Lecture 9

TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago
Spring 2021

Instructor: Sepideh Mahabadi



Announcements

[ Project proposals are due on April 30t
J Problem Set 1 is due on May 8th



This Lecture

[ Johnson-Lindenstrauss
J Lower Bound
 Fast JL



Johnson-Lindenstrauss Lemma

* Given a set of n points P in R%, for any € € (0, —) there exists an embedding of
the points to f: R* > R™ where m = 0(log n) such that

Ve, y €P, (1-@elllx—yll2 =llf()=fWIl2 <@ +e)llx =yl

Ve, 6 € (0, —) there exists D 5§ on R™*? such that Vx € R%, we have that
I 6[||AX||2 [1-¢1+ E] lx|l2] <

m =0 (= log;)

>t is enough to apply thison allu = x — y where x,y € P



Mapping

1 .
* Ve, 8 € (0,7), there exists D s on R™*2 sych that Vx € R%, we have that

+ Pr [lAxl, € [1—e1+¢l-llxll] <6
~Vebd

1 1
*m=0(z"log3)

Examples of such distributions:
» Projection onto a random m dimensional subspace (best constants)

» Take A to be a matrix where each entry is chosen iid from N (0,1) (then
normalized)

» ... (more in this lecture)



Normal Distribution

1 (x—p)*
W (1.0%) = Gzexp(~ S5

* If X and Y are independent random variable with normal distribution then X + Y
has normal distribution NV (uy + ty, 67 + o)



Mapping

Let A be a matrix where every entry is picked iid from N (0,1)

Then output ||Ax||5/m as an approximation for ||x||5

. E ["A;"%] = 2 E(x7ATAx) = ~xTE(ATA)x = ||x]13

IE(ATA) is a diagonal matrix with all entries on the diagonal are m, i.e., for any j,
E|Y; A7 ;] = X, E|A} ;] = mas the mean is 0 and variance is 1.

Off diagonal entries are 0, IE[ZL-A]-’iAi,h] = X E[4;;A; n] as they are independent
and the means are O



Concentration

Let A be a matrix where every entry is picked iid from NV (0,1)

* Then output ||Ax]||5/m as an approximation for ||x||3

* Pr[|llAx||3 — mllx|I3| = eml||x|I3] < exp(—Ce?*m) <6

* Oneside: Pr[||Ax||5 = (1 + e)m||x]|5]

« Assume ||x||3 = 1, let Z = Ax then Pr[||Z]|5 = (1 + €)m] < exp(—€?m + 0(me3))

« LetY = ||Z]|5, then Pr(Y > a) = Pr[exp(sY) > exp(sa)] < exp(—sa) E[exp(sY)] by Markov
» By independence, E(exp(sY)) = [I; E(exp(sZ?))

 7Z; has also normal distribution, we can compute E(Z;) = 0 and Var(Z;) = 1



Concentration

Assume ||x]|3 = 1, let Z = Ax then Pr[||Z]|5 = (1 + €)m] < exp(—€?’m + 0(me?))
« LetY = ||Z]|5, then Pr(Y > a) = Pr[exp(sY) > exp(sa)] < exp(—sa) E[exp(sY)] by Markov
* By independence, E(exp(sY)) = [I; E(exp(sZ?))

 7Z; has also normal distribution, we can compute E(Z;) = 0 and Var(Z;) = 1

* We can analytically compute E|exp(sZ?)| = \/%_nf exp(st?) exp(— g) dt =

* Sowe get Pr[Y > a] = exp(—sa) - (1 —2s) 2

1 m m
e Sets=———501—2s =—
2 20 (04



Mapping - concentration

* Assume ||x]|5 = 1, let Z = Ax then Pr[||Z]|5 = (1 + €)m] < exp(—€?m + 0(me?))
« LetY = ||Z]|5, then Pr(Y > a) = Pr[exp(sY) > exp(sa)] < exp(—sa) E[exp(sY)] by Markov
* Soweget Pr[Y > a] = exp(—sa) - (1 —2s) 2

1 m m
e Sets=———501—2s =—
2 20 (04

* Pr[Y > a] = eXp(—%(l _ ﬂ)) : (m)T — exp (g) (m)‘?

a a
* andset @ = m(1 + €)?

_m 2 2 m 1
_ € m m € —_
* Pr[Y = a] =exp (mz a) (%) 2 _ gmemmym I _ gmem—m =5 IN(rg2) _
Cem & R 3 2
e €M MemIn(l+e) — GM(-€-5+e—5*+0(e%)) using Taylor’s expansion for In(1 + x) = x — x? +

0(x3)

. Pr[Y > a] = em(—e—§+e—%ez+0(€3)) — p—me?+mo(e?)



JL Lowerbound

* Consider pointset X = {0, e, ...,e,,} € R"

Claim. If we embed these m-dimensional space and preserve distances up to a factor of ¢, the

: : 1
target dimension has to be at least 5%
log(2c+1)

dWIlog, assume that zero is mapped to zero (otherwise translate the instance)

Distances are preserved; points should have distance in [1,c] from zero and distance in [\/Z c\/f]
from each other. This means that the ball of radius % around all points and zero are disjoint.

volm<B(c+%)> _
volm(B (%))

By a volume argument, n vol,, (B (%)) <vol,,(B(c + %)) which implies that n <
(2c+1)™,

logn
dThus, m > 87
log(2c+1)



Fast JL
. Az\/%-SHD

* Disad X d diagonal with iid +1 on the diagonal (Rademacher)

* Histhe d X d normalized Hadamard matrix (divide entries by 1/\/3)
 Everyentryof His +1
* Every two rows are perpendicular
* In all rows except the first one, the number of +1 is equal to —1

o 11 " (H, H,
Hy= (. H=(] ) Ha= (Ht _Ht)

 Sisam X d sampling matrix with replacement (each row has a 1 at a uniformly random location and
zeroes elsewhere).

» Time: D can be applied in O(d) time and H in O(d logd) time, and S in O(m) time
* In compare to previous case where it takes O (md) time

1 1 d
> m= O(E—2 -log (E) - logg).

> for optimal m, instead use IT'IT where I1 is FILT and I1' is an optimal JL with m’ = 0(e~2log(1/$)).
Runtime increases by additive m - m’.



Proof of Fast JL

* Define y = HDx. We show that ||yl = 0(y/log(d/8)/d) w.p. 1 —5/2.

* y; =(HDx); = 5‘1:10j ’ (\/% Vi,jxj) = (0,2")
. |yi'j| = 1 and z' is a vector with (zi)j = \/ia Yij Xj

Khinchine’s inequality. X4, ..., X,, i.i.d Rademacher, for aq, ...,a,, € R,and A > 0, Pr(|2?:1 al-Xl-| > /1||a||2) < 2e /2

* By Khintchine’s inequality, setting X; = gj, a; = (zi)j = \/LH Yij xj, llallz = (\/%) lx|l, 2 = /2 log(4d/8) /d

d
« Vi, Pr[ly;| > \/ZIOg(4d/5) /d] < Ze_log(g) = %

2 log(22
* By union bound, Pr[||ylle > \/2 log(4d/6) /d] < g, and thus ||y||% < Oi("‘) =

Q-

e Using Chernoff —type arguments
* |lyll5 = x|l (as D changes the sign of entries in x, and H can be viewed as change of basis matrix)
* Each y; is small and thus small variance.
* Each row of S is sampling one y; uniformly at random.

d
c Pr[Siisyl ~ L+ lylIE| 2 1-6



Next Lecture

* Approximate Nearest Neighbor
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