
Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Construction, enumeration, and optimization of
perfect phylogenies on multi-state data.

Michael Coulombe1 Kristian Stevens2 Dan Gusfield2

mcoulomb@mit.edu {kastevens,gusfield}@ucdavis.edu

1Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

2Department of Computer Science
University of California, Davis

5th IEEE International Conference on Computational Advances in Bio
and Medical Sciences

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Outline

1 Background
Introduction
Multi-state Perfect Phylogeny

2 Construction Algorithms
Algorithm Description
Our Improvements
Results

3 Enumeration Algorithms
Algorithm Description
Our Improvements
Results

4 PerfectPhy
Uniqueness Extension

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Outline

1 Background
Introduction
Multi-state Perfect Phylogeny

2 Construction Algorithms
Algorithm Description
Our Improvements
Results

3 Enumeration Algorithms
Algorithm Description
Our Improvements
Results

4 PerfectPhy
Uniqueness Extension

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Phylogeny Problem and Approaches

The Phylogeny Problem

Given extant taxa with observed traits, reconstruct an evolutionary
tree which best explains their ancestral relationships.

1 Distance-Based Algorithms

Must know or estimate evolutionary distances between taxa.
Must choose a metric and clustering strategy.

2 Maximum Parsimony and Maximum Likelihood

Must model and give costs to evolutionary events.
Must efficiently prune the search-space to find the optimal tree.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Phylogeny Problem and Approaches

The Phylogeny Problem

Given extant taxa with observed traits, reconstruct an evolutionary
tree which best explains their ancestral relationships.

1 Distance-Based Algorithms

Must know or estimate evolutionary distances between taxa.
Must choose a metric and clustering strategy.

2 Maximum Parsimony and Maximum Likelihood

Must model and give costs to evolutionary events.
Must efficiently prune the search-space to find the optimal tree.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there
are m characters, or observed
traits. Each character takes on at
most k distinct states.

Output

A perfect phylogeny of S : a
tree T with leaves labeled by the
taxa and ancestors labeled such
that each character-state is
convex with respect to T .

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

2 1 1 1 1 0 1 0 2

? ? ?

? ? ?

0 2 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there
are m characters, or observed
traits. Each character takes on at
most k distinct states.

Output

A perfect phylogeny of S : a
tree T with leaves labeled by the
taxa and ancestors labeled such
that each character-state is
convex with respect to T .

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

2 1 1 1 1 0 1 0 2

1 ? ?

1 ? ? 1 ? ?

? ? ?

0 2 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there
are m characters, or observed
traits. Each character takes on at
most k distinct states.

Output

A perfect phylogeny of S : a
tree T with leaves labeled by the
taxa and ancestors labeled such
that each character-state is
convex with respect to T .

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

2 1 1 1 1 0 1 0 2

1 1 ?

1 1 ? 1 ? ?

? 1 ?

? 1 ?

? 1 ?

0 2 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there
are m characters, or observed
traits. Each character takes on at
most k distinct states.

Output

A perfect phylogeny of S : a
tree T with leaves labeled by the
taxa and ancestors labeled such
that each character-state is
convex with respect to T .

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

2 1 1 1 1 0 1 0 2

1 1 ?

1 1 ? 1 ? ?

? 1 1

? 1 1

? 1 ?

0 2 1

? ? 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Multi-state Perfect Phylogeny Problem

Input

A set S of n taxa for which there
are m characters, or observed
traits. Each character takes on at
most k distinct states.

Output

A perfect phylogeny of S : a
tree T with leaves labeled by the
taxa and ancestors labeled such
that each character-state is
convex with respect to T .

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

2 1 1 1 1 0 1 0 2

1 1 *

1 1 * 1 * *

* 1 1

* 1 1

* 1 *

0 2 1

* * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Introduction
Multi-state Perfect Phylogeny

Perfect Phylogeny with Bounded Number of States

Problem known to be NP-Hard for arbitrary n,m, k [?].

Result Construction Time Notes
[?] O(nm) Binary data (k = 2)

[?] O(nm2) 3-State data (k ≤ 3)

[?] O(n2m) 4-State data (k ≤ 4)

[?] O(23k(nm3 + m4)) Fixed Parameter Tractable in k

[?] O(22knm2) Improvement on [?]

