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ABSTRACT
To date, implementations of score-following algorithms have
largely been exclusive to standalone computer applications.
However, web browser-based systems offer several advan-
tages over standalone applications, including cross-platform
compatibility, straightforward setup, and greater accessibil-
ity. We present an implementation of a real-time score fol-
lowing algorithm using Online Time Warping (OTW) that
runs exclusively in the browser, developed as part of Con-
certCue, an application that synchronizes content delivery
to live musical performances. This OTW implementation
was developed in Python, yet runs in the browser without
modification, using a framework we developed for shuttling
audio and control data between native JavaScript and Py-
odide, a browser-based Python interpreter. We discuss the
performance of our implementation and the generalizability
of this approach to developing other real-time audio analysis
applications using Python in the browser. In addition to re-
leasing the source code, we also release the hand-annotated
audio alignment dataset used to test the system.

1. INTRODUCTION
Score following (also referred to as “audio synchronization”,
“audio-to-score alignment”, or “live tracking”) is the task of
identifying temporal location in a musical performance by
establishing a mapping to corresponding locations in a ref-
erence track. In this paper we focus on the case of real-time
score following, where we seek to continuously estimate a
correspondence between live audio input (hereafter the“live”
datastream) and a prerecorded audio file of the same piece
(hereafter the “reference” datastream).

Approaches to score following can generally be separated
into two components: feature representation, and alignment
technique. Feature representations can be either symbolic or
audio-derived. Symbolic representations, most prominently
MIDI and MusicXML, are reliable and tend to be more com-
putationally lightweight to process, and are thus prevalent
in systems that demand high precision and in earlier score-
following implementations restricted by limited computing
power [6, 1]. However, they require input data to be pro-
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Figure 1: TheConcertCue system: audio from a live perfor-
mance (a) is sent to the score following algorithm (b). Timing
data is streamed to a cloud-based server (c) which in turn
synchronizes content in real-time on audience display devices
(d).

vided symbolically (e.g. via MIDI keyboard or external trig-
ger mechanism) which significantly narrows practicable use
cases. Audio representations, in contrast, rely on features
computed directly from time-based audio data—spectral in-
formation, chromagrams, loudness, etc.—and allow for a
much broader domain of inputs, though are computationally
more expensive to extract and process and can sometimes
be less reliable with polyphony and complex timbres [13, 2].

To align audio-based features in real-time, stochastic mod-
els like Hidden Markov Models are often used [14, 5], as well
as time warping algorithms and variants like Online Time
Warping [7], which is used in this paper and will be discussed
in greater detail in Section 2.

Regardless of the specific algorithm, score-following ap-
plications to date have been largely implemented in stan-
dalone computer applications, either on their own or within
other applications like PureData or Max/MSP [1]. Though
some implementations of web-based score-following exist [4,
8], their performance and robustness are inferior to their
standalone counterparts, requiring monophony or relying on
substantial user interaction to correct errors.

Adopting an exclusively in-browser approach offers a num-
ber of advantages: broad multi-platform compatibility, lack
of an installation and setup process, accessibility (with no
reliance on proprietary software like Max/MSP), easy distri-



Figure 2: System architecture: the score-following system consists of a native JavaScript/React component that manages audio
input, user interaction, and user-facing displays, as well as a Pyodide Python component that extracts audio features and runs
the OTW alignment algorithm.

bution and updating, and capability to leverage existing web
tools. For these reasons, browser-based versions of audio
applications have become increasingly ubiquitous for audio
synthesis, audio processing [10], and recording1. However,
online score-following remains relatively overlooked.

In this paper, we present an implementation of a robust
score-following algorithm that runs in real-time from within
the browser. It was developed for ConcertCue,2 a web ap-
plication that streams program notes, supertitles, and other
content to audience-facing devices in real-time during a con-
cert. Real-time score following allows this content to be au-
tomatically synchronized with a live musical performance,
according to the system setup detailed in Figure 1.

