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Abstract—The paper proposes a framework for modeling and
analysis of the dynamics of supply, demand, and clearing prices
in power systems with real-time retail pricing and information
asymmetry. Characterized by passing on the real-time wholesale
electricity prices to the end consumers, real-time pricing creates
a closed-loop feedback system between the physical layer and
the market layer of the system. In the absence of a carefully
designed control law, such direct feedback can increase sensitivity
and lower the system’s robustness to uncertainty in demand and
generation. It is shown that price volatility can be characterized
in terms of the system’s maximal relative price elasticity, defined as
the maximal ratio of the generalized price-elasticity of consumers
to that of the producers. As this ratio increases, the system may
become more volatile. Since new demand response technologies
increase the price-elasticity of demand, and since increased pene-
tration of distributed generation can also increase the uncertainty
in price-based demand response, the theoretical findings suggest
that the architecture under examination can potentially lead to
increased volatility. This study highlights the need for assessing
architecture systematically and in advance, in order to optimally
strike the trade-offs between volatility/robustness and perfor-
mance metrics such as economic efficiency and environmental
efficiency.

Index Terms—Real-Time Pricing, Marginal Cost Pricing,
Volatility, Lyapunov Analysis.

I. INTRODUCTION

HE increasing demand for energy along with growing

environmental concerns have led to a national agenda for
engineering modern power grids with the capacity to integrate
renewable energy resources at large scale. In this paradigm
shift, demand response and dynamic pricing are often con-
sidered as means of mitigating the uncertainties and intermit-
tencies of renewable generation and improving the system’s
efficiency with respect to economic and environmental metrics.
The idea is to allow the consumers to adjust their consumption
in response to a signal that reflects the wholesale market
conditions, possibly the real-time prices. However, this real-
time or near real-time coupling between supply and demand
creates significant challenges for guaranteeing reliability and
robustness of future power systems. The challenges are in
part, due to the uncertainties and complexities in the dynamics
of consumption, particularly the dynamics of load-shifting
and storage, as well as uncertainty in consumer behavior,
preferences, time-varying and private valuation for electricity,
and consequently, uncertainty in response to real-time prices.

Various forms of dynamic retail pricing of electricity have
been studied in economic and engineering literature. In [1],
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Borenstein et. al. investigate both the theoretical and the prac-
tical implications of different dynamic pricing schemes such
as Critical Peak Pricing (CPP), Time-of-Use Pricing (TUP),
and Real-Time Pricing (RTP). They argue in favor of real-
time pricing, characterized by passing on a price that best
reflects the wholesale market prices to the end consumers, and
conclude that real-time pricing delivers the most benefits in
the sense of reducing the peak demand and flattening the load
curve. In [2], Hogan identifies dynamic pricing, particularly
real-time pricing as a priority for implementation of demand
response in organized wholesale energy markets. Similar con-
clusions can be found in several independent studies including
but not limited to the MIT Future of the Grid report [3], and a
study conducted by Energy Futures Australia [4]. Real-world
implementations of various forms of dynamic pricing have
begun to emerge as well [5].

The viewpoint adopted in this paper is that directly linking
price sensitive consumers to the wholesale electricity markets
fundamentally changes the architecture of the system from an
open-loop system in which demand is an exogenous input, to
a closed-loop feedback dynamical system. In the absence of
a well-designed control law, such direct feedback may lead to
increased volatility, decreased robustness to disturbances, and
new fragilities that increase the risk of a systemic failure.

The factors contributing to dynamics in the system—in
addition to the supply-side dynamics—are at least twofold.
The first is the time delay between market clearing and
consumption decision, which necessitates a prediction (of
demand or price) step. One may also consider this as a form
of information asymmetry among consumers and system op-
erators. Predicting price sensitive demand can be particularly
challenging [6], [7], [3], and the errors in the prediction step
and uncertainty in demand response contribute to volatility.
This challenge is naturally more profound if consumers have
access to highly variable distributed generation. The second
factor is the inherent dynamics of consumption induced by
storage and time-shifting of deferrable loads [7], [8]. In this
paper, we abstract away the internal dynamics of consumers
and develop a model with only the Locational Marginal Prices
as the state variables. This leads to an abstract model that sheds
light on the important macro parameters that influence the
behavior of the system. The level of granularity at which such
a complex multi-layered network must be modeled for design
purposes and for guaranteeing reliability, robustness, and effi-
ciency is an open question deserving dedicated research.

We introduce a notion of generalized price-elasticity, and
use Lyapunov theory [9] and contraction analysis [10] to show
that price volatility can be upperbounded by a function of the
system’s Maximal Relative Price-Elasticity (MRPE), defined
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as the maximal ratio of the generalized price-elasticity of
consumers to the generalized price-elasticity of producers. As
this ratio increases, the system may become more volatile,
while no meaningful upper bound on volatility can be provided
when the MRPE exceeds one.

While it is possible to stabilize the system and mitigate
volatility by proper design of a control law that regulates the
interaction of wholesale markets and retail consumers, limita-
tions of performance and the tradeoffs between various perfor-
mance and robustness properties must be carefully considered.
The limitations of performance and the tradeoffs between
performance and robustness are well studies in the context of
classical control [11], [12], [13], [14], and have been more
recently studied in the context of networked systems (see,
e.g., [13], [15], [16], [17], [18] and the references therein).
In view of these results, we posit that different pricing mech-
anisms, i.e., different control laws, pose different tradeoffs
on performance metrics such as economic or environmental
efficiency, and system reliability metrics such as volatility,
robustness to disturbances, and fragility. We do not consider
design issues and the associated tradeoffs in this paper and
focus on analysis of the system under direct feedback. The
intended message is that the design of a real-time pricing
mechanism must take price and demand volatility issues into
consideration, and that successful design and implementation
of such a mechanism entails careful modeling and analysis of
consumer behavior in response to price signals, and the trade-
offs between appropriate robustness and efficiency metrics.

Other existing literature related to our work can be found in
the context of stability of power markets. These include some
earlier works by Alvarado [19], [20] on dynamic modeling and
stability, and more recent works by Watts and Alvarado [21] on
the influence of future markets on price stability, and Nutaro
and Protopopescu [22] on the impact of market clearing time
and price signal delay on power market stability. The model
adopted in this paper differs from those of [19], [20], [21], and
[22] in that we analyze the global properties of the full non-
linear model as opposed to the first-order linear differential
equations examined in these papers. In addition, the price
updates in our paper occur at discrete time intervals, and are
the outcome of marginal cost pricing in the wholesale market
by an Independent System Operator (ISO), which is consistent
with the current practice in deregulated electricity markets.
Furthermore, beyond stability, we are interested in providing
a characterization of the impacts of uncertainty in consumer
behavior on price volatility and the system’s robustness to
uncertainties.

II. PRELIMINARIES
A. Notation

The set of positive real numbers (integers) is denoted by
R, (Z,), and nonnegative real numbers (integers) by R
(Z+). The class of real-valued functions with a continuous
n-th derivative on X C R is denoted by C"X. For a vector
v € RY, vy denotes the k-th element of v, and ||v|| , denotes

1/p
(i oal”) . Also, we will
use ||v|| to denote any p-norm when there is no ambiguity.

the standard p-norm: [|v||, &t

For a differentiable function f : R™ — R™, we use f
to denote the derivative of f with respect to its argument:

f(z) = df (z) /dz. Finally, for a measurable set X C R,
wr (X) is the Lebesgue measure of X.

B. Basic Definitions

Definition 1: Scaled Incremental Mean Volatility (IMV):
Given a signal h : Z +— R, and a function p : R! — R™,
the p-scaled incremental mean volatility measure of h(-) is
defined as

where, to simplify the notation, the dependence of the measure
on the norm used in (1) is dropped from the notation V, (h).

