
Lecture 7
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi

Announcement

 The schedule has condensed
 Project presentations are May 24 and 26
 First draft of project is due May 24
 Homework 1 will be out this week

This Lecture

 Core-sets
 Farthest point
 Diversity maximization

Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Solving the problem
over core-set 𝑼𝑼

Solving the problem
over dataset 𝑽𝑽
(approximately)

Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

 Task specific

𝒇𝒇 𝒇𝒇

Solving the problem
over core-set 𝑼𝑼

Solving the problem
over dataset 𝑽𝑽
(approximately)

≈ 1
𝛼𝛼

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

𝜶𝜶 −Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

 Task specific

𝒇𝒇 𝒇𝒇

Solving the problem
over core-set 𝑼𝑼

Solving the problem
over dataset 𝑽𝑽
(approximately)

≈ 1
𝛼𝛼

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Core-sets: a small subset 𝑼𝑼 of the data 𝑽𝑽 that represents it well.

 Task specific

Diameter

Convex Hull is a 1-core-set for Diameter

=

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Diameter

Example Applications

• The algorithm takes too much time to run on the data
• Compress the data, summarization
• Low storage
• Low communication
• Can be used in other massive data models

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• The points are on one line

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• The points are on one line (two extreme points)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• The points are on one line (two extreme points)
• The query is anywhere (same holds)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• O(1)-approximation is easy

• Take any point 𝑝𝑝1 ∈ 𝑃𝑃 and the farthest to it 𝑝𝑝2 ∈ 𝑃𝑃

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• O(1)-approximation is easy

• Take any point 𝑝𝑝1 ∈ 𝑃𝑃 and the farthest to it 𝑝𝑝2 ∈ 𝑃𝑃
• Let 𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝1,𝑝𝑝2)

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• O(1)-approximation is easy

• Take any point 𝑝𝑝1 ∈ 𝑃𝑃 and the farthest to it 𝑝𝑝2 ∈ 𝑃𝑃
• Let 𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝1,𝑝𝑝2)
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≥ 𝑟𝑟/2

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• O(1)-approximation is easy

• Take any point 𝑝𝑝1 ∈ 𝑃𝑃 and the farthest to it 𝑝𝑝2 ∈ 𝑃𝑃
• Let 𝑟𝑟 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝1,𝑝𝑝2)
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≥ 𝑟𝑟/2
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝑝𝑝1 + 𝑟𝑟 ≤ 2𝑟𝑟

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting? Better approximation?

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Impose a grid of side length 𝜖𝜖𝜖𝜖
• For each non-empty cell, keep one point in the core-set

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Impose a grid of side length 𝜖𝜖𝜖𝜖
• For each non-empty cell, keep one point in the core-set

• Size of core-set: 1
𝜖𝜖

𝑑𝑑

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Impose a grid of side length 𝜖𝜖𝜖𝜖
• For each non-empty cell, keep one point in the core-set

• Size of core-set: 1
𝜖𝜖

𝑑𝑑

• Error: additive 𝜖𝜖𝜖𝜖 𝑑𝑑 which is (1 + 𝜖𝜖) approximation for
constant dimension

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Cover the unit sphere with vectors 𝑣𝑣𝑖𝑖 with separation

angle at most 𝜖𝜖
• Project all points to closest line
• Use 1-dimensional exact core-set

• Size 1
𝜖𝜖

𝑑𝑑−1

• Error: each point is dis-located at most 𝑟𝑟 sin 𝜖𝜖 ≈ 𝑟𝑟𝑟𝑟

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Cover the unit sphere with vectors 𝑣𝑣𝑖𝑖 with separation

angle at most 𝜖𝜖
• Project all points to closest line
• Use 1-dimensional exact core-set

• Size 1
𝜖𝜖

𝑑𝑑−1

• Error: each point is dis-located at most 𝑟𝑟 sin 𝜖𝜖 ≈ 𝑟𝑟𝑟𝑟

Maintain Distance to Farthest Point (1-center)

• Given a point set 𝑃𝑃 ∈ ℝ𝑑𝑑 find a core-set 𝑆𝑆, s.t. for any query point 𝑞𝑞,
• 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞,𝑃𝑃 /𝛼𝛼 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹 𝑞𝑞, 𝑆𝑆 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹(𝑞𝑞,𝑃𝑃)