2. ONLINE TIME WARPING
Time warping is a widely-used approach for aligning two
similar datastreams [9, 3]. The original Dynamic Time
Warping (DTW) algorithm is an offline alignment algo-
rithm that takes two temporal sequences U = u1, u2, . . . , um

and V = v1, v2, . . . , vn and creates a mapping (or “path”)
W = W1,W2, . . . ,Wl, where a given Wk := (ik, jk) repre-
sents the alignment of ui with vj . Each match Wk is eval-
uated using a local cost function dU,V (i, j), which is 0 for a
perfect match and positive otherwise, and the overall path
cost is:

D(W ) =
∑
k

dU,V (ik, jk)

Cost values are stored in an accumulated cost matrix
where each element corresponds to the cost of the optimal
path up to that position. After computing the entire matrix,
the optimal path is found by backtracking from the end of
the matrix to the start via the minimum cost measurements.

1online DAWs like SoundTrap, BandLab, and Audiotool
2https://concertcue.org and https://concertcue.com

In [7], Dixon presents an online variant of DTW called
Online Time Warping (OTW), which is capable of aligning
sequences in real-time using a piecewise variant of the same
technique (which is therefore not guaranteed to be optimal).
While the reference datastream is fully known in advance,
audio samples from the live datastream only become avail-
able in real-time. The algorithm processes each new frame of
audio into a feature representation, triggers the calculation
of new elements in the cost matrix, and then determines the
most likely path alignment up to that point. Unlike DTW,
which has O(n2) time and space complexity, OTW is lin-
early complex in time and space, and builds the alignment
path incrementally as new information is received.

In our implementation, we further adapt Dixon’s real-time
variant of OTW for use in a real-time web context. Firstly,
we use a different set of features, where each ui and vj is a
CENS (chroma energy normalized statistics) 12-vector that
represents the distribution of spectral energy across the pitch
classes [12]. We extract these CENS vectors from windowed
segments of both the reference and live input audio samples
using specified window and hop sizes. However, for the live
input sequence we also no longer maintain a constant hop
size, as timing variability is introduced by the signal pro-
cessing pipeline (more discussion in Section 3.1). The local
error for a matching is defined using cosine distance:

dU,V (ik, jk) = 1− ui · vj
||ui|| ||vj ||

= 1− ui · vj

Note that CENS vector normalization results in ||ui|| =
||uj || = 1 ∀ i, j. To stabilize the estimated output, we clamp
OTW predictions to be monotonically non-decreasing.

3. BROWSER IMPLEMENTATION
The time-warping and feature extraction algorithms are im-
plemented in the browser using Pyodide, a CPython distri-



Figure 3: ConcertCue directing view: A score is displayed with the current position highlighted in red, as well as the current
piece, movement, and speed relative to the reference recording.

bution that targets the browser via WebAssembly [15]. A
Web Audio API3 AnalyzerNode is used for real-time audio
sample management, and React4 for event handling and UI.
Figure 2 shows the overall system architecture. The com-
plete score-following system is available as a standalone web
app, with all code available on GitHub.5

Migrating the score following application from a stan-
dalone Python environment to the browser required several
modifications, many of which trade off between latency, ac-
curacy, and computational cost.

3.1 Processing Pipeline
First, a reference audio file is loaded into the system, which
is passed into the MEMFS filesystem within Pyodide and
asynchronously preprocessed to extract the CENS features
from the entire duration of the file. This sequence of chroma
vectors is then stored in a reference buffer to be used later
by the real-time portion of the OTW algorithm.

Live audio input is managed in the native JavaScript en-
vironment via the Web Audio API, which retrieves the mi-
crophone audio input stream and continually passes buffers
to Pyodide as JSProxy sample arrays. We trigger computa-
tion by maintaining a JavaScript-side setInterval() call-
back timed to the desired live input hop size. Because the
construction of the Web Audio API only permits buffer re-
quests to read the last N samples, we read from the Analyz-
erNode’s running sample buffer maintained for FFT calcula-
tion and set its window size to the desired value (we do not

3https://www.w3.org/TR/webaudio
4https://react.dev
5https://github.com/matthewcaren/web-score-following

Figure 4: Distribution of measured actual real-time hop sizes
with a specified hop size of 84ms (N=6113 measurements)

directly use the FFT result in the score-following system,
but it is preserved for visualization purposes).

