
Learning Big (Image) Data via
Coresets for Dictionaries

Dan Feldman, Micha Feigin, and Nir Sochen

Abstract. Signal and image processing have seen in the last few years
an explosion of interest in a new form of signal/image characterization
via the concept of sparsity with respect to a dictionary. An active �eld
of research is dictionary learning: the representation of a given large set
of vectors (e.g. signals or images) as linear combinations of only few
vectors (patterns). To further reduce the size of the representation, the
combination are usually sparse, i.e, each signal is a linear combination
of only small number of patterns.
This paper suggests a new computational approach to the problem of
dictionary learning, known in computational geometry as coresets. Core-
set is a small smart non-uniform sample from the input signals, such
that the quality of any given dictionary with respect to the input can be
approximated via the coreset. In particular, the optimal dictionary for
the input can be approximated by learning the coreset. Since the core-
set is small, the learning is faster. Moreover, using merge-and-reduce,
the coreset can be constructed for streaming signals that do not �t in
memory and can also be computed in parallel.
We apply our coresets for dictionary learning of images using the K-SVD
algorithm and bound their size and approximation error analytically. Our
simulations demonstrate gain factor of up to 60 in computational time
with the same, and even better, performance. We also demonstrate our
ability to perform computations on larger patches and high-de�nition
images, where the traditional approach breaks down.

Key words: Sparsity, dictionary learning, K−SVD, coresets

1 Introduction

One of the major problems in image processing is image characterization. By im-
age characterization we mean a system that gets a two-dimensional function or,
in the discrete case, a matrix, and provides a probability measure as to whether
or not this function/matrix is an image. We are still far from achieving this ul-
timate goal, yet few breakthroughs where recorded since the inception of image
processing as a branch of scienti�c research. In the past, many characterization
used the decay rate of the coe�cients of certain transformations. That led to
a characterization in a linear space of functions. In the last decade, a new ap-
proach that involves redundant representations and sparsity seems promising.
In this framework, a signal is represented again as a superposition of signals.
But unlike the representation with a basis of a linear space, the number of basic

2 Dan Feldman, Micha Feigin, and Nir Sochen

signals (a.k.a. atoms) in this new approach exceeds the dimension of the signal
such that a given signal may have many di�erent representations. Uniqueness
is achieved only for a subset of signals which can be represented with a lim-
ited number of atoms, called sparse signals. For this class of signals the sparsest
representation is unique. This approach shifts the focus of attention from the
general law of decay of coe�cients to the outliers of such behavior, namely the
large coe�cients of such an expansion. The class of sparse signals does not form
a linear space which re�ects the non-linearity of the set of images. At the same
time, we still use linear techniques which helps a lot in practice.

Similar sparsity approaches have been used as well for problems such as image
and texture classi�cation, image compression and image denoising.

The sparsity approach has appealing features for image processing, but it
su�ers from a few problems. First it is clear that sparsity is a notion which is
attached to a given dictionary. Clearly, there is no one universal dictionary that
can represent any image in a sparse way. This calls upon the need to construct
dictionaries for each class of images or for each application. Constructing a dic-
tionary for a large number of images from the same class/application goes under
the name dictionary learning and is an active �eld of research.

Because of the prohibitive computational time and space complexity, as well
as numerical instabilities in computing with a large number of large sized matri-
ces, sparsity techniques are applied to small images only. In fact, 8Ö8 to 16Ö16
is the most common sizes in image processing. It means that these are patches
of images rather than images themselves. Larger patches would also reduce their
number for the training process.

Moreover, one may wish to construct dictionaries for the same class of images.
Implicitly using the approximate self-similarity nature of images it is customary
to use the patches of an image as a class of similar patches and to construct a
dictionary per image. Here, again, the curse of limited space and time interfere
and high de�nition images (megapixel resolution common in modern cameras)
have a huge number of patches of such a small size which makes the dictionary
learning task computationally prohibitive.

This paper brings the spell of coresets to cure the curse of space and time
limitations. Informally, a coreset C for a set of elements Y is a compressed
representation of Y that well approximates the original data in some problem-
dependent sense. The given problem is then solved on the much smaller coreset
C and the resulting solution is applicable to the original set Y . This is done by
using C to give approximate answers for queries about Y .

Corset techniques were �rst introduced in the computational geometry �eld,
and in the recent years have been used to solve some well known open problems
in computer science and machine learning. The subject became more mature the-
oretically in the last few years. Corsets present a new approach to optimization
in general and have huge success especially in tasks which use prohibitively large
computation time and/or memory space. In particular, coresets suggest ways to
use existing serial algorithms for distributed (parallel) computing, and provide
solutions under the the streaming model, where the space (memory) for solving

Learning Big (Image) Data via Coresets for Dictionaries 3

the problem at hand is signi�cantly smaller than its input size (and su�ces for
storing the coreset, but not the complete input).

Coresets for learning dictionaries are the main topic of this paper, and we
demonstrate our ideas on the K=SVD method introduce by Aharon et al [4].
The K-SVD is a greedy algorithm designed to solve the following optimization
problem. Given a positive values T0,K and a matrix Y ∈ Rd×n of atoms (column
vectors) y, we want to �nd a dictionaryD ∈ Rd×K and a sparse coe�cient matrix
X ∈ Rd×k that minimizes

argmin
D,X
‖Y −DX‖F s.t. ∀i, ‖xi‖0 ≤ T0. (1)

Where the atoms y are the columns of the matrix Y , the vector xi is the ith
column of X, ‖·‖F is the Frobenius norm (the sum of squared entries in the
matrix) and ‖xi‖0 ≤ T0 is the sparsity of xi, i.e, xi contains at most T0 non-
zeros.

The algorithm solves alternate optimization problems, alternating between
�nding a better D (using the SVD algorithm) while preserving the required spar-
sity of X and �nd the best sparse X given a dictionary D (alternating matching
pursuit is used to compute X, although alternative methods are suggested as
well).

Formally, a coreset for the problem de�ned in (1) is a matrix C such that

‖Y −DX‖F ∼ ‖Y − CX‖F

for every dictionary D ∈ Rd×k and the matrix X that minimizes its approxi-
mation cost ‖Y −DX‖F . Here, the symbol ∼ denotes a multiplicative factor of
1± ε. For example, it is easy to verify that Y is an ε-coreset of itself. However,
an ε-coreset C is e�cient if its number of columns is c � n and the optimiza-
tion problem can be solved more e�ciently on the coreset, that is much smaller,
without sacri�cing too much accuracy.

Our coreset size depends solely on the required accuracy and problem param-
eters and not on the size of the input data Y . In fact, due to stability issues and
sensitivity to initial conditions with greedy algorithms, our method provides a
better solution at a lower running time. This is due to a smaller learning set and
the ability to run the algorithm with multiple initial conditions due to the lower
running times. Note though that only we provide a method to �nd the optimal
D. We later compute X normally in one iteration of the original algorithm.

