
Lecture 9
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi



Announcements

 Project proposals are due on April 30th

 Problem Set 1 is due on May 8th



This Lecture

 Johnson-Lindenstrauss
 Lower Bound
 Fast JL



Johnson-Lindenstrauss Lemma

• Given a set of 𝑛𝑛 points 𝑃𝑃 in ℝ𝑑𝑑, for any 𝜖𝜖 ∈ (0, 1
2
), there exists an embedding of 

the points to 𝑓𝑓:ℝ𝑑𝑑 → ℝ𝑚𝑚 where 𝑚𝑚 = 𝑂𝑂(log 𝑛𝑛
𝜖𝜖2

) such that 

• ∀𝑥𝑥,𝑦𝑦 ∈ 𝑃𝑃, 1 − 𝜖𝜖 𝑥𝑥 − 𝑦𝑦 |2 ≤ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑦𝑦 2 ≤ 1 + 𝜖𝜖 𝑥𝑥 − 𝑦𝑦 2

• ∀𝜖𝜖, 𝛿𝛿 ∈ (0, 1
2
), there exists 𝐷𝐷𝜖𝜖,𝛿𝛿 on ℝ𝑚𝑚×𝑑𝑑 such that ∀𝑥𝑥 ∈ ℝ𝑑𝑑, we have that 

• Pr
𝐴𝐴∼𝐷𝐷𝜖𝜖,𝛿𝛿

𝐴𝐴𝐴𝐴 2 ∉ 1 − 𝜖𝜖, 1 + 𝜖𝜖 ⋅ 𝑥𝑥 2 ≤ 𝛿𝛿

• 𝑚𝑚 = 𝑂𝑂 1
𝜖𝜖2
⋅ log 1

𝛿𝛿

It is enough to apply this on all 𝑢𝑢 = 𝑥𝑥 − 𝑦𝑦 where 𝑥𝑥,𝑦𝑦 ∈ 𝑃𝑃



Mapping

• ∀𝜖𝜖, 𝛿𝛿 ∈ (0, 1
2
), there exists 𝐷𝐷𝜖𝜖,𝛿𝛿 on ℝ𝑚𝑚×𝑑𝑑 such that ∀𝑥𝑥 ∈ ℝ𝑑𝑑, we have that 

• Pr
𝐴𝐴∼𝐷𝐷𝜖𝜖,𝛿𝛿

𝐴𝐴𝐴𝐴 2 ∉ 1 − 𝜖𝜖, 1 + 𝜖𝜖 ⋅ 𝑥𝑥 2 ≤ 𝛿𝛿

• 𝑚𝑚 = 𝑂𝑂( 1
𝜖𝜖2
⋅ log 1

𝛿𝛿
)

Examples of such distributions:
 Projection onto a random 𝑚𝑚 dimensional subspace (best constants)
 Take 𝐴𝐴 to be a matrix where each entry is chosen iid from 𝒩𝒩(0,1) (then 

normalized)
 … (more in this lecture)



Normal Distribution

• 𝒩𝒩 𝜇𝜇,𝜎𝜎2 = 1
2𝜋𝜋𝜋𝜋

exp(− 𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2
)

• If 𝑋𝑋 and 𝑌𝑌 are independent random variable with normal distribution then 𝑋𝑋 + 𝑌𝑌
has normal distribution 𝒩𝒩(𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌,𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2)



Mapping
• Let 𝐴𝐴 be a matrix where every entry is picked iid from 𝒩𝒩(0,1)
• Then output 𝐴𝐴𝐴𝐴 2

2/𝑚𝑚 as an approximation for 𝑥𝑥 2
2

• 𝔼𝔼 𝐴𝐴𝐴𝐴 2
2

𝑚𝑚
= 1

𝑚𝑚
⋅ 𝔼𝔼 𝑥𝑥𝑇𝑇𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 = 1

𝑚𝑚
𝑥𝑥𝑇𝑇𝔼𝔼 𝐴𝐴𝑇𝑇𝐴𝐴 𝑥𝑥 = 𝑥𝑥 2

2

• 𝔼𝔼 𝐴𝐴𝑇𝑇𝐴𝐴 is a diagonal matrix with all entries on the diagonal are 𝑚𝑚, i.e., for any 𝑗𝑗, 
𝔼𝔼 ∑𝑖𝑖 𝐴𝐴𝑖𝑖,𝑗𝑗2 = ∑𝑖𝑖 𝔼𝔼 𝐴𝐴𝑖𝑖,𝑗𝑗2 = 𝑚𝑚 as the mean is 0 and variance is 1.

