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This Lecture

 Core-sets for k-median



Coreset for 1-means

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶, 𝑞𝑞)
• A coreset from which we can estimate the 1-means cost, e.g., 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 = ∑𝑝𝑝∈𝑃𝑃 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝, 𝑞𝑞 2

• ∑𝑝𝑝∈𝑃𝑃 𝑝𝑝 − 𝑞𝑞 2 = ∑𝑝𝑝∈𝑃𝑃〈𝑝𝑝 − 𝑞𝑞, 𝑝𝑝 − 𝑞𝑞〉 = ∑𝑝𝑝∈𝑃𝑃 𝑝𝑝 2 + 𝑛𝑛 𝑞𝑞 2 − 2𝑞𝑞 ∑𝑝𝑝∈𝑃𝑃 𝑝𝑝
• So only keep the mean ∑𝑝𝑝∈𝑃𝑃 𝑝𝑝
• Not a core-set exactly.



Coreset for k-center

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶, 𝑞𝑞)
• We showed a coreset from which we can estimate the 1-center cost, 

e.g., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 = 𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃, 𝑞𝑞 = max
p∈𝑃𝑃

𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞)

• What about 𝑘𝑘-center cost?



Naïve Uniform Sampling

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶, 𝑞𝑞)



Importance Sampling

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞

• 𝑃𝑃𝑓𝑓 ≈ 1/𝑛𝑛𝑖𝑖 proportional to size of the cluster
• 𝑤𝑤𝑤𝑤𝑑𝑑𝑤𝑤𝑤𝐶𝐶 ≈ 𝑛𝑛𝑖𝑖 proportional to the size

Low Probability
Large weight

High Probability
Low weight



Importance Sampling

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞

• 𝑃𝑃𝑓𝑓 ≈ 1/𝑛𝑛𝑖𝑖 proportional to size of the cluster
• 𝑤𝑤𝑤𝑤𝑑𝑑𝑤𝑤𝑤𝐶𝐶 ≈ 𝑛𝑛𝑖𝑖 proportional to the size
• Do we need the clusters?

Low Probability
Large weight

High Probability
Low weight



Importance Sampling

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞

• 𝑃𝑃𝑓𝑓 ≈ 1/𝑛𝑛𝑖𝑖 proportional to size of the cluster
• 𝑤𝑤𝑤𝑤𝑑𝑑𝑤𝑤𝑤𝐶𝐶 ≈ 𝑛𝑛𝑖𝑖 proportional to the size
• Do we need the clusters?

• Answer: some approximation suffices

Low Probability
Large weight

High Probability
Low weight



Importance Sampling

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞

• 𝑃𝑃𝑓𝑓 ≈ 1/𝑛𝑛𝑖𝑖 proportional to size of the cluster
• 𝑤𝑤𝑤𝑤𝑑𝑑𝑤𝑤𝑤𝐶𝐶 ≈ 𝑛𝑛𝑖𝑖 proportional to the size
• Do we need the clusters?

• Answer: some approximation suffices
• Even bi-criteria approximation

(pick more centers) Low Probability
Large weight

High Probability
Low weight



General approach

1. Find an approximate clustering (usually much easier)
2. Sample points based on their cluster size

Low Probability
Large weight

High Probability
Low weight



Even use previous approach

𝑘𝑘-center

1. Find an approximate clustering (usually much easier)
2. Apply the grid on each cluster

• Exponential dependence on 𝑑𝑑



Coreset for 1-means

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑞𝑞 ∈ ℝ𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃, 𝑞𝑞 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶, 𝑞𝑞)
• A coreset from which we can estimate the 1-means cost, e.g., 
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑷𝑷,𝒒𝒒 = ∑𝒑𝒑∈𝑷𝑷𝒅𝒅𝒅𝒅𝑪𝑪𝑪𝑪 𝒑𝒑,𝒒𝒒 𝟐𝟐



Coreset for k-median

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑄𝑄 ⊆ ℝ𝑑𝑑 𝑘𝑘

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 ≈ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶,𝑄𝑄)
• A coreset from which we can estimate the k-median cost, e.g., 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝,𝑄𝑄) = ∑𝑝𝑝∈𝑃𝑃 min
𝑞𝑞∈𝑄𝑄

𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞)

• Opening facilities, test several candidates.