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Outline

1 Background
Introduction
Multi-state Perfect Phylogeny

2 Construction Algorithms
Algorithm Description
Our Improvements
Results

3 Enumeration Algorithms
Algorithm Description
Our Improvements
Results

4 PerfectPhy
Uniqueness Extension

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Proper Clusters [?]

Definition

G ⊂ S is a proper cluster if
each character shares at most
one state between G and S − G ,
and some character shares none.

Definition

The splitting vector Sv(G) = v
of proper cluster G is the vector
where α(v) is the unique shared
state of character α between
some x ∈ G and y ∈ S − G , else
α(v) = ∗ if no state is shared.

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

G}

2 1 1 1 1 0 1 0 2

1 1 *

1 1 * 1 * *

* 1 1

* 1 1

* 1 *

0 2 1

* * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Proper Clusters [?]

Lemma

If S has a perfect phylogeny,
then S has a perfect phylogeny
where the leaf set of every
subtree is a proper cluster.

Intuition:

1 Each edge must share at
most one character due to
convexity.

2 If all characters share a state
over an edge, then the edge
can be contracted.

0 2 1
1 0 2
1 1 0
2 1 1

Characters

Ta
x
a

G}

2 1 1 1 1 0 1 0 2

1 1 *

1 1 * 1 * *

* 1 1

* 1 1

* 1 *

0 2 1

* * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Preprocessing: S/Sv(G) [?]

Definition

Given G ⊆ S and v ∈ {∗, 1, ..., k}n,
G/v groups taxa which share a
character-state not present in v .

Example

S/Sv(G) = {{a | α4(a) = i} | i 6= 1}
∪ {{a} | α4(a) = 1}

If a ∼ b and Sv(G) labels an edge,
then a and b must be on the same
side of the edge due to convexity.

S - G

... Hl

G

H1

2 0 * 1

Sv(G) = * * * 1

* 1 * 1

3 1 * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Recursive Formulation of [?] and [?]

perfectphylogeny(S)

1 if T ← subphylogeny(S − {tout}) returns failure then return failure
2 else return the tree created by attaching tout to the root of T

subphylogeny(G)

1 initialize root r labeled with Sv(G)
2 if G is a single taxon t then return the taxon t attached to r
3 foreach subset H1 of G where

TH1 ← subphylogeny(H1) exists and can be attached to r
4 if H2 ← G − H1 is a proper cluster
5 if TH2 ← subphylogeny(H2) exists and can be attached to r
6 return the tree created by attaching TH1 and TH2 to r
7 elsif G can be partitioned into l > 2 proper clusters H1, . . . ,Hl

with subphylogenies TH1 , . . . ,THl that can be attached to r
8 return the tree created by attaching TH1 , . . . ,THl to r
9 return failure if no H1 worked

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Recursive Formulation of [?] and [?]

1 If H2 ← G − H1 is a proper cluster:

subphylogeny(G)
...

3 foreach subset H1 of G where
TH1 ← subphylogeny(H1) exists
and can be attached to r

...
5 if TH2 ← subphylogeny(H2) exists

and can be attached to r
6 return the tree created by attaching

TH1 and TH2 to r
...

S - G

G

H1

H2

2 0 * 1

Sv(G) = * * * 1

* 1 * 1

3 1 * 1 0 1 * 0

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Recursive Formulation of [?] and [?]

2 If G − H1 is not a proper cluster:

subphylogeny(G)
...

3 foreach subset H1 of G where
TH1 ← subphylogeny(H1) exists
and can be attached to r

...
7 elsif G can be partitioned into l > 2

proper clusters H1, . . . ,Hl

with subphylogenies TH1 , . . . ,THl

that can be attached to r
8 return the tree created by attaching

TH1 , . . . ,THl to r

S - G

... Hl

G

H1

2 0 * 1

Sv(G) = * * * 1

* 1 * 1

3 1 * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Whole Algorithm Pipeline of [?]

1 Compute all proper clusters G ⊂ S and their splitting vectors.

- O(2km) possible proper clusters G , O(nm) to verify and compute
Sv(G), thus O(2km2n) total time.

