easily incorporated into 

the mixture of trajectories model and hybrid filter by specifying a non-uniform initial 

posterior density on the target states 1( )p s .  We use one fixed moderately informative 

non-uniform posterior density (see parameter table) to simulate this premovement target 

information. 

 

These filtering procedures were compared in a simulated version of the switching target 

reach task. The simulation comprised two stages.  First, the subject’s desired arm 

movement was generated based on the reach state equation [22, 23] which is related to 

the stochastic optimal control model [28, 47, 48].  Second, the corresponding ensemble 

spiking activity from primary motor cortex (MI) was simulated based on equation (6.6), a 

velocity-tuned point process model of MI spiking activity [37, 42]. 

 

The subject’s arm movement was governed by same unaugmented reach state equation 

[22] used above to define 1( | ,k k k 1)p x x s+ +  in the hybrid framework.  Arm movement at any 

given time step followed the reach state equation corresponding to the current target with 

low target uncertainty (see parameter table).  The constants q, r, and p in that table refer 

 118



 
Table:  Parameters 
 
 

(a)  Receptive field parameters of thc  M1 neuron  

Parameter Value 

0
cβ  2.28 

1
cβ  4.67 sec./m 

2
cβ  Drawn uniformly from [-π,π] 

  

  

(b)  Reach state equation parameters  

Parameter Value 

Reach distance 0.25 m 

Target Positions (degrees) ( )45, 90, 135, 180, 225, 270, 315, 360  

Time step 0.01 sec. 

Noise covariance (q) 1x10-4 m2 

Reach duration 2 sec. 

Target position uncertainty (r) 1x10-6 m2 

Target velocity uncertainty (p) 1x10-6 m2 

  

  

(c)  Other motor task parameters  

Parameter Value 

( )1 1 1( 1), ( 2), ... ( 8)p s p s p s= = =  ( ).6, .15, .02, .02, .02, .02, .02, .15  

Switch times (sec.) ( ).2, .4, .6, .8, 1, 1.2  

Ensemble sizes (# neurons) ( )9, 16, 25, 36, 49, 64, 81  

Randomized trials per data point (Fig. 4,5) 100 

 
 
 



 to specific entries of the diagonal matrices for noise covariance and target uncertainty 

specified previously [22]. The target itself was allowed to switch once during the course 

of the movement.  The target switch time was assigned at random, uniformly from a 

discrete set of possible times between 0.2 and 1.2 seconds post-movement-onset, spaced 

at 0.2 seconds. 

 

Because ensemble spiking is governed by conditional independence (see equation (6.2)), 

the spiking activity of each cell could be generated separately.  To generate the spike 

train of a given cell, the arm trajectory was first passed through the point process model 

in equation (6.6). The conditional intensity generated by the point process model of each 

neuron was then used to produce ensemble spiking activity based on the time rescaling 

theorem [34]. 

 

For each neuron , model parameters c 0
cβ  and 1

cβ were chosen (see parameter table) to 

reflect typical background firing rate and depth of modulation for primate MI neurons 

during instructed-delay center-out reaching movements [37].  The model parameter 2
cβ  

was drawn randomly over [ ],π π−  to ensure that preferred directions were uniformly 

represented over all angles.  Neurons in this simulated MI ensemble exhibited 

background firing rates of 10 spikes/sec., and firing rates of 24.9 spikes/sec. at a speed of 

0.2 m/sec. in the preferred direction.  

 

In total, five filtering procedures were compared in the simulated switching target reach 

task: free movement estimation, mixture of trajectory estimation, and hybrid filtering, the 

last two methods being evaluated with and without premovement target information.  

Figures 6.2-5 provide a comprehensive view of the ability of these filtering procedures to 

convert MI spiking activity into reaching movements to switching targets.  Figures 6.2 

and 3 show sample trajectories driven by ensemble spiking activity under the various 

estimation procedures for a population of 25 neurons with a target switch at 1 second 

post-movement-onset.  Figures 6.4 and 5 characterize how filter performance scales with 

ensemble size and target switch time for each of these procedures. 
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Figure 6.2. Decoding results without premovement target information from 
one trial of the simulated switching target motor reaching task on a 2-
dimensional plane using 25 motor cortical neurons.  (a)  Position trajectories, 
including the desired arm path (light gray), hybrid filter (red), mixture of 
trajectories model (dark gray), and free movement estimation (thin black).  
(b)  Velocity trajectories with the same color scheme.  (c)  Probability of each 
target given ensemble spiking as the reach pogresses, as determined by the 
mixture of trajectories model and (d) the hybrid filter.  Colors in (c) and (d) 
correspond to these targets: the primary target at 45 degrees (blue), final target 
at 180 degrees (cyan), and the neighbors at 0 degrees (gold), 90 degrees 
(black) and 135 degrees (orange).