To quantify volatility for fast-decaying signals with zero
IMYV, e.g., state variables of a stable autonomous system, we
will use the notion of scaled aggregate volatility, defined as
follows.

Definition 2: Scaled Incremental Aggregate Volatility
(IAV): Given a signal h : Z +— R!, and a function p : R! —
R™, the p-scaled incremental aggregate volatility measure of
h () is defined as

Vo (h) = llp(h(t+1)) = p(h ()] )
t=0

In particular, we will be interested in the log-scaled incre-
mental volatility as a metric for quantifying volatility of price,
supply, or demand in electricity markets.

Remark 1: The notions of incremental volatility presented
in Definitions 1 and 2 accentuate the fast time scale, i.e., high
frequency characteristics of the signal of interest. Roughly
speaking, the scaled IMV or IAV are measures of the mean
deviations of the signal from its moving average. In contrast,
sample variance or CV (coefficient of variation, i.e., the ratio
of standard deviation to mean) provide a measure of the mean
deviations of the signal from its average, without necessar-
ily emphasizing the high-frequency characteristics. Since we
are interested in studying the fast dynamics of spot prices
and supply/demand in electricity markets from a reliability
perspective, the scaled IMV and IAV as defined above are
appropriate metrics for volatility.

The notion of stability used in this paper is the standard
notion of asymptotic stability and it applies to both price and
quantity.

Definition 3: Consider the system

z(t+1) =4 (= (1)) 3)

where ¢ () is an arbitrary map from a domain X C R” to
R™. The equilibrium = € X of (3) is stable in the sense of
Lyapunov if all trajectories that start sufficiently close to &
remain arbitrarily close to it, i.e., for every € > 0, there exists
0 > 0 such that

[ (0) 2| <d=[lz(t) -z <e, VE>0

The equilibrium is globally asymptotically stable if it is Lya-
punov stable, and for all 2 (0) € X we have: lim;_,o, x (t) =
z.
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C. Market Structure

We begin with developing an electricity market model with
three participants: 1. The suppliers, 2. The consumers, and
3. An Independent System Operator (ISO). The suppliers and
the consumers are price-taking, profit-maximizing agents. The
ISO is an independent, profit-neutral player in charge of clear-
ing the market, that is, matching supply and demand subject
to the network constraints with the objective of maximizing
the social welfare. The details are as follows.

1) The Consumers and the Producers: Let D and S denote
the sets of consumers and producers respectively. Each con-
sumer j € D is associated with a value function v; : Ry — R,
where vj(z) can be thought of as the monetary value that
consumer j derives from consuming x units of the resource,
electricity in this case. Similarly, each producer ¢ € S, is
associated with a production cost function ¢; : Ry + R.

Assumption I: For all ¢ € S, the cost functions ¢; (-) are
in C2(0,00), strictly increasing, and strictly convex. For all
j € D, the value functions v; (-) are in C?(0,00), strictly
increasing, and strictly concave.

Letd; :Ry —Ry,j€D,ands; : Ry — Ry, i €S be
demand and supply functions mapping price to consumption
and production, respectively. In this paper, the producers
and consumers are price-taking, utility-maximizing agents.
Therefore, letting A be the price per unit of electricity, we
have

d; (\) = arg max v, (z) — Az, jeD, 4)
rERY
— max {0, {x | b () = \}}
and
$; (A) = arg max Az —¢; (2), ieS. 3)

rz€RY
=max{0,{z | ¢ () = \}}

For convenience in notation and in order to avoid cumbersome
technicalities, we will assume in the remainder of this paper
that d; (\) = 1')]»_1 (M) is the demand function, and s; (A) =
¢t (\) is the supply function. This can be mathematically
justified by assuming that © (0) = oo, and ¢ (0) = 0, or that
A€ [e(0),v(0)].

a) Consumers with Uncertain Value Functions: We will
consider two models of uncertainty in consumer behavior.

— Multiplicative Perturbation Model: The uncertainty in
consumer’s value function is modeled as

x
v (z,t) =a;j (t)ve | ——= |, j € D, 6
@) =0y () ©
where v, : R, +— R is a nominal value function and o
Z4 — R, is an exogenous signal or disturbance. Given a
price A (t) > 0, under the multiplicative perturbation model
(6) we have

dj (A1) = o (t) o, " (A (1)) ©)

Thus, the same price A may induce different consumptions at
different times, depending on the type and composition of the
load.

— Additive Perturbation Model: The uncertainty in con-
sumer’s value function is modeled as

0; (1) = v (z = u; (1)),

where u; : Z, — R, is exogenous. Thus, given a price
A(t) > 0, under the additive perturbation model (8), the
demand function is

dj (A1) = uy () + 0,1 (A (1)) 9)

— Aggregation of Several Consumers: The aggregate
response of several consumers (or producers) to a price signal
may be modeled as the response of a single representative
agent [23], although explicit formula for the utility of the
representative agent may sometimes be too complicated to
find [24], [23]. For the case of N identical consumers with
value functions v; = v,, j € D, it can be verified that
the aggregate demand is equivalent to the demand of a
representative consumer with value function [24]:

v(x) = Nu, (%)

Suppose now, that the consumer behavior can be modeled via
(6)—(7). Let

JeD, (®)

(10)

N

at) =Y a0,
and suppose that there exists a nominal value &, such that
a(t)=ag+Aa(t)=ao(1+0(t))

where d (t) = Aa (t) /ag satisfies |§ (t)| < 1. Define v (x) =
av, (/ayg) . It can be then verified that the aggregate demand
can be modeled as the response of a representative agent with
value function

b (2,t) = a(t)v, (x>

= (@ + Aa (1)) v, (M)

=(1+65(t)v (1;’;(0)
The aggregate response is then given by
d(A(t),t) = (1+8 ()" (A1)

Similarly, under the additive perturbation model the aggre-
gate behavior can be represented by

(1)

(12)

0 (z,t) =v(x—u(t)) (13)
dA®),t) =u(t)+o " (A(t)) (14)
where v (-) is given by (10) and wu(t) = > wu;(t). The

interpretation of (13) and (14) is that at any given time ¢,
the demand comprises of an inelastic component w (¢) which
is exogenous, and an elastic component %~ (A (¢)). Another
interpretation is that ©¥~! () (t)) represents the demand of
those consumers who are subject to real-time pricing, and u (¢)
represents the demand of the non-participating consumers.
More importantly, the inelastic component may include contri-
butions from distributed generators owned by the consumers,
and thus, it may be subject to high variability and high
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Fig. 1.  Aggregate consumption under load-shifting [7] (a) Variation of
consumption as the price history varies. Darker regions indicate more frequent
presence of the price-consumption function out of 100,000 price history
points. (b) A sample price-consumption function at an arbitrary time

uncertainty, making it more challenging to predict the total
demand as a function of price.

Remark 2: The concave utility maximizing agent models
have been used in many engineering and economic contexts.
Recent results [7] on emerging aggregate behaviors from
optimal load-shifting by individual consumers give theoretical
justification to adoption of this model in the context of elec-
tricity consumers. In this model, individual consumers defer
their flexible demands up to a deadline in order to minimize
their total cost of consumption in the presence of time-
varying exogenous prices. While the demand of an individual
consumer may not be a monotonic function of price (because
time may take priority over price), the aggregate consumption
of a large population at each instance of time becomes a non-
increasing function of price. However, as shown in Figure 1
this function is not a static function and it depends on both
materialization of random exogenous demands and history
of prices. More accurately, consumption is a function of the
state (backlogged demand) which evolves dynamically in time.
Interested readers may consult [7] for more information. In
this paper, we abstract away the state and adopt a time-
varying memoryless concave utility maximizing model for the
consumer. More discussion will follow in Section V-C.

