Lecture 9
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago
Spring 2021

Instructor: Sepideh Mahabadi
Announcements

- Project proposals are due on April 30th
- Problem Set 1 is due on May 8th
This Lecture

- Johnson-Lindenstrauss
- Lower Bound
- Fast JL
Johnson-Lindenstrauss Lemma

- Given a set of \(n \) points \(P \) in \(\mathbb{R}^d \), for any \(\epsilon \in (0, \frac{1}{2}) \), there exists an embedding of the points to \(f: \mathbb{R}^d \rightarrow \mathbb{R}^m \) where \(m = O\left(\frac{1}{\epsilon^2} \log n\right) \) such that

\[
\forall x, y \in P, \quad (1 - \epsilon) \|x - y\|_2 \leq \|f(x) - f(y)\|_2 \leq (1 + \epsilon) \|x - y\|_2
\]

- \(\forall \epsilon, \delta \in (0, \frac{1}{2}) \), there exists \(D_{\epsilon, \delta} \) on \(\mathbb{R}^{m \times d} \) such that \(\forall x \in \mathbb{R}^d \), we have that

\[
\operatorname{Pr}_{A \sim D_{\epsilon, \delta}} \left[\|Ax\|_2 \notin [1 - \epsilon, 1 + \epsilon] \cdot \|x\|_2 \right] \leq \delta
\]

\[
m = O\left(\frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right)
\]

- It is enough to apply this on all \(u = x - y \) where \(x, y \in P \)
Mapping

- \(\forall \epsilon, \delta \in (0, 1/2) \), there exists \(D_{\epsilon, \delta} \) on \(\mathbb{R}^{m \times d} \) such that \(\forall x \in \mathbb{R}^d \), we have that
 - \(\Pr_{A \sim D_{\epsilon, \delta}}[\|Ax\|_2 \notin [1 - \epsilon, 1 + \epsilon] \cdot \|x\|_2] \leq \delta \)
 - \(m = O\left(\frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta}\right) \)

Examples of such distributions:

- Projection onto a random \(m \) dimensional subspace (best constants)
- Take \(A \) to be a matrix where each entry is chosen iid from \(\mathcal{N}(0,1) \) (then normalized)
- ... (more in this lecture)
Normal Distribution

\[N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \]

- If \(X \) and \(Y \) are independent random variable with normal distribution then \(X + Y \) has normal distribution \(N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2) \)
Mapping

- Let A be a matrix where every entry is picked iid from $\mathcal{N}(0,1)$
- Then output $\|Ax\|_2^2/m$ as an approximation for $\|x\|_2^2$
- $\mathbb{E}\left[\frac{\|Ax\|_2^2}{m}\right] = \frac{1}{m} \cdot \mathbb{E}(x^T A^T A x) = \frac{1}{m} x^T \mathbb{E}(A^T A) x = \|x\|_2^2$

- $\mathbb{E}(A^T A)$ is a diagonal matrix with all entries on the diagonal are m, i.e., for any j, $\mathbb{E}\left[\sum_i A_{i,j}^2\right] = \sum_i \mathbb{E}[A_{i,j}^2] = m$ as the mean is 0 and variance is 1.
- Off diagonal entries are 0, $\mathbb{E}\left[\sum_i A_{j,i} A_{i,h}\right] = \sum_i \mathbb{E}[A_{j,i} A_{i,h}]$ as they are independent and the means are 0
Concentration

• Let A be a matrix where every entry is picked iid from $\mathcal{N}(0,1)$

• Then output $\|Ax\|_2^2/m$ as an approximation for $\|x\|_2^2$

• $\Pr[|\|Ax\|_2^2 - m\|x\|_2^2| \geq \epsilon m\|x\|_2^2] \leq \exp(-Ce^2m) \leq \delta$

• One side: $\Pr[\|Ax\|_2^2 \geq (1 + \epsilon)\|x\|_2^2]$

• Assume $\|x\|_2^2 = 1$, let $Z = Ax$ then $\Pr[\|Z\|_2^2 \geq (1 + \epsilon)m] \leq \exp(-\epsilon^2m + O(me^3))$

• Let $Y = \|Z\|_2^2$, then $\Pr(Y > \alpha) = \Pr[\exp(sY) > \exp(s\alpha)] \leq \exp(-s\alpha) \mathbb{E}[\exp(sY)]$ by Markov