Coreset for k-median

Given: a point set 𝑃𝑃 ⊂ ℝ𝑑𝑑

Find: 𝐶𝐶 ⊆ 𝑃𝑃 such that for any query 𝑄𝑄 ⊆ ℝ𝑑𝑑 𝑘𝑘

• ∑𝑝𝑝∈𝑃𝑃 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝,𝑄𝑄) ≈1+𝜖𝜖 ∑𝑐𝑐∈𝐶𝐶 𝑤𝑤(𝑐𝑐)𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑐𝑐,𝑄𝑄)

• A coreset from which we can estimate the k-median cost, e.g., 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝,𝑄𝑄) = ∑𝑝𝑝∈𝑃𝑃 min
𝑞𝑞∈𝑄𝑄

𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝, 𝑞𝑞)



A general theorem

• Suppose the cost function satisfies 
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃 𝑤𝑤(𝑝𝑝)𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶(𝑝𝑝,𝑄𝑄)

• Sample 𝐶𝐶 proportional to sensitivity 𝑝𝑝 = max
𝑄𝑄∈𝒬𝒬

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝′∈𝑃𝑃 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝

′,𝑄𝑄

• Number of samples: 𝐶𝐶 ≥ 𝑂𝑂 𝑉𝑉𝐶𝐶 𝒬𝒬
𝜖𝜖2

⋅ ∑𝑝𝑝 sensitivity 𝑝𝑝

• Need to bound 
• 𝑉𝑉𝐶𝐶 𝒬𝒬 : (roughly how many parameters one need to describe the query, e.g., kd)
• Total sensitivity ∑𝑝𝑝 sensitivity 𝑝𝑝 (for k-median can be bounded by k)

• Gives coreset of size 𝑂𝑂(𝑘𝑘
2𝑑𝑑
𝜖𝜖2

)



Applications

• k-means, k-median, k-center
• j-subspace: query q is a j-dimensional subspace.
• Projective clustering (j,k): query Q is a set of k j-dimensional 

subspaces. 



K-median

• sensitivity 𝑝𝑝 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄∗

∑𝑝𝑝′∈𝑃𝑃 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑄𝑄∗

+ 1
𝑛𝑛𝑝𝑝

• 𝑄𝑄∗ is the optimal k-means clustering (again we can use approximation)
• 𝑛𝑛𝑝𝑝 is the number of points in 𝑝𝑝’s cluster

• Total sensitivity = 1 + 𝑘𝑘

• 𝐶𝐶 = 𝑘𝑘2𝑑𝑑
𝜖𝜖2

• Combining with PCA gives 
𝑘𝑘2(𝑘𝑘𝜖𝜖)

𝜖𝜖2
• Independent of 𝑛𝑛
• Independent of 𝑑𝑑



Proof of the Theorem



Setup

Given: (𝑃𝑃,𝑤𝑤), 𝑃𝑃 ⊆ 𝑋𝑋, 𝑤𝑤:𝑃𝑃 → 0,1 , sum of weights are 1
• Core-sets for core-sets
Query space: (𝑃𝑃,𝑤𝑤,𝒬𝒬, 𝑓𝑓)
• 𝑓𝑓:𝑃𝑃 × 𝒬𝒬 → 0,∞
• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝑓𝑓(𝑝𝑝, 𝑞𝑞)

Change multiplicative 𝜖𝜖 to additive error 𝜖𝜖
• Goal: find (𝐶𝐶,𝑢𝑢,𝒬𝒬, 𝑓𝑓) such that for any 𝑄𝑄 ∈ 𝒬𝒬:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝜖𝜖
• Why?