Sample decoding results from one trial without premovement target information (Figure 

6.2) show that the hybrid framework combines the strengths of free movement estimation 

and the mixture of trajectories model.  By incorporating target information, the hybrid 

framework and mixture of trajectories estimates drive the prosthetic arm to rest at the 

desired target location, while free movement estimation leaves the arm displaced from 

the target and still moving at the 2 second mark.  However, this same target information 

also causes the mixture of trajectories estimate to pull towards each passing target late in 

the reach (Figure 6.1a).  This “gravity effect” is reflected in the target probabilities under 

the mixture of trajectories model (Figure 6.1c).  In the second half of the reach, the 

current heading causes the passing targets (black and red lines) to quickly become highly 

likely, drawing the trajectory estimate towards those corresponding target locations.  The 

hybrid framework overcomes this problem because it anticipates that targets may switch.  

By choosing the state transition matrix 0.99M I= , the target densities (Figure 6.1d) decay 

with time, and additional supporting neural activity is required to drive the probability of 

any given target to dominate the others.  This mollifies the gravity effect of the mixture 

of trajectories model. 

 

The hybrid filter also handles premovement target information differently from the 

mixture of trajectories model (Figure 6.3).  With the premovement information, the first 

target’s probability under the mixture of trajectories model (blue line, Figure 6.3c) 

approaches certainty faster than before (Figure 6.2c).  However, single trial decoding 

results (Figure 6.3a and 3b) show that the mixture of trajectories estimate appears to 

persist to the original target location even when the desired trajectory has begun to 

reorient to the new target.  This is also seen in the target probabilities (Figure 6.3c) where 

the first target (blue) dominates 200 milliseconds beyond the time of the target switch.  In 

contrast, the hybrid framework incorporates the target information early in the reach but 

progressively “forgets” or downweight its influence because it anticipates the possibility 

of a target switch, again by using 0.99M I= .  The free movement estimate does not 

incorporate premovement information. 
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Figure 6.3. Decoding results with premovement target information from one 
trial of the simulated switching target motor reaching task on a 2-dimensional 
plane using 25 motor cortical neurons.  (a)  Position trajectories, including the 
desired arm path (light gray), hybrid filter (green), mixture of trajectories 
model (dark gray), and free movement estimation (thin black). (b)  Velocity 
trajectories with the same color scheme. (c)  Probability of each target given 
ensemble spiking as the reach pogresses, as determined by the mixture of 
trajectories model and (d) the hybrid filter.  Colors in (c) and (d) follow Figure 
2.



We next examined filter performance over a wide range of ensemble sizes, ranging from 

15 to 80 neurons.  Root mean squared (RMS) error was evaluated in two ways:  averaged 

over the entire trajectory (Figures 6.4 a,b) and over the endpoint at the 2 second mark 

(Figures 6.4c and d).  Additionally, we examined the fidelity of position tracking (Figures 

6.4 a,c) and velocity tracking (Figure 6.4b, d) separately.  RMS error decreases for all 

five methods with larger ensemble sizes.  This is consistant with Bayes Rule, which 

predicts that the RMS error of these various methods will converge for large enough 

population sizes. 

 

Trajectory RMS errors are typically smaller than endpoint RMS errors because 

trajectories begin with the accurate initial condition and accumulate error with time.  All 

methods appear to perform equally well in endpoint error except free movement 

estimation which does not incorporate the discrete target locations.  Moreover, endpoint 

error appears to level out faster than trajectory error.  This is likely due to the fact that 

just a few MI neurons are needed to make an accurate target classification, and once the 

accurate classification is made, the mixture of trajectories and hybrid framework methods 

will drive the prosthetic arm to rest at that target. 

 

Premovement target information appears to provide a slight or insignificant 

improvement, but this is largely due to the moderate information provided by our choice 

of initial target prior.  Higher fidelity premovement target information will likely make 

overshooting more pronounced in mixture of trajectories estimation and decrease RMS 

error in the first half of the reach generated by hybrid estimation. 

 

Earlier target switches are easier to track for all methods than later target switches (Figure 

6.5) for a population of 25 neurons.  Later switch times require faster velocity 

corrections, causing trajectory RMS error to rise across all methods (Figures 6. 5 a,b).  