2) The Independent System Operator (ISO): The ISO is a
non-for-profit entity whose primary function is to optimally
match supply and demand subject to network and operational
constraints. The constraints include power flow constraints,
transmission line and generator capacity constraints, local and
system-wide reserve capacity requirements, and possibly some
other constraints specific to the ISO [25], [26], [27]. For real-
time market operation, the constraints are linearized near the
steady-state operating point and the ISO optimization prob-
lem is reduced to a convex—typically linear—optimization
problem often referred to as the Economic Dispatch Problem
(EDP), or the Optimal Power Flow Problem. A set of Lo-
cational Marginal Prices (LMP) emerge as the shadow cost
of the nodal power balance constraints. These prices vary
from location to location as they represent the marginal cost
of supplying electricity to a particular location. We refer the
interested reader to [28], [27], [26], and [29] for more details.
However, we emphasize that the spatial variation in the LMPs
is a consequence of congestion in the transmission lines.

When there is sufficient transmission capacity in the system,
a uniform price will materialize for the entire network. With
this observation in sight, we make the following assumptions:

1) Resistive losses are negligible.

2) The line capacities are high enough, (i.e., no congestion)

3) There are no generator capacity constraints.

4) The discrepancy between forecast load and actual load
is resolved through reserve generation/demand capacity,
and the ex-ante energy price is used to settle the dis-
crepancy between forecast load and actual load.

Under the first two assumptions, the network parameters
become irrelevant in the supply-demand optimal matching
problem. The third and fourth assumptions are made in the
interest of keeping the development in this paper simple and
focused. They could, otherwise, be relaxed at the expense
of a somewhat more involved technical analysis. A thorough
investigation of the effects of network constraints and reserve
capacity markets, whether they are stabilizing or destabilizing,
does not fall within the scope of this paper. The interested
readers may consult [20], [30], [29] for an analysis of dynamic
pricing in electricity networks with transmission line and
generator capacity constraints.

a) Real-Time System Operation and Market Clearing:
Consider the case of real-time market operation and assume
that price-sensitive retail consumers do not bid in the real-
time market. In other words, they do not provide their value
functions to the system operator (or any intermediary entity
in charge of real-time pricing). Though, they may adjust their
consumption in response to a price signal, which is assumed in
this paper, to be the ex-ante wholesale market clearing price.
In this case, the demand is assumed to be inelastic over each
short pricing interval, and supply is matched to demand. Thus,
the ISO’s problem reduces to meeting the fixed demand at
minimum cost:

min ZCZ(SL)
i€S
A (15)
S.t. ZSZ' = Zdj
i€S jED

where cfj is the predicted demand of consumer j for the next
time period. We assume that the system operator solves (15)
and sets the price to the marginal cost of production at the
minimum cost solution. As stated in the assumptions, we do
not include reserve capacity in our model and instead, assume
that the ex-ante energy price is used to settle the discrepancy
between the forecast load and the actual load that materializes.
More details are presented in the next Section.

As we will see in the sequel, the prediction step in the
ISO’s optimization problem and the discrepancy between the
scheduled generation and the materialized demand lead to a
variant of cobweb-like dynamics [31], which in general de-
scribes cyclical fluctuations of supply and demand in markets
where the quantity to produce must be decided before prices
are revealed. In the model developed in this paper, the price
associated with the supplied quantity must be decided before
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(t+1) = d(t)

> d
At+1) = —c(x)
da 3(t+1)

d(t) = arg max v(z) — A(t)z |—

Fig. 2. Ex-ante Priced Supply/Demand Feedback

demand (which is equal to the supplied quantity) is revealed.
We will see in Section IV that qualitatively similar fluctuations
arise in this case. The higher the relative sensitivity of demand
to supply, the more difficult it is to correctly predict the
demand at the next time step, and tame the fluctuations.

III. DYNAMIC MODELS OF SUPPLY-DEMAND UNDER
REAL-TIME PRICING

In this section, we develop dynamical system models for
the interaction of wholesale supply and retail demand. These
models are based on the current practice of marginal cost
pricing in most wholesale electricity markets, with the addi-
tional feature that the retail consumers adjust their usages in
response to the real-time wholesale market prices. We assume
that the consumers do not bid in the market, i.e., they do not
provide their value/demand functions to the ISO. The real-
time market is cleared at discrete time intervals and the prices
are calculated and announced for each interval. The practice
of defining the clearing price corresponding to each pricing
interval based on the predicted demand at the beginning of that
interval is called ex-ante pricing. As opposed to this, ex-post
pricing refers to the practice of defining the clearing price for
each pricing interval based on the materialized consumption
at the end of the interval. Here, we only present the dynamics
of the ex-ante case. Under similar assumptions, the dynamics
and the results for the ex-post case are analogous and can be
found in [32], [24]. It is also possible to consider dynamic
models arising from ex-ante pricing complemented with ex-
post adjustments, see for instance [33].

A. Price Dynamics under Ex-ante Pricing

Let A () denote the ex-ante price corresponding to the con-
sumption of one unit of energy in the time interval [¢,¢ + 1].
Let d(t) = > ;cpd; (t) be the actual aggregate consumption
during this interval:

d(t) =Y d;i(t)=> vy  (A(t)).

jeD jeD

(16)

Since v; () is known only to consumer j, at time ¢, only
an estimate of d (¢) is available to the ISO, based on which,
the price A (t) is calculated. The price A (t) is therefore, the
marginal cost of predicted supply that matches the predicted
demand for the time interval [¢,¢ + 1]. We assume that the
predicted demand/supply for each time interval is based on
the actual demand at the previous intervals:

S0 = d(t+1) = ¢d@), -, dt—T)), T € Z. The
following equations describe the dynamics of the market:

Sttt +1))=8+1) =d(t+1) (17)
€S

d(t+1)=¢(d(t),--,d(t—=T)) (18
o (At—k) =d(t—k), VE<T (19)

jeb
where (19) follows from (16), and A (t+ 1) in (17) is the

Lagrangian multiplier associated with the balance constraint
in optimization problem (15) solved at time ¢ + 1, i.e., with

Zjede =d(t+1).
The prediction step (18) may be carried through by resorting
to linear auto-regressive models, in which case, we will have:

T
Gpd(t), -, dt-T) =Y opd(t—k), ar€R
k=0

(20)
When ¢ (-) is of the form (20), equations (17)—(19) result in:

T
STt +1)) =D ek Y ot (A — k)
k=0

ies = jeb

2L

A special case of (18) is the so called persistence model which
corresponds to the case where the predicted demand for the
next time step is assumed to be equal to the demand at the
previous time step, i.e., ¢ (d(t), - ,d(t—T)) = d(t). In
this case, equations (17)—(19) result in:

Yot =Y 6 (@)

ieS jeb

(22)

If all the producers can be aggregated into one representative
producer with a convex cost function ¢ (-), and all the con-
sumers can be aggregated into one representative consumer
with a concave value function v (+), then (21) and (22) reduce,
respectively, to:

At+1)=¢ (Zz_o v (N (t — k))) (23)
and
At+1)=c¢(07 (A1) . (24)

B. Demand Dynamics

We could alternatively write dynamical system equations for
the evolution of demand. Under ex-ante pricing we will have:

b (dj (t+1)) = ¢ (si () (25)

z; =03, ,di®). .Y di(t=1)).
(26)

Assuming representative agent models, (25)—(26) reduce to
0(dE+1) =é(o(d(t),---,dE=T)) @7

Finally, under the persistence model for prediction we have:

B(d(t+1) = é(d (1) 28)

VieS, jeD
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In what follows, we will develop a theoretical framework that
is suitable for analysis of dynamical systems described by
implicit equations. Such systems arise in many applications
which incorporate real-time optimization in a feedback loop,
several instances of which were developed in this section. As
we will see, this framework is useful for studying the dynamics
of electricity markets, robustness to disturbances, and price
volatility under real-time pricing.

