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Abstract—This paper considers the transmission of confidential
data over wireless channels. Based on an information-theoretic for-
mulation of the problem, in which two legitimates partners com-
municate over a quasi-static fading channel and an eavesdropper
observes their transmissions through a second independent quasi-
static fading channel, the important role of fading is character-
ized in terms of average secure communication rates and outage
probability. Based on the insights from this analysis, a practical
secure communication protocol is developed, which uses a four-
step procedure to ensure wireless information-theoretic security:
(i) common randomness via opportunistic transmission, (ii) mes-
sage reconciliation, (iii) common key generation via privacy am-
plification, and (iv) message protection with a secret key. A rec-
onciliation procedure based on multilevel coding and optimized
low-density parity-check (LDPC) codes is introduced, which allows
to achieve communication rates close to the fundamental security
limits in several relevant instances. Finally, a set of metrics for as-
sessing average secure key generation rates is established, and it is
shown that the protocol is effective in secure key renewal—even in
the presence of imperfect channel state information.

Index Terms—Information-theoretic security, low-density
parity-check (LDPC) codes, secrecy capacity, secret key agree-
ment, wireless channels.

I. INTRODUCTION
A. Motivation

THE issues of privacy and security in wireless communica-
tion networks have taken on an increasingly important role

as these networks continue to flourish worldwide. Traditionally,
security is viewed as an independent feature addressed above
the physical layer, and all widely used cryptographic protocols
(e.g., RSA and AES) are designed and implemented assuming
the physical layer has already been established and provides an
error-free link. In contrast with this paradigm, there exist both
theoretical and practical contributions that support the poten-
tial of physical layer security ideas to significantly strengthen
the security of digital communication systems. The basic prin-
ciple of information-theoretic security—widely accepted as the
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Fig. 1. Example of a wireless network with potential eavesdropping. Terminals
T and T communicate with a base stationS over a wireless medium (channels
A andB). By listening to the transmissions of terminal T (through channelC),
terminal T may acquire confidential information. If T wants to exchange a se-
cret key or guarantee the confidentiality of its transmitted data, it can exploit the
physical properties of the wireless channel to secure the information by coding
against terminal T .

strictest notion of security—calls for the combination of crypto-
graphic schemes with channel coding techniques that exploit the
randomness of communication channels to guarantee that the
messages sent cannot be decoded by a third party maliciously
eavesdropping on the wireless medium (see Fig. 1).

The theoretical basis for this information-theoretic approach,
which builds on Shannon’s notion of perfect secrecy [1], was
laid by Wyner [2] and later by Csiszár and Körner [3], who
proved in seminal papers that there exist channel codes guaran-
teeing both robustness to transmission errors and a prescribed
degree of data confidentiality. In the 1970s and 1980s, the im-
pact of these works was limited, partly because practical wiretap
codes were not available, but mostly because a strictly positive
secrecy capacity in the classical wiretap channel setup requires
the legitimate sender and receiver to have some advantage over
the attacker in terms of channel quality. Moreover, almost at the
same time, Diffie and Hellman [4] published the basic principles
of public-key cryptography, which was to be adopted by nearly
all contemporary security schemes.

More recently, there has been a renewed interest for infor-
mation-theoretic security, arguably due to the work of Maurer
[5], who proved that even when the legitimate users (say Alice
and Bob) have a worse channel than the eavesdropper (say Eve),
it is possible for them to generate a secret key through public
communication over an insecure yet authenticated channel. The
advent of wireless communications, which are particularly sus-
ceptible to eavesdropping because of the broadcast nature of the
transmission medium, has also motivated a closer analysis of
the secrecy potential of wireless networks. Hero [6] introduced
space–time signal processing techniques for secure communi-
cation over wireless links, and Goel and Negi [7], [8] investi-
gated achievable secret communication rates taking advantage
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of multiple-input multiple-output communications. Parada and
Blahut [9] established the secrecy capacity of various degraded
fading channels. Barros and Rodrigues [10] provided a detailed
characterization of the outage secrecy capacity of slow fading
channels, and they showed that fading alone guarantees that in-
formation-theoretic security is achievable, even when the eaves-
dropper has a better average signal-to-noise ratio (SNR) than
the legitimate receiver—without the need for public commu-
nication over a feedback channel or the introduction of artifi-
cial noise. The ergodic secrecy capacity of fading channels was
derived independently by Liang et al. [11], Li et al. [12], and
Gopala et al. in [13] and power and rate allocation schemes for
secret communication over fading channels were presented.

In spite of the numerous theoretical contributions, the gen-
eral problem of physical-layer coding and modulation schemes
for both reliable and secure communication over Gaussian and
fading wiretap channels has not received much attention. There
is still no general framework to draw on, even as we witness
sustained advances in the area of capacity-achieving coding and
modulation for Gaussian and fading channels [14], [15]. Much
of previous work for the wiretap channel stems from the early
work in [2] and [16] and is studied more extensively by Wei
[17], who shows how to encode secret information using cosets
of certain linear block codes. More recently, this general notion
has been extended by Thangaraj et al. [18], and later by Liu et al.
[19], where it was shown how low-density parity-check (LDPC)
codes can achieve the secrecy capacity of the erasure wiretap
channel asymptotically, and how this class of codes can be used
to provide perfectly secret communications at rates below the
secrecy capacity for other channels. Thangaraj et al. [18] also
showed how the joint problems of reliability and security in-
teract in a code and how capacity approaching codes for the
reliability problem can be used to meet the reliability and se-
curity requirements of the wiretap channel. Several authors re-
cently proved the existence of coding schemes for various gen-
eralized wiretap channel scenarios [20], [21]. In particular, the
possibility of coding methods based on LDPC codes was shown
in [22].

Since designing wiretap codes for Gaussian and fading chan-
nels appears to be beyond the capabilities of current coding tech-
niques, we focus on the somewhat less difficult problem of gen-
erating secret keys for secure communication over Gaussian and
wireless channels. The key generation/distribution problem in
wiretap channels falls under the general problem of key gen-
eration from correlated source outputs, which has been exten-
sively studied in an information-theoretic context [5], [23], [24].
The objective of secure key distribution is for Alice and Bob to
agree on a common -bit key about which Eve’s entropy is max-
imal. In key distribution, the bits can be unknown to Alice be-
fore transmission, which is in sharp contrast to secure message
communication where Alice has a -bit message that she wants
to communicate to Bob. Powerful tools, such as common ran-
domness, advantage distillation, and privacy amplification, were
developed in the context of secret key agreement over wiretap
channels [23], [25] and will be discussed, as they form the basis
for much of the practical secret key agreement protocol pro-
posed in this paper. Most key agreement protocols require some
level of interactive communication between Alice and Bob to

arrive at a common yet secret key [5], where the exchange of
information is by way of a parallel, error-free public channel
between Alice and Bob used during the key agreement phase
[26]. One key advance in this paper is that we focus exclusively
on protocols that require only one-way feedforward communi-
cation from Alice to Bob across the noisy wireless channel, thus
obviating the need for a noiseless, authenticated public channel.

B. Main Contributions and Organization of the Paper

In the following, we summarize the main contributions of this
work.

• Role of fading; we analyze the impact of quasi-static fading
on wireless channels in terms of information-theoretically
secure communication rates, and we highlight the benefit
of fading towards achieving nonzero secure communica-
tion rates.

• Opportunistic secret key agreement; based on the insight
provided by the aforementioned analysis, we propose an
opportunistic secret key agreement protocol, which ex-
ploits the fluctuations of the fading coefficients to generate
information theoretically secure keys.