2 Our contribution

We �rst prove that for every input matrix Y of n atoms there is a small core-
sets for learning dictionaries. The construction is based on non-uniform random
sampling of the n atoms, based on an approximate optimal solution D0. The
size of the coreset is independent on n, but only on the desired approximation
error ε of the coreset, the size dk of the desired dictionary, and the probability
δ that the construction will fail; see Theorem 1 for details.

4 Dan Feldman, Micha Feigin, and Nir Sochen

Since it is not clear how to compute such an approximation D0, in practice
we compute a di�erent initial dictionary D0 and prove that the coreset admits
an additive error of ε multiplied by the cost of D0; see Corollary 2.

Since the approximation error depends on the quality of D0, we suggest two
options to compute D0: 1) Use a single iteration of the K-SVD algorithm as an
initial guess for a dictionary, and 2) Compute an approximation to a related
problem called projective clustering.

In fact, in our experiments we use the most simple version of projective clus-
tering which is the mean D0 of the n atoms, and still get signi�cantly improved
results; see Section 5. In these experiments, we measure the quality, size and
running time of our coresets, compared to both uniform random sampling and
the full input data.

Our results also implies streaming and parallel version of K-SVD by comput-
ing the coreset in a well-known merge-and-reduce technique and then running
the existing (o�-line) K-SVD algorithm on the resulting coreset; see Section 5
for more details and applications.

3 Dictionaries and projective clustering

The main coreset techniques that we use in this paper usually applied in the
context of projective clustering from computational geometry. Projective clus-
tering is a constrained version of the problem that K-SVD designed to solve, but
has several approximation algorithms with bounded error and running times,
see [18, 38] and references therein. In this section we compare the problem of
dictionary learning to projective clustering for this reason, and also because our
algorithm and approximation error is based on an approximation to the projec-
tive clustering problem.

(α, β)-approximations. As explained in the previous section, the K-SVD algo-
rithm is designed to solve the optimization problem in (1): given Y and T0,
compute

argmin
D,X
‖Y −DX‖F s.t ∀i, ‖xi‖0 ≤ T0.

The aim of the coreset construction is to select the atoms in Y with the higher
importance, in a sense that will be de�ned formally in the proof of Theorem 1.
However, it depends on the optimal solution of (1) whose computation is the
main reason that we construct the coreset in the �rst place. To �nd a leeway
from this chicken-and-egg situation, rough approximation D0 for the optimal
solution is computed. In computer science, such approximation is called α-
approximation, or more generally (α, β)-approximation. In the context of our
problem, α-approximation is a dictionary D0 that minimizes (1) up to a multi-
plicative factor of α > 0. For (α, β)-approximation, we also allow the dictionary
to have βk columns for some β > 1, rather then k, and the cost is again larger
by a factor of α compared to the optimal dictionary with exactly k columns.
The size and quality of the coreset depends on the values of α and β. Roughly

Learning Big (Image) Data via Coresets for Dictionaries 5

speaking, if we use α-approximation D0 for constructing the coreset, its additive
error will be a factor of only εα due to a sample of size quadratic in 1/ε whose
distribution is de�ned by D0.

Unfortunately, we couldn't �nd in the literature any provable (α, β)-approximations
for the problem in (1). On the positive side, in the recent years several fast ap-
proximations were suggested for the projective clustering problem, which is a
constrained version of the problem in (1), as we explain below. Using an ap-
proximation for projective clustering allows us to have bound on the additive
error that is introduced by our coreset; see Corollary 2. In fact, for simplicity, in
all our experiments we use the simplest version of projective clustering, which
is the mean D0 of the columns of Y . Still, due to the sampling process and
the intuition that natural images tend to contain patches with small variances
rather than random noise (a fact that we observed in all our experiments), the
approximation error of the corresponding small sample was small. See Section 8
for discussion.

Projective clustering as a special case of dictionary learning. As noted in [6], for
the case T0 = 1 and the additional constraint that X is a binary matrix, the
problem reduced to the K-means problems: compute a set D of K points that
minimizes the sum of squared distances from each point (column) in Y to its
nearest point in D.

For the case T0 = d, the problem reduces to the low-rank approximation prob-
lem (also known as PCA) where we wish to approximate Y by a K-dimensional
subspace which is spanned by the K columns of D.

For the case T0 = 1 without the binary constraint on X, the problem is to
compute a set of K lines, each passes through the origin, such that the sum of
squared distances from each point in Y to its nearest line is minimizes. In this
case the ith column of the matrix D corresponds to an arbitrary point on the ith
line, for i = 1, · · · ,K. This is a variant of the problem known as K-line mean
that is de�ned similarly, but without the constraint that each line must pass
through the origin; see [17].

In a similar way, for the case T0 = 2 the problem reduces to compute a set of
k =

(
K
2

)
two dimensional subspaces (i.e, planes that intersect the origin) which

minimizes the sum of squared distances to the points of Y , with the constraint
that each subspace is spanned by two vectors from a set D of K vector. That is,
the set of k =

(
K
2

)
subspaces is de�ned by the matrix D ∈ Rd×k.

In general, for T0,K ≥ 1, the problem in (1) is to compute a set of k =
(
K
T0

)
subspaces, each of dimension T0, which minimizes the sum of squared distances
to the points of Y , with the constraint that each subspace is spanned by T0
vectors from a set D of K vectors.

While we couldn't �nd the dictionary problem in the literature of compu-
tational geometry, the related projective clustering problem has a long line of
research, including several breakthroughs in the recent years in the context of
coreset; see [38] and [18] for a survey. In this problem, we are given a set Y of
n points and two integers j, k ≥ 1, and wish to compute a set of k subspaces of
Rd, each of dimension j, such that the sum of squared distances from each point

6 Dan Feldman, Micha Feigin, and Nir Sochen

in Y to its nearest subspace is minimized. In some papers, instead of subspaces,
we wish to compute a�ne subspaces (i.e, translated subspaces that do not nec-
essarily intersect the origin). Other distance functions and cost functions (such
as sum of non-squared or maximum distances) were also considered during the
recent years; see [18] for a survey.

Recently a (1 + ε) approximation for projective clustering that can be com-
puted in O(n) time were suggested in [38] for every constant j, k and ε, using the
framework of [18]. For the case k = 1, the projective clustering problem reduces
to the low rank approximation problem, for j = 1 it reduces to the k-line mean
problem, and for the case j = 0 we obtain the k-mean problem. These three
cases of projective clustering, yields the problem in (1) for T0 = d, T0 = 1 and
T0 = 0 respectively, as explained in the beginning of this section. In the general
case, the problem in (1) is a constrained version of projective clustering of n
points by k =

(
K
T0

)
subspaces each of dimension j = s. The constraint is that

the subspaces will be spanned by a small set D of k vectors.
For projective clustering, computing the projection of each input point on

its nearest subspace is trivial in O(djk) time, by iterating through each of the k
subspaces. On the general dictionary learning problem, however, there are

(
K
T0

)
candidates, and it is not clear how to compute the closest distance to such a
set of subspaces e�ciently. That is, even for a given dictionary D and a point
y ∈ y there are no polynomial time algorithm for computing the closest subspace
in polynomial time. Nevertheless, a lot of heuristics have been suggested over
the years for approximating distance to subspaces (called pursuit algorithms,
see a detailed description of these methods in [4]), for approximating points by
subspaces in general (see [16] and references therein), and for the k-dictionary
problem in particular (see references in [4]).