IV. THEORETICAL FRAMEWORK
A. Stability Analysis

In this section, we present several stability criteria based
on Lyapunov theory [9] and contraction analysis [10], and
examine stability properties of the clearing price dynamics
formulated in Section III.

Theorem 1: Let S be a discrete-time dynamical system
described by the state-space equation

S z(t+1) =¢(x()

o € XoCR+

(29)

for some function ¢ : Ry +— R,;. Then, § is stable if
there exists a pair of continuously differentiable functions
f,9: Ry — R,y satisfying

g(@(t+1))=f(z(t) (30)
and

(i) : 9hﬂﬂ{9ﬂf@ﬂgem@m w}g1(u)

(i) pr(e] f@)=g(=)}) =0 (32)
and either:
(iii):  ¢g(z) >0, Va, and liln {f(x)—g(z)} <0
or
(iii):  ¢(x) <0, Vr, and lim {f(@)—g(x)}>0
Proof: See the Appendix. ]

Remark 3: The monotonicity conditions (33) — (34) in
Theorem 1 can be relaxed at the expense of more involved
technicalities in both the statement of the theorem and its
proof. As we will see, these assumptions are naturally satisfied
in applications of interest to this paper. Therefore, we will not
bother with the technicalities of removing the condition.

There are situations in which a natural decomposition of
discrete-time dynamical systems via functions f and ¢ sat-
isfying (30) is readily available. This is often the case for
applications that involve optimization in a feedback loop. For
instance, for the price dynamics (24), we have ¢y = ¢ o 071,
and the decomposition is obtained with g = ¢™!, and f = 0.
However, f and g obtained in this way may not readily satisfy
(31). We present the following corollaries.

Corollary 1: Consider the system (29) and suppose that
continuously differentiable functions f, g : R, — R satisfy-
ing (30) and (32)—(34) are given. Then, the system is stable
if there exist # < 1 and a strictly monotonic, continuously
differentiable function p : Ry — R satisfying

p(f () f (@) <0lp(g(x))g ()],
for all z € Ry.

Proof: If f and ¢ satisfy (30), then so do po f and pog
for any p € C1(0, c0). Furthermore, under the assumptions of
the corollary, both po f and po g satisfy (31)—(34). The result
then follows from Theorem 1. [ ]

Corollary 2: Market Stability I: The system (24) is stable
if there exists a strictly monotonic, continuously differentiable
function p : R} — R satisfying

891 (\) 91 (\)

7)) =55 ’ <0 ‘p (TN =g 6
for all A € R,
Similarly, the system (28) is stable if
p(¢ () E(@)] < 01p (0 () b ()| (36)

for all z € R,.

Proof: The statements follow from Corollary 1 with f =
01 and g = ¢! for (35), and f = ¢ and g = © for (36), and
the fact that under Assumption I, all of the conditions required
in Corollary 1 are satisfied. [ ]

Elasticity is often defined as a measure of how one variable
responds to a change in another variable. In particular, price-
elasticity of demand is defined as the percentage change in
the quantity demanded, resulting from one percentage change
in the price, and is viewed as a measure of responsiveness, or
sensitivity of demand to variations in the price. Price-elasticity
of supply is defined analogously. Herein, we generalize the
standard definitions of elasticity as follows.

Definition 4: Generalized Elasticity: The quantity

& (A0 = (Uf ( A)>l A,

is the generalized price-elasticity of demand at price A. Simi-
larly,

[>0

U n.oq
A >8c ()\)7 150

s (WD) = <e—1 ) B\

is the generalized price-elasticity of supply at price A. Note
that these notions depend on the exponent [. For | = 1,
we obtain the standard notions of elasticity. We define the
market’s relative generalized price-elasticity as the ratio of
the generalized price-elasticities:
NOW))
Py 1) = L.
61‘6:1( ’ ) 6% (A,l)
The market’s maximal relative price-elasticity (MRPE) is
defined as

(37

6* (1) = sup ’ep (38)

rel
AERL

EWIP
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The notions of generalized demand-elasticity of price and
generalized supply-elasticity of price are defined analogously:

62 (.I,l):xliu(x)l, ;(x):xlc(x)l
o (z) ¢(x)
When [ = 1, these notions coincide with the Arrow-Pratt

coefficient of Risk Aversion (RA) [34], [35], and we will
adopt the same terminology in this paper. The market’s relative
generalized risk aversion factor is defined as:

Ra g S@D _E@ (0@
rel vl)*edp(%z) i (x) (é($)>

Finally, the market’s maximal relative risk-aversion (MRRA)
is defined as

€

n* (1) = sup (39)

TERL

GEIA (x,l)’ )

With a slight abuse of notation, when I = 1, we write €}, (\)
instead of €7, (X, 1), and #* instead of 6* (1), etc.

The following corollary relates stability to the market’s
relative price-elasticity €, (A1), and relative risk-aversion
RA (2,1).

Corollary 3: Market Stability II: The system (22) is stable
if the market’s MRPE is less than one for some [ > 0, that is:

F>0: 0()=s P <1
- ( ) l)l\p |€rel ( )| (40)
The system (28) is stable if the market’s MRRA is less than
one for some k > 0, that is:

RA (x,l)' <1

A>0: n* (l):sgp (41)
Proof: The results are obtained by applying Corollary 2,
criteria (35) and (36), with p(z) = log(z) for [ = 1, and
p(z) =271 for 1 # 1. |
When the cost and value functions are explicitly available,
conditions (36) or (41) are more convenient to check, whereas,
when explicit expressions are available for the supply and
demand functions, it is more convenient to work with (35)
or (40).
Example 1: Consider (24) with ¢(z) = 2, and v (z) =
(x — u)l/o‘, where o, 8 > 1 and v > 0 is a constant. First,
consider the © = 0 case. Then, we have

At+1) = Blar () T

0 (x) = alzw b (z)=1-a) a2

é(a) = B, é(a) = B(B—1)a

It can be verified that 6* (0) = oo. However, by invoking (41)
with k = 1, we have:

.. . 1
o E@IP@I_ -1,
[0 ()] e(@)]  (a=1)a
Hence, the system is stable if
f<2—at

It can be shown that the condition is also necessary and the
system diverges for 3 > 2 — a~!. Moreover, invoking (40)

with [ = 1 yields exactly the same result, though, this need
not be the case in general. Consider now the same system with
o = f =2 and v > 0. Simulations show that the system is
not stable in the asymptotic sense for © < 1/4. The following
table summarizes the results of our analysis.

Table 1
u=025|u=03|u=0.5
0* (1) = 2 2 2
0* (1.5) = 1 0.872 0.595
0* (2) = 1.299 0.988 0.459

Thus, when « = 1/4, the system is at least marginally stable.
Furthermore, the above analysis highlights the importance of
the notion of generalized elasticity (cf. Definition 4), as 6* (1),
which is associated with the standard notion of price elasticity,
can be greater than one while the system is stable and it’s
stability can be proven using the MRPE for some [ > 0.

Remark 4: The main stability results (Theorem 1, and
Corollaries 1, 2, and 3) provide criteria for analysis of nonlin-
ear discrete time systems. These results can be readily applied
to analysis of discrete-time systems described by implicit
equations which arise from optimization in feedback loop in
general, and to systems with cobweb-like dynamics in particu-
lar. The notions of “Generalized Elasticity” and “Generalized
Risk Aversion” and the associated global stability criteria (i.e.,
Corollary 3) are new contributions to this domain, and more
generally, to nonlinear systems analysis. In Section IV-B we
extend these results to systems with autoregressive prediction,
while in Section IV-C we go beyond stability by providing
a characterization of volatility induced by uncertainty in the
consumer’s response. Relating the notions of generalized elas-
ticity and generalized risk aversion to incremental volatility is
a contribution of this paper.