• Coding algorithm; we present a practical algorithm for the
secret key agreement protocol based on multilevel coding
and LDPC codes.

• Performance evaluation; we introduce a set of reasonable
metrics to assess the performance of the protocol, and we
analyze the secure communication rates achievable by the
protocol in asymptotic regimes.

• Impact of channel state information; we extend the secret
key agreement protocol to allow for imperfect channel state
information (CSI), and we show its effectiveness in secure
key renewal.

The rest of this paper is organized as follows. In Section II,
we study the impact of fading on the secure communication
rates that are achievable over quasi-static wireless channels, thus
shedding light on how to design opportunistic secret key agree-
ment protocols. Section III describes one such opportunistic se-
cret key agreement protocol in detail and presents a reconcilia-
tion procedure based on multilevel coding and LDPC codes. In
Section IV, we analyze the performance of the protocol, both
analytically in asymptotic regimes and through simulation, and
we discuss the impact of imperfect CSI. Concluding remarks are
provided in Section V.

II. INFORMATION-THEORETIC SECURITY

OVER WIRELESS CHANNELS

A. Wireless System Setup

We consider the wireless system setup depicted in Fig. 2,
where a legitimate user (Alice) wants to send messages to an-
other user (Bob). Alice encodes a message block, represented
by the random variable (RV) , into a codeword, represented
by the RV , for transmission over the channel. Bob observes
the output of a discrete-time Rayleigh-fading channel (the main
channel) given by
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Fig. 2. Wireless wiretap channel setup.

where is a circularly symmetric complex Gaussian RV
with zero-mean and unit-variance representing the main channel
fading coefficient and is a zero-mean circularly sym-
metric complex Gaussian noise RV.

A third party (Eve) is also capable of eavesdropping on
Alice’s transmissions. Eve observes the output of an indepen-
dent discrete-time Rayleigh-fading channel (the eavesdropper’s
channel) given by

where denotes a circularly symmetric complex Gaussian
RV with zero-mean and unit-variance representing the eaves-
dropper’s channel fading coefficient and denotes a zero-
mean circularly symmetric complex Gaussian noise RV.

It is assumed that the channel input, the channel fading
coefficients, and the channel noises are all independent. It is
also assumed that both the main channel and the eavesdropper’s
channel are quasi-static fading channels, that is, the fading co-
efficients, albeit random, are constant during the transmission
of an entire codeword ( and

) and, moreover, independent from codeword to
codeword. This corresponds to a situation where the coherence
time of the channel is large.

The codewords transmitted by Alice are subject to the average
power constraint

and the average noise powers in the main channel and the eaves-
dropper’s channel are denoted by and , respectively.
Consequently, the instantaneous SNR at Bob’s receiver is given
by

and its average value corresponds to

Likewise, the instantaneous SNR at Eve’s receiver is given by

and its average value can be written as

Since the channel fading coefficients are zero-mean complex
Gaussian RVs and the instantaneous SNR , it follows
that is exponentially distributed, specifically

(1)

and

(2)

Let the transmission rate between Alice and Bob be
, the equivocation rate of Eve be

, and the error probability ,
where denotes the sent messages and denotes Bob’s
estimate of the sent messages. Notice that the secrecy condition
used here (and in [2], [3]) is weaker than the one proposed by
Maurer and Wolf in [27] or Narayan and Csiszár in [28], where
the information obtained by the eavesdropper is negligibly
small not just in terms of rate but in absolute terms. Maurer and
Wolf showed that the notions could be used interchangeably
for discrete memoryless channels, and this result was very
recently extended to the Gaussian case [29].

In general, one is interested in characterizing the rate-equiv-
ocation region, defined as the set of pairs such that
for all there exists an encoder–decoder pair satisfying

, , and . Here, however, we
focus on the secrecy capacity of the channel, which corre-
sponds to the maximum transmission rate such that .

B. Impact of Fading on Secure Communications

In this subsection, we study the impact of fading on the
secrecy capacity of this wireless system by considering two
metrics: average secrecy capacity and probability of outage of
secrecy capacity. We assume that Alice and Bob have perfect
knowledge of the main channel fading coefficient and that
Eve also has perfect knowledge of the eavesdropper’s channel
fading coefficient. These assumptions are realistic for the
slow-fading wireless environment under consideration: both
receivers can always obtain close to perfect channel estimates
and, additionally, the legitimate receiver can also feed back the
channel estimates to the legitimate transmitter. Moreover, we
assume that Alice and Bob also have partial knowledge of the
eavesdropper’s channel fading coefficient. This corresponds,
for instance, to the situation where Eve is another active user
in the wireless network (e.g., in a time-division multiple-access
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Fig. 3. Normalized average secrecy capacity versus 
 , for selected values of 
 . Thinner lines correspond to the normalized average secrecy rate capacity of
a Rayleigh-fading channel while thicker lines correspond to the secrecy capacity of a Gaussian wiretap channel. Normalization is performed with respect to the
capacity of an AWGN channel with SNR equal to 
 .

(TDMA) environment), so that Alice can estimate the eaves-
dropper’s channel during Eve’s transmissions.

Nevertheless, we shall see that the probability of outage of
secrecy capacity allows, in principle, to consider also situations
where no CSI about the eavesdropper’s channel is available to
Alice and Bob. This case corresponds to the situation where Eve
is a purely passive and malicious eavesdropper in the wireless
network.

We start by deriving the secrecy capacity for one realization
of a pair of quasi-static fading channels with complex noise and
complex fading coefficients. For this purpose, we recall the re-
sults of [30] for the real-valued Gaussian wiretap channel, where
it is assumed that Alice and Bob communicate over a standard
real additive white Gaussian noise (AWGN) channel with noise
power and Eve’s observation is also corrupted by Gaussian
noise with power , i.e., Eve’s receiver has a lower
SNR than Bob’s receiver. The input power is constrained ac-
cording to . For this instance, the se-
crecy capacity is given by

(3)

where

and

denote the capacity of the main channel and of the eaves-
dropper’s channel, respectively. From this result, we can derive
the instantaneous secrecy capacity for the wireless fading
scenario defined in Section II-A.

Lemma 1: The secrecy capacity for one realization
of the quasi-static complex fading wiretap-channel is given by

if
if

(4)

Proof: See Appendix A.

1) Average Secrecy Capacity: If perfect CSI of the eaves-
dropper’s channel is available to Alice, the coding scheme can
be adapted to every realization of the fading coefficients. There-
fore, in principle, any average secure communication rate below
the average secrecy capacity of the channel

is achievable.

Remark 1: The average secrecy capacity is easily computable
numerically. It can be shown (see the proof of Lemma 2 in Ap-
pendix C) that

(5)

where

(6)

and is the exponential-integral function.
Fig. 3 compares the average secrecy capacity of a quasi-static

fading channel to the secrecy capacity of a classic wiretap
Gaussian channel. Strikingly, one observes that the average
secrecy rate of the fading channel is indeed higher than or
close to the secrecy capacity of the Gaussian channel. One
also observes that, in contrast to the situation of the Gaussian
channel, the average secrecy rate of the fading channel is
nonzero even when the average SNR of the main channel is
lower than the average SNR of the eavesdropper’s channel.
These observations underline once again the potential of fading
channels to secure the transmission of information between two
legitimate parties against a possible eavesdropper.

2) Outage Probability of Secrecy Capacity: The secrecy ca-
pacity of a quasi-static Rayleigh-fading channel can also be
characterized in terms of outage probability.
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Proposition 1:

Proof:

where the last equality exploits the fact that
. The expressions of and are given

by (2), and the result follows from simple algebra.