Trajectory RMS error accumulates rapidly with later switch time for the mixture of 

trajectories model which lags in reorienting the arm movement, unlike hybrid estimation 

which anticipates switching and reorients quickly. 
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Figure 6.4.  Various root mean squared (RMS) error peformance metrics 
versus ensemble size for free movement estimation (thin black), mixture of 
trajectories model (solid dark gray), hybrid filter (solid light gray), and 
versions of the latter two filters with premovement target information (dashed 
lines).  Switch times are drawn uniformly from the set {.2, .4, .6, .8, 1, 1.2}in 
units of seconds.  Error bars represent standard error of the mean across one 
hundred randomized trials for each mean.  (a)  RMS error averaged over the 
entire position trajectory.  (b)  RMS error averaged over the entire velocity 
trajectory.  (c)  RMS error averaged only over the endpoint position.  (d)  
RMS error averaged only over the endpoint velocity.



 

Endpoint errors (Figures 6.5 c,d) under mixture of trajectories and hybrid estimation are 

largely insensitive to switch time, in contrast to free movement estimation.  For mixture 

of trajectories and hybrid estimation, neural observations after the switch are sufficient to 

classify the target correctly, and because these latter methods incoporate the set of target 

locations, the prosthesis movement can reliably converge to the target. 

 

Receiving information from the premovement activity that results in an incorrect 

maximum likelihood target classification is comparable to a zero second switch time, 

because in both cases, premovement activity initially push path estimates towards the 

wrong final target.  This represents the easiest case for tracking switching movements, 

because subsequent neural activity over the full interval of reach time is available to 

correct estimates towards the final target.  In later switches, shorter intervals of neural 

activity are available to redirect the arm movement.  This is the regime where hybrid 

estimation shows marked improvement over the mixture of trajectories approach. 

 

The simulation predicts that performance breaks down for all methods under moderate 

ensemble sizes for very late switches, where the target can no longer be reliably 

identified and high velocity corrective movements must be tracked.  A more subtle trend 

(Figures 6.5 a,b) shows that free movement estimation performs substantially worse than 

the mixture of trajectories model for early switch times but slightly better in very late 

switch times.  These very late switch times make the overshoot and gravity effects of the 

mixture of trajectories model so pronounced that resulting trajectory estimates 

accumulate more RMS error than even the free movement model. 
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Figure 6.5.  Various root mean squared (RMS) error peformance metrics 
versus the time post-movement onset at which the target switches, for free 
movement estimation (thin black), mixture of trajectories model (solid dark 
gray), hybrid filter (solid light gray), and versions of the latter two filters with 
premovement target information (dashed lines).  Ensemble size is fixed at 25 
neurons.  Error bars represent standard error of the mean across one hundred 
randomized trials for each mean.  (a)  RMS error averaged over the entire 
position trajectory.  (b)  RMS error averaged over the entire velocity 
trajectory.  (c)  RMS error averaged only over the endpoint position.  (d)  
RMS error averaged only over the endpoint velocity.



6.7  Discussion 
 

We have introduced a unified approach for the design of filters for prosthetic devices.  By 

using this technique, we can map spikes and continuous field potentials to estimates of 

the user’s intention for a wide array of neural prosthetic device applications.  The 

technique draws on Bayesian filter theory to generalize the dominant approaches to filter 

design in neural prosthetic devices [1, 3-7, 17-19, 22-29, 36, 49].  Three emerging 

applications are proposed.  The hybrid framework is comprehensively evaluated in a 

simulated motor reaching task. 

 

For both the hybrid point process filter and the IMM Switching Kalman Filter for 

Gaussian observation models, the number of operations at time step  scales with , 

the number of values that a discrete state variable can take on.  This is because the 

posterior density on the discrete state is nonparametric and the posterior density on the 

continuous state is represented as a mixture of |  Gaussians.  The particle filter, a 

Monte Carlo approach, would increase the fidelity the posterior density at the expense of 

increased computational cost.  Ultimately, the way in which the posterior density is 

represented will depend on the cost of computation versus device performance in any 

specific application. 

k | |kS

|kS

 

 As shown in the previous section, the hybrid framework accomodates multiple discrete 

random processes by condensing them into one.  Unfortunately,  discrete random 

variables, each with 

n

p  possible values at step , results in a condensed random variable 

with . Fortunately, filtering on the hybrid framework can be parallelized fairly 

directly.  This means that even with large |  the device can be controlled in real time if 

the hardware supports parallel computations.  Parallelizing a digital hardware 

implementation may not necessarily save energy, but could require a slower clock speed. 

k

| | pS n=

|kS

 

In many applications however, the number of discrete states can be kept small by using 

context.  Context means that the space of device states is restricted at any given step in a 
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way that still allows the user to eventually reach the desired device state.  Consider how 

you organize files on your computer.  By arranging your files in a sequence of 

subdirectories, you make it easy to scan through the list of files at each step.  By placing 

all your files on the desktop, you are forced to select your file from a very large list, even 

though the file is just one mouseclick away. 