Remark 5: We assumed that the network has high enough
capacity and thereby removed congestion constraints to obtain
a uniform price across the network. Numerical simulations
of a DC power flow model with congestion constraints re-
ported in [29] suggest that the qualitative behavior does not
change significantly when transmission constraints and power
flow equations are fully considered. For systems with rela-
tively homogeneous consumers and producers, it appears that
volatility is determined mostly by the relative price elasticity
of consumers to the producers, as opposed to the network
parameters. The network parameters become more important
as heterogeneity of agents in the network increases.

B. Invariance Analysis

The analysis in the preceding sections is based on applying
the results of Theorem 1 and Corollary 3 to systems of
the form (22) (or (28)), which correspond to the persistence
prediction model, whether it is demand prediction by the
ISO in the ex-ante pricing case, or price prediction by the
consumers in the ex-post pricing case. When functions of
the form (18) are used for prediction of price or demand,
the underlying dynamical system is not a scalar system. An
immediate extension of Theorem 1 in its full generality to
the multidimensional case, while possible, requires additional
technicalities in both the proof and the application of the
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theorem. In what follows we take the middle way: we present
a theorem that exploits the structure of the dynamical system
that arises from autoregressive prediction models to both make
the extension possible and to simplify the analysis.

Theorem 2: Let x : Z, — R, be a real-valued sequence
satisfying a state-space equation of the form:

glt+1)=f(@),z(t-1), - x(t—-n)) (42)
(z(0),...,x(n)) € Xo C R™,
for some continuously differentiable function f : R?*!

R, and a continuously differentiable monotonic function g :
R — R, which satisfy

’ ‘<9k\g w)|, WweRMT @43
3yk
where N
D o<1 (44)
k=1

Then, there exists a constant 79 > 0, which depends only on
the first n + 1 initial states = (n), ...,z (0), such that the set

Qo={r eR |z eR":|g(x) — f(z,2)] <0} (45)
is invariant under (42), i.e.,
(T —n),.,z(T)eEQy=xz(t) € Qy, Vi>T

Furthermore, if (44) holds with strict inequality, then the
g-scaled IAV of z is bounded from above:

Z 9 (@ (t+1) =g (e () < —5— @6)
1= 0k
k=1
Proof: See the Appendix. ]

It follows from the proof of Theorem 2 that when the initial
conditions are close to the equilibrium of (42), it is sufficient
to satisfy conditions (43)—(44) only locally, over a properly
defined subset of R"*1. This is summarized in the following
corollary.

Corollary 4: Let x : Z, — R, be a real-valued sequence
satisfying (42), where f and g are continuously differentiable
functions. Let

Qo={(z,2) eRXR": |g (2) — f (x,2)| < 0}
where v is given in (74)—(75). If
< 0|4 Q)
layk ‘ < 0y ‘g (k)| Yy € Qo

where 6’s satisfy (44), then (~20 is invariant under (42).
Furthermore, when (44) holds with strict inequality, and the
initialization vector xg = [z (n),...,2(0)]is an element of
Qo, then (46) holds.

Theorem 2 and Corollary 4 can be applied to analysis of
market dynamics under the generic autoregressive prediction
models that were presented in Section III. The sets {2 or
Qo being invariant implies that the difference between the
predicted demand and the actual supply remains bounded.

1) Analysis of Market Dynamics under Linear Autoregres-
sive Prediction Models: Consider the model (23), repeated
here for convenience:

TA(t+1) = Zk:o vt (AN (t — k)
We apply Theorem 2 (alternatively Corollary 4) with
g\ =p (V) @7

and
F o den) =0 (30 an (48)

We examine (47)—(48) with p(z) =
i

v_l(AV4J)

log(z) and p(z) =
, I # 1. Conditions (43)—(44) then imply that the
following conditions are sufficient (for some { > 0):

901 (\)
TN |,
~ = | < O |y (Ne—is 1) (49)
[ijo ;v (At,j)}
Zek <1 (50)

Conditions (49)—(50) are complicated and in general demand
numerical computation for verification. However, examination
of (49) near equilibrium is informative. Suppose that (23)
converges to an equilibrium price \. Letting A\, = \_; =
- = MA_n = A, we observe that the following condition is
implied by (49)—(50):
n l
ak’

A= 0:37 alld A <[ ][0 .

where €, (5\,1) and € (5\,1) are generalized elasticities as
defined in Definition 4, evaluated at the equilibrium. It can be
shown that (51) is equivalent to € ()\ 1) < 1, independently
of [. Furthermore, for a large class of cost and Value functions,
namely power functions of the form ¢ (z) = 2? and v (z) =
1/ ® «a,B8 > 1, the equilibrium relative elasticity 8 (A) =
e (/\ 1) is 1ndependent of the autoregressive coefficients ay,
k =1,...,n. Thus, if the closed-loop market is unstable under
the persistent prediction model (a7 = 1, ax = 0, k # 1),
then global stability cannot be verified for any linear auto-
regressive model of the form (23) using (49)-(50). Although
this analysis is based on sufficient criteria, it suggests that it
may be difficult to globally stabilize these systems via linear
autoregressive prediction. Indeed, extensive simulations show
that such models will not globally stabilize an unstable market,
unless the MRPE is very close to one. For values of 8* > 1.05
global stabilization could not be achieved in our simulations.
Local stabilization is, however, possible for moderate values
of #*, namely, 6* 3.

2) Analysis of Market Dynamics under Exogenous Distur-
bances: This subsection provides theoretical results that will
be used as the basis for volatility analysis in Subsection IV-C.

Theorem 3: Let x : Z, — R and u : Z, — R be real-
valued sequences which satisfy a state-space equation of the
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form:
gz t+1)=f(z(t),u(?), (52)

2(0) € Xo CR

u(t)eU

for some continuously differentiable function f : R? — R and
a continuously differentiable monotonic function g : R — R
satisfying

‘8f(x,u) <1, VeeR, uelU (53)
ou
and 5
’af(:mu) gﬁ’g(x)’7 VreR, uel, (54)
z
where
U={uelR:|u <k}
and k € (0,00), and € € [0,1). Define
1446
G (0) = vy—- (55)

Then, the set

Q) ={r:|If @v) g @] - | < G (6), W e U}
(56)
is invariant under (52). Furthermore, the g-scaled IMV of x is

bounded from above:

_ 2K
— — <
Vg () = lim_ TZIg 9@ M) <15
(57)
Proof: See the Appendix. ]

The following corollary is a local variant of Theorem 3, and
is useful for scenarios in which there exists no positive number
0 < 1 such that (54) is satisfied for all x € R, whereas it might
be possible to satisfy the inequality locally over a subset that
contains 2 (6).

Corollary 5: Let x : Zy — R and u : Z, — R be real-
valued sequences satisfying (52). For § < 1, define:

)

5*:inf{§: ‘aaxf(x,u)

~| 0
<p0|l=
_9‘(%9(33)

Vo e (0), uEU}

where () (6) is given in (56). Then € (5*) is invariant under
(52) if N
0" <.

Furthermore, (57) holds with 6 = §*.

C. Volatility

Consider equation (52) or (42). When the functions g and
f are p-scaled supply and demand functions, the minimal 6
satisfying (54) or (43) will be the MRPE associated with these
market models. When g and f are p-scaled marginal value and
marginal cost functions respectively, the minimal 6 satisfying
the inequalities will be the associated MRRA. The following

corollaries follow from Theorems 2 and 3, and explicitly relate
the market’s MRPE and MRRA to volatility.