Based on this result, it becomes immediately clear that for
average SNRs and on the main channel and the eaves-
dropper’s channel, respectively, the probability of strictly posi-
tive secrecy capacity is

(7)

It is also useful to express this probability in terms of parame-
ters related to user location. Using the fact that and

[31], we have that for distance between Alice
and Bob, distance between Alice and Eve, and path-loss ex-
ponent , the probability of strictly positive secrecy capacity is

(8)

Remark 2: When (or ) then
(or ). Conversely, when

(or ) then (or
). This confirms the intuition that greater

security is achieved when Eve is further away from Alice
than Bob. It is also interesting to observe that to guarantee the
existence of a nonzero secrecy capacity with probability greater
than then it follows from (7) and (8) that

In particular, a nonzero secrecy capacity exists even when
or , albeit with probability less than .

We are now ready to characterize the outage probability

i.e., the probability that the instantaneous secrecy capacity is
less than a target secrecy rate . The operational signifi-
cance of this definition of outage probability is twofold. First, it
provides the fraction of fading realizations for which the wire-
less channel can support a secure rate of bits/channel use.
Second, it provides a security metric for the situation where
Alice and Bob have no CSI about the eavesdropper. In this case,
Alice has no choice but to set her secrecy rate to a constant .
By doing so, Alice is assuming that the capacity of the wiretap
channel is given by . As long as , Eve’s
channel is worse than Alice’s estimate, i.e., , and the

wiretap codes used by Alice ensure perfect secrecy. Otherwise,
if then and information-theoretic security
is compromised.

Proposition 2: From Proposition 1, the outage probability for
a target secrecy rate is given by

(9)

It is illustrative to examine the asymptotic behavior of the
outage probability for extreme values of the target secrecy rate

. From (9) it follows that when

and when , we have that , such that it be-
comes impossible for Alice and Bob to transmit secret informa-
tion (at very high rates).

Also of interest is the asymptotic behavior of the outage prob-
ability for extreme values of the average SNRs of the main
channel and the eavesdropper’s channel. When , (9)
yields

and in a high-SNR regime , i.e., the outage
probability decays as . Conversely, when

and confidential communication becomes impossible.
Fig. 4 depicts the outage probability versus , for selected

values of and for a normalized target secrecy rate equal to
. Observe that the higher the lower the outage probability,

and the higher the higher the probability of an outage. More-
over, if , the outage probability decays as . Con-
versely, if the outage probability approaches one.
The relationship between outage and distance is highlighted in
Fig. 5.

The outage probability is also convenient to analyze the situ-
ation where Alice might only have imperfect estimates and

of the gains of the main and eavesdropper’s channels, re-
spectively. We can reasonably assume that Bob cooperates with
Alice, which allows her to obtain a perfect estimate of the main
channel fading coefficient. Hence, , where is
the true fading coefficient of the main channel. Unfortunately,
Eve may not be as helpful and Alice’s knowledge of the eaves-
dropper’s channel fading is more likely to be noisy. In order
to assess the performance of our protocol under more realistic
conditions, we model Alice’s estimate of Eve’s fading coeffi-
cient by

where is the true fading coefficient and is a zero-mean
complex Gaussian noise with known variance per dimension.

In the absence of additional information allowing Alice to
refine her estimation, we have to resort once again to outage
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Fig. 4. Outage probability versus 
 , for selected values of 
 and for a normalized target secrecy rate R = 0:1. Normalization is performed with respect to
the capacity of an AWGN channel with SNR equal to 
 .

Fig. 5. Outage probability versus d =d for selected values of 
 and for a normalized target secrecy rate R = 0:1. The path-loss exponent is � = 0:4 and
normalization is performed with respect to the capacity of an AWGN channel with SNR equal to 
 .

analysis. If Alice communicates by blindly assuming that her
estimation is accurate, an outage occurs whenever Alice under-
estimates the gain of the eavesdropper’s channel and attempts
to achieve a secure communication rate not supported by the
channel.

Proposition 3: The probability of outage is upper-bounded
by

(10)

Proof: See Appendix B.

This upper bound on the outage probability is a decreasing
function of the variance of the channel estimation error , so
that the higher the lower the outage probability. This coun-
terintuitive result stems from the fact that, at moderate values of

the variance of the channel estimation error, Alice tends to con-
sistently underestimate the true wiretap fading coefficient. Con-
sequently, she consistently attempts to communicate at secure
rates lower than what the true instantaneous secrecy capacity of
the channel would allow.

C. Opportunistic Secret Key Agreement

In principle, secure communications over wireless
quasi-static fading channels can be achieved with codes
designed for the Gaussian wiretap channel; however, although
the secrecy capacity of the Gaussian wiretap channel has
been fully characterized [30], the design of practical coding
schemes is still an open problem. In contrast, previous results
on secret key agreement by public discussion [5] and privacy
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Fig. 6. Flowchart of the opportunistic protocol.

amplification [25] support the idea that the generation of in-
formation-theoretically secure keys from common randomness
is a somewhat less difficult problem, suggesting a four-step
approach to secure communications: randomness sharing,
information reconciliation, privacy amplification, and secure
communication.

• Opportunistic randomness sharing. To share random-
ness, Alice transmits discrete random symbols, represented
by the RV , over the wireless channel. Bob and Eve
observe correlated symbols, represented by the RVs
and , respectively. In theory, as long as Eve and Bob do
not share the same information, the amount of secrecy that
Alice and Bob can distill from their common randomness
is nonzero [5]; however, we are interested in designing a
one-way secret key agreement protocol requiring commu-
nications from Alice to Bob only. Therefore, the common
randomness must be such that .
Clearly, this is the case if randomness is shared when the
secrecy capacity of the wireless channel is strictly posi-
tive. Therefore, provided perfect CSI of the eavesdropper’s
channel is available, Alice and Bob should opportunisti-
cally exploit the fluctuations of the instantaneous secrecy
capacity with time, and they should attempt to share
randomness only when is sufficiently large. Specif-
ically, in the remainder of the paper, we take the set of
fading realization for which an opportunistic
transmission of randomness is performed to be

(11)

The threshold ensures that a minimum amount of secrecy
can be distilled from the randomness while the threshold
ensures that the correlation between Alice and Bob’s data
is high enough. We shall see in Section III-B that the latter
condition is required for practical algorithms. Finally, let
us emphasize that, the behavior of the protocol is governed

by the fading realizations in the set and, therefore,
by a probability of outage, although we assume perfect
CSI of the eavesdropper’s channel. This connection will
be established explicitly in Section IV.

• Key generation: reconciliation and privacy amplifica-
tion. When the estimated fading realizations are such that
the secrecy capacity or main channel capacity are too small
(i.e., ), Alice and Bob communicate to
generate a secure key from the shared randomness previ-
ously obtained. Key generation is performed in two steps.
First, Alice and Bob “reconcile” their randomness, that is,
they correct the discrepancies in their random values by ex-
changing additional error-correction information. Second,
Alice and Bob distill secret bits from the corrected data
using a technique called privacy amplification. Both pro-
cedures are detailed in Section III.

• Secure communication. Alice and Bob can finally use
their secret key to transmit messages, using either a
one-time pad to ensure perfect secrecy or any symmetric
cypher.

The flowchart of the opportunistic protocol is shown in
Fig. 6. Note that the randomness sharing and privacy am-
plification steps rely on a perfect estimation of the fading
coefficients to calculate the instantaneous secrecy capacity and
correctly estimate the amount of secrecy to distill. We shall see
in Section IV that this assumption can be somewhat alleviated
to consider a more realistic situation where only imperfect CSI
(or a conservative estimate) is available for the eavesdropper’s
channel.