2 Build proper cluster dictionary data structure.

- O(n2) per proper cluster to build a trie.
Our improvement: O(n) per proper cluster to build pointer table.
O(2kmn) total time.

3 Compute S/Sv(G) for each proper cluster G .

- O(2km) possible proper clusters G , O(nm) to compute S/Sv(G),
O(2km2n) total time.

4 Run perfectphylogeny(S) and output answer.

- Using dynamic programming, O(2km) subphylogeny calls which
iterate over O(2km) subsets performing O(n) work each, thus
O(22km2n) total time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Whole Algorithm Pipeline of [?]

1 Compute all proper clusters G ⊂ S and their splitting vectors.

- O(2km) possible proper clusters G , O(nm) to verify and compute
Sv(G), thus O(2km2n) total time.

2 Build proper cluster dictionary data structure.

- O(n2) per proper cluster to build a trie.
Our improvement: O(n) per proper cluster to build pointer table.
O(2kmn) total time.

3 Compute S/Sv(G) for each proper cluster G .

- O(2km) possible proper clusters G , O(nm) to compute S/Sv(G),
O(2km2n) total time.

4 Run perfectphylogeny(S) and output answer.

- Using dynamic programming, O(2km) subphylogeny calls which
iterate over O(2km) subsets performing O(n) work each, thus
O(22km2n) total time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Whole Algorithm Pipeline of [?]

1 Compute all proper clusters G ⊂ S and their splitting vectors.

- O(2km) possible proper clusters G , O(nm) to verify and compute
Sv(G), thus O(2km2n) total time.

2 Build proper cluster dictionary data structure.

- O(n2) per proper cluster to build a trie.
Our improvement: O(n) per proper cluster to build pointer table.
O(2kmn) total time.

3 Compute S/Sv(G) for each proper cluster G .

- O(2km) possible proper clusters G , O(nm) to compute S/Sv(G),
O(2km2n) total time.

4 Run perfectphylogeny(S) and output answer.

- Using dynamic programming, O(2km) subphylogeny calls which
iterate over O(2km) subsets performing O(n) work each, thus
O(22km2n) total time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Whole Algorithm Pipeline of [?]

1 Compute all proper clusters G ⊂ S and their splitting vectors.

- O(2km) possible proper clusters G , O(nm) to verify and compute
Sv(G), thus O(2km2n) total time.

2 Build proper cluster dictionary data structure.

- O(n2) per proper cluster to build a trie.
Our improvement: O(n) per proper cluster to build pointer table.
O(2kmn) total time.

3 Compute S/Sv(G) for each proper cluster G .

- O(2km) possible proper clusters G , O(nm) to compute S/Sv(G),
O(2km2n) total time.

4 Run perfectphylogeny(S) and output answer.

- Using dynamic programming, O(2km) subphylogeny calls which
iterate over O(2km) subsets performing O(n) work each, thus
O(22km2n) total time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Preprocessing: Proper Cluster Dictionary

The proper cluster dictionary is used to test whether or not an
arbitrary G ⊂ S is a proper cluster, and if so to get an index
pG for use in other data structures, in time O(|G |) = O(n).

- We represent G as a bit-vector {0, 1}n.

More specifically, given a partition H1, ...,H` of G ⊂ S , it
must be able to verify and output pH1 , ..., pH`

in time
O(|H1|+ ...+ |H`|) = O(|G |) = O(n).

- We represent H1, ..,H` as a vector over {1, ..., `}n.

Proposal of [?]: build a trie

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Proper Cluster Dictionary: Trie issues

The paths down a 0-1 binary trie is necessarily O(n), thus
looking up H1, ...,H` simultaneously cannot be done with
O(`) independent lookups within O(n) time.