• By independence, $\mathbb{E}(\exp(sY)) = \prod_i \mathbb{E}(\exp(sZ_i^2))$

• Z_i has also normal distribution, we can compute $\mathbb{E}(Z_i) = 0$ and $\text{Var}(Z_i) = 1$
Concentration

• Assume $\|x\|^2 = 1$, let $Z = Ax$ then $\Pr[\|Z\|^2 \geq (1 + \epsilon)m] \leq \exp(-\epsilon^2 m + O(m\epsilon^3))$

• Let $Y = \|Z\|^2$, then $\Pr(Y > \alpha) = \Pr[\exp(sY) > \exp(s\alpha)] \leq \exp(-s\alpha) \mathbb{E}[\exp(sY)]$ by Markov

• By independence, $\mathbb{E}(\exp(sY)) = \prod_i \mathbb{E}(\exp(sZ_i^2))$

• Z_i has also normal distribution, we can compute $\mathbb{E}(Z_i) = 0$ and $\text{Var}(Z_i) = 1$

• We can analytically compute $\mathbb{E}[\exp(sZ_i^2)] = \frac{1}{\sqrt{2\pi}} \int \exp(st^2) \exp(-\frac{t^2}{2}) dt = \frac{1}{\sqrt{1-2s}}$

• So we get $\Pr[Y \geq \alpha] = \exp(-s\alpha) \cdot (1 - 2s)^{-\frac{m}{2}}$

• Set $s = \frac{1}{2} - \frac{m}{2\alpha}$ so $1 - 2s = \frac{m}{\alpha}$
Mapping - concentration

- Assume $\|x\|_2^2 = 1$, let $Z = Ax$ then $\Pr[\|Z\|_2^2 \geq (1 + \epsilon)m] \leq \exp(-\epsilon^2 m + O(m\epsilon^3))$
- Let $Y = \|Z\|_2^2$, then $\Pr(Y > \alpha) = \Pr[\exp(sY) > \exp(s\alpha)] \leq \exp(-s\alpha) \mathbb{E}[\exp(sY)]$ by Markov
- So we get $\Pr[Y \geq \alpha] = \exp(-s\alpha) \cdot (1 - 2s)^{-m/2}$
- Set $s = \frac{1}{2} - \frac{m}{2\alpha}$ so $1 - 2s = \frac{m}{\alpha}$
- $\Pr[Y \geq \alpha] = \exp\left(-\frac{\alpha}{2} \left(1 - \frac{m}{\alpha}\right)\right) \cdot \left(\frac{m}{\alpha}\right)^{-m/2} = \exp\left(\frac{m - \alpha}{2}\right) \left(\frac{\alpha}{m}\right)^{-m/2}$
- and set $\alpha = m(1 + \epsilon)^2$
- $\Pr[Y \geq \alpha] = \exp\left(\frac{m - \alpha}{2}\right) \left(\frac{\alpha}{m}\right)^{-m/2} = e^{-\epsilon m - \frac{\epsilon^2 m}{2} e^{-m \ln(m/\alpha)} = e^{-\epsilon m - \frac{\epsilon^2 m}{2} e^{-\frac{m}{2} \ln(1+\epsilon)}} = e^{-\epsilon m - \frac{\epsilon^2 m}{2} e^{m \ln(1+\epsilon)}} = e^{m(-\epsilon - \frac{1}{2} \epsilon^2 + O(\epsilon^3))}$ using Taylor’s expansion for $\ln(1 + x) = x - \frac{x^2}{2} + O(x^3)$
- $\Pr[Y \geq \alpha] = e^{m(-\epsilon - \frac{1}{2} \epsilon^2 + O(\epsilon^3))} = e^{-m\epsilon^2 + mO(\epsilon^3)}$
JL Lowerbound

• Consider pointset $X = \{0, e_1, \ldots, e_n\} \subseteq \mathbb{R}^n$

Claim. If we embed these m-dimensional space and preserve distances up to a factor of c, the target dimension has to be at least $\frac{\log n}{\log(2c+1)}$.