• Off diagonal entries are 0, 𝔼𝔼 ∑𝑖𝑖 𝐴𝐴𝑗𝑗,𝑖𝑖𝐴𝐴𝑖𝑖,ℎ = ∑𝑖𝑖 𝔼𝔼[𝐴𝐴𝑗𝑗,𝑖𝑖𝐴𝐴𝑖𝑖,ℎ] as they are independent 
and the means are 0



Concentration

• Let 𝐴𝐴 be a matrix where every entry is picked iid from 𝒩𝒩(0,1)

• Then output 𝐴𝐴𝐴𝐴 2
2/𝑚𝑚 as an approximation for 𝑥𝑥 2

2

• Pr[ 𝐴𝐴𝐴𝐴 2
2 − 𝑚𝑚 𝑥𝑥 2

2 ≥ 𝜖𝜖𝜖𝜖 𝑥𝑥 2
2] ≤ exp −𝐶𝐶𝜖𝜖2𝑚𝑚 ≤ 𝛿𝛿

• One side: Pr[ 𝐴𝐴𝐴𝐴 2
2 ≥ (1 + 𝜖𝜖)𝑚𝑚 𝑥𝑥 2

2]

• Assume 𝑥𝑥 2
2 = 1, let 𝑍𝑍 = 𝐴𝐴𝐴𝐴 then Pr[ 𝑍𝑍 2

2 ≥ (1 + 𝜖𝜖)𝑚𝑚] ≤ exp(−𝜖𝜖2𝑚𝑚 + 𝑂𝑂 𝑚𝑚𝜖𝜖3 )

• Let 𝑌𝑌 = 𝑍𝑍 2
2, then Pr(𝑌𝑌 > 𝛼𝛼) = Pr[exp 𝑠𝑠𝑠𝑠 > exp 𝑠𝑠𝑠𝑠 ] ≤ exp −𝑠𝑠𝑠𝑠 𝔼𝔼[exp 𝑠𝑠𝑠𝑠 ] by Markov

• By independence, 𝔼𝔼 exp 𝑠𝑠𝑠𝑠 = ∏𝑖𝑖 𝔼𝔼(exp(𝑠𝑠𝑍𝑍𝑖𝑖2))

• 𝑍𝑍𝑖𝑖 has also normal distribution, we can compute 𝔼𝔼 𝑍𝑍𝑖𝑖 = 0 and Var 𝑍𝑍𝑖𝑖 = 1



Concentration

• Assume 𝑥𝑥 2
2 = 1, let 𝑍𝑍 = 𝐴𝐴𝐴𝐴 then Pr[ 𝑍𝑍 2

2 ≥ (1 + 𝜖𝜖)𝑚𝑚] ≤ exp(−𝜖𝜖2𝑚𝑚 + 𝑂𝑂 𝑚𝑚𝜖𝜖3 )

• Let 𝑌𝑌 = 𝑍𝑍 2
2, then Pr(𝑌𝑌 > 𝛼𝛼) = Pr[exp 𝑠𝑠𝑠𝑠 > exp 𝑠𝑠𝑠𝑠 ] ≤ exp −𝑠𝑠𝑠𝑠 𝔼𝔼[exp 𝑠𝑠𝑠𝑠 ] by Markov

• By independence, 𝔼𝔼 exp 𝑠𝑠𝑠𝑠 = ∏𝑖𝑖 𝔼𝔼(exp(𝑠𝑠𝑍𝑍𝑖𝑖2))

• 𝑍𝑍𝑖𝑖 has also normal distribution, we can compute 𝔼𝔼 𝑍𝑍𝑖𝑖 = 0 and Var 𝑍𝑍𝑖𝑖 = 1

• We can analytically compute 𝔼𝔼 exp 𝑠𝑠𝑍𝑍𝑖𝑖2 = 1
2𝜋𝜋 ∫ exp 𝑠𝑠𝑡𝑡2 exp(− 𝑡𝑡2

2
)𝑑𝑑𝑑𝑑 = 1

1−2𝑠𝑠

• So we get Pr[𝑌𝑌 ≥ 𝛼𝛼] = exp(−𝑠𝑠𝑠𝑠) ⋅ 1 − 2𝑠𝑠 −𝑚𝑚2

• Set 𝑠𝑠 = 1
2
− 𝑚𝑚

2𝛼𝛼
so 1 − 2𝑠𝑠 = 𝑚𝑚

𝛼𝛼



Mapping - concentration
• Assume 𝑥𝑥 2

2 = 1, let 𝑍𝑍 = 𝐴𝐴𝐴𝐴 then Pr[ 𝑍𝑍 2
2 ≥ (1 + 𝜖𝜖)𝑚𝑚] ≤ exp(−𝜖𝜖2𝑚𝑚 + 𝑂𝑂 𝑚𝑚𝜖𝜖3 )