By expanding the
nodes of the trie to
support multiple
children, the space
requirement
increases to O(n2)
per proper cluster.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

The Pointer Table, a Smaller Proper Cluster Dictionary

Q[p][t] = the smallest p′ ≥ p where t ∈ Gp′ (lexicographical order)

lookup(Q,G)

1 p ← 0
2 foreach taxa t ∈ G in order
3 p ← Q[p][t]
4 if |G | = |Gp| and ∀t ∈ G . p = Q[p][t]
5 return p
6 else
7 return NULL

Representing H1, ..,H` as a vector over
{1, ..., `}n allows simultaneous lookup
in O(n) time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Trie Slowdown vs Pointer Table

Average full program runtime and dictionary size increase when
using the Trie instead of the Pointer Table, over 80 trials.

n,m k = 4 k = 10 k = 20

50,50 3.07% / 165% 2.75% / 189% 1.55% / 174%

100,100 2.80% / 386% 2.95% / 516% 1.60% / 490%

500,500 1.27% / 1886% 2.67% / 2749% 1.18% / 2957%

1000,1000 1.15% / 3775% 2.89% / 5522% 1.12% / 6525%

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Construction Algorithm Runtime

Average execution times (using pointer table) over 30 trials:

n,m 4 state 10 state 20 state Scaling
(nucleotide) (amino acid) (n,m)

10,10 0.001s 0.001s 0.003s
50,50 0.005s 0.024s 0.303s ×125
100,100 0.028s 0.113s 1.55s ×8
500,500 3.21s 17.6s 239s ×125
1000,1000 51.9s 271s 2,320s ×8
2000,2000 529s 2,590s 19,300s ×8

Scaling (k) ×212 ×220

In practice, scales much better than asymptotic complexity predicts
with respect to k , scales as predicted with respect to n and m
O(22km2n)

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Outline

1 Background
Introduction
Multi-state Perfect Phylogeny

2 Construction Algorithms
Algorithm Description
Our Improvements
Results

3 Enumeration Algorithms
Algorithm Description
Our Improvements
Results

4 PerfectPhy
Uniqueness Extension

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Enumeration of Minimal Perfect Phylogenies

Definition

A minimal perfect phylogeny is
a perfect phylogeny T in which
no edge can be contracted to
make a smaller perfect phylogeny.

For each (x , y) ∈ T , there exists
a character α such that:
α(x) 6= α(y)
α(x) 6= ∗
α(y) 6= ∗

S - G

... Hl

G

H1

2 0 * 1

Sv(G) = * * * 1

* 1 * 1

3 1 * 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

The DAG: Compact Representation of MPPs [?]

Definition

A sum node
∑

(H; y) represents a
subphylogeny for proper cluster H with
its root connected to a node y in S −H.
The children of

∑
(H; y) are possible

choices of product nodes.

Definition

A product node
∏

(G1, ...,Gt ; x)
represents a root x of a subphylogeny
partitioned into subtrees that are sum
nodes for G1, ...,Gt .

Σ: { 0 }

Π: 2 1 1

Σ: { 1 }

Π: 1 1 0

Σ: { 2 }

Π: 1 0 2

Σ: { 0, 1, 2 }

Π: 1 1 1

Σ: { 0, 1, 2, 3 }

Π: 0 2 1

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

The DAG: Compact Representation of MPPs [?]