Note that the standard OTW algorithm assumes a fixed
hop size, which we do not obey in our web implementation
due to the imprecision of timed callbacks in JavaScript. We
observed the actual hop lengths to be stochastic but pre-
dictably distributed: Figure 4 displays actual measured hop
lengths when the specified hop size is 84ms, which is well-



Piece Reference Live Median 95th Max Mean

Dvořák, String Quartet No. 12 Cleveland Emerson 0.062 0.521 2.549 0.137

Dvořák, String Quartet No. 12 Cleveland New York 0.119 0.781 1.510 0.223

Dvořák, String Quartet No. 12 Emerson New York 0.101 0.398 2.007 0.153

Mozart, Dies Irae Abbado Bernstein 0.076 0.450 0.560 0.128

Mozart, Dies Irae Abbado Schreier 0.095 0.334 0.539 0.118

Mozart, Dies Irae Bernstein Schreier 0.079 0.383 0.770 0.123

Mozart, Symphony No. 40 Bernstein Klemperer 0.053 0.210 4.227 0.126

Mozart, Symphony No. 40 Bernstein Salemkour 0.100 0.732 2.035 0.176

Mozart, Symphony No. 40 Klemperer Salemkour 0.083 1.264 3.909 0.241

Beach, Pastorale Borealis Gianopoulos 0.172 1.378 4.283 0.399

Beach, Pastorale Borealis RSC 0.176 1.799 3.632 0.401

Beach, Pastorale Gianopoulos RSC 0.125 1.229 2.836 0.297

Prokofiev, Piano Concerto No. 1 Argerich Berman 0.059 0.538 1.754 0.122

Prokofiev, Piano Concerto No. 1 Berman Kissin 0.059 0.384 1.933 0.113

Prokofiev, Piano Concerto No. 1 Argerich Kissin 0.078 0.418 1.522 0.123

Tchaikovsky, Nutcracker Suite Alphen Ormandy 0.052 0.221 1.417 0.085

Tchaikovsky, Nutcracker Suite Alphen Rostropovich 0.066 0.304 0.594 0.090

Tchaikovsky, Nutcracker Suite Ormandy Rostropovich 0.052 0.166 1.125 0.073

Overall (Browser) - - 0.089 0.639 2.067 0.174

Overall (Simulated) - - 0.077 0.537 1.280 0.130

Table 1: Browser system alignment error metrics (all in seconds) per reference-live performance pair, as well as averaged metrics
for both browser and simulated systems.

approximated by a normal distribution with µ = 84ms and
σ = 0.88ms.

Passing audio buffers from JavaScript into the Pyodide
environment also incurs latency—in software tests, this was
generally found to be linear with respect to the buffer size
with a constant overhead of 2 ± 0.3 ms (we use a buffer
size of 8192, with which we observe approximately 13ms of
latency).

3.2 ConcertCue
Prior to a performance that employs ConcertCue, a musical
score and reference audio track of a piece are uploaded and
aligned such that each measure of the score is matched to a
location in the audio. In addition, a timeline of events com-
posed of snippets of text, images, and animations is authored
to align with important musical moments of the piece. When
the piece is performed live, these events are then displayed in
real-time on target devices such as personal mobile devices
or screens in the concert hall.

Before the present implementation, a musically literate
human operator was responsible for matching the live per-
formance to the score by watching a “directing view” (see
Figure 3) and tapping a computer key at the start of every
measure of the piece—a tedious and stressful task. With the
integration of real-time score-following, the system synchro-
nizes the music timeline to the live performance automati-
cally, thus removing the need for constant human attention.