III. PRACTICAL ALGORITHMS FOR SECRET-KEY AGREEMENT

In this section, we describe in detail the various steps of the
protocol presented in the previous section. To ease the pre-
sentation, we present the protocol for a real Gaussian wiretap
channel, which corresponds to a single realization of the fading
coefficients and coding over one dimension only
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in the wireless setup of Section II. Its performance in the
quasi-static fading case is then evaluated in Section IV.

A. Secure Communication Protocol

The existence of common information between Alice and
Bob is the essential ingredient for secret key agreement. In a
wiretap scenario, Alice can generate this shared randomness by
transmitting a sequence of independent
and identically distributed (i.i.d.) realizations of a discrete RV

over the main channel, which provides Bob and Eve with se-
quences of correlated continuous RVs
and , respectively.

The channel noise introduces discrepancies between Bob’s
received symbols and Alice’s symbols , and Bob’s es-

timate of Alice’s symbols is erroneous.
Therefore, the first step is for Alice and Bob to correct the errors
before any further processing. In the context of secret key gen-
eration, this operation is called “reconciliation” and it requires
an additional exchange of information between Alice and Bob.
Little can be said in general about Eve’s knowledge of the rec-
onciliation messages, and we have to make the worse case as-
sumption that this information is fully available to Eve. Note that
reconciliation can be viewed as a special case of source coding
with side information, where Alice compresses her source sym-
bols and Bob decodes them with the help of correlated side
information . The Slepian–Wolf theorem [32] yields a lower
bound on the total number of bits which have to be ex-
changed

(12)

Practical reconciliation algorithms introduce an over-
head and require the transmission of

additional bits. Alternatively, the recon-
ciliation can also be characterized by its efficiency which is
defined as

(13)

and the number of bits required for reconciliation is therefore

(14)

At the end of the reconciliation step, Alice an Bob share with
high probability the common sequence with entropy

. The sequence is then compressed into a binary
sequence of length . As discussed in Section III-B, for our
application to the Gaussian wiretap channel, we use Multilevel
Coding (MLC) and Multistage Decoding (MSD) to reconcile
and correct the differences between and . Our algorithm is a
more efficient version of the information reconciliation method
of [26].

Privacy amplification allows Alice and Bob to extract a se-
cret key from the binary sequence . Its principle is to apply
a well-chosen compression function

to the bit sequence , such that the eavesdropper ob-
tains negligible information about the final -bit sequence .
In practice, this can be achieved by choosing at random within

a family of universal hash functions [33], as stated in the fol-
lowing theorem.

Theorem 1: [25, Corollary 4] Let be the
random variable representing the bit sequence shared by Alice
and Bob, let be the random variable representing the total
information about available to the eavesdropper, and let
be a particular realization of . If the Rényi entropy (of order

) is known to be at least and Alice and Bob
choose as their secret key, where is a hash func-
tion chosen at random from a family of universal hash functions

, then

(15)

The total information available to Eve consists of the se-
quence received during the first stage of the protocol, as
well as the additional bits exchanged during reconciliation, rep-
resented by the random variable . As shown in [34, Theorem
5.2], for any we have

with probability (16)

The quantity represents the number of bits in-
tercepted by Eve during reconciliation, which is at most

. Evaluating is in general
still difficult; however, conditioned on the typicality of the
bit sequence, and are equal
[27]. Hence, if is large

is a good lower bound of , and choosing

(17)

with guarantees that Eve’s uncertainty on the key is such
that

with probability

For our protocol, we use standard families of hash functions
[33], [35].

Finally, the secret key generated can be used to
secure Alice’s message, using either a one-time pad for perfect
secrecy or a standard secret key encryption algorithm. As shown
by (15), Eve’s uncertainty about the key can
be made as close to as desired.

Since the amount size of the key generated from common
randomness is proportional to bits per
symbol, we choose the random variable such that the mutual
information is maximized. Ideally, Alice should
choose achieving the capacity of the main
channel, which is possible only with continuous Gaussian
random variables; however, the discrete support and the
probability mass function of can always be optimized so that

approaches the channel capacity
with arbitrary precision. For instance, for a fixed size
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of the support, this optimization can be performed with the
algorithm proposed in [36]. Alternatively, a good approxima-
tion of the optimum can be obtained by expanding a uniformly
spaced support by a
factor , and using a Maxwell–Boltzmann probability
distribution

(18)

Remark 3: Even though is not a convex function
of and , the optimization seems to be relatively insensitive to
the initialization of the optimization. should be large enough
not only to ensure that approaches
within the required precision, but also to be compatible with the
reconciliation algorithm, as discussed in Section III-B.

Remark 4: In the above, we apply the results of [25], [32],
[34], which were only proven for discrete RVs, whereas
and are continuous RVs; however, it should be noted that
these continuous RVs only appear as conditioning RVs in ex-
pressions such as or where is discrete,
and therefore, the various results still hold. For instance,
can be quantized into a discrete RV such that ap-
proaches with arbitrary precision as , and the
Slepian–Wolf theorem still holds.

B. LDPC Code Construction for Gaussian Reconciliation

In this subsection, we develop an efficient reconciliation ap-
proach for the second step of the key agreement protocol. The
reconciliation of binary random variables has been extensively
studied and several efficient methods have been proposed [37],
however, little attention has been devoted to the practical rec-
onciliation of nonbinary random variables [26]. As stated pre-
viously, given a nonbinary RV with distribution given by
(18) and an RV obtained by sending through an addi-
tive Gaussian channel with noise variance , gain , and
power constraint , the goal is to generate a minimum amount
of (parity) information that Alice needs to send to Bob so that

can be recovered from .
1) Multilevel LDPC Codes for Slepian–Wolf Compression:

We assume here that Alice and Bob have access to the outcomes
and of in-

stances of the random variables and , respectively. Next,
Alice sends Bob additional information to help him recover
based on , and we assume without restriction that Bob re-
covers a binary description of . Each element of is uniquely
described by an -bit label . We introduce
labeling functions , ,
which associate to any element of the th bit of its binary
label. As suggested in [38], Alice generates the additional in-
formation for Bob by computing syndromes of the sequence

according to some binary codes.
Given the particular Gaussian correlation considered here,

the reconciliation of and is similar to a coded modula-
tion scheme, where Alice transmits her data over a Gaussian
channel using a pulse-amplitude-modulation scheme. Most
standard modulation techniques such as bit interleaved coded

Fig. 7. Principle of MLC/MSD reconciliation in the caseM = 2.

modulation (BICM) [39] or multilevel coding/multistage de-
coding (MLC/MSD) [40] schemes can therefore be adapted
for reconciliation. In the case of a BICM-like reconciliation,
a single syndrome is computed on an interleaved version of
the bit sequence , whereas in the case of
MLC/MSD-like reconciliation, the syndromes of the subse-
quences are computed
successively, as illustrated in Fig. 7. Because of the similarity
with a coded modulation scheme, the support of the RV
will be referred to as a constellation.

In what follows, we describe a reconciliation algorithm
adapted from the last scheme. This choice is motivated by the
fact that BICM is known to be suboptimal over the Gaussian
channel; hence, the reconciliation of the RVs and
with a BICM-like scheme always requires strictly more than

additional bits per symbol. Moreover, MLC/MSD
is based on several component codes and, therefore, it offers
more flexibility on the code design than BICM [41].