 

Looking forward, we expect to draw extensively on the rich field of dynamic bayesian 

networks to address future applications.  Prototyping is needed to determine the best 

computation/accuracy tradeoff for specific prosthetic devices.  Learning and real time 

sensory feedback (visual, somatosensory, auditory) must also be considered in 

developing algorithms that define the prosthetic interface.  Associated technologies like 

computer vision and robotic control can be integrated with the hybrid framework to 

enhace real-world performance measures. 

 

Finally, estimation with a minimum average cost criterion is not the only approach to 

formally describing the prosthetics problem.  Future work will explore stochastic control, 

heirarchical design architectures, and other themes in systems design to achieve the 

increased performance in practical tasks that is necessary to benefit the full spectrum of 

limited motor function, from locked-in syndrome to single arm amputation. 

 

 

 129



6.8  Methods 
 

6.8.1  (Section A)  Approximate point process filter for Gauss-Markov process 

(discrete-time) 

 

The Gaussian approximation to the posterior density with a Taylor series expansion about 

the prediction mean is employed in the following filter equations [20].  Consider a Gauss-

Markov trajectory model 

  1( | ) ( ,k k k k k k )p x x N F x b Q+ +∼  (6.8) 

 

A point process observation model is specified for an ensemble of  neurons.  The 

conditional intensity function of the  neuron, denoted 

C
thc c

kλ , may depend on  and kH kx .  

For the  timestep and  neuron,  spikes arrive in a thk thc c
kn kδ  time interval. 

 

The prediction density mean 1|k kx +  and covariance 1|k k+Λ  are: 

  1| |k k k k k kx F x b+ = +  (6.9) 

  '
1| |k k k k k k kF F Q+Λ = Λ +  (6.10) 

The posterior density covariance 1| 1k k+ +Λ  and mean 1| 1k kx + +  are: 

 

 ( )
1|

2
1 1

1| 1 1|
1

log log log( ) ( )
k k

c cC
c c ck k

k k k k k k k k k
c k k k x

n
x x x
λ λλ δ λ δ

+

− −
+ + +

=

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎡ ⎤Λ = Λ + − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
∑

c
kλ (6.11) 

  ( )
1|

'

1| 1 1| 1| 1
1

log

k k

cC
c ck

k k k k k k k k k
c k

x

x x n
x
λ λ δ

+

+ + + + +
=

⎡ ⎤⎛ ⎞∂
⎢ ⎥= + Λ −⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

∑  (6.12) 

Consider instead, an array of C  neural signals 
'1 2

1 1 1, ,..., C
k k k kn n n n+ + +⎡ ⎤= ⎣ ⎦  described by a 

Gaussian observation model (such as EEG) with mean ( )k k k kD x f H+  and variance .  

Here, 

kW

kx  is a  vector of continuous states,  is a 1J × kD C J×  matrix that may depend on 

, and ks ( , )k k kf s H  is a function that maps neural history to a 1C×  vector, such as with 
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ARMA models.  The posterior density covariance and mean are then given by the 

standard Kalman filter equations [50]: 

 

   (6.13) ' ' 1
1| 1 1| 1| 1 1 1| 1 1 1 1|( )k k k k k k k k k k k k k k kD D D R D−
+ + + + + + + + + + +Λ = Λ −Λ Λ + Λ

 ' ' 1
1| 1 1| 1| 1 1 1| 1 1 1 1 1| 1 1 1( ) ( (k k k k k k k k k k k k k k k k k k kx x D D D R n D x f s H−
+ + + + + + + + + + + + + + += + Λ Λ + − − , )) (6.14) 

 

The probability density in Step 5 of the point process hybrid filter (see Box above) is then 

replaced by: 

 ( )1: '
1 1 1 1 1| 1 1 1 1 1| 1 1( | , ) ( , ),C

k k k k k k k k k k k k k kp n s H N D x f s H D D R+ + + + + + + + + + + ++ Λ∼ +  (6.15) 
 

in order to correspond to the Interacting Multiple Model (IMM) approach to switching 

Kalman filters [39]. 