Example

6 Taxa, 5 Characters, 4 States
⇒ Found 4 Minimal Perfect Phylogenies

0 0 0 0 0

0 0 2 1 03 3 0 0 2 0 0 0 0 0

1 0 0 0 0

2 2 3 0 1 1 1 1 0 0 1 0 0 2 0

0 0 0 0 0

0 0 2 1 03 3 0 0 2 2 2 3 0 1 0 0 0 0 0

1 0 0 0 0

1 1 1 0 0 1 0 0 2 0

0 0 0 0 0

0 0 2 1 02 2 3 0 1 0 0 0 0 0

1 0 0 0 0

3 3 0 0 2 1 1 1 0 0 1 0 0 2 0

0 0 0 0 0

0 0 2 1 00 0 0 0 0

1 0 0 0 0

3 3 0 0 2 2 2 3 0 1 1 1 1 0 0 1 0 0 2 0

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

0, 2 c=1

r= 0

c= 1

0, 4 c=1

1, 3 c=1

r= 1

c= 1

1, 6 c=1 2, 2 c=1

r= 2

c= 1

3, 0 c=1

r= 3

c= 1

5, 0 c=1

r= 5

c= 1

9, 0 c=1

2 3
r= 6

c= 1

13, 0 c=1

0 2 3
r= 6

c= 1

14, 0 c=1

1 2 3
r= 6

c= 1

18, 0 c=1

0 1 2 3
r= 6

c= 1

24, 0 c=4

0 1 5 9
r= 5

c= 1
0 5 14

r= 5

c= 1
1 5 13

r= 5

c= 1
5 18

r= 5

c= 1

29, 0 c=4

24
r= 4

c= 4

r

0

1

2

3

4

5

6

Node Label

3 3 0 0 2

2 2 3 0 1

1 1 1 0 0

1 0 0 2 0

0 0 2 1 0

0 0 0 0 0

1 0 0 0 0

Actual DAG Graphical Output

6× 5 Input with 4 states

4 MPPs represented using
nodes with upwards and
downwards sharing

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

DAG Construction Optimizations

First step of enumeration algorithm computes sets Ext(H,G).

Algorithm, adapted from [?]

... we consider all partitions of H − G into at most k − 1 proper
clusters G1,G2, ...,Gt , and consider the (possible) perfect
phylogeny for H which has root x with subtrees perfect
phylogenies for G ,G1,G2, ...,Gt . The canonical labeling for x is
then an element of Ext(H,G).

Implementation choices:

1 Brute force checking, the näıve interpretation of [?]

2 Maximal Independent Set generating algorithms using
(G1,G2) ∈ E if Sv(G1) and Sv(G2) are incompatible.

3 MaxIS algorithms optimized for a known maximum size k .

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

DAG Analysis

Number of MPPs t (bottom-up dynamic programming):
count(Sn) =

∑
Pn∈children(Sn)

count(Pn)

count(Pn) =
∏

Sn∈children(Pn)

count(Sn)

Find tree with fewest nodes:
nodeCount(Sn) = min

Pn∈children(Sn)
nodeCount(Pn)

nodeCount(Pn) = 1 +
∑

Sn∈children(Pn)

nodeCount(Sn)

Access i th MPP in O(n + p) time (p is # product nodes)

Iterate over MPPs in O(n) time per tree

All-pairs Robinson-Foulds Distance: O(nt2) time, O(nt) space

RF (T1,T2) = |P(T1)∆P(T2)|
2 where P(T) = T ’s proper clusters

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

DAG Analysis Algorithm: Support

Definition

The support of a proper cluster H is the number of MPPs in
which H is the leaf set on one side of an edge.

support(H) = support(S − H) =
∑
y
support(

∑
(H; y))

support(SnG) =
∑

SnG ∈ children(Pn)
Pn ∈ children(SnH)

support(SnH)× count(Pn)
count(SnH)

Top-down dynamic program computes support(SnG), values
used to find tree with maximum proper cluster support.

We observed that these trees were usually distinct objects, not
just trees with the most edges.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

DAG Construction Runtime

Average time to construct DAG using Ext(H,G) algorithms
(k-MaxIS / MaxIS / brute force) enumeration over 60 trials.

n,m k = 4 k = 10

50,50 14ms / 12ms / 49ms 41ms / 48ms / 421s∗

100,100 48ms / 46ms / 1.11s 160ms / 176ms / 261s
500,500 3.99s / 3.95s / 4.38s 13.3s / 13.4s / 44.7s∗

1000,1000 30.8s / 31.4s / 33.6s 127s / 124s / 142s∗

* Actual average execution time is higher because some trials
timed out at 20min.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

Number of Minimal Perfect Phylogenies

Average number minimal perfect phylogenies and runtime (using
k-MaxIS) over 80 trials.

n,m k = 4 k = 10 k = 20

50,50 3.40 (0.00998 s) 237 (0.0539s) 120,000 (3.68s)

100,100 2.48 (0.0473s) 495 (0.195s) 1,710,000 (3.30s)

500,500 1.66 (4.38s) 118 (15s) 292,000 (184s)

1000,1000 1.91 (33.5s) 11.0 (124s) 207,000 (1,000s)

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Algorithm Description
Our Improvements
Results