• Let 𝑌𝑌 = 𝑍𝑍 2
2, then Pr(𝑌𝑌 > 𝛼𝛼) = Pr[exp 𝑠𝑠𝑠𝑠 > exp 𝑠𝑠𝑠𝑠 ] ≤ exp −𝑠𝑠𝑠𝑠 𝔼𝔼[exp 𝑠𝑠𝑠𝑠 ] by Markov

• So we get Pr[𝑌𝑌 ≥ 𝛼𝛼] = exp(−𝑠𝑠𝑠𝑠) ⋅ 1 − 2𝑠𝑠 −𝑚𝑚2

• Set 𝑠𝑠 = 1
2
− 𝑚𝑚

2𝛼𝛼
so 1 − 2𝑠𝑠 = 𝑚𝑚

𝛼𝛼

• Pr[𝑌𝑌 ≥ 𝛼𝛼] = exp(−𝛼𝛼
2

1 − 𝑚𝑚
𝛼𝛼

) ⋅ 𝑚𝑚
𝛼𝛼

−𝑚𝑚2 = exp 𝑚𝑚−𝛼𝛼
2

𝑚𝑚
𝛼𝛼

−𝑚𝑚2

• and set 𝛼𝛼 = 𝑚𝑚 1 + 𝜖𝜖 2

• Pr[𝑌𝑌 ≥ 𝛼𝛼] = exp 𝑚𝑚−𝛼𝛼
2

𝑚𝑚
𝛼𝛼

−𝑚𝑚2 = e−𝜖𝜖𝜖𝜖−𝜖𝜖
2

2 𝑚𝑚𝑒𝑒−
𝑚𝑚
2 ln(𝑚𝑚𝛼𝛼) = e−𝜖𝜖𝜖𝜖−𝜖𝜖

2

2 𝑚𝑚𝑒𝑒−
𝑚𝑚
2 ln( 1

1+𝜖𝜖 2) =

e−𝜖𝜖𝜖𝜖−𝜖𝜖
2

2 𝑚𝑚𝑒𝑒𝑚𝑚 ln(1+𝜖𝜖) = e𝑚𝑚(−𝜖𝜖−𝜖𝜖
2

2 +𝜖𝜖−
1
2𝜖𝜖

2+𝑂𝑂 𝜖𝜖3 ) using Taylor’s expansion for ln(1 + 𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2

2
+

𝑂𝑂 𝑥𝑥3

• Pr[𝑌𝑌 ≥ 𝛼𝛼] = e𝑚𝑚(−𝜖𝜖−𝜖𝜖
2

2 +𝜖𝜖−
1
2𝜖𝜖

2+𝑂𝑂 𝜖𝜖3 ) = 𝑒𝑒−𝑚𝑚𝜖𝜖2+𝑚𝑚𝑚𝑚 𝜖𝜖3



JL Lowerbound

• Consider pointset 𝑋𝑋 = 0, 𝑒𝑒1, … , 𝑒𝑒𝑛𝑛 ⊆ ℝ𝑛𝑛

Claim. If we embed these 𝑚𝑚-dimensional space and preserve distances up to a factor of 𝑐𝑐, the 
target dimension has to be at least log 𝑛𝑛

log(2𝑐𝑐+1)
.

Wlog, assume that zero is mapped to zero (otherwise translate the instance)

Distances are preserved; points should have distance in [1,c] from zero and distance in [ 2, 𝑐𝑐 2] 
from each other. This means that the ball of radius 1

2
around all points and zero are disjoint.

By a volume argument, 𝑛𝑛 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚 𝐵𝐵 1
2

≤ 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚(𝐵𝐵(𝑐𝑐 + 1
2
)) which implies that 𝑛𝑛 ≤

𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚 𝐵𝐵 𝑐𝑐+12

𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚 𝐵𝐵 1
2

=

2𝑐𝑐 + 1 𝑚𝑚 .

Thus, 𝑚𝑚 ≥ log 𝑛𝑛
log(2𝑐𝑐+1)



Fast JL

• 𝐴𝐴 = 𝑑𝑑
𝑚𝑚
⋅ 𝑆𝑆𝑆𝑆𝑆𝑆

• 𝐷𝐷 is a 𝑑𝑑 × 𝑑𝑑 diagonal with iid ±1 on the diagonal  (Rademacher)
• 𝐻𝐻 is the 𝑑𝑑 × 𝑑𝑑 normalized Hadamard matrix (divide entries by 1/ 𝑑𝑑)

• Every entry of 𝐻𝐻 is ±1
• Every two rows are perpendicular
• In all rows except the first one, the number of +1 is equal to −1

• 𝐻𝐻1 = 1 ,𝐻𝐻2 = 1 1
1 −1 ,  𝐻𝐻2𝑡𝑡 = 𝐻𝐻𝑡𝑡 𝐻𝐻𝑡𝑡

𝐻𝐻𝑡𝑡 −𝐻𝐻𝑡𝑡
• 𝑆𝑆 is a 𝑚𝑚 × 𝑑𝑑 sampling matrix with replacement (each row has a 1 at a uniformly random location and 

zeroes elsewhere).