- Wlog, assume that zero is mapped to zero (otherwise translate the instance)
- Distances are preserved; points should have distance in $[1,c]$ from zero and distance in $[\sqrt{2}, c\sqrt{2}]$ from each other. This means that the ball of radius $\frac{1}{2}$ around all points and zero are disjoint.

- By a volume argument, $n \cdot vol_m \left(B \left(\frac{1}{2} \right) \right) \leq vol_m(B(c + \frac{1}{2}))$ which implies that $n \leq \frac{vol_m(B(c+\frac{1}{2}))}{vol_m(B(\frac{1}{2}))} = (2c + 1)^m$.
- Thus, $m \geq \frac{\log n}{\log(2c+1)}$.
Fast JL

- \(A = \sqrt{\frac{d}{m}} \cdot SHD \)
 - \(D \) is a \(d \times d \) diagonal with iid ±1 on the diagonal (Rademacher)
 - \(H \) is the \(d \times d \) normalized Hadamard matrix (divide entries by \(1/\sqrt{d} \))
 - Every entry of \(H \) is ±1
 - Every two rows are perpendicular
 - In all rows except the first one, the number of +1 is equal to -1
 - \(H_1 = (1), H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, H_{2t} = \begin{pmatrix} H_t & H_t \\ H_t & -H_t \end{pmatrix} \)
 - \(S \) is a \(m \times d \) sampling matrix with replacement (each row has a 1 at a uniformly random location and zeroes elsewhere).

- Time: \(D \) can be applied in \(O(d) \) time and \(H \) in \(O(d \log d) \) time, and \(S \) in \(O(m) \) time
 - In compare to previous case where it takes \(O(md) \) time

- \(m = O\left(\frac{1}{\varepsilon^2} \cdot \log \left(\frac{1}{\delta}\right) \cdot \log \frac{d}{\delta}\right) \)
 - for optimal \(m \), instead use \(\Pi'\Pi \) where \(\Pi \) is FJLT and \(\Pi' \) is an optimal JL with \(m' = O(\varepsilon^{-2}\log(1/\delta)) \).
 Runtime increases by additive \(m \cdot m' \).
Proof of Fast JL

• Define $y = HDx$. We show that $\|y\|_\infty = O(\sqrt{\log(d/\delta)/d})$ w.p. $1 - \delta/2$.

• $y_i = (HDx)_i = \sum_{j=1}^{d} \sigma_j \cdot \left(\frac{1}{\sqrt{d}} \gamma_{i,j} x_j \right) = \langle \sigma, z^i \rangle$

 • $|\gamma_{i,j}| = 1$ and z^i is a vector with $(z^i)_j = \frac{1}{\sqrt{d}} \gamma_{i,j} x_j$

Khinchine's inequality. X_1, \ldots, X_n i.i.d Rademacher, for $a_1, \ldots, a_n \in \mathbb{R}$, and $\lambda > 0$, $\Pr(\left| \sum_{i=1}^{n} a_i X_i \right| > \lambda \|a\|_2) \leq 2 e^{-\lambda^2/2}$

• By Khintchine's inequality, setting $X_j = \sigma_j$, $a_j = (z^i)_j = \frac{1}{\sqrt{d}} \gamma_{i,j} x_j$, $\|a\|_2 = (\frac{1}{\sqrt{d}}) \|x\|$, $\lambda = \sqrt{2 \log(4d/\delta) / d}$

 • $\forall i, \Pr[|y_i| > \sqrt{2 \log(4d/\delta) / d}] < 2 e^{-\log(d/\delta)} = \frac{\delta}{2d}$

• By union bound, $\Pr[\|y\|_\infty > \sqrt{2 \log(4d/\delta) / d}] < \frac{\delta}{2}$, and thus $\|y\|_\infty^2 \leq \frac{2 \log(4d/\delta)}{d} := \frac{\tau}{d}$

• Using Chernoff –type arguments

 • $\|y\|_2^2 = \|x\|_2^2$ (as D changes the sign of entries in x, and H can be viewed as change of basis matrix)

 • Each y_i is small and thus small variance.

 • Each row of S is sampling one y_i uniformly at random.

 • $\Pr \left[\frac{d}{m} \|Sy\|_2^2 \approx (1 + \epsilon) \|y\|_2^2 \right] \geq 1 - \delta$
Next Lecture

• Approximate Nearest Neighbor