 

6.8.2  (Section B)  Gaussian approximation to Mixture of Gaussians 

 

Consider a distribution composed of the weighted average of R  multidimensional 

Gaussians 

  
1

( ) ( ; , )
R

i i
i

p x d N x μ
=

i= Λ∑  (6.16) 

with weights , and where id ( ; , )i iN x μ Λ  denotes the Gaussian probability density 

function with mean iμ , and covariance iΛ . 

 

The following standard approximation [39] is obtained by moment matching (calculating 

the mean and covariance of ( )p x ): 

  ( ) ( ; , )p x N x m K≈  (6.17) 

where 

  
1

R

i i
i

m d μ
=

=∑  (6.18) 

   (6.19) 
1

[ ( )( )
R

i i i i
i

K d m mμ μ
=

= × Λ + − −∑ ']
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6.9  Supplementary Material 
 

6.9.1  (Section 1) Derivation of a Point Process Hybrid Filter to Map Spikes to 

Hybrid Prosthetic Device States 

 

For the  discrete timestep, define the user-intended continuous state thk kx , discrete state 

, and the ensemble spiking activity of all  neurons .  The history of ensemble 

spiking at timestep  is given by 

ks C 1:C
kn

k ( )1: 1: 1:
1 2 1, ,...,C C C

kH n n n −= k

)

1)

.  Define the observation model 

 that represents the relationship between user intentions and 

spiking activity. Define the trajectory model 

1:
1 1 1 1( | , ,C

k k k kp n x s H+ + + +

1( | ,k k kp x x s+ +  and discrete state transition 

density 1( | ,k k k 1)p x x s+ +

)

 that reflect the distribution of intentions that the user is expected 

to request over time. 

 

In this section, we seek a recursive method to obtain  from 1:
1 1 1 1( , | ,C

k k k kp x s n H+ + + +

1:( , | , )C
k k k kp x s n H  and .  This constitutes the point process hybrid filtering procedure. 1:

1
C

kn +

 

For our specific hybrid state space in Figure 1A, 

 

   (6.19) 1: 1: 1:
1 1 1 1 1 1 1 1 1 1 1( , | , ) ( | , , ) ( | ,C C

k k k k k k k k k k kp x s n H p x s n H p s n H+ + + + + + + + + + += )C

)

) C
k k k k

 

This implies that our problem is equivalent to obtaining  and 

 from 

1:
1 1 1 1( | , ,C

k k k kp x s n H+ + + +

1:
1 1 1( | ,C

k k kp s n H+ + +
1:( | , , )x s n H 1:( | , )C

k k k, s n H , and 1:
1

C
kn + . p p

 

Note that 

 

  
1

1: 1: 1:
1 1 1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | ,

k

C C
k k k k k k k k k k

s
p x n H p x s n H p s n H

+

+ + + + + + + + + += )C∑  (6.20) 
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We now calculate  using equations 1:
1 1 1 1( | , ,C

k k k kp x s n H+ + + + )

)

(6.21)-(6.26) and calculate 

1:
1 1( | ,C

k k kp s n H+ +  using equation (6.27). 

 

Observe that 

 

  
1:

1: 1 1 1 1 1 1 1
1 1 1 1 1:

1 1 1

( | , , ) ( | ,( | , , )
( | , )

C
C k k k k k k k

k k k k C
k k k

p n x s H p x s Hp x s n H
p n s H

+ + + + + + +
+ + + +

+ + +

=
)

)

k

 (6.21) 

 

where  is the prediction density given by the Chapman-Kolmogorov 

equation: 

1 1 1( | ,k k kp x s H+ + +

 

  1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | , )
k

k k k k k k k k k k
x

p x s H p x x s H p x s H dx+ + + + + + + += ∫  (6.22) 

 

Equations (6.21) and (6.22) comprise one step of a filter on  with the 

observation model  and trajectory model  

1 1( | , )k k kp x s H+ +

1:
1 1 1 1( | , ,C

k k k kp n x s H+ + + + )

1)1 1 1 1( | , , ) ( | ,k k k k k k kp x x s H p x x s+ + + += +

)

1)

)

.   For computational simplicity, we approximate 

both the trajectory model and posterior density  to be Gaussian.  