4 Coresets for dictionaries

Approximation algorithms in computational geometry and machine learning of-
ten make use of random sampling [9, 32], feature extraction [13, 8] and ε-samples
[26]. Coresets can be viewed as a general concept that includes all of the above
and more. The idea behind coresets is to replace the set of original elements
over which we want to solve a given problem with a new and much smaller
(weighted) set that possesses the same solution to the problem at hand. This,
theoretically, requires knowing the solution to the given problem so that we can
construct a set with the same solution. It is generally possible though to replace
the original problem with a much simpler one that gives enough information to
construct the coreset without actually solving the original problem. The solution
algorithm can then be applied to this new set. The size of the coreset depends
only on the problem parameters and required approximation error and not on
the input size. This allows to drastically reduce computational time and space
complexity without changing the actual algorithm. See a comprehensive (but
not so updated) survey on this topic by Agarwal, Har-Peled and Varadarajan
[2]. Note though that it is not clear that there is any commonly agreed-upon

Learning Big (Image) Data via Coresets for Dictionaries 7

de�nition of a coreset, despite several inconsistent attempts to do so [24, 3, 10,
23, 12, 19].

In our context, i.e the K-SVD algorithm for a sparse dictionary construction,
the input is a d×n matrix Y who's columns represent n points in Rd and integers
k, T0 ≥ 1. We want to construct a d × k matrix D who's columns represent k
points in Rd. The matrix D is called a dictionary and we want to be able to
represent each point in Y as a sparse sum of points in D. Typically k is much
larger than d and n is much larger than k.

To this end, for every column y in Y and a candidate dictionary D ∈ Rd×k

we de�ne

err(y,D) = min
x∈Rk,‖x‖0≤T0

‖Dx− y‖22

as the distance between y and its closest subspace over the set of
(
k
T0

)
subspaces

that are spanned by at most T0 columns of D. The sum of squared distances
over the columns of Y is the cost of D:

cost(Y,D) =
∑
y∈Y

err(y,D) = min
X
‖Y −DX‖2 ,

where the minimum is over every matrix X whose columns are T0-sparse.
Let D be a set of d× k matrices that represents the set of all possible dictio-

naries. A coreset scheme Coreset for a class of queries D is an algorithm that
gets as input a d × n matrix Y , and a parameter ε > 0, and outputs a d × c
matrix C = Coreset(P, ε) such that for every D ∈ D:

(1− ε) · cost(P,D) ≤ cost(C,D) ≤ (1 + ε) · cost(P,D).

The matrix C is called a coreset. Typically, one expects c to be much smaller
than n.

By the de�nition of coreset, the dictionary D∗ that minimizes the cost
cost(P,D) over the collection D of dictionaries, with any additional set of con-
straints, can be approximated by the coreset C.

5 Why Coresets?

Dealing with NP-hard problems. For a lot of �hard� (for example, NP-hard)
problems which have no e�cient solutions, there exist corresponding small core-
sets that can be computed very e�ciently. The projective clustering problem is
NP-hard even for the case j = 0 (k-means) where k is part of the input (not a
constant). Still, small coresets for k-means (of size independent of both n and d)
can be constructed in linear time in all the parameters [18]. Practical heuristics
are then applied on the coreset instead of the original set of points in order to
get smaller running time [1, 22]. More generally, variants of the projective clus-
tering problems that are NP-hard still have coresets that can be constructed in
polynomial time.

8 Dan Feldman, Micha Feigin, and Nir Sochen

Running heuristics on the coresets instead of the original input allows us
to obtain faster running times and deal with larger dataset. The connections
in Section 3 between projective clustering and dictionaries yield the natural
question of whether we can also use coresets for learning dictionaries.

Similarly, the optimization problem (1) that K-SVD is designed to solve
is NP-hard for most values of T0 and K. No tractable algorithm is known that
provably �ts a good dictionary, even under idealized conditions similar to those in
compressed sensing. Still, as in the related projective clustering problem, we may
be able to compute coresets and provide bounds on their approximation error,
as presented in this paper. The main reason is that, as in projective clustering,
getting rough approximation for the optimal solution is much easier than actually
solving the problem. However, for reducing the size of the data, rather then solve
the optimization problem, such a rough approximation might su�ce.

In fact, our experimental results show that sometimes we actually get im-
proved approximation quality while running on the coreset compared to the
original input. This is possible since K-SVD is a heuristic (not an optimal so-
lution) that might get trapped in �bad" local minima. It might be that in the
compression process a noisy data that cause such local minima is removed from
the input.

Constrained Optimization. A coreset for a set D of dictionaries is, by de�nition,
a coreset for a subset of D. Therefore, a coreset for a problem can be used for
solving the problems under non-trivial or �eld-speci�c constrainted solutions by
applying (not necessarily e�cient) algorithms that deal with these constraints
on the coreset.

For example, constrained non-negative variant version of the K-SVD was
suggested by Aharon, Elad and Bruckstein [6], where the atoms must be positive.
Other versions of K-SVD have additional constraint on the L1 norm of X (that
can be handled via LASSO [36])). Our coreset is for K-SVD is suitable for these
versions as well.

Streaming. There is a general reduction called �merge-and-reduce, that shows
that a small coreset scheme to a given problem su�ces to solve the corresponding
problem on a streaming input [7, 25]. In the streaming model the n input bits
of data arrived one by one, and we allowed to use memory (space) that is only
sub-linear in n, usually O(log n) bits. For example, a movie that consists of
Gigabytes of data that is broadcast via the Internet into a mobile phone that
can store only few mega bytes.

The key idea is to construct and save in memory a coreset for every block of
streaming bits. When we have two coresets in memory � we construct a single
coreset for the pair of coresets. This recursive process yields a binary tree of
height O(log n), where we need to store in memory a single coreset for each level
on the tree. See Fig. 1.

Parallel/Distributed computations. Using the same ideas from the streaming
model, a (non-parallel) coreset construction can be transformed into a parallel

Learning Big (Image) Data via Coresets for Dictionaries 9

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

C1	 C2	

C3	

C4	 C5	

C6	

C7	

Fig. 1. Tree construction for generating coresets in parallel or from data streams.
Black arrows indicate �merge-and-compress� operations. The (intermediate) coresets
C1, . . . , C7 are enumerated in the order in which they would be generated in the
streaming case. In the parallel case, C1, C2, C4 and C5 would be constructed in parallel,
followed by parallel construction of C3 and C6, �nally resulting in C7.

one; See Fig. 1. We partition the data into sets, and compute coreset for each set,
independetly, on di�erent computers. We then compute (in parallel) a coreset
for every pair of such coresets. Continue in this manner, yields a process that
takes O(log n) iteration of parallel computation.

Graphical Processing Units (GPUs) . More than 90% of new desktop and note-
book computers have integrated GPUs, which is a specialized microprocessor
that accelerates graphics rendering from the CPU. Because most of these com-
putations involve matrix and vector operations, engineers and scientists have
increasingly studied the use of GPUs for non-graphical calculations. However,
in order to be e�cient, algorithm that uses GPU must use mainly independent
and very simple computations that can be done in parallel.