• Let 𝑓𝑓 𝑝𝑝,𝑄𝑄 ≔ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 𝑃𝑃,𝑄𝑄

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝∈𝑃𝑃 𝑤𝑤 𝑝𝑝 ⋅𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄



Why

We want 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞 ≤ 𝜖𝜖 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃,𝑄𝑄)
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶, 𝑞𝑞 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝,𝑄𝑄 − ∑𝑝𝑝∈𝐶𝐶 𝑢𝑢 𝑝𝑝 ⋅ 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝,𝑄𝑄 =

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 ⋅ ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝑓𝑓 𝑝𝑝,𝑄𝑄 − ∑𝑝𝑝∈𝐶𝐶 𝑢𝑢 𝑝𝑝 ⋅ 𝑓𝑓 𝑝𝑝,𝑄𝑄 =

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃,𝑄𝑄 ⋅ ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄

Change multiplicative 𝜖𝜖 to additive error 𝜖𝜖
• Goal: find (𝐶𝐶,𝑢𝑢,𝒬𝒬, 𝑓𝑓) such that for any 𝑄𝑄 ∈ 𝒬𝒬:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝜖𝜖
• Why?

• Let 𝑓𝑓 𝑝𝑝,𝑄𝑄 ≔ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 𝑃𝑃,𝑄𝑄

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝∈𝑃𝑃 𝑤𝑤 𝑝𝑝 ⋅𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄



Intermediate goal

Given: (𝑃𝑃,𝑤𝑤), 𝑃𝑃 ⊆ 𝑋𝑋, 𝑤𝑤:𝑃𝑃 → 0,1 , sum of weights are 1
Query space: (𝑃𝑃,𝑤𝑤,𝒬𝒬, 𝑓𝑓)
• 𝑓𝑓:𝑃𝑃 × 𝒬𝒬 → 0,∞
• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝑓𝑓(𝑝𝑝, 𝑞𝑞)

Let 𝑓𝑓 𝑝𝑝,𝑄𝑄 ≔ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 𝑃𝑃,𝑄𝑄

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝∈𝑃𝑃 𝑤𝑤 𝑝𝑝 ⋅𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄

Intermediate Goal: find (𝐶𝐶,𝑢𝑢) such that for any 𝑄𝑄 ∈ 𝒬𝒬:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝜖𝜖 ⋅ max
𝑝𝑝∈𝑃𝑃

𝑓𝑓(𝑝𝑝, 𝑞𝑞)

• Why? (roughly, probability bounds work when parameters are between 0,1. otherwise a 
single input could have the maximum which is quite large. It is also hard to detect using 
uniform sampling. In other words the variance depends on the maximum).



Intermediate goal

Given: (𝑃𝑃,𝑤𝑤), 𝑃𝑃 ⊆ 𝑋𝑋, 𝑤𝑤:𝑃𝑃 → 0,1 , sum of weights are 1
Query space: (𝑃𝑃,𝑤𝑤,𝒬𝒬, 𝑓𝑓)
• 𝑓𝑓:𝑃𝑃 × 𝒬𝒬 → 0,∞
• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝑓𝑓(𝑝𝑝, 𝑞𝑞)

Let 𝑓𝑓 𝑝𝑝,𝑄𝑄 ≔ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑 𝑃𝑃,𝑄𝑄

= 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝∈𝑃𝑃 𝑤𝑤 𝑝𝑝 ⋅𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄

Intermediate Goal: find (𝐶𝐶,𝑢𝑢) such that for any 𝑄𝑄 ∈ 𝒬𝒬:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝜖𝜖 ⋅ max
𝑝𝑝∈𝑃𝑃

𝑓𝑓(𝑝𝑝, 𝑞𝑞)

• Define 𝐶𝐶 𝑝𝑝 = max
𝑄𝑄∈𝒬𝒬

𝑓𝑓(𝑝𝑝,𝑄𝑄)

• Let 𝐶𝐶 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝐶𝐶(𝑝𝑝)