3.3 A Python-based Web MIR Framework
The architecture developed for this score-following applica-
tion was designed to be as modular and flexible as possible,
so that any real-time Music Information Retrieval (MIR) al-
gorithm written in Python can easily run in a web browser.

Although programming JavaScript applications for the

web offers many user-side advantages, Python is a much
more popular and fully-featured development language for
MIR tasks. A significant amount of current MIR research is
conducted in Python, which is enabled by powerful math-
ematical libraries like NumPy and SciPy, and MIR-specific
libraries like librosa [11]. Furthermore, Python is commonly
used in reference literature, such as [12], which is accom-
panied by a set of Python MIR notebooks. The presented
system enables the combination of the ubiquitous Python
development environment with the many advantages of a
web-based platform.

At a high level, the system consists of a JavaScript
component that routes audio signals, alongside three
Python components respectively triggered: (1) on page
open/initialization, (2) continuously, on each new buffer of
input audio samples as dictated by a specifiable hop size,
and (3) on user input, such as “stop” or “reset” actions.
Data resulting from Python processing is then passed back
to JavaScript with minimal latency (<10ms).

The modularized framework to accomplish these tasks is
open-source and accessible alongside the score-following im-
plementation in the accompanying code repository.

Although the presented algorithm was not significantly
affected by the variable hop length, there are applications
where greater precision may be required. We found that
an effective and computationally cheap approach was to use
hardware timestamps on each new audio buffer request to
estimate the number of elapsed audio samples since the last
buffer request. This input buffer synchronization approach
achieves a sample-correct accuracy of 92%–97%, depending
on the browser.6 Applications that demand 100% accu-

6some browsers reduce audio timer precision as a security
safeguard; this does not exceed 2ms on any modern browser,
but does reduce alignment accuracy if enabled



rate alignment (or strict isolation of new samples) can use a
pattern-matching algorithm, although this would incur ad-
ditional computational cost.

4. RESULTS
The system was evaluated against a corpus of six Western
classical musical pieces, each represented by three different
performances, for a total of eighteen recordings. For each
recording, precise locations of downbeats (the first beat of
each measure) were hand-annotated. In a trial, the align-
ment algorithm is run with one recording used as the ref-
erence data and another as the live datastream. For each
piece, three permutations of pairs of recordings was tested in
both the real-time browser environment and a native Python
OTW simulation, resulting in over 4,000 measures automati-
cally aligned by each system. The system was tested in most
common web browsers (Chrome, Firefox, Safari, Edge), and
performance was found to be essentially identical; the tests
below were performed using Google Chrome on macOS.

In the browser test, live audio is played from a digital au-
dio workstation and routed through a virtual audio input
connection to the web browser. “Time zero” of the live in-
put is set to be the time of the first non-zero input sample
received, which enables a sample-precise and reproducible
testing environment.

Each execution of a score-following system (both in-
browser and simulated) generates aW path stored as match-
ings of live input stream timestamps to estimated reference
recording timestamps. These are represented as a list of
pairs Wk = (ik, jk) = (tlive, tref), with approximately 12
pairs per second of live audio given our average hop size
of 84ms. This path is then evaluated with respect to the
ground truth downbeat annotations to arrive at a set of
statistics per trial run, as follows:

For each downbeat timestamp of the live datastream, we
find the nearest point tlive in the generated path and its
matching estimate tref. The error associated with each
downbeat is the absolute value of the difference between
tref and corresponding downbeat timestamp in the refer-
ence. For each trial, we compute the mean, median, 95th
percentile, and maximum error of all downbeat estimates.

Table 1 shows the resulting metrics for the in-browser tests
across all trials, as well as the average metrics for the in-
browser tests and the Python simulation tests. Figure 5 vi-
sually compares the performances of the two systems. While
the in-browser system did not perform quite as well as the
simulated system—which we attribute to the variance intro-
duced by the in-browser environment—it was consistently
within a fraction of a second from the correct alignment,
which is sufficient for most score-following applications, in-
cluding the ConcertCue system.