Such a filter (reproduced under Methods Section A) is developed in [20] for point 

processes using a Taylor expansion about the prediction density mean rather than the 

posterior density mean employed in [50]. 

1:
1 1 1 1( | , ,C

k k k kp x s n H+ + + +

 

The density  is obtained by 1( | ,k k kp x s H+ +

 

  1 1 1 1 1 1( | , ) ( | , ) ( | , ,
k

k k k k k k k k k k
s

p x s H p s s H p x s s H+ + + + + += ∑  (6.23) 

 

This density is a mixture of Gaussians that is approximated by one Gaussian density 

using a standard moment-matching formula given in Methods Section B. 
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The first density in the summation (6.23) is calculated as follows: 

 

  1 1
1 1

1 1

( | , ) ( |( | , )
( | )

k k k k k
k k k

k k

p s s H p s Hp s s H
p s H

+ +
+ +

+ +

= 1)+

1)

 (6.24) 

where 

  1 1 1( | ) ( | ) ( |
k

k k k k k k
s

p s H p s s p s H+ + + += ∑  (6.25) 

 

Here, 1( |k k )p s s+  is the discrete state transition density, and  is the posterior 

density on the discrete state, given in the previous iteration. 

1( | )k kp s H +

 

The second density in the summation (6.23) is given by a quantity retained from the 

previous step: 

 

  1 1 1( | , , ) ( | , )k k k k k k kp x s s H p x s H+ + +=  (6.26) 

 

This statement is verified in Section 2 below. 

 

We now calculate  in equation 1:
1 1 1( | ,C

k k kp s n H+ + + ) (6.20) using the following relation: 

 

  
1:

1: 1 1 1 1 1
1 1 1 1:

1 1

( | , ) ( |( | , )
( | )

C
C k k k k k

k k k C
k k

p n s H p s Hp s n H
p n H

+ + + + +
+ + +

+ +

=
)

1)

 (6.27) 

 

Equation (6.25) calculates 1( |k kp s H+ + .  The density  is given by the 

following integral. 

1:
1 1 1( | ,C

k k kp n s H+ + + )

1

 

  
1

1: 1:
1 1 1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | , )

k

C C
k k k k k k k k k k k

x

p n s H p n s x H p x s H dx
+

+ + + + + + + + + += ∫ +  (6.28) 
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An approximation to this integral for point process observations is given by Laplace 

approximation as detailed in Section 3 below.  Finally,  is a normalizing 

factor obtained by summing the numerator over all possible values of . 

1:
1( |C

k kp n H+ +1)

1ks +

 

6.9.2  (Section 2)  Corollary 

 

Verify equation (6.26), that 1 1 1( | , , ) ( | , )k k k k k k kp x s s H p x s H+ + += : 

 

 

1 1
1 1

1 1

1 1

1 1

( , | , )( | , , )
( | , )

( | , , ) ( | ,
( | , )

k k k k
k k k k

k k k

k k k k k k k

k k k

p x s s Hp x s s H
p s s H

p s x s H p x s H
p s s H

+ +
+ +

+ +

+ +

+ +

=

= 1)+

1)+

 (6.29) 

From Figure 1A, observe that 

 

  1 1 1( | , , ) ( | ,k k k k k k kp s x s H p s s H+ + +=  (6.30) 

 

Thus, (6.29) and (6.30) imply that 

 

  1 1 1( | , , ) ( | , )k k k k k k kp x s s H p x s H+ + +=  (6.31) 

 

█ 

 

6.9.3  (Section 3)  Laplace approximation of  1:
1 1 1( | ,C

k k kp n s H+ + + )

1

 

This section derives the Laplace approximation of equation (6.28), repeated below for 

convenience: 

  
1

1: 1:
1 1 1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | , )

k

C C
k k k k k k k k k k k

x

p n s H p n s x H p x s H dx
+

+ + + + + + + + + += ∫ +  (6.32) 

Define 

   (6.33) 1: 1:
1 1 1 1 1 1 1 1 1( , ) log[ ( | , , ) ( | , )]C C

k k k k k k k k kh x n p n s x H p x s H+ + + + + + + + +=
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The Laplace approximation to (6.32) is given by: 

 

1
1 0

1
1 0

1/ 21: / 2 2 1: 1:
1 1 1 1 1 1 1 1

1/ 2/ 2 2 1: 1:
1 1 1 1 1 1 1 1 1

( | , ) (2 ) ( , ) ( , | , )

(2 ) ( , ) ( | , , ) ( | , )

k
k

k
k

C m C C
k k k x k k k k k k

x x

m C C
x k k k k k k k k k

x x

p n s H h x n p n x s H

h x n p n x s H p x s H

π

π

+
+

+
+

−

+ + + + + + + +
=

−

+ + + + + + + + +
=

≈ −∇

= −∇

   (6.34) 

 

where the mode 0x maximizes 1:
1 1 1 1 1 1 1( | , , ) ( | ,C

k k k k k k kp n s x H p x s H )+ + + + + + +  for a given 1:
1

C
kn + .  