• Now let: 𝑤𝑤′(𝑝𝑝) ≔ 𝑤𝑤 𝑝𝑝 ⋅ 𝑑𝑑 𝑝𝑝
𝑑𝑑

and let 𝑓𝑓′(𝑝𝑝,𝑄𝑄) ≔ 𝑓𝑓 𝑝𝑝,𝑄𝑄
𝑑𝑑 𝑝𝑝

Thus 𝑤𝑤 𝑝𝑝 𝑓𝑓 𝑝𝑝,𝑄𝑄 = 𝐶𝐶 ⋅ 𝑤𝑤′ 𝑝𝑝 𝑓𝑓𝑓(𝑝𝑝,𝑄𝑄)



Core-set for the new weights

• Define 𝐶𝐶 𝑝𝑝 = max
𝑄𝑄∈𝒬𝒬

𝑓𝑓(𝑝𝑝,𝑄𝑄)

• Let 𝐶𝐶 = ∑𝑝𝑝∈𝑃𝑃𝑤𝑤 𝑝𝑝 ⋅ 𝐶𝐶(𝑝𝑝)

• Now let: 𝑤𝑤′(𝑝𝑝) ≔ 𝑤𝑤 𝑝𝑝 ⋅ 𝑑𝑑 𝑝𝑝
𝑑𝑑

and let 𝑓𝑓′(𝑝𝑝,𝑄𝑄) ≔ 𝑓𝑓 𝑝𝑝,𝑄𝑄
𝑑𝑑 𝑝𝑝

Thus 𝑤𝑤 𝑝𝑝 𝑓𝑓 𝑝𝑝,𝑄𝑄 = 𝐶𝐶 ⋅ 𝑤𝑤′ 𝑝𝑝 𝑓𝑓𝑓(𝑝𝑝,𝑄𝑄)

Suppose (𝐶𝐶,𝑢𝑢) is 𝜖𝜖
𝑑𝑑

coreset for (𝑃𝑃,𝑤𝑤′,𝒬𝒬, 𝑓𝑓′) , i.e., for any 𝑄𝑄 ∈ 𝒬𝒬:

• �𝑓𝑓𝑓 𝑃𝑃,𝑤𝑤𝑓,𝑄𝑄 − �𝑓𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ (𝜖𝜖
𝑑𝑑
) ⋅ max

𝑝𝑝∈𝑃𝑃
𝑓𝑓𝑓(𝑝𝑝, 𝑞𝑞)

Goal: for any 𝑄𝑄 ∈ 𝒬𝒬:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − 𝐶𝐶 ⋅ ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝜖𝜖
Proof:

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 = 𝐶𝐶 ⋅ �𝑓𝑓𝑓 𝑃𝑃,𝑤𝑤𝑓,𝑄𝑄

• ̅𝑓𝑓 𝑃𝑃,𝑤𝑤,𝑄𝑄 − 𝐶𝐶 ⋅ ̅𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 = 𝐶𝐶 ⋅ �𝑓𝑓′ 𝑃𝑃,𝑤𝑤′,𝑄𝑄 − �𝑓𝑓𝑓 𝐶𝐶,𝑢𝑢,𝑄𝑄 ≤ 𝐶𝐶 ⋅ 𝜖𝜖
𝑑𝑑
⋅ max
𝑄𝑄∈𝒬𝒬

𝑓𝑓′ 𝑝𝑝, 𝑞𝑞 ≤ 𝜖𝜖



Goal: compute 𝜖𝜖 −approximation for 𝑓𝑓𝑓
• For every positive 𝑓𝑓 > 0 define 𝑓𝑓𝑓𝑓𝑛𝑛𝑤𝑤𝑤𝑤 𝑞𝑞, 𝑓𝑓 = 𝑝𝑝 ∈ 𝑃𝑃 𝑤𝑤 𝑝𝑝 ⋅ 𝑓𝑓 𝑝𝑝, 𝑞𝑞 ≤ 𝑓𝑓
• Then the dimension of (𝑃𝑃,𝑤𝑤,𝒬𝒬, 𝑓𝑓) is the smallest 𝑑𝑑 s.t. for any 𝑆𝑆 ⊆ 𝑃𝑃, 
• 𝑓𝑓𝑓𝑓𝑛𝑛𝑤𝑤𝑤𝑤 𝑞𝑞, 𝑓𝑓 𝑞𝑞 ∈ 𝒬𝒬, 𝑓𝑓 > 0 ≤ 2𝑑𝑑