Across all trials of the browser system, we observed a mean
alignment error of 0.147 seconds, but a median error of only
0.089 seconds. An example error distribution, typical of
almost all tests, is given in Figure 6. The path corresponding
to these error measurements is shown in Figure 7.

These figures show that tracking is extremely accurate al-
most all the time, but has an occasional moment of a fairly
large error. We observed that the algorithm occasionally
“gets stuck” on a particular segment and fails to progress
to the next corresponding position in the reference stream.
Within a few seconds, the path then abruptly catches up
to the correct alignment, leaving behind a large error spike.

Figure 5: Comparison of the alignment error metrics for in-
browser trials versus Python-only simulation trials.

Parameter Value
Audio sample rate 44100 Hz
Reference hop size 4096 samples
Live hop size 3686 samples
CENS FFT window size 8192 samples
OTW “c” 300
OTW “Max Run Count” 3
OTW “Diagonal Weight” 0.4

Table 2: Tuned algorithm parameters

This behavior can be seen slightly past halfway in the align-
ment path at 315 seconds, with the corresponding spike in
the error plot at measure 240. While the error attributed
to this behavior pattern is slightly worse in-browser, it ap-
pears nearly identically in the Python simulations as well.
We therefore conclude that this behavior is a property of the
algorithm itself as opposed to a porting artifact.

Lastly, our OTW implementation has several free parame-
ters that must be properly tuned and are described in Table
2. We chose these parameters by running the Python OTW
simulation against a training set of pieces via a grid-search.
In the parameter-tuning process, we observed several trends:
first, that the best performance is not achieved with equal
hop sizes for the reference and live sequences; rather, there
is a distinct “sweet spot” of best performance where the live
hop size is 80%-90% of that of the reference. Second, that a
lower diagonal weight is highly correlated with lower overall
error, as it discourages the aforementioned“stuck”behavior.
The audio sample rate (22 kHz vs. 44.1 kHz), CENS FFT
size, reference hop size, and other OTW parameters were far
less influential on the measured performance of the system.

5. NEXT STEPS
Our next steps are to complete more extensive testing and
performance analysis, as well as implement algorithmic im-
provements. As part of the ConcertCue project, we have
accumulated over 20 hours of time-aligned audio and score



Figure 6: Error histogram for an example trial run of Mozart
Symphony No. 40, mvt. 1; Reference: Bernstein, Live:
Klemperer.

data (which we hope to publish as a complete dataset in the
near future), which could be used to perform a more robust
analysis of the system’s performance.

Several improvements to the algorithm could further in-
crease accuracy and reliability. There is often a slight differ-
ence in global pitch tuning between the reference recording
and live performance. Chroma features are particularly sen-
sitive to these differences, and we observed that several of
our less-accurate trials involved such tuning discrepancies.
To address this, we plan to incorporate a tuning measure-
ment that accompanies the reference chroma features, and a
real-time tuning estimator for the live features. Another im-
provement is to implement the concept of “momentum” by
considering a weighted average of estimated position time-
derivatives. This could help reduce momentary errors in
alignment and make the tracking smoother, as the tempo
ratio between live and reference audio is typically a smooth
and slowly varying function (i.e. the tempo of a given mea-
sure in a performance is often very similar to the tempo of
the preceding measures).

Though this system was built to implement score-
following with OTW, the overall framework—which is open-
sourced and supports real-time audio input, stateful compu-
tation with Python/NumPy, and live user input handling—
can be generalized to run a wide variety of real-time MIR
algorithms in the browser. It streamlines the development-
to-production pipeline, allowing for direct transfer from
common Python development environments directly to the
browser without porting to a different language and with
minimal refactoring. With this implementation, we hope to
not only advance the feasibility of robust score-following in
the browser, but also of the practicality of real-time MIR in
the browser as a whole.
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Figure 7: Alignment path and error for Mozart Symphony
No. 40, mvt. 1; Reference: Bernstein, Live: Klemperer.
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