Corollary 6: Volatility I: Let 6 < 1 and n* < 1 be the
MRPE and MRRA associated with the market model (52).
Then, there exists a constant C', depending on the size of the
disturbances only, such that the log-scaled IMV of supply is
upperbounded by C/(1—0%),ie

— J— ._1
Jim o Z!log A(t+1))) —log (¢7H (A (1))]
< 5
<1—g 69
And the log-scaled IMV of price is upperbounded by
C/(1—n%),ie,
1 C
im — — <
Jim = Cflog (A (t + 1)) — log (A (1))] < —

t=1

Corollary 7: Volatility II: Let * < 1 and n* < 1 be the
MRPE and MRRA associated with the market model (42).
Then, there exists a constant C' such that the log-scaled IAV
of supply is upperbounded by C/ (1 — 6*), i.e.,

> flog (71 (A (¢ +1))) —log (¢ ( (t)>)|§1f9*

t=1

(60)
And the log-scaled TAV of price is upperbounded by
C/(1—n*),ie.,
— C
D llog (A(t+1)) —log (A (¥))] < (61)

t=1 L=n

Remark 6: Generalized versions of the above corollaries
can be formulated based on 6* (1) and n* (1), in which case
the scalings of the signals need to be defined accordingly:
letting p; () = 271 for | # 1, the p;-scaled IMV of
supply and price will be upperbounded by C/ (1 — 6* (1)) and
C/ (1 — n* (1)) respectively. Furthermore, when the prices re-
main bounded within an invariant set, e.g., when the conditions
of Corollary 4 or Corollary 5 hold, one can replace ¢* (1) and
n* (1) with local relative elasticity ratios 0* (I) and 77* () .
In the remainder of this section, we apply Corollaries 6 and
7 to the two time-varying models of consumer behavior (14)
and (12).

a) Multiplicative Perturbation: Consider the multiplica-

tive perturbation model (12). Under this model, the market
dynamics is given by

1
TAt+1) = (1 + 59 (t)) o HA@®), 6(t) € [k, K]
(62)
where the 1/2 factor in front of § (¢) is simply a scaling factor.
We invoke Corollary 6 (or Theorem 3) with
g(A) =log (7" (V) (63)
and

FNS) =log (1+6/2)v" (V)

=log (1+6/2) +log (o' (N)).
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It can be verified that (53) and (54) are satisfied as long
as kK < 1 and 0* < 1, where 6* is the MRPE defined in
(38). Furthermore, (. (6*) is the upperbound on the size of
the invariant set, where (,; (-) is defined in (55). In particular
as 0* — 1, small perturbations may induce extremely large
fluctuations as measured by log-scaled IMV of supply. The
theoretical upperbound is 1/ (1 — 6*). When Corollary 5 is
applicable, the size of the invariant set can be characterized by
Cx(0%), where 0" is the market’s local relative price-elasticity.
Furthermore, volatility can be characterized by 6* as well.

b) Additive Perturbation: Under the additive perturbation
model (14), the market dynamics can be written as

FLO(E+1)) = w0+ 2u ()40 (A (1)),

5 u(t) € [k, K]

(64)
where uy > 1 is a shifting factor, and k¥ < wg, so that the

demand is always at least up/2. Again, we invoke Corollary
6 (or Theorem 3) with (63) and

f (M u) =log (uo + %u + o1 (A))

Then, under the above assumptions, (53) is satisfied. In a
similar fashion to previous analyzes, (54) can be related to
the MRPE. In this case, the price-elasticity of demand turns
out to be:

oy = U A 00~ (V)

oA uo+u/24+ 0" (A)  OA
The larger the minimum of the inelastic component (i.e., ug —
k/2), the smaller the price-elasticity of the overall demand
will be. Under the assumptions made above, there is always
a nonzero minimal demand wmi, (t) = uo/2. Therefore, it is
sufficient to verify (54) over A > ¢ (ug/2) instead of all A > 0.
In conclusion, (54) reduces to:

951 (N) /O 9 ()
uo/2 + 01 (\) 1 (A

;YA > ¢(uo/2)

(65)
Let 0* be the minimal 0 satisfying (65). Similar to the
case with multiplicative uncertainty, in this case too, the
upperbound on the size of the invariant set is given by ¢, (6*),
where (, (-) is given in (55). Moreover, the log-scaled IMV
of supply is upperbounded by wuo/(1 — 6*).

The analysis confirms the intuition that participation of a
small portion of the population in real-time pricing will not
greatly impact the level of volatility in the system, as satisfying
(65) for larger values of ug is easier. Increased volatility may
materialize only when a large portion of the population is
exposed to real-time pricing.

pE

V. DISCUSSION
A. Ramp Constraints

Cho and Meyn [36] have investigated the problem of
volatility of power markets in a dynamic general equilibrium
framework. Their model can be viewed as a full-information
model in which the system operator has full information about
the cost and value functions of the producers and consumers.
Market clearing is instantaneous and supply and demand are

matched with no time lag. The producer’s problem is, however,
subject to supply friction or a ramp constraint, i.e., a finite
bound on the rate of change in the supply capacity. It is
concluded that efficient equilibria are volatile and volatility
is attributed to the supply friction. In the formulation of [36],
the consumer’s problem is not subject to ramp constraints.
In our formulation, neither the consumer’s nor the producer’s
problem is explicitly subject to ramp constraints, yet other
factors are shown to contribute to volatility, namely, infor-
mation asymmetry and subsequently, prediction errors, and
relatively high price elasticity of demand. Interestingly, if we
included ramp constraints in the consumer’s problem it would
have a stabilizing effect, as it would limit the consumer’s
responsiveness to price signals and reduce the elasticity of
demand. This effect is, however, abstractly and qualitatively
captured in our framework through the introduction of an
inelastic component in the demand, which certainly limits
the rate of change in the demand in a similar way to ramp
constraints. However, uncertainty in the supply side, either
in the available capacity or in the cost, works in the reverse
direction: when supply is sufficiently volatile, a trade-off might
exist and responsiveness and increased elasticity of demand
might be desirable to some extent. The models developed
in the paper do not include uncertainty in generation, and
investigating these tradeoffs in a rigorous framework is an
interesting direction for future research.

B. Learning

An interesting question that arises here is related to learning
and can be posed as follows: can market participants learn
to adjust their behavior in response to volatility in market
prices and thereby, mitigate volatility? Remarkably, learning
in the sense intended here and ramp constraints are closely
related. Absence of ramp constraints implies that consumers
can quickly adjust their consumption, hence, price volatility
may not necessarily alter their consumption patterns or the
way they (or autonomous devices on their behalf) react to
prices. In other words, consumers’ optimal strategy in response
to price signals would be myopic. Therefore, in this case,
the consumers may not have an incentive for altering their
behavior to avoid aggravating volatility. Consumers have an
incentive to reduce volatility only when they have ramp
constraints, since they stand to loose in a volatile market
if they cannot adjust their consumption fast enough. On the
contrary, consumers with access to storage, or storage owners,
have an incentive to increase price volatility, particularly
if the market allows them to use storage as an arbitrage
mechanism. This is because the economic value of storage
increases with price volatility [8]. Whether learning in such
a complex market with erratic outcomes can occur or not is
an open question which does not fall within the scope of this
paper. However, we note in passing that it has been shown
that convergence of neural network learning in cobweb-like
macro-economic models is related to the so-called E-Stability
condition in Muth model (see, e.g., Heinemann [37] and
Packalen [38] ). The E-stability condition is a sensitivity-based
sufficient condition for stability. The implication is that for
unstable systems, neural network learning may not necessarily
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converge, and higher levels of sensitivity to disturbances make
learning more challenging. Regulating consumer behavior and
designing proper incentives might be a practical alternative to
relying on learning. Nevertheless, even in the absence of ramp
constraints on the demand side, volatility has an effect on the
supply side and/or ISO side. Since the suppliers have ramp
constraints, and since increased demand volatility increases
the overall stress on the grid, the ISO has an incentive to
reduce volatility. This may be done by externality pricing or
by adopting pricing mechanisms other than direct marginal
cost pricing.