• E.g. how many subsets can you cover with balls in ℝ𝑑𝑑? 𝑛𝑛𝑂𝑂 𝑑𝑑

• Coreset: Let 𝐶𝐶 be a random sample of size 𝑂𝑂(( 1
𝜖𝜖2

)(𝑑𝑑 + log 1
𝛿𝛿

), then with probability (1 − 𝛿𝛿), it is 
a 𝜖𝜖-core-set

• 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 → 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 → 𝑓𝑓 → 𝐶𝐶 𝑝𝑝 → 𝑓𝑓′,𝑤𝑤′ → 𝜖𝜖 − 𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝐶𝐶𝑎𝑎 → 𝑓𝑓𝑓𝑓𝑛𝑛𝑑𝑑𝐶𝐶𝑟𝑟 𝐶𝐶𝑓𝑓𝑟𝑟𝑝𝑝𝑠𝑠𝑑𝑑𝑛𝑛𝑤𝑤



Bounding Sensitivity for k-median

• 𝐶𝐶 𝑝𝑝 = max
𝑄𝑄∈𝒬𝒬

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝

′,𝑄𝑄

• For a specific 𝑄𝑄,

• 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄
∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝

′,𝑄𝑄
≤ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑞𝑞𝑖𝑖

∗

∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑄𝑄

+ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖
∗,𝑄𝑄

∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑄𝑄

≤ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑞𝑞𝑖𝑖
∗

∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑞𝑞𝑖𝑖

∗ + 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑞𝑞𝑖𝑖
∗,𝑄𝑄

∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑄𝑄

• 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑞𝑞𝑖𝑖∗,𝑄𝑄 ≤ 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑞𝑞𝑖𝑖∗,𝑝𝑝′ + 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝′,𝑄𝑄
• 𝑃𝑃𝑖𝑖 ⋅ 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑞𝑞𝑖𝑖∗,𝑄𝑄 ≤ ∑𝑝𝑝′∈𝑃𝑃𝑖𝑖 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑞𝑞𝑖𝑖

∗,𝑝𝑝′ + 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝′,𝑄𝑄 ≤ 2∑𝑝𝑝′∈𝑃𝑃 𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 𝑝𝑝′,𝑄𝑄

• 𝐶𝐶 𝑝𝑝 ≤ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑞𝑞𝑖𝑖
∗

∑𝑝𝑝′ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑞𝑞𝑖𝑖

∗ + 2
𝑃𝑃𝑖𝑖

• ∑𝑝𝑝∈𝑃𝑃 𝐶𝐶(𝑝𝑝) = 1 + 2𝑘𝑘



K-median

• sensitivity 𝑝𝑝 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝,𝑄𝑄∗

∑𝑝𝑝′∈𝑃𝑃 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑝𝑝
′,𝑄𝑄∗

+ 1
𝑛𝑛𝑝𝑝

• 𝑄𝑄∗ is the optimal k-means clustering (again we can use approximation)
• 𝑛𝑛𝑝𝑝 is the number of points in 𝑝𝑝’s cluster

• Total sensitivity = 1 + 𝑘𝑘

• 𝐶𝐶 = 𝑘𝑘2𝑑𝑑
𝜖𝜖2

• Combining with PCA gives 
𝑘𝑘2(𝑘𝑘𝜖𝜖)

𝜖𝜖2
• Independent of 𝑛𝑛
• Independent of 𝑑𝑑



Rough approximation

• Any bi-criteria approximation, e.g.,

Repeat for log𝑛𝑛 iterations:
1. Randomly sample k centers.
2. Remove half of the points that are closest to the centers
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