DAG Size

Average DAG output filesize in kilobytes over 50 trials

n,m k = 4 k = 10 k = 20

50,50 6.13 11.2 33.6

100,100 19.2 32.6 89.5

500,500 355 572 881

1000,1000 1,310 2,170 2,980

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Outline

1 Background
Introduction
Multi-state Perfect Phylogeny

2 Construction Algorithms
Algorithm Description
Our Improvements
Results

3 Enumeration Algorithms
Algorithm Description
Our Improvements
Results

4 PerfectPhy
Uniqueness Extension

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

PerfectPhy Software Package

No dependencies C++ command line application

Example

$./perfectphy -f mydataset -newick

1 The data DOES have a perfect phylogeny

(’3 3 0 0 2’,’0 0 2 1 0’,(’1 1 1 0 0’,’1 0 0 2 0’)’1

0 0 0 0’,’2 2 3 0 1’,’0 0 0 0 0’)

Includes source code for main program, helpful tools, and
scripts to run the experiments.

Available at http://wwwcsif.cs.ucdavis.edu/~gusfield
and linked on my website http://www.mit.edu/~mcoulomb

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

http://wwwcsif.cs.ucdavis.edu/~gusfield
http://www.mit.edu/~mcoulomb

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

PerfectPhy Software Package: Tools and Extensions

Character Removal (Wrapper)

Missing Data (Wrapper)

Phylip [?] sequence format (de)conversion adapters

Newick tree format to Graphviz Dot format [?] for visualizing
phylogenies.

Experimental extension to construction algorithm to efficiently
check if multiple MPPs exist without enumeration.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

If there is only one tree, then there is no need to run the
expensive enumeration algorithm, just minimize the tree
constructed by the dynamic program.

Given one perfect phylogeny on S , it is NP-Hard to decide if
another exists for S . [?]

Ideas?

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

If there is only one tree, then there is no need to run the
expensive enumeration algorithm, just minimize the tree
constructed by the dynamic program.

Given one perfect phylogeny on S , it is NP-Hard to decide if
another exists for S . [?]

We can leverage the computation of the dynamic program to
try to output two trees instead of one.

Our Result: O(n + m) additional time per inner loop iteration,
thus O(22km2(n + m)) total time.

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

subphylogeny(G)

1 initialize root r labeled with Sv(G)
1̂ unique(G)← true, TG ← null
2 if G is a single taxon t then return the taxon t attached to r
3 foreach subset H1 of G where

TH1 ← subphylogeny(H1) exists and can be attached to r
4 if H2 ← G − H1 is a proper cluster
5 if TH2 ← subphylogeny(H2) exists and can be attached to r
6 T ′

G ← the tree created by attaching TH1 and TH2 to r
6̂ TG ← minimizeSubtrees(TG , T

′
G)

7 elsif G can be partitioned into l > 2 proper clusters H1, . . . ,Hl

with subphylogenies TH1 , . . . ,THl that can be attached to r
8 T ′

G ← the tree created by attaching TH1 , . . . ,THl to r
8̂ TG ← minimizeSubtrees(TG ,T

′
G)

9 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Uniqueness Extension

Efficient Unique Minimal Perfect Phylogeny Testing

Global tables unique(G), rootlabels(G), and a SetEqChecker

minimizeSubtrees(TG , T
′
G)

1 If unique(G)
2 If any Hi subtree of the root has ¬ unique(Hi) then unique(G)← false
3 clG = canonical labeling of root of T ′

G

4 If the root of T ′
G has two subtrees for H1,H2

5 If compatible(clG , rootlabels(H1)) and compatible(clG , rootlabels(H2))
but ¬ compatible(rootlabels(H1), rootlabels(H2))

6 unique(G)← false
7 Contract the subtrees of T ′

G arbitrarily until none can be
8 else if the root has over two subtrees
9 Contract the H1 subtree of T ′

G if possible
10 If TG doesn’t exist yet then TG ← T ′

G and rootlabels(G)← clG
11 else if SetEqChecker decides TG 6= T ′

G then unique(G)← false
12 return TG

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

Background
Construction Algorithms
Enumeration Algorithms

PerfectPhy

Thanks!

Questions?

Michael Coulombe, Kristian Stevens, Dan Gusfield PerfectPhy

	Background
	Introduction
	Multi-state Perfect Phylogeny

	Construction Algorithms
	Algorithm Description
	Our Improvements
	Results

	Enumeration Algorithms
	Algorithm Description
	Our Improvements
	Results

	PerfectPhy
	Uniqueness Extension