C. Storage and Load Shifting

Access to storage, and the possibility to defer flexible loads
induce an internal state or memory in the consumer model
[71, [8]. The state is essentially the amount of backlogged
or stored energy, which evolves dynamically in time. If the
consumers are price responsive, the evolution of this state
is dependent on the history of the materialized prices: an
extended period of high prices is likely to induce a relatively
large backlogged demand and a relatively small amount of
stored energy; while an extended period of low prices has
the reverse effect. Furthermore, the price-responsiveness or
elasticity of consumers is not a memoryless function of the
current price. Rather, it is a function of the past history of
prices which can be summarized in the state; when there is
a lot of backlogged demand in the system, a relatively low
price will induce a large demand for power, whereas the same
price may induce a relatively small demand when there is little
or no backlogged demand in the system. Such effects will
be even more exaggerated if the consumers implement price
threshold policies—which are shown to be optimal for load-
shifting under some technical assumptions [7]—for managing
their consumption. As a result, dynamics is inherent to such
systems even in the “full information” case in which the
ISO has a complete model of the consumers. While bidding
will change the dynamics of the system, it will not create
a memoryless system because the bids themselves will be
dynamic; they will depend on the internal state which itself is
determined by the past history. This discussion on existence
of a dynamic feedback due to storage and load-shifting also
highlights additional challenges in learning the demand curve
by the ISO, or learning the dynamics of the market by the
consumers. Modeling, system identification, state estimation,
and analysis of the dynamics of such systems are interesting
and important directions for further research. Some recent re-
sults on identification of the aggregate dynamics that emerges
from optimal load-shifting by a large group consumers can be
found in [7].

D. Value of Information and Bidding

The above discussions lead to yet another interesting re-
search direction: “quantifying the value of information in
closed-loop electricity markets”. Given the heterogeneous
nature of consumers and time-varying uncertainty in their
preferences, needs, and valuations for electricity, learning
their value functions and predicting their response to a price

signal in real-time is a challenging problem. Furthermore,
as we discussed in Section V-C, load-shifting and storage
lead to additional complexities by inducing dynamics in the
demand model. Suppose that the consumers provide a real-
time estimate of their inelastic and elastic consumption to
the ISO, either directly or through bidding in the market.
Such information will change the dynamics of the market.
The important question is “How valuable will this real-time
information be and what would its impact be on volatility,
efficiency, robustness and fragility of the system?” Given the
potentially significant costs and barriers associated with cre-
ating and obtaining such information in real-time, quantifying
the value of information in this context seems an important
and timely question with potentially significant impact the
architecture of future power systems.

VI. NUMERICAL SIMULATIONS

In this section we present the results of some numerical sim-
ulation. For the purpose of simulations, we use the following
demand model:

D (t) = pady () + po (L + 82 (1)) 071 (A (1))

where d; (t) is the exogenous, inelastic demand:

(66)

dy (t) = ag + aq sin (t) + ag sin (2t) + 1 (¢)

and & (t) ~ N (0,0.1?) and 85 (¢t) ~ N (0,0.012) are
random disturbances. The parameters p; and po are adjusted,
on a case-to-case basis, such that the average demand under
real-time pricing (i.e., when ps > 0, p1 < 1) remains nearly
equal to the average demand in the open loop market (zs = 0,
w1 = 1), that is:

N

DW)~Y di(1)

This normalization, takes out the effect of higher or lower
average demand on price and allows for a fair comparison
of volatility of prices in open-loop and closed-loop markets.
The following parameters are chosen for all simulations in this
section:

t=1

ao:4GW,a1=1GW,a2:1GW

This puts the peak of the inelastic demand at 6 GW and the
valley at 2 GW, modulo the random disturbance d; (¢). All
simulations are for a 24 hour period and prices are updated
every 5 minutes. The average demand in all simulations is
approximately 4 GW per five minutes for both open-loop
and closed-loop markets. The metric for comparison in these
simulation is the Relative Volatility Ratio (RVR), defined as
the ratio of the log-scaled IAV of the closed-loop market to
the log-scaled IAV of the open-loop market. The results of
the first simulation are summarized in Figure 3. The prices
are extremely volatile under real-time pricing (RVR = 51.12)
and the system is practically unstable.

The results of the second simulation are summarized in
Figure 4. Based on the chosen parameters, this market is less
volatile than the one in the first simulation, yet, volatility of
demand increases under real-time pricing (RVR=2.33). Since
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Price under Open and Closed Loop Market Models
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Fig. 3. Simulation of a market with quadratic cost function ¢ (z) = z3,
value function v (z) = log (z), and demand function D (¢) given in (66)
with 1 = 0.075, pu2 = 2.

Demand in Open and Closed Loop Market Models
T

Relative Volatility = 2.33

7 T
——Demand (Real Time Pricing)
6.5[ |- - -Demand(Open Loop Market)

0 1
Time (HR)

Fig. 4. Simulation of a market with quadratic cost function c (z) = 32,
value function v (z) = /z, and demand function D (t) in (66) with 1 =
0.7, 2 = 3 x 103,

in this simulation the cost is quadratic, the price (not shown)
has a very similar pattern.

The third simulation is summarized in Figure 5. For each
value of y; € [0, 1] (with 0.05 increments), the expected RVR
was calculated by taking the average RVR of 50 randomized
simulations. The random parameters are 07 (t), da (), and
the initial conditions. The experiment was repeated for four
different value functions: v (z) = /%, a = 4,4.5,5,5.5. It
is observed that volatility increases with decreasing a or 1,
both of which increase the price-elasticity of demand.

VII. CONCLUSIONS AND FUTURE WORK

We developed a theoretical framework to study the effects of
real-time retail pricing on the stability and volatility of power
systems. We highlighted that exposing the retail consumers
to the real-time wholesale market prices creates a closed-loop
feedback system. From a control system’s perspective, it is
intuitive that in the absence of a carefully designed control
law, such direct feedback may lead to increased volatility
and decreased robustness to external disturbances. While we

Relative Volatility versus Penetration of Real-Time Pricing
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Fig. 5. Simulation of a market with quadratic cost function c(x) = 3z2,
value function v(z) = x'/%, and demand function D(t) given in (66) with
w1 € [0,1], and po adjusted accordingly to keep the total demand constant.
Decreasing a or p1 increase the price-elasticity of the overall demand and
hence, increase volatility.

used a static model of consumers and derived a dynamical
system model based on delay and information asymmetry, we
pointed out that storage and load shifting induce dynamics
and memory in the consumer model, with the state being the
amount of stored or backlogged demand. Considering such
models would lead to closed loop dynamical system models of
power systems even when the consumers bid in the market. As
a result, feedback and dynamics are inherent to power systems
under real-time pricing. Rigorous analysis of the dynamics of
the system in this case is part of the future work.

Under the assumptions of memoryless utility functions for
the consumers and autoregressive prediction models for the
ISO, we showed that scaled incremental volatility can be
linked to a function of the market’s maximal relative price-
elasticity, defined as the maximal ratio of generalized price-
elasticity of consumers to that of the producers. As this
ratio increases, the system may become more volatile. As
the penetration of new demand response technologies and
distributed storage within the power grid increases, so does the
price-elasticity of demand. Our theoretical analysis suggests
that under current market and system operation practices, this
technological change may to lead to increased volatility. In
order to further substantiate these results, more experimental
studies as well as simulations with more detailed models of
consumer behavior and actual market data are needed.