The above connection between coresets and parallel computations make them
a natural tool for GPU computing. Since algorithms for computing coresets for
a problem are usually much simpler than algorithms for solving the correspond-
ing problem (as is the case of this paper), it may be useful to compute coresets
via GPUs and then solve the problem on the small coreset using the CPU. For
example, the recent version of Matlab (2010b) does not support SVD computa-
tion using the GPU but do support GPU functions that su�ce for computing
coresets for the SVD problem (say, using the algorithms in [18, 11]).

Privacy. Intuitively, coreset implies that a small dataset can be exposed in-
stead of the larger original dataset, while preserving its information with respect
to some family of queries. Coresets with formal proofs that guarantee that no
information is leaking from them about individuals were introduced in [15].

10 Dan Feldman, Micha Feigin, and Nir Sochen

6 Coreset for a single k-dictionary query

Algorithm 1 Coreset(Y,D0, c)

Input: a d× n matrix Y , an integer c ≥ 1, and a matrix D0 (of arbitrary size).
Output: a weighted c× d matrix C that satis�es Theorem 1.

Pick a non-uniform random sample S = {s1, s2, · · · , sc} of c i.i.d. columns from Y ,
where y ∈ Y is chosen with probability proportional to err(y,D0). That is, for every
s ∈ S and y ∈ Y , the probability that s = y is

pr(y) =
err(y,D0)∑

y∈Y err(y,D0)
=

err(y,D0)

cost(Y,D0)
.

Return the weighted matrix C whose columns are the vectors of S (in some arbitrary
order), where each y ∈ C is weighted (multiplied) by

w(y) =
1

c · pr(y) . (2)

The following lemma can be easily proved using Cherno�-Hoe�ding's inequality.

Lemma 1. Let Y be a d× n matrix, and δ, ε > 0 be. Let C be the output of the
algorithm Coreset with input parameters Y , D0 and

c ≥ 10 ln(1/δ)

ε2
.

Let D be a �xed d× k dictionary. Then, with probability at least 1− δ,

|cost(Y,D)− cost(C,D)| ≤ εcost(Y,D0) ·max
y∈Y

err(y,D)

err(y,D0)
.

Proof. We �rst prove that E[cost(C,D)] = cost(Y,D). Let si be the ith vector
of S, as de�ned in the algorithm Coreset, for 1 ≤ i ≤ c, and put y ∈ C. Since
the c vectors of S are sampled independently, we have

E[cost(C,D)] = E

∑
y′∈C

w(y′)err(y′, D)

 = c · E [w(y)err(y,D)] .

By (2), we have

E[w(y)err(y,D)] =
∑
y∈Y

pr(y) · w(y)err(y,D)

=
∑
y∈Y

pr(y) · 1

c · pr(y)
· err(y,D)

=
∑
y∈Y

err(y,D)

c
=

cost(Y,D)

c
.

Learning Big (Image) Data via Coresets for Dictionaries 11

Combining the last two equations yields

E[cost(C,D)] = cost(Y,D). (3)

By the Cherno�-Hoe�ding's inequality, for independent random variables
x1, . . . , xc we have, with probability at least 1− δ,∣∣∣∣∣E

[
c∑

i=1

xi

]
−

c∑
i=1

xi

∣∣∣∣∣ ≤ cε max
1≤i≤c

xi.

By substituting xi = w(yi)err(yi, D) where yi is the ith column of C, we get
that, with probability at least 1− δ,

|E[cost(C,D)]− cost(C,D)| =

∣∣∣∣∣∣E
∑
y∈C

w(y)err(y,D)

−∑
y∈C

w(y)err(y,D)

∣∣∣∣∣∣
≤ cεmax

y∈Y
w(y)err(y,D)

= εcost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)
.

Assume that the last inequality indeed holds (which happens with probability
at least 1− δ). Together with (3), we get

|cost(Y,D)− cost(C,D)| ≤ εcost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)
.

Corollary 1. Let α ≥ 1 be an integer and D0 be a dictionary, such that for
every D ∈ D:

(i) cost(Y,D0) ≤ α · cost(Y,D).
(ii) err(y,D) ≤ err(y,D0) for every y ∈ Y .

Put ε, δ > 0. Let C be the weighted matrix that is returned by the algorithm
Coreset with input parameters c ≥ 10α2 ln(1/δ)/ε2 and D0. Then, for a �xed
dictionary D ∈ D (which is independent of C), we have

(1− ε)cost(Y,D) ≤ cost(C,D) ≤ (1 + ε)cost(Y,D),

with probability at least 1− δ.

Proof. We have cost(Y,D0) ≤ α · cost(Y,D) by property (i). Replacing ε with
ε/α in Lemma 1 yields

|cost(Y,D)− cost(C,D)| ≤ (ε/b)cost(Y,D0)max
y∈Y

err(y,D)

err(y,D0)

≤ εcost(Y,D)max
y∈Y

err(y,D)

err(y,D0)
≤ εcost(Y,D),

where the last inequality follows from property (ii).

12 Dan Feldman, Micha Feigin, and Nir Sochen

7 Coreset for all k-dictionary queries

In order to have an ε-coreset for a set D of more than one dictionary, there are
still two problems that remain to be solved. Firstly, we need to compute D0 that
satis�es Properties (i) and (ii) of Corollary 1 with su�ciently small b. This will be
handle in the next section for our speci�c applications. Secondly, the de�nition of
ε-coreset demands that C will approximate cost(C,D) simultaneously for every
D ∈ D. However, Corollary 1 holds, with probability at least 1 − δ, only for a
�xed dictionary D ∈ D, i.e, a single query. If the size of D is �nite, we can replace
δ with δ/|D| in Corllary 1 and use the union bound to obtain an ε-coreset for Y
of size

c = O

(
ln(|D|)α2 ln(1/δ)

ε2

)
. (4)

However, in the applications of this paper the size of D is in�nite. In this
case, we use the result of [30] that is based on PAC-learning theory. Roughly
speaking, the result states that to obtain an ε-coreset, it su�ces to replace the
term ln(|D|) in (4) by some dimension v that represents the complexity of the
set D, in a VC-dimension type notion. Usually v is proportional to the number
of parameters that are needed to represent a dictionary D of D, which is, in
the general case, the number dk of entries in the matrix D. We give the formal
de�nition in the proof of the following main theorem.

Theorem 1. Let Y be a d × n matrix, ε, δ > 0. Let D0 be a matrix as de�ned
in Corollary 1 for some value of b > 0. Let C be the weighted matrix that is
returned by the algorithm Coreset with input parameters c ≥ 10dkb2 ln(1/δ)/ε2

and D0. Then, with probability at least 1− δ, C is an ε-coreset of Y .