 

Approximate the mode as in  [20] using a prediction density, in this case given by 

 

  
10 1| , kk k sx x
++≈  (6.35) 

 

Under this approximation, the following equalities hold: 

 

  
1

1 1| , 1

2 1: 1
1 1 1| 1,( , )

k
k k k sk

C
1kx k k k k sx x

h x n W
+ +

+ + +

−
+ + + +=

−∇ =  (6.36) 

  
1 1| , 1

1

1 1 1 1/ 2/ 2
1| ,

1( | , )
(2 )x xk k k sk

k

k k k m
k k s

p x s H
Wπ=+ + +

+

+ + +

+

=  (6.37) 

 

where is precisely the variance of the Gaussian approximation to the posterior 

density given in [20] and Appendix A. 

11| 1, kk k sW
++ +

 

Using equations (6.36) and (6.37), the Laplace approximation (6.34) simplifies to 

 

  
1 1| , 1

1: 1:
1 1 1 1 1 1 1( | , ) ( | , , )

x xk k k sk

C C
k k k k k k kp n s H p n x s H

=+ + +

+ + + + + + +≈  (6.38) 
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Express  using a discrete-time approximation for point processes 

[20]: 

1:
1 1 1 1( | , ,C

k k k kp n x s H+ + + + )

c−

)

 

   (6.39) 1:
1 1 1 1 1 1 1 1 1

1

( | , , ) exp( log( ) )
C

C c c
k k k k k k k k k

c

p n x s H n λ δ λ δ+ + + + + + + + +
=

∝∏

 

Substituting this approximation into (6.38), we have the final approximate equation for 

: 1:
1 1 1( | ,C

k k kp n s H+ + +

 

 

1

1
1 1| , 1

1/ 2

1| 1,1:
1 1 1 1 1 1 1 11/ 2

11| ,

( | , ) exp( log( ) )k

k
x xk k k sk

C
k k sC c c

k k k k k k k k
ck k s

W
p n s H n

W
λ δ λ δ+

+
=+ +

c

+

+ +
+ + + + + + + +

=
+

≈ −∏

  (6.40) 

█ 

 

6.9.4  (Section 4) Spike filtering with the hybrid framework:  practical note on 

numerical issues 

 

This section documents four points to consider when implementing the hybrid filter: 

 

1.  The spike filtering (hybrid point process) filter described in this paper uses a bank of 

stochastic state point process filters (SSPF), described in [20] and Methods, Section A.  

As with the SSPF, the prediction or posterior covariance may become singular because of 

numerical implementation, or badly conditioned if the values in certain matrix elements 

are dramatically smaller than others.  In a practical implementation, it is useful to check 

that a covariance matrix is well-conditioned or invertible before taking the inverse 

operation required by the SSPF (also described in Methods, Section A).  If the posterior 

covariance is not invertible, perform a Fisher’s scoring step instead of executing the 

posterior covariance equation, by removing the ( )
2 log c

c c k
k k k

k

n
x
λ

λ δ
∂

− − Δ
∂

 term of the posterior 
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covariance equation for just that timestep.  If the prediction covariance is badly 

conditioned, retain the prediction covariance as the posterior covariance. 

 

2.  You may encounter divide-by-zero or floating-point errors if you incorrectly 

implement the nine step spike filtering procedure.  Check that you are not dividing by a 

discrete state probability that has approached zero. 

 

3.  To generate smoother continuous state  trajectories, such as in Example 3 of the paper, 

augment your state space to include acceleration terms, and introduce the non-zero 

diagonal term of increment covariance only in the acceleration dimensions. 