While it is possible to design a a pricing mechanism, i.e., a
control law that regulates the interaction of wholesale markets
and retail consumers, limitations of performance and the
trade-offs between various performance and robustness prop-
erties must be carefully considered. In light of this, systematic
analysis of the implications of different pricing mechanisms,
analysis of the inherent dynamics of the system induced by
load-shifting and storage, quantifying the value of information
and characterization of the fundamental trade-offs between
volatility/robustness/reliability, and economic efficiency, and
environmental efficiency are important directions of future
research. In summary, more sophisticated models of demand,
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a deeper understanding of consumer behavior in response to
real-time prices, and a thorough understanding of the implica-
tions of different market mechanisms and system architectures
are needed for efficient and reliable implementation of real-
time pricing schemes in large-scale.

APPENDIX A
PROOFS

Before we proceed with providing the proofs, we present
the following lemma, which will be used several times in this
section.

Lemma 1: Let X be a subset of R. Suppose that there
exists a continuously differentiable function f : X — R, a
continuously differentiable monotonic function g : X — R,
and a constant 6 € [0, 00) satisfying

f@|<0lg@)], voex G
Then
f @)= fWI<0lg(x)—g )|, VYr,yeX  (68)
Furthermore, if (32) is satisfied, then
lf (@)= fWl<lg(®)—gl, VYr,yeX, z#y  (69)
Proof: We have
Ve, yeX, t#y:
f@ - fwl<| [ 7o)
y
<o| [ lalar| =0lg@) 9| 0
Y

where the inequality in (70) follows from (67) and the sub-
sequent equality follows from (33). Proof of (69) is similar,
except that under the assumptions of the lemma, the non-strict
inequality in (70) can be replaced with a strict inequality. M

We will now present the proof of Theorem 1.

Proof of Theorem 1: The key idea of the proof is that the
function

Viz)=If(z) —g ()|

is strictly monotonically decreasing along the trajectories of
(29). From Lemma 1 we have:

Viz(t+1)=V(z()
=[f@(E+1)—g@t+D))-|f(z®)—g @)
=[f@E+1) = Fl®) =g t+1)—g(=®)
<0. (72)

(71)

Therefore, {V (x (¢))} is a strictly decreasing bounded se-
quence and converges to a limit ¢ > 0. We show that ¢ > 0 is
not possible. Note that the sequence {x (¢)} is bounded from
below since the domain of ¢ is R,. Furthermore, as long
as f(z(t)) < g(z(¢t)), the sequence {g(x(t))} decreases
strictly. Therefore, (33) implies that

Vzg:IMeER, N€Zy :g(x(t)) <M, ¥t > N. (73)

It follows from (73), monotonicity and continuity of g (-)
that the sequence {x (t)} is bounded from above too (similar
arguments prove boundedness of {z (¢)} when (34) holds).
Hence, either lim;_, o z (t) = 0, or {z (¢)} has a subsequence
{z (¢;)} which converges to a limit z* € R... In the latter case
we have

lim V (2 (1) = lim V (@ (&) = lim {/ (« (1)) — g (« (t:))}

=[f (@) —g ()]
If g (%) = g (¢ (27)) then ¢ = | f (z") — g (¢ (¢"))| = 0 (due

to (30)). If g (z*) # g (v (¢*)) then

36, >0, s.t. |g(¥ () —g(x)| > e, Vo € B(z*,9)

Define a function 7 : B (z*,8) — R according to

: [f (¢ (z)) = [ (2)|

T.X

' 9 (¥ (2)) — g (z)]

Then it follows from 72 that 7 (x) < 1 for all x € B (z*,0).
Furthermore, the function is continuous over the compact set
B (z*,0) and achieves its supremum 7, where 7 < 1. Since
x (t;) converges to z*, there exists £ € N, such that z (t) €
B (z*,d). Then

V(t+1) -7V (x(t))
=[f@E+1) = fl®)-Tlg(E+1))—g(={)

<0,

vt >t
Since T < 1, this proves that ¢ = 0. Finally,
Jim f (x (1)) = lim g(x (1) = g (")

¥ =g (lim f(x(t)) = lim g 'o f(z(t) = lim z ()

t—o0 t—o0 t—o0

This completes the proof of convergence for all initial con-
ditions. Proof of Lyapunov stability is based on standard
arguments in proving stability of nonlinear systems (see, e.g.,
[9]), while using the same Lyapunov function defined in (71).

|

Proof of Theorem 2: For simplicity and convenience in
notation, we prove the theorem for the n = 1 case. The proof
for the general case is entirely analogous. Define the function
V :R? + R, according to

Viz,2) =g (@) - f(z,2)] (74)
Let
Y0 =V (z(1),2(0) + g (z (1)) — g (x(0))]

To prove that €2 is invariant under (42), it is sufficient to show
that

(75)
V(2 (T+1),2(T)) <0, VT € Zy (76)

To simplify the notation, define Af, = f(z (¢t + 1),z (¥)) —
fla(t),z(t-1)),and Ag =g (z(t+1)) —g(z(t)).
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We have:
Veit+1),z(t) -V (z@),z(t—1))

=lgx(t+1) = f(z(t+1),z (1)
—lg(e(®) = f(z @),z -1))

=f@@),z(t-1))—f(zE+1),z()
—lg(x(t) —g(z(t+1)

<|fle(t),z(t—1)) = f(x(),z @)
+ 1@ (@),x () = f(zt+1),2@)] - |Agl
<Oz |Age—1| + (01 — 1) [Agy] (77)
where the first inequality is obtained by applying the triangular
inequality, and (77) follows from (43) and Lemma 1. By

summing up both sides of (77) from ¢t = 0 to ¢t = T we
obtain:

V(z(T+1),2(T) <V (z(1),2(0))
+ (01402 — 1) Y [Agel + 0> (|Ago| — [Agr])  (78)

t=1

The inequality (76) then follows from (78) and (44). When
(44) holds with strict inequality, (46) follows from (78) and
nonnegativity of V (¢ (T + 1),z (T)) for all T € Z. |

Proof of Theorem 3: Define
V(@) = sup {|If (@,v) = g @) — ]|} = G (6).

velU
It is sufficient to show that there exists 7 > 0, such that:

V(e(t+1)—7V(x(t) <0, Vt€Z,.
To  simplify  the  notation, define Af;

flt+),ut+1) - flz),u(t),
Agi=g(x(t+1)) —g(x(t)). Then

and

Ve@t+1)—7V(x(t))

:sup{‘|f(x(t+1),V)—g(33(t+1))|_|V|’}

velU

—Tsup{’|f(33(t),1/)—9(33(t))|_M‘}

velU

T4 (0) (T —1)

<sup {|If (2 (t+1).0) = £ @ () u )] - ]|}

velU
—T|Ag| + 76+ (e (0) (T —1) (79)
< suplf (x(t+1),v) = f(2(1),0)]
+sup {[1f (@ (0),%) = f (@ (1), u )] = 1] |}
—T|Ag| + 7+ (e (6) (T—1) (80)

<O —-7)Agl+ (1 +7)k+ ¢ (0) (T —1)

where (79) follows from the choice of v = u (¢) and |u (¢)| <
&, (80) follows from the triangular inequality, and (81) follows
from (53)—(54) and Lemma 1. The desired result follows from
the fact that the right-hand side of (81) will be non-positive
for 7 = 0, and (, (9) defined in (55). To prove (57), let 7 = 1
in (81) to obtain

(81)

Vet+1)=V(z(t) <(0-1)|Ag|+ 2k (82)

Summing both sides of (82) over all t =0, 1,..,7 results in:

V(z(T+1) <V (x(0)+(0-1)> |Ag| +2Tk (83)

t=1

It follows from (83) and non-negativity of V (z (T + 1)) +
(x (0) that

T
(1—-0) Y |Agel 2Tk +V (2(0)) + e (6).  (84)

t=1
The desired result (57) then follows immediately from (83) by
dividing by 7" and taking the limit as 7" — oo. [ ]
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