Proof. We denote the ith column of Y by yi. Let F = {err(yi, ·) | 1 ≤ i ≤ n}
be the set of functions for the atoms to a given dictionary. That is, a function
fi : Rd×k → [0,∞) in F maps every d × k matrix D ∈ D to err(yi, D). The
sensitivity (or importance) of a function f in a set F is de�ned in [18] as

s(f) := max
D∈D

f(D)∑
f∈F f(D)

For our de�nition of F , we thus obtain for every i = 1, · · · , n,

s(fi) = max
D∈Rd×k

err(yi, D)

cost(Y,D)
. (5)

Intuitively, if there is a dictionary D such that cost(Y,D) is dominated by yi
then s(fi) is close to 1 and we should choose yi to the coreset. Otherwise, if the
contribution of yi is neglected for every possible query dictionary D, then s(fi)
is close to zero and we can ignore yi. Our hope is that not all the points are very
important, otherwise the coreset will have to be large. To this end, we need to
prove that the total sensitivity, which is de�ned as

T :=

n∑
i=1

s(i)

Learning Big (Image) Data via Coresets for Dictionaries 13

is small.
Indeed, using the de�nition of D0 in Corollary 1, we have cost(Y,D) ≥

cost(Y,D0)/α and err(yi, D) ≤ err(yi, D0). Plugging this in (5) yields

s(fi) ≤
αerr(yi, D0)

cost(Y,D0)
.

Hence,

T ≤
n∑

i=1

αerr(yi, D0)

cost(Y,D0)
= α.

The size of a coreset depends on the total sensitivity T , and the pseudo
dimension dim(F) of F , which represents its complexity. We �rst de�ne the
dimension of a set of subsets, and then of a set of functions.

De�nition 1 (range space [30, 18]). A range space is a pair (F, ranges)
where F is a set, and ranges is a set of subsets of F . The dimension of the
range space (F, ranges) is the smallest integer d, such that for every G ⊆ F we
have ∣∣∣ {G ∩ range | range ∈ ranges}

∣∣∣ ≤ |G|d .

The dimension of a range space relates (but is not equivalent) to a term known
as the VC-dimension of a range space.

De�nition 2 (pseudo dimension [31]). Let F be a �nite set of functions
from a set D to [0,∞). The pseudo dimension dim(F) of F is the dimen-
sion of the range space

(
F, ranges(F)

)
, where ranges(F) is de�ned as follows.

For every D ∈ D and r ≥ 0, let range(F,D, r) = {f ∈ F | f(D) ≤ r}. Let
ranges(F) = {range(F,D, r) | D ∈ D, r ≥ 0}.

One of the main result of [18] is that a non-uniform random sample of
10 dim(F) · T 2 log(1/δ)/ε2 from F according to the sensitivity of the functions
in F yields an ε-coreset for F .

Theorem 2 ([18]). Let F be a set of non-negative real functions from D, with
total sensitivity T . Let S be a random sample of |S| = 10T 2 dim(F) ln(1/δ)/ε2

function from F where q = f with probability proportional to its sensitivity s(f)
for every f ∈ F and q ∈ S. Then, with probability at least 1−δ, for every D ∈ D
we have that

|
∑
f∈F

f(D)−
∑
f∈S

1

s(f)|S|
· f(D)| ≤ ε

∑
f∈F

f(D).

Using the above bound on T we obtain that the size of the sample is

10 dim(F) · T 2 log(1/δ)

ε2
=

10dkα2 log(1/δ)

ε2
.

By the construction of C in Algorithm Coreset, this proves Theorem 1.

14 Dan Feldman, Micha Feigin, and Nir Sochen

For constructingD0 such that Corollary 1 would hold, we add the assumption
that every dictionary D has D0 as a subset of its columns. Hence, err(Y,D) ≤
err(Y,D0) for every y ∈ Y . To bound α we need to approximate min cost(Y,D)
which is hard. Instead, we suggest two leeways: the �rst is to replace ε with
ε2α in the previous theorem and de�ne the error with respect to the ratio
max cost(Y,D0)/cost(y,D). Alternatively, we can simply restrict ourselves to
dictionaries with large enough cost. We summarize this in the next corollary.

Corollary 2. Let Y be a d × n matrix, ε, δ > 0. Let D0 ∈ Rd denote the
mean of the columns of Y . Let C be the weighted matrix that is returned by the
algorithm Coreset with input parameters c ≥ 10dk ln(1/δ)/ε2 and D0. Then,
with probability at least 1− δ, for every D ∈ Rd×k that contains the column D0

we have

|cost(Y,D)− cost(C,D)| ≤ εcost(Y,D0).

In particular, C is an ε-coreset for the set of all such dictionaries D whose cost
is cost(Y,D) ≥ εcost(Y,D0).

Another practical choice ofD0 in the last corollary is run the K-SVD heuristic
on the original input data Y only for a single iteration, and choose D0 to be the
returned dictionary.

8 Coresets vs. uniform random sample

A natural and popular approach to reduce the input matrix Y is simply to pick a
small uniform random sample of its n columns. Such a sample can be computed
in sub-linear time in n, assuming random access to the input, which is the case
when the data is a table in the RAM or hard-drive. On the contrary, our coreset
is based on non-uniform random sampling and it takes at least one pass over the
data to compute the desired distribution. In fact, the Matlab implementation of
K-SVD that we use applies such initial random sample for handling large images.

Consider a matrix Y that represents an image of white noise. More precisely,
the columns of Y are i.i.d. standard random Gaussian vectors. In this case, the
sampling distribution of our coreset will be very similar to uniform distribu-
tion. Hence, uniform random sample yields compression of the data with similar
quality but much faster than coreset.

On the other extreme side, consider a cartoon image or a drawing, where
most of the pixels have the same color. In this case, the uniform random sample
will probably contain samples only from the background and therefore will be
useless. On the other side, our coreset will never sample a solid patch (with zero
variance for the pixel values) and only take representative points from the actual
drawing. Similarly, on a natural image that contains clusters of interesting areas,
say, an image of small window in a dark room, the uniform random sample is
likely to miss small clusters (the window), while the coreset is biased to sample
such small regions of interest. We show this phenomena in our experiments in
Section 9.

Learning Big (Image) Data via Coresets for Dictionaries 15

The above intuitive discussion has a simple formal explanation. Cherno�
bounds implies that the sum of a �small" random sample (of size quadratic in
1/ε) from a set of n numbers between 0 to 1 would yield an approximation to
the sum of the n numbers up to additive error of εn, with high probability. Each
one of the n numbers corresponds to the error ‖y −Dx‖2 from a speci�c atom y
to its approximation by a query dictionary D. By scaling the input, our coreset
reduces the error to εM where M is the variance of the n numbers. Therefore,
if all the dictionaries admit bad approximations, such as the case for the above
noisy image Y , then n and the variance M are similar. For more natural images
or when the input is sparse, the variance is close to zero, M is independent
of n, and the approximation error of the coreset is much smaller, as proved in
Theorem 1.

Our experimental results shows that, as implied by the above discussion,
coresets perform better compared to random sampling on natural images. This
holds even for our naive choice of the 1-mean as the initial rough approximation
for the optimal dictionary. We expect that more involved initial dictionaries such
as K-means or other projective clustering of the columns of Y , would yield even
better error bounds.