 

4.  Note that Example 3 is a discrete-target version of problem of reaching to drifting 

targets [24] that evolve over a continuum of positions.  The discrete nature of the targets 

in Example 3 necessitates the hybrid framework.  Similarly, look for parallels between 

your application and discrete or continuous versions of it. 
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Chapter 7 

Conclusion 
 

7.1  Summary of Results 
 

We first (Chapter 4) addressed several questions regarding the representation of visually-

presented targets in the spiking activity of dorsal premotor cortex (PMd) neurons during 

an instructed delay period before reaching movements.  How can PMd be characterized 

during the instructed delay period before an arm reaching task as a time-invariant 

ensemble spiking representation of the visually-presented target? How is this 

characterization interpreted in terms of physiological mechanism and function? How can 

this characterization advance medical technology? 

 

We concluded that delay period spiking activity in PMd supports the representation of 

targets through a point process with temporal and history dependence, generated by local 

and possibly distant neural interactions.  Results suggested that a downstream neural 

movement controller or neural prosthetic device could exploit these dependencies to 

select targets faster and more reliably. 

 

The analysis comprised three steps: 

 

1 Model description.  The millisecond-by-millisecond spiking probabilities were 

modeled.  Previous studies described only total spike counts during the delay period. 

 

2 Model selection.  Models were compared with Akaike Information Criterion (AIC) 

and verified using time rescaling statistics.  Previous studies have no direct model 

verification procedure. 

 

 143



3 Inference.  Point process filtering was used to evaluate the quality of target 

representation as it scaled with time post-stimulus-onset and ensemble size.  This 

analysis was cross-validated in three ways (leave-one-out, leave-zero-out, and 

simulated) in order to understand the extent to which alternate models suffered from 

over- or underfitting. 

 

These three steps represent a general prescription for the analysis and interpretation of 

spiking activity in experiments on the representation of stimuli drawn from a discrete set. 

 

Next (Chapter 5), we investigated how reaching movements can be coordinated with 

neural activity that corresponds to both the current arm state and the target of the 

movement.  We presented a solution that defines reaching movements as a description of 

free arm movement (a linear Gauss-Markov process) that is analytically restricted to a 

target.  The resulting state equation can be used with diverse measurement approaches 

and filtering techniques to reconstruct arm movements from target and path related neural 

activity. 

 

Finally (Chapter 6), we described the mapping between neural signals and prosthetic 

device states as an estimation problem where feedback was ignored, in sufficiently 

general terms as to unify the dominant Bayesian approaches to neural prosthetics design.  

To support a general-purpose neural prosthetic algorithm, the user’s intentions were 

described in a state space of interacting discrete- and continuous-valued Markov 

processes.   An approximate discrete-time filtering procedure was developed on this 

hybrid state space for point process observations.  Previous approaches to estimation in 

neural prosthetics were unified by this framework, which was predicted to improve 

performance in a simulated reaching task to switching targets.  This framework can be 

readily extended with developments in hardware design, new applications, and 

discoveries in neuroscience. 
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7.2  Continuing Research 
 

The work presented in this thesis lends itself to several avenues of further investigation.  

The study on target representation in PMd (Chapter 4) should be expanded to understand 

the extent to which target representations generalize across different experimental 

scenarios, and especially in the context of reaching movements without explicitly 

instructed delay periods.  If these representations of target do change, then how do 

downstream neural circuits continue to effect reliable arm placement in the face of a 

changing PMd target representation?  Furthermore, all models investigated suffered in 

part from either under- or overfitting.  Anatomical constraints could be introduced in 

order to simultaneously simplify the models and improve their predictive power. 

 

The reconstruction of reaching movements from target and path related activity (Chapter 

5) could be applied to an empirical analysis of neural data from various target and path 

related regions to understand how those regions might cooperate in specifying 

trajectories.  Estimation based on this approach can also help in model selection similar 

to the application of cross-validation in Chapter 4.  As an alternative, models of reaching 

movements can be trained on empirical databases of movement trajectories from the 

particular animal being studied to provide subject-specific priors. 

 

In the context of neural prosthetic devices, closed-loop experiments will be crucial to 

evaluating both the control of reaching movements (Chapter 5) and the general design 

framework (Chapter 6) against alternate approaches.  In these experiments, the user can 

receive feedback on the estimated reaching movement, and make online adjustments to 

neural output.  The general framework (Chapter 6) is applicable both to movement 

control and an emerging class of prostheses for individuals with communication 

disorders.  Successful design approaches will need to address human factors that affect 

ease of use and reliability, as well as the specific nature and extent of the user’s 

neurological deficits.  Ultimately, the principled design of algorithms for these advanced 

medical applications will rely on the characterization of neural systems through 

mathematical descriptions that are amenable to engineering, and design approaches that 

consider the essential features of human-machine interaction. 
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