The proposed reconciliation algorithm is an MLC/MSD-like
reconciliation that uses binary LDPC component codes. Other
classes of codes, such as turbo codes, could be used as well;
however, LDPC have already proved their worthy performance
for error correction and side information coding [42]. More-
over, the belief-propagation algorithm can easily be general-
ized to account for the correlation between the subsequences

. We use the following
notation to describe the algorithm:

• ( , );
• represents the number of check nodes at the th level

( depends on the rate of the code used at level
and is discussed in Section IIII-B.2);

• denotes a message from the variable node
to the check node

of the th level in the th iteration, and similarly,
denotes a message from the check node to the variable
node of the th level in the th iteration;

• denotes the set of all check nodes connected to the
variable node of the th level, and denotes the set
of all variables nodes connected to the check node of
the th level;

• is the syndrome bit associated to the check node .
The levels are decoded successively, and the update equa-

tions of the messages in the th iteration of the belief propagation
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at a given level are

if
(19)

if
(20)

(21)

where we define as shown in (22) at the bottom of the
page. It can be shown that if the Tanner graphs of the LDPC
component codes do not contain cycles, the values con-
verge to the true a posteriori log-likelihood ratios

(23)

in a finite number of iterations. Finally, the decision on the value
of is made based on the sign of . In practice, even
when the Tanner graphs contain cycles, this belief-propagation
algorithm performs reasonably well.

The only difference between (19)–(21) and the standard up-
date rules of belief propagation is the term , which takes
into account both the intrinsic information available from the
observation as well as the extrinsic information available
from the decoding of the other levels . Equation (22) is
similar to the update rule of a single-input single-output (SISO)
demodulator; however, it should be noted that it involves the
joint probability (and not the conditional probability

) to account for the nonuniform distribution of the sym-
bols in . In theory, it should be sufficient to decode each level
only once, however, in practice, performing several iterations
between the levels might help improve the performance of the
overall scheme. These practical issues are discussed in Sec-
tion III-B.2. Finally, let us point out that the algorithms de-
scribed in [42]–[44] are special cases of this general algorithm.

2) Code Rate Assignment: The optimal code rates required
at each level are those enforced by MSD.
In fact, from the chain rule of entropy we have

(24)

Hence, the bits per symbol required for reconcilia-
tion can be obtained by disclosing successively

bits per symbol. The optimal code rate required at each level
is therefore

(25)

Equation (24) guarantees the optimality of the reconciliation
scheme for any labeling; however, the practical efficiency of the
reconciliation strongly depends on the mapping used. In fact,
the performance of the reconciliation relies on our ability to con-
struct capacity approaching codes for all levels , which might
not be possible if the required code rates are too low. We in-
vestigated several labeling strategies and realized that the nat-
ural binary mapping was the best compromise. This mapping
assigns to each symbol the -bit representation of

. Note that is the least significant bit
of the -bit representation. Fig. 8 shows the rates required for
a constellation of size , with symbols and probabilities given
in Table I, as a function of .

The optimal rates of the two uppermost levels are equal to
over a wide range of SNRs, which greatly simplifies code

design by effectively requiring only two codes. We carried
out extensive simulations, and observed that for any value
of the SNR, adjusting the constellations size to satisfy

requires at most two codes
while is maintained within a hundredth of a bit of its
maximum value.

The natural mapping has the property of preserving the sym-
metry on the probability distribution of the random variable

(26)

In the first stage of the algorithm, when the bits of the th
level are decoded, this property implies that the equivalent
channel seen by the bits is output-symmetric and that these bits
are also uniformly distributed. Consequently, the probability
of decoding error is the same for linear LDPC codes and
LDPC coset codes, which allows us to use linear LDPC codes
designed with the standard density evolution method [45]. This
property does not hold when decoding the following levels,
however, recent results suggest that linear LDPC codes may
still perform well with our coset coding scheme [46]. In order to
further simplify the code design, we use irregular LDPC codes
optimized for antipodal signaling over the AWGN channel as

(22)
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Fig. 8. Optimal code rates required for the constellation of Table I.

TABLE I
CONSTELLATION OPTIMIZED TO MAXIMIZE I(X;Y ) AT AN SNR OF 13 dB

component codes. The block length used is and the
Tanner graphs are randomly generated while avoiding cycles
of length two and four. Despite this long block length, the
performances of all constructed codes are still well below those
of their ideal capacity achieving counterparts, therefore, perfect
error correction is only achieved by lowering the code rates at
each level. Unfortunately, reducing the rate of all component
codes discloses far too many bits; however, as described below,
a careful choice of the code rate that takes into account multiple
iterations between levels makes it possible to maintain a good
level of efficiency.

Our practical code rate assignment is based on an analysis
of the decoding process using Extrinsic Information Transfer
(EXIT) charts [47]. Although a theoretical result sustaining
EXIT charts does not exist for the Gaussian channel, they
emerge as a convenient tool to predict the exchange of in-
formation between the demappers and decoders involved in
an iterative decoding scheme. The predictions are based on
how much extrinsic information can be computed from
a priori information for each demapper or decoder.
There is no closed-form expression neither for the EXIT curve

of the demapper characterized by (22) nor for the
LDPC EXIT curve for 100 iterations; however,
they can be obtained via Monte Carlo simulations assuming
Gaussian a priori information [47]. Examples of transfer curves
are shown in Fig. 9. We observed that low-rate codes gather
extrinsic information at a slower pace than high-rate codes,
therefore, we decided to correct all errors by reducing the rate

Fig. 9. Iterative decoding trajectory averaged over 10 realizations.

of the highest rate code and by using iterations between levels
to compensate for the poor performance of the lower rate code.

Let us now illustrate how code rates can be chosen based on
an example. Suppose that the SNR is 13 dB, for which a good
choice of the constellation is given in Table I. In theory, one
needs two ideal codes with rate and . Instead, we
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TABLE II
EFFICIENCY RESULTS

use a code with rate at the first level and look for a high
rate code that gathers enough extrinsic information to start the
decoding process and correct all errors with a priori informa-
tion of . As shown in Fig. 9, a code with rate is a
good compromise. It is interesting to note that despite the ap-
proximations made in the computation of the EXIT curves, the
real decoding trajectory is close to the expected behavior.

3) Efficiency Results: The results obtained for various values
of the SNR are summarized in Table II. For each SNR, the size
of the constellation , the position of constellation points, and
the probability distribution are optimized according to the pro-
cedure described earlier. This ensures that

bits and limits the number of required codes to two. Let
us point out that our method achieves good efficiency provided
that the following two conditions are met. First, the constellation
size required to maximize must be so that
two LDPC codes can be used. Second, the code rates required
cannot be too small, so that we can construct good finite length
codes. This limits the applicability of the algorithm to situations
where the SNR is above 2 dB.

IV. PERFORMANCE EVALUATION

A. Performance Metrics for Secure Communications

The information-theoretically secure rates of the secret key
agreement protocol can be assessed only if the keys are used in
conjunction with a one-time pad. However, in principle, the pro-
tocol could also be tailored to standard encryption algorithms
offering computational complexity. Although no information-
theoretic security can be guaranteed in this latter case, com-
bining a physical-layer key-generation technique with a sym-
metric encryption scheme can still be a valid way of enhancing
security. In fact, key-generation rates can be substantially higher
than those offered by public-key schemes; moreover, keys gen-
erated from the physical layer are independent from one another,
which ensures that the security of the system is re-initialized at
each round of key-generation. An attacker who gains access to
one key would be none the wiser once the key is renewed. Based
on these considerations, we evaluate the performance of the op-
portunistic protocol using the following metric.