Size of sample. Recently, Vainsencher, Mannor and Bruckstein [37] developed
generalization bounds on the quality and required uniform random sample size
for learning dictionaries under several types of constraints. The notation and
lines of research that are used in [37] seem to be di�erent from our analysis that
is based on a general framework for bounding coresets size [28, 18]. However, it
seems that there is a strong connection between the underlying math.

In particular, our coreset size depends on total sensitivity and VC-dimension
that are combined with Hoe�ding inequality [18, 28], which have a strong con-
nection to Lipschitz mapping (see [21, Section 2.1]), covering number (as shown
in [35]), and Bernstein Inequality (which is a generalization of Hoe�ding in-
equality), respectively, that are used in [37]. Since the analysis of coresets size is
mainly based on a long line of research of PAC-learning regarding the required
size of uniform random sample [30], we believe that the results of Vainsencher,
Mannor and Bruckstein [37] may be used to improve or generalize the bound of
the coresets in this paper or vice versa. The main observation for �nding such
connections is that non-uniform random sampling from a set can be described
as a uniform random sampling for a set that contains multiple copies of each
item.

The theoretical bounds on our coreset size and error are given in Theorem 1.
The size of the coreset depends on the desired bounds on the probability of
failure δ, the approximation error ε, and the size of the desired dictionary. The
overall error depends on ε and the quality of the initial dictionary D0, which can
be approximated in O(nd) time for the case of 1-mean.

Of course, the same output coreset corresponds to unbounded number of
combination of ε, and δ. The worst case theoretical and general analysis also
ignores nice structures that usually appear in practical inputs, and thus often
are too pessimistic. Fortunately, in practice, we simply choose the size of the

16 Dan Feldman, Micha Feigin, and Nir Sochen

coreset based on our memory or time constrained. The theory provides us the
way (distribution) to sample the points, and the guarantee that the coreset size,
in general, must be small and independent of the the input matrix Y or its size.

9 Experimental results

9.1 Hardware

We run the experiments on a standard personal modern Laptop, namely, IBM
Lenovo W500 as provided by the manufacturer, without additional hardware.
In particular, we use the CPU �Intel Core 2 Duo processor T9600 (2.80 GHz)"
with 2GB memory. See manufacturer's website
(http://www-307.ibm.com/pc/support/site.wss/document.do?lndocid=MIGR-71785)
for exact hardware details.

Software. The operation system that we used is �Windows Vista Business� and
the Matlab version is 2010b. For the K− SVD and OMP algorithms, we use the
implementation of Rubinstien that was generously uploaded on the Internet [34].
This implementation was used as a �black box" without changing a line of code.
The time and space improvements are therefore only due to the replacing of the
original input matrix Y with its coreset.

9.2 Synthetic data

As in previously reported works [27, 29, 5], we �rst try to construct coresets of
synthetic data. In [5] it was shown how the K− SVD algorithm approximated
the original dictionary D∗ that generated a synthetic data matrix Y . In the
following experiments we replace Y by its (usually much smaller) coreset C, and
compare the results of applying K− SVD on C instead of Y . The construction of
C is done using algorithm Coreset with D0 and di�erent values of c, as de�ned
in the coreset construction. The construction of the generative dictionary D∗

and the input matrix Y was based on the suggested experiments in [5]. As was
suggested in [5] and implemented in the code for the K-SVD iterations, instead
of taking the actual columns from Y to the coreset, we subtracted the mean of
Y from every chosen column, and also added the mean column to our initial
dictionary.

Generating the dictionary D∗ and the matrix Y . A random (dictionary) matrix
D∗ of size d × k = 20 × 50 was generated with i.i.d. uniformly distributed
entries. Each column was normalized to a unit norm. Then, a 20× n matrix Y
was produced for di�erent values of n. Each column y of Y was created using
a linear combination D∗x of ‖x‖0 = j = 3 random and independent di�erent
columns of D∗, with uniformly distributed i.i.d. coe�cients. White Gaussian
noise with varying signal-to-noise ratio (SNR) σ = 20 was added to the resulting
vector D∗x. That is, Y = D∗X + N where N is a matrix that represents the

Learning Big (Image) Data via Coresets for Dictionaries 17

Gaussian noise in each entry, and every column x of X corresponds to a column
vector y in Y as de�ned above.

We run the experiment with 11 di�erent assignments for n, that were approx-
imately doubled in every experiment: from n = 585 to n = 500, 000. For every
such value of n, 50 trials were conducted, when in every trial new dictionary D∗

and matrices Y and X were constructed.

Applying K− SVD on Y . We run the K− SVD implementation of [34], where
the maximum number of iterations was set to 40. The rest of parameters were
the defaults of the implementation in [34]. We denote the output dictionary by
DY .

Generating the coreset C. We implemented and run the algorithm Coreset(c,D0)
on the input matrix Y where the size of the coreset was set to c = 5000. The pa-
rameter D0 was always set to be the column vector of d ones. This vector yields
nearly the same results as taking the mean but could be computed without
passing over the input matrix Y .

Applying K− SVD on C. We called to the K− SVD algorithm using the same
parameters as the above call for Y , except for the maximum number of iterations.
After setting the number of iterations to 40 for the input C (as in the runs on
Y), we got results that are only slightly worse than on Y , but signi�cantly faster
(up to 100 times). We therefore decided to sacri�ce time in order to get better
results, and used 120 iterations on the K− SVD with the input C. We denote
the output dictionary by DC .

Approximating the sparse coe�cients matrix. In order to approximate the entries
of the matrix X, we used the OMP heuristic as de�ned in [33] and implemented
in [34]. The objective of OMP is to minimize ‖Y −DYXY ‖F for the given dic-
tionary DY and the input matrix Y , over every matrix XY whose columns are
sparse (‖x‖0 = j = 3 for every column x ∈ XY). This is done by minimizing
‖y −DY x‖F for every column y ∈ Y (one by one) over the set of j-sparse vectors
x. Similarly, we computed XC that suppose to minimize ‖Y −DCXC‖ using the
OMP heuristic, as done for Y and DY .

Measurement. To measure how close DY is to D∗, compared to the di�erence
between DC and D∗, we used the same error measurement Distance(D,D∗) that
was used in the original K− SVD paper [5], and implemented in [34].

The computation ofDistance(D,D∗) for two dictionariesD andD∗ is done by
sweeping through the columns of D∗ and �nding the closest column (in distance)
in the computed dictionaryD, measuring the distance via 1−|dTi d̃i|, where di is a
column in D∗ and d̃i is its corresponding element in the recovered dictionary D.
The average distance is denoted by Distance(D,D∗). That is, Distance(D,D∗)
is the sum of distances over every i, 1 ≤ i ≤ k, divided by k.

18 Dan Feldman, Micha Feigin, and Nir Sochen

(a) (b)

Fig. 2. Comparison of the di�erences between the dictionaries DY DC and D∗ over
the number n of rows in the matrix Y . The dictionaries DY , DC are respectively the
dictionaries that were constructed using the original matrix Y , and its coreset C. The
original generator dictionary of Y is denoted by D∗.