 Time: 𝐷𝐷 can be applied in 𝑂𝑂(𝑑𝑑) time and 𝐻𝐻 in 𝑂𝑂(𝑑𝑑 log𝑑𝑑) time, and 𝑆𝑆 in 𝑂𝑂(𝑚𝑚) time
• In compare to previous case where it takes 𝑂𝑂(𝑚𝑚𝑚𝑚) time

 𝑚𝑚 = 𝑂𝑂( 1
𝜖𝜖2
⋅ log 1

𝛿𝛿
⋅ log 𝑑𝑑

𝛿𝛿
).

 for optimal 𝑚𝑚, instead use Π′Π where Π is FJLT and Π′ is an optimal JL with 𝑚𝑚′ = 𝑂𝑂(𝜖𝜖−2log(1/𝛿𝛿)).  
Runtime increases by additive 𝑚𝑚 ⋅ 𝑚𝑚𝑚. 



Proof of Fast JL
• Define 𝑦𝑦 = 𝐻𝐻𝐻𝐻𝐻𝐻. We show that 𝑦𝑦 ∞ = 𝑂𝑂( log(𝑑𝑑/𝛿𝛿)/𝑑𝑑) w.p. 1 − 𝛿𝛿/2.

• 𝑦𝑦𝑖𝑖 = 𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖 = ∑𝑗𝑗=1𝑑𝑑 𝜎𝜎𝑗𝑗 ⋅
1
𝑑𝑑
𝛾𝛾𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 = 𝜎𝜎, 𝑧𝑧𝑖𝑖

• 𝛾𝛾𝑖𝑖,𝑗𝑗 = 1 and 𝑧𝑧𝑖𝑖 is a vector with 𝑧𝑧𝑖𝑖 𝑗𝑗 = 1
𝑑𝑑
𝛾𝛾𝑖𝑖,𝑗𝑗 𝑥𝑥𝑗𝑗

Khinchine’s inequality. 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 i.i.d Rademacher, for 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ ℝ, and 𝜆𝜆 > 0, Pr ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖𝑋𝑋𝑖𝑖 > 𝜆𝜆 𝑎𝑎 2 ≤ 2𝑒𝑒−𝜆𝜆2/2

• By Khintchine’s inequality, setting 𝑋𝑋𝑗𝑗 = 𝜎𝜎𝑗𝑗, 𝑎𝑎𝑗𝑗 = 𝑧𝑧𝑖𝑖 𝑗𝑗 = 1
𝑑𝑑
𝛾𝛾𝑖𝑖,𝑗𝑗 𝑥𝑥𝑗𝑗, 𝑎𝑎 2 = 1

𝑑𝑑
‖𝑥𝑥‖, 𝜆𝜆 = 2 log(4𝑑𝑑/𝛿𝛿) /𝑑𝑑

• ∀𝑖𝑖, Pr[ 𝑦𝑦𝑖𝑖 > 2 log 4𝑑𝑑/𝛿𝛿 /𝑑𝑑] < 2𝑒𝑒− log 𝑑𝑑
𝛿𝛿 = 𝛿𝛿

2𝑑𝑑

• By union bound, Pr[ 𝑦𝑦 ∞ > 2 log 4𝑑𝑑/𝛿𝛿 /𝑑𝑑] < 𝛿𝛿
2

, and thus 𝑦𝑦 ∞
2 ≤

2 log 4𝑑𝑑
𝛿𝛿

𝑑𝑑
≔ 𝜏𝜏

𝑑𝑑

• Using Chernoff –type arguments 
• 𝑦𝑦 2

2 = 𝑥𝑥 2
2 (as 𝐷𝐷 changes the sign of entries in 𝑥𝑥, and  𝐻𝐻 can be viewed as change of basis matrix)

• Each 𝑦𝑦𝑖𝑖 is small and thus small variance.
• Each row of 𝑆𝑆 is sampling one 𝑦𝑦𝑖𝑖 uniformly at random. 

• Pr 𝑑𝑑
𝑚𝑚

𝑆𝑆𝑆𝑆 2
2 ≈ 1 + 𝜖𝜖 𝑦𝑦 2

2 ≥ 1 − 𝛿𝛿



Next Lecture

• Approximate Nearest Neighbor
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