Definition 1: The average1 -secure throughput of a
secret key agreement protocol is the average number of cypher-
text bits transmitted per channel use, when the cyphertext is ob-
tained with a symmetric encryption scheme such that the ratio
of secret key bits used per cyphertext bit is .

In the above definition, the secret key bits generated do not
contribute to since the keys themselves do not convey any

1The average is taken over all channel realizations.

information. The case corresponds to the situation where
one bit of secret key is used for each bit of cyphertext. Without
loss of generality, we can assume that the encryption scheme
is a one-time pad, and therefore, measures an average
communication rate with perfect security. When ,
loses all significance in terms of information-theoretically se-
cure communication rate; however, if is the key length re-
quired by an encryption scheme, the corresponding key renewal
rate is channel uses.

Unlike wiretap coding, where messages are transmitted di-
rectly and securely, secret key agreement requires additional
communication to distill a key and send an encrypted message.
Here, since we do not assume the existence of an additional
public and error-free channel, parts of the available communi-
cation rate have to be sacrificed for that purpose. We formalize
this constraint by introducing the following metric.

Definition 2: The average -communication throughput
is the average number of message bits per channel used

that can be transmitted in addition to the message required for
reconciliation and privacy amplification and to the messages
encrypted with the keys.

Clearly, and are not independent and, by defini-
tion, take only positive values. We are now ready to characterize
the maximum secure throughput of the protocol.

To simplify the notation, we use the following conventions.
For a given parameter depending on the fading real-
izations and a set of fading realizations, we let
denote the average of over . We also assume that
the coherence time of the channel is large enough, so that the
block length is large and the parameters , of privacy am-
plification can be neglected, and that Alice and Bob can always
communicate over the main channel at rate close to the capacity.

Proposition 4: The maximum secure throughput
achievable by the opportunistic secret key agreement protocol
is

subject to

(27)

where denotes the complement of in and
is imposed by the reconciliation algorithm.

Proof: When the fading realizations ,
opportunistic transmission is performed. From (17), we know
that the average number of key bits extractable per channel use
is
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and, therefore, the average secure throughput is

(28)

From (14), we also know that the average number of bits per
channel use that have to be transmitted for reconciliation is

(29)

The average number of bits per channel use required by privacy
amplification depends on the number of bits required to identify
a given universal hash function within its family. The minimum
size of a family of universal hash functions

is known to be at least [48], and identifying a
given function therefore requires the transmission of
bits; however, no hashing scheme is known to achieve this bound
for any , therefore, we consider the more realistic situation
where the identification requires the transmission of bits.
For instance, this can be achieved with the following family
[35]:

GF (30)

where is defined as distinct bits of the product
in a polynomial representation of GF . Consequently, the
average number of bits per channel use required by privacy am-
plification is

(31)

Based on our assumption that Alice and Bob can always com-
municate at a rate equal to the capacity of the main channel, the
average number of bits available for communication in addition
to the opportunistic transmissions is

(32)

Therefore, the communication throughput is obtained by sub-
tracting (28)–(31) from (32), and recalling that yields
the desired result.

B. Asymptotic Performance Analysis

Obtaining analytical expression for the optimal performance
of the opportunistic communication protocol is nontrivial on
several accounts. First, the simplification of the expression
in Proposition 4 requires the characterization of the tradeoff
between and (or ) for an arbi-
trary RV . For a given , we have observed that
the Maxwell–Boltzmann distribution of (18) yields a smaller

than most other distributions, but for every pair of
fading realizations the parameters and have to
be optimized, which makes the analytical characterization

intractable. Second, the optimal performance depends on the
maximization over the parameters and .

Therefore, the following analysis considers a (suboptimal)
protocol where the random symbols sent over the channel during
the opportunistic transmissions are chosen from a quadrature
amplitude modulation (QAM) constellation with uniform prob-
ability. We also assume that reconciliation is performed with
efficiency for all SNRs, and we fix . To simplify
the notation, we denote by .

Proposition 5 (Adapted From [49]): Let be the capacity
of a complex AWGN channel with input power constraint ,
and let . If the input symbols are chosen
uniformly at random in a square QAM constellation with
points and uniform spacing along each dimension, where is
optimized such that , then the mutual information
between the input and the output bounded as

with independent of

and the entropy of is bounded as

Using these inequalities in the equations of Proposition 4, and
noting that we obtain the
bounds shown in (33)–(35) at the bottom of the page, and

(36)

(37)

(38)

1) Secrecy-Limited Regime: This regime corresponds to the
situation where , and therefore, the secrecy capacity
over the wireless channel is mainly limited by the capacity of
the eavesdropper’s channel.

Theorem 2: In the secrecy-limited regime, the secure
throughput is bounded from below as

(39)

Proof: By definition of and we have

and when (40)

Hence, we can take in (35) and (35) is positive for
small enough.

Remark 5: This result is somewhat disappointing since the
lower bound can be negative; however, in practice, by using a

(33)

(34)

(35)
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Maxwell–Boltzmann distribution for the random symbols in-
stead of a uniform distribution, we can expect to be small.
Hence, the secure throughput achievable by the protocol in the
secrecy-limited regime should be close to the average secrecy
capacity of the channel.

2) Communication-Limited Regime: By opposition to the se-
crecy-limited regime, this regime corresponds to the case where

, and therefore the secrecy capacity is mainly limited
by the capacity of the main channel.

Theorem 3: In the communication-limited regime, the secure
throughput achievable by the opportunistic secret key agreement
protocol is such that

(41)

Moreover, this throughput is achievable by choosing such that
and in this case

when (42)

Before proving the result, we introduce a proposition that pro-
vides bounds for and depending on .
The proof of the proposition is given in Appendix C.

Proposition 6: The average value of the main channel ca-
pacity over the set can be bounded as follows:

(43)

Likewise, the average value of the wiretap channel capacity over
the can be bounded as follows:

(44)

Proof of Theorem 3: By using the inequalities of Proposi-
tion 6 in (35), we obtain the following lower bound on (34):

(45)

For any , to satisfy the constraint in the maximization of
Proposition 4, it suffices to take such that

(46)

For any , we can choose such that , and
for large enough. Since

when

the left-hand side of (46) converges to

when (47)

From Proposition 1, the right-hand side of (46) is equal to

(48)

therefore, we can always choose (independent of ) such that
(46) is satisfied when . Substituting such a in (43)
and (44), we have

and

when . Using this in (36) and (38), we obtain the
second part of the theorem

when (49)

The first part of the theorem follows by recalling that
and when .

Remark 6: For , the result of Theorem 3 states that,
in the communication-limited regime, the information-theoretic
secure rates achievable by the protocol scale as , and
therefore as . Hence, even if secret key agreement incurs
a rate penalty compared to the direct use of wiretap codes, this
penalty is a constant fraction of the average secrecy capacity.

C. Simulation Results

In this subsection, we use Monte Carlo simulations to es-
timate the secure throughput achievable by the protocol. As
shown in Table II, our reconciliation algorithm achieves an
efficiency above 90% as soon as the SNR of the main channel
is above 2 dB. Moreover, extensive simulations show that using
a (two-dimensional) Maxwell–Boltzmann distribution of the
random symbols during the opportunistic transmissions allows
to achieve

with (50)

Therefore, all simulations are obtained using these values for
, , and ; however, for simplicity we

set , , and we optimize over . This choice
of parameters provides only an approximation of the achiev-
able secure throughput, but this will be sufficient to confirm the
analytical results of the previous section, and, given the good
performance of the reconciliation algorithm presented in Sec-
tion III-B, we can expect the real performance to be quite close.