The Results. In Fig. 2(a) we compare the di�erence (the y-axis) between the
dictionaries (the two lines) for di�erent values of n (the x-axis). For example, the
dotted line show the average value, for every assignment of n, ofDistance(DC , D

∗)
over the 50 trials , between the generation dictionary D∗ and the dictionary that
returned when running K− SVD with the input matrix Y . The variance over
the sets of 50 experiments that corresponds to the average in Fig 2(a) is shown
in Fig. 2(b).

The comparison between the running times appears in Fig 3. The x-axis
shows the values of n as in Fig. 2, while the y-axis is the ratio between the
running time of constructing DY , the dictionary of Y , and the running time
of constructing DC , the dictionary of C. The construction time for DC is the
sum of the time it took to construct the coreset C from Y , and the time for
constructing DC from C.

Discussion. In Fig. 2(a) we see that the coreset is usually good at least as the
original set for reconstructing the generating dictionary D∗. By Theorem 1, the
quality of the coreset C depends on its size c, but not of n. Indeed, the error in
Fig. 2 seems to be independent of the value of n. In Fig. 2(b) we see that the
results are also more stable on the coreset runs.

Since the size of the coreset is the same (c = 5000), the value of n is getting
larger, and the running time of the K− SVD algorithm is linear in the rows of
the input matrix (c or n), it is not surprising that the ratio between running
times grows linearly with the value of n; see Fig. 3(a). For n = 500K in Fig 3(a),
the ratio between the running time is approximately 1:30 (0.032). For n = 1M

Learning Big (Image) Data via Coresets for Dictionaries 19

(a) (b)

Fig. 3. (a) The ratio between the running time of the K− SVD algorithm on the input
matrix Y and its corresponding coreset C. (b) The error between the dictionary DC

for coresets C of di�erent sizes.

this ratio is approximately 1:60. However due to time and memory constraints
we didn't repeat the experiment for n = 1M 50 times.

The role of the sample size c. By Theorem 1, the size c of the coreset C is poly-
nomial in 1/ε, where ε represents the desired quality of the coreset. In Fig. 3(b)
we show results for additional set of experiments for a constant n = 500K and
di�erent values of the coreset size c. The number of iterations is still 120, and
the rest of the parameters remain the same as in the previous experiments. The
y-axis is the log of the distance between the dictionaries (base 10) over 50 trials.
Indeed, it seems that the error is reduced roughly linearly with the size of c.

20 Dan Feldman, Micha Feigin, and Nir Sochen

(a) (b)

Fig. 4. (a) Noisy Image with SNR= 50. The resulting PSNR is 14.15dB. (b) Denoised
image using [14] on the small coreset. The resulting PSNR is ∼ 30.9.

9.3 Coresets for High-De�nition Images

In [14] it is explained how to apply image denoising using the algorihtm K−SVD.
Fortunately, source code was also provided by Rubinstein [34]. We downloaded
high-de�nition images from the movie �Inception"' that was recently released by
Warner Bros; see web page �http://collider.com/new-inception-images-posters-
christopher-nolan/34058/�. We used only one of the images, whose size is 4752×
3168 = 15, 054, 336 pixels; see Fig. 4. We added a Gaussian noise of SNR = 50
which yields a noisy image of PSNR = 14.15. Then, we partition the noisy
image into 8×8 blocks as explained in [14], and convert the blocks into a matrix
Y of approximately n = 12M vectors of dimension d = 8 × 8 = 64. We then
hoped to apply the K−SVD as explained in [14] using the default parameters
in [34]. However, we got �out of memory" error from Matlab already in the
construction of Y . So, instead, we constructed a coreset C of Y in the streaming
model using one pass over Y . In this model, coresets are constructed (using our
algorithm Coreset) from subsets of columns of Y that are loaded one by one and
deleted from memory. When there are too many coresets in memory, a coreset
for the union of coresets is constructed and the original coresets are deleted. See
details in [20]. After constructing such a coreset C of size c = 10000 for all the
columns of Y , we apply the K−SVD on the coreset using sparsity j = 10, and
k = 256 atoms, and 40 iterations. The PSNR was increased, on average of 10

Learning Big (Image) Data via Coresets for Dictionaries 21

experiments, from 14.15 to 30.9, with variance of ∼ 0.002, while the average time
for constructing the dictionary was 69 seconds with variance of ∼ 7.2

9.4 Comparison of initial dictionaries D0

(a) Input 1 (portrait) (b) Input 5 (city)

(c) Input 1 (portrait) (d) Input 5 (city)

Fig. 5. Dictionary quality as a function of the number of vectors used to sample the
coreset. The series labeled �0" is the constant vector. The other labels represent the
number of signi�cant singular vectors that were added to the dictionary. The black
line is the reference quality for running on the entire set. Fig. (a) shows the results for
the image appearing in Fig. 6(a), Fig. (b) shows the results for the image appearing in
Fig. 6(m). Fig. (c) and (d) show a comparison to results when not inserting D0 into
the �nal dictionary.

We ran the following test on 5 di�erent input images, ranging in size from
8 MP to 60MP, both color and gray scale. The images were broken down into
patches of size 16 × 16, which gave a vector dimension of 256 for gray scale
images and 756 for color images. The dictionary size was set to 100 vectors, and
the sparsity was set to 5.

We start by looking at the e�ect of sampling the coreset based on the constant
vector, the most signi�cant singular vector, or several of the most signi�cant
singular vectors. As can be seen in Fig. 5, using the constant vector or the most

22 Dan Feldman, Micha Feigin, and Nir Sochen

signi�cant singular vector gives nearly the same results. In fact, these two vectors
look nearly the same, where the deviation from constant for the most signi�cant
singular vector was on a scale of three orders of magnitude smaller than the
average (DC).

As mentioned earlier, we can see here, as well as in the next results (Fig. 6),
that learning the dictionary on the coreset, also consistently gives better results
that learning it on the full set. Theoretically this does not suppose to happen
for an ideal algorithm, but the KSVD algorithm is a greedy algorithm, so the
assumption is that the coreset smooths the data, reducing sensitivity to local
minima.

9.5 Comparison to uniform random sample

Fig. 6 shows a comparison of learning the dictionary on the coreset vs. learning
the dictionary on a uniformly sampled random subset of the same size. These
test clearly show that coresets are superior to random sampling, both in total
run-time vs dictionary quality (coreset construction time + KSVD time) and
sample size vs dictionary quality. More interestingly, we see that as expected,
random sampling gives a dictionary that is worse than the dictionary learned
on the whole dataset, while unexpectedly, coresets consistently give a dictionary
that is better than the dictionary learned on the whole dataset. The fact that
corestes are better than random sampling is easy to realize for cartoon images
as in Fig. 6(j), as random sampling is going to mostly select constant vectors,
while coresets will only select detail patches, but is also clearly seen for other
types of images.

Another result that is less expected is that learning the dictionary on the
coreset was more stable and faster than learning the dictionary on the random
sample of the same size, o�setting for the longer time taken to construct the
coreset.

Overall, we see accelerations ranging from ×15 to over ×25, and an improve-
ment in dictionary quality (reconstruction error) that in most cases ranges from
10% to 40%.

10 Conclusions

The use of coresets opens up new possibilities for dictionary methods. Coreset
use allows implementing dictionary methods on anything from HD images up
to full length movies. In fact, we've been able to process and entire �lm using
entire frames as feature vectors.

All this opens up the research to perform things such as scene analysis and
optimal I-Frame selection or even replacing the entire I-Frame approach with
dictionary based reference frames.

Learning Big (Image) Data via Coresets for Dictionaries 23

(a) Image (b) Runtime vs. Quality (c) Size vs. Quality

(d) Image (e) Runtime vs. Quality (f) Size vs. Quality

(g) Image (h) Runtime vs. Quality (i) Size vs. Quality

(j) Image (k) Runtime vs. Quality (l) Size vs. Quality

(m) Image (n) Runtime vs. Quality (o) Size vs. Quality

Fig. 6. Comparison of reconstruction error vs total run-time (second column) and
sample size (third column) for learning a dictionary using a coreset vs. learning the
dictionary using a random sample. The coreset was learned using the constant vector.
All graphs also show the results for learning the dictionary on the full set (reference).
First column is the image used for that test.

24 Dan Feldman, Micha Feigin, and Nir Sochen

References

1. Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. Streamkm++: A clustering algo-
rithm for data streams. J. Exp. Algorithmics, 17(1):2.4:2.1�2.4:2.30, May 2012.

2. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. Journal of the ACM, 51(4):606�635, 2004.

3. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximations
via coresets. Combinatorial and Computational Geometry - MSRI Publications,
52:1�30, 2005.

4. M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. Signal Processing, IEEE Transac-
tions on, 54(11):4311�4322, 2006.

5. M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. Signal Processing, IEEE Transac-
tions on, 54(11):4311�4322, 2006.

6. M. Aharon, M. Elad, and A.M. Bruckstein. K-svd and its non-negative variant for
dictionary design. In Proceedings of the SPIE conference wavelets, volume 5914,
page 591411, 2005.

7. J.L. Bentley and J.B. Saxe. Decomposable searching problems I. Static-to-dynamic
transformation* 1. Journal of Algorithms, 1(4):301�358, 1980.

8. R. M. Cesar and L. F. Costa. Shape Analysis and Classi�cation. CRC Press, Boca
Raton, 2001.

9. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility
location problems with outliers. In 12th Annu. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 642�651, 2001.

10. K. L. Clarkson. Subgradient and sampling algorithms for l1-regression. In 16th
Annu. ACM-SIAM Symp. on Discrete algorithms (SODA), pages 257�266, 2005.

11. A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Mahoney. Sampling
algorithms and coresets for `p-regression. In Proc. 19th Annu. ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 932�941, 2008.

12. A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix
approximation. 10th Int. Workshop on Randomization and Computation (RAN-
DOM), pages 292�303, 2006.

13. I. L. Dryden and K. V. Mardia. Statistical Shape Analysis. John Wiley and Sons,
San Diego, 1998.

14. M. Elad and M. Aharon. Image denoising via sparse and redundant representa-
tions over learned dictionaries. IEEE Trans. Image Processing, 15(12):3736�3745,
December 2006.

15. D. Feldman, A. Fiat, H. Kaplan, and K. Nissim. Private coresets. In Proc. 41st
Annu. ACM Symp. on Theory of Computing (STOC), pages 361�370, 2009.

16. D. Feldman, A. Fiat, D. Segev, and M. Sharir. Bi-criteria linear-time approxima-
tions for generalized k-mean/median/center. In 23rd ACM Symp. on Computa-
tional Geometry (SOCG), pages 19�26, 2007.

17. D. Feldman, A. Fiat, and M. Sharir. Coresets for weighted facilities and their ap-
plications. In Proc. 47th IEEE Annu. Symp. on Foundations of Computer Science
(FOCS), pages 315�324, 2006.

18. D. Feldman and M. Langberg. A uni�ed framework for approximating and clus-
tering data. In Proc. 41th Ann. ACM Symp. on Theory of Computing (STOC),
full version in http : //arxiv.org/abs/1106.1379, 2010.

Learning Big (Image) Data via Coresets for Dictionaries 25

19. D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering
based on weak coresets. In 23rd ACM Symp. on Computational Geometry (SoCG),
pages 11�18, 2007.

20. D. Feldman, M. Monemizadeh, and C. Sohler. A PTAS for k-means clustering
based on weak coresets. In Proc. 23rd ACM Symp. on Computational Geometry
(SoCG), pages 11�18, 2007.

21. D. Feldman and L.J. Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1343�1354. SIAM, 2012.

22. G. Frahling and C. Sohler. A fast k-means implementation using coresets. In
Proceedings of the twenty-second annual symposium on Computational geometry,
pages 135�143. ACM, 2006.

23. S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering.
Discrete & Computational Geometry, 37(1):3�19, 2007.

24. S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering.
In 36th Annu. ACM Symp. on Theory of Computing (STOC), pages 291�300, 2004.

25. S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering.
In Proc. 36th Annu. ACM Symp. on Theory of Computing (STOC), pages 291�300,
2004.

26. D. Haussler. Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Inf. Comput., 100(1):78�150, 1992.

27. K. Kreutz-Delgado, J.F. Murray, B.D. Rao, K. Engan, T.W. Lee, and T.J. Se-
jnowski. Dictionary learning algorithms for sparse representation. Neural compu-
tation, 15(2):349�396, 2003.

28. M. Langberg and L. J. Schulman. Universal ε approximators for integrals. pro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.

29. S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya. Learning unions of orthonor-
mal bases with thresholded singular value decomposition. In Acoustics, Speech, and
Signal Processing, 2005. Proceedings.(ICASSP'05). IEEE International Conference
on, volume 5. IEEE, 2005.

30. Y. Li, P. M. Long, and A. Srinivasan. Improved bounds on the sample complexity
of learning. Journal of Computer and System Sciences (JCSS), 62, 2001.

31. Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample
complexity of learning. In Symp. on Discrete Algorithms, pages 309�318, 2000.

32. K. Mulmuley. Computational Geometry, an Introduction through Randomized Al-
gorithms. Prentice Hall, 1993.

33. YC Pati, R. Rezaiifar, and PS Krishnaprasad. Orthogonal matching pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In
Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on, pages 40�44. IEEE, 2002.

34. Ron Rubinstein. Ksvd-box v13. Technical report.

35. J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. Structural
risk minimization over data-dependent hierarchies. Information Theory, IEEE
Transactions on, 44(5):1926�1940, 1998.

36. B. Shen, W. Hu, Y. Zhang, and Y.J. Zhang. Image inpainting via sparse repre-
sentation. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on, pages 697�700. IEEE, 2009.

37. D. Vainsencher, S. Mannor, and A.M. Bruckstein. The sample complexity of dic-
tionary learning. Arxiv preprint arXiv:1011.5395, 2010.

26 Dan Feldman, Micha Feigin, and Nir Sochen

38. Kasturi Varadarajan and Xin Xiao. A near-linear algorithm for projective clus-
tering integer points. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA '12, pages 1329�1342. SIAM, 2012.