The average secure throughput for achievable by the
opportunistic protocol is shown Fig. 10. As expected, the pro-
tocol is in general suboptimal since most of the main channel ca-
pacity has to be sacrificed for key agreement. In the secrecy-lim-
ited regime, as predicted in the previous section, all additional
communications required for reconciliation, privacy amplifica-
tion, and secure communication can be performed when the se-
crecy capacity is zero. In this case, and the protocol in-
curs little loss of secure communication rate. On the contrary,
in the communication-limited regime, the secure rate achievable
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Fig. 10. Average secure throughput (thin lines) and average secrecy capacity (thick lines). All throughputs are normalized to the channel capacity of a Gaussian
channel with same average SNR 
 .

Fig. 11. Secure throughput for various values of �.

by the protocol are much lower than the secrecy capacity of the
channel.

Fig. 11 shows the secure throughputs obtained for different
values of . For small values of , the difference in behavior of
the protocol in the secrecy-limited and communication-limited
regimes is amplified, and the increase of the secure throughput
with the changes radically as soon as must be used.
Strictly speaking, the protocol does not provide any informa-
tion-theoretic security in this regime, since the keys generated
are used to encode several bits. Nevertheless, this result shows
that the protocol provides an efficient and potentially fast way of
exchanging information-theoretically secure keys. In this mode
of operation, it could be tailored with standard secure encryp-
tion algorithms (such as AES with 192 bits) to strengthen the
current level of security of wireless communications.

D. Mitigating the Effects of Imperfect CSI

In this last subsection, we consider the situation described in
Section II, where Alice has perfect CSI about the main channel
fading coefficient, but only partial CSI about the eavesdropper’s
channel fading coefficient. As mentioned in the preceding sub-
section, Alice has little choice but to apply the opportunistic pro-
tocol blindly, and the keys generated have length

(51)

Unfortunately, the lower bound on Eve’s Rényi entropy is in
reality

(52)
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Fig. 12. Impact of imperfect CSI. Thicker lines represent the estimated average secrecy capacity. The diamond lines (�) represent Alice’s targeted average se-
cure throughput with her imperfect CSI, the square lines ( ) and circle lines (�), respectively, represent the true average secure throughput and average leaked
throughput. All throughputs are normalized to the channel capacity of a Gaussian channel with same average SNR 
 .

Therefore, from Theorem 1, Eve’s uncertainty on the final key
is

(53)

Clearly, when , Alice unnecessarily re-
duces her secure throughput, but this does not compromise the
secrecy of the key; however, when ,
Alice underestimates the information leaked to the eavesdropper
and subsequently generates keys whose entropy is not max-
imum.

Until now, we have assumed that the parameter was chosen
such that . To mitigate the effect of imperfect CSI, let us
now consider the situation where and let use define

From (53), we see that as long as ,
the lower bound on approaches exponen-
tially as .

The introduction of imperfect CSI and the use of the pa-
rameter slightly modify the expression of communication
throughput given in Proposition 4. is now given by

subject to

(54)

Contrary to the situation where perfect CSI is available, the
average secure throughput defined above is not sufficient to
characterize the security of the system. In fact, it only represents
Alice’s targeted secure communication rate, which might be

different from the true secure communication rate. Hence, we
need to introduce the true average secure throughput and
the average leaked throughput defined as

(55)

(56)

where

(57)

(58)

These expressions cannot be computed in close form but can be
obtained with Monte Carlo simulations. We show in Fig. 12 the
results obtained for an estimation noise variance of and

when and (i.e., the safety parameter
).

Interestingly, as already pointed out in Section II-B2, when
Alice has a bad estimation of the eavesdropper’s channel fading
coefficient, and if the main channel SNR is large, most of
the keys generated are still secure. This unexpected behavior
is created by the asymmetry of the distribution ,
which forces Alice to underestimate the eavesdropper fading
coefficient most of the time. On the other hand, when the esti-
mation of the wiretap CSI improves, the impact of imperfect
CSI is somewhat mitigated by increasing the parameter ,
which simply plays the role of a safety margin and reduces
the length of the generated keys. By increasing , the average
leaked throughput can be made arbitrarily small, at the cost of a
decreased secure throughput. Fig. 13 shows the results obtained
for . When , the secure throughput loss
is negligible, however, this slight increase in suffices to
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Fig. 13. Mitigation of imperfect CSI. Thicker lines represent the estimated average secrecy capacity. The diamond lines (�) represent Alice’s targeted average
secure throughput with her imperfect CSI, the square lines ( ) and circle lines (�), respectively, represent the true average secure throughput and average leaked
throughput. All throughputs are normalized to the channel capacity of a Gaussian channel with same average SNR 
 .

ensure the secrecy of the keys generated. The mitigation is less
effective when , and a further increase of would be
necessary to reduce the leaked throughput.

V. CONCLUSION

A. Concluding Remarks

We proposed a protocol based on one-way communications
providing secure communication over quasi-static wireless
channels. This scheme opportunistically exploits the fluctua-
tions of the fading coefficients to generate information-theo-
retically secure keys, which are then used to encrypt messages
prior to transmission. We analyzed the security provided by the
protocol in the idealized case where channel state information
about the wiretap channel is available, but also showed that
secure communication is still achievable in the more realistic
situation where only imperfect channel state information can
be obtained.

The performance and complexity of the proposed scheme
rely mainly on those of the reconciliation algorithm. Our
LDPC-based reconciliation method is near-optimal over a wide
range of SNRs; however, the memory requirements and the
complexity might still be too high for embedded or low-cost
systems. In future work, we will investigate new code con-
structions that reduce the hardware requirements while still
maintaining a similar level of performance.

Let us finally mention that even though the encryption used
in our scheme could be performed with a one-time pad to ensure
perfect secrecy, the protocol may be of higher practical interest
if combined with efficient symmetric cyphers (e.g., DES, AES)
to achieve high communication rates.

B. Information-Theoretic Versus Computational Security in
Wireless Networks

Due to the many fundamental differences between classical
cryptography and information-theoretic security, it is useful to

recognize what those differences are and how they affect the
choice of technology in a wireless scenario. It is fair to state that
classical cryptographic security under the computational model
offers the following advantages:

• there are so far no publicly known, efficient attacks on
public-key systems such as RSA, and hence they are
deemed secure for a large number of applications;

• very few assumptions are made about the plaintext to be en-
coded, and security is provided on a block-to-block basis,
meaning as long as the cryptographic primitive is secure,
then every encoded block is secure;

• authentication can be achieved by means of public-key
cryptography (e.g., RSA);

• systems are widely deployed, technology is readily avail-
able and inexpensive.

On the other hand, we must consider also the following disad-
vantages of the computational model:

• security is based on unproven assumptions regarding the
hardness of certain one-way functions; therefore, systems
are insecure if assumptions are wrong or if efficient attacks
are developed;

• in general, there are no precise metrics or absolute compar-
isons between various cryptographic primitives that show
the tradeoff between reliability and security as a function of
the block length of plaintext and cyphertext messages—in
general, the security of the cryptographic protocol is mea-
sured by whether it survives a set of attacks or not;

• in general, classical ciphers are not information-theo-
retically secure if the communication channel between
friendly parties and the eavesdropper are noiseless, be-
cause the secrecy capacity of these application layer
systems is zero;

• state-of-the art key distribution schemes for wireless net-
works based on the computational model require a trusted
third party as well as complex protocols and system archi-
tectures [50].
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The advantages of physical-layer security under the informa-
tion-theoretic (perfect) security models can be summarized as
follows:

• no computational restrictions are placed on the eaves-
dropper;

• very precise statements can be made about the information
that is leaked to the eavesdropper as a function of channel
quality and block length of the messages [25];

• physical-layer security as been realized in practice through
quantum key distribution [51];

• in theory, suitably long codes used for privacy amplifica-
tion can get exponentially close to perfect secrecy [25];

• instead of distributing keys it is possible to generate
on-the-fly as many secret keys as desired.

In contrast, we have to take into consideration the following
disadvantages of information-theoretic security:

• information-theoretic security is an average-information
measure. The system can be designed and tuned for a spe-
cific level of security—e.g., with very high probability a
block is secure, but it may not be able to guarantee secu-
rity with probability ;

• it requires assumptions about the communication channels
that may not be accurate in practice. In many cases, one
would make very conservative assumptions about the chan-
nels. This is likely to result in low secrecy capacities and
low secret key or -message exchange rates, yielding high
security and reliability, yet at low communication rates;

• a few systems (e.g., quantum key distribution) are deployed
but the technology is not as widely available and is expen-
sive;

• a short secret key is still required for authentication [5].

In light of the brief comparisons above, it is likely that any
deployment of a physical-layer security protocol in a classical
system would be part of a “layered security” solution where
security is provided at a number of different layers, each with
a specific goal in mind. This modular approach is how virtually
all systems are designed today, so in this context, physical-layer
security provides an additional layer of security that does not
exist in today’s communication systems.

APPENDIX A
PROOF OF LEMMA 1

Suppose that both the main and the wiretap channel are com-
plex AWGN channels, i.e., the transmit and receive symbols are
complex and both additive noise processes are zero mean circu-
larly symmetric complex Gaussian. The power of the complex
input is constrained according to .
Since each use of the complex AWGN channel can be viewed as
two uses of a real-valued AWGN channel [52, Appendix B], the
secrecy capacity of the complex wiretap channel follows from
(3) as

per complex dimension.2

2Alternatively, this result can be proven by repeating step by step the proofs
of [30] using complex-valued random variables instead of real-valued ones.

To complete the proof, we introduce complex fading coeffi-
cients for both the main channel and the eavesdropper’s channel,
as detailed in Section II-A. Since in the quasi-static case and

are random but remain constant for all time, it is perfectly
reasonable to view the main channel (with fading) as a complex
AWGN channel [52, Ch. 5] with SNR and
capacity

Similarly, the capacity of the eavesdropper’s channel is given by

with SNR . Thus, once again based on (3) and
the nonnegativity of channel capacity, we may write the secrecy
capacity for one realization of the quasi-static fading scenario
as (4).

APPENDIX B
PROOF OF PROPOSITION 3

An outage event occurs whenever Alice overestimates the
amount of secrecy she can distill from an opportunistic trans-
mission. Therefore

Now, can be written as follows:

where is the probability density function of (see (2))
and is the probability density function of condi-
tioned on . This probability density function is noncentral
with two degrees of freedom, i.e.,

where is the zeroth-order modified Bessel function of the
first kind [53]. Thus, the probability reduces to

where is the generalized Marcum function [53].
Using standard results for integrals involving the generalized
Marcum function [54], the upper bound to the outage proba-
bility reduces to

(59)
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APPENDIX C
PROOF OF PROPOSITION 6

The main channel capacity averaged over the realization in
can be expanded as follows:

(60)

(61)

(62)

(63)

where

and

To obtain simple bounds of this expression, we introduce a
simple lemma.

Lemma 2: , we have

(64)

Proof: The upper bound in the lemma follows by inte-
grating the left-hand side by parts as

(65)

where is the exponential-integral function. The result fol-
lows by bounding the exponential-integral function as

. The lower bound follows by noting that
for , therefore

(66)

By applying the lemma on each of the two terms of the right-
hand side, we obtain

(67)

Likewise, by reversing the bounds we obtain

(68)

(69)

(70)

To bound the wiretap channel capacity averaged over the re-
alizations in we write

(71)

(72)

(73)

(74)

The result follows by noting that for any

(75)
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memoryless awgn channels with fixed input constellations,” in Proc.
IEEE Global Telecommunications Conf. (IEEE GLOBECOM ’02),
Taipei, Taiwan, Nov. 2002, vol. 2, pp. 1339–1343.

[37] G. Brassard and L. Salvail, “Secret-key reconciliation by public discus-
sion,” in Advances in Cryptology-Eurocrypt’93 (Lecture Notes in Com-
puter Science), T. Helleseth, Ed. Berlin, Germany: Springer-Verlag,
1993, pp. 411–423.

[38] A. Wyner, “Recent results in the shannon theory,” IEEE Trans. Inf.
Theory, vol. IT20, no. 1, pp. 2–10, Jan. 1974.

[39] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modula-
tion,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 927–946, May 1998.

[40] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes:
Theoretical concepts and practical design rules,” IEEE Trans. Inf.
Theory, vol. 45, no. 5, pp. 1361–1391, Jul. 1999.

[41] M. Bloch, A. Thangaraj, S. W. McLaughlin, and J.-M. Merolla,
“LDPC-based Gaussian key reconciliation,” in Proc. IEEE Infor-
mation Theory Workshop, Punta del Este, Uruguay, Mar. 2006, pp.
116–120, arXiv: cs.IT/0509041.

[42] A. D. Liveris, Z. Xiong, and C. N. Georghiades, “Compression of bi-
nary sources with side information at the decoder using LDPC codes,”
IEEE Commun. Lett., vol. 6, no. 10, pp. 440–442, Oct. 2002.

[43] Y. Nana, E. Sharon, and S. Litsyn, “Improved decoding of LDPC coded
modulations,” IEEE Commun. Lett., vol. 10, no. 5, pp. 375–377, May
2006.

[44] J. Chen, D. He, and A. Jagmohan, “Slepian-Wolf code design via
source-channel correspondence,” in Proc. IEEE Int. Symp. Information
Theory, Seattle, WA, Jul. 2006, pp. 2433–2437.

[45] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[46] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Density evolution for
asymmetric memoryless channels,” IEEE Trans. Inf. Theory, vol. 51,
no. 12, pp. 4216–4236, Dec. 2005.

[47] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp.
1727–1737, Oct. 2001.

[48] D. R. Stinson, “Universal hashing and authentication codes,” in Lecture
Notes in Computer Science. Berlin, Germany: Springer-Verlag, 1991,
vol. 576, pp. 74–85.

[49] L. Ozarow and A. Wyner, “On the capacity of the Gaussian channel
with a finite number of input levels,” IEEE Trans. Inf. Theory, vol. 36,
no. 6, pp. 1426–1428, Nov. 1990.

[50] A. Aziz and W. Diffie, “Privacy and authentication for wireless local
area networks,” IEEE Pers. Commun., vol. 1, no. 1, pp. 25–31, 1993.

[51] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in Proc. IEEE Int. Conf. Computer Sys-
tems and Signal Processing., Bangalore, India, 1984, pp. 175–179.

[52] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation. Cambridge, U.K.: Cambridge Univ. Press, 2005.

[53] J. G. Proakis, Digital Communications, 4th ed. New York: McGraw-
Hill, 2001.

[54] M. Simon and M. -S. Alouini, “Some new results for integrals involving
the generalized Marcum q function and their application to perfor-
mance evaluation over fading channels,” IEEE J. Wireless Commun.,
vol. 2, no. 4, pp. 611–615, Jul. 2003.