• General setting?
• Cover the unit sphere with vectors 𝑣𝑣𝑖𝑖 with separation

angle at most 𝜖𝜖
• Project all points to closest line
• Use 1-dimensional exact core-set

• Size 1
𝜖𝜖

𝑑𝑑−1

• Error: each point is dis-located at most 𝑟𝑟 sin 𝜖𝜖 ≈ 𝑟𝑟𝑟𝑟

Generic Notion

• Weak Core-set (approximates the optimal solution)
• Strong Core-set (approximates any solution)
• Can be a weighted subset
• Additional information (not necessarily the subset)

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

Composable Core-sets

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

 Let 𝒇𝒇 be an optimization function

 Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎

Composable Core-sets

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

 Let 𝒇𝒇 be an optimization function

 Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their core-sets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

Composable Core-sets

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

 Let 𝒇𝒇 be an optimization function

 Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their core-sets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

Composable Core-sets

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

 Let 𝒇𝒇 be an optimization function

 Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their core-sets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪ ⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪ ⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

Composable Core-sets

𝒇𝒇 𝒇𝒇≈ 1
𝛼𝛼

Core-sets with composability property:

“The union of core-sets is a core-set for the union”

 Let 𝒇𝒇 be an optimization function

 Multiple data sets 𝑽𝑽𝟏𝟏,⋯ ,𝑽𝑽𝒎𝒎 and their core-sets 𝑼𝑼𝟏𝟏 ⊂ 𝑽𝑽𝟏𝟏,⋯ ,𝑼𝑼𝒎𝒎 ⊂ 𝑽𝑽𝒎𝒎,

 𝒇𝒇 𝑼𝑼𝟏𝟏 ∪ ⋯∪ 𝑼𝑼𝒎𝒎 approximates 𝒇𝒇 𝑽𝑽𝟏𝟏 ∪ ⋯∪ 𝑽𝑽𝒎𝒎 by a factor 𝜶𝜶

𝜶𝜶 −Composable Core-sets

𝒇𝒇 𝒇𝒇≈ 1
𝛼𝛼

Having a composable core-set for a task, automatically gives algorithms in

several massive data processing models for the same task.

Streaming
Algorithm

Distributed/Parallel
(e.g. Map-reduce)

Run-time
improvement

Multiple Machines
 Each holding part of the data

 Each machine computes a composable core-set and sends it to the coordinator
 Composability guarantees a good solution
 Total communication is low

Application: Distributed/Parallel Systems (e.g.
Map-Reduce)

Data

Data

Data

Solution

Data

Data

Data

Machine

Machine

Machine

Aggregator

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

Application to Streaming Computation

…
𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks

Application to Streaming Computation

…
𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks

Application to Streaming Computation

…
𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

Application to Streaming Computation

…
Core-set

𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

Application to Streaming Computation

…
Core-set

𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

Application to Streaming Computation

…
Core-set

𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

Application to Streaming Computation

…
Core-set Core-set

𝒏𝒏 𝒏𝒏

 Streaming Computation:
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set
• Divide into chunks
• Compute Core-set for each chunk as it arrives

 Space goes down from 𝒏𝒏 to ≈ 𝒏𝒏
 Composability guarantees a good solution

Application to Streaming Computation

…
Core-set Core-set

𝒏𝒏 𝒏𝒏

Core-set

Diversity Maximization

Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

• Searching jaguar

Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

squash

Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

senator

Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

scientist

Diversity Maximization

• Searching
• Recommender Systems

Given a set of objects, how to pick a few of them while maximizing diversity?

Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206

Diversity Maximization

• Searching
• Recommender Systems
• Summarization
• Object detection, …

A small subset of items must be selected to represent the larger population

Given a set of objects, how to pick a few of them while maximizing diversity?

Objects
(documents, images, etc)

Feature
Vectors

Points in a high dimensional
space

Modeling the Objects

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points while maximizing “diversity”.

Diversity Maximization: The Model

𝒌𝒌 = 𝟑𝟑

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the
picked points is maximized.

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the
picked points is maximized.

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the
picked points is maximized.

• NP-hard to approximate
better than 2

• Greedy gives a constant
approximation

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑

Maximizing the minimum pairwise distance

The Greedy Algorithm provides approximation factor 𝑂𝑂(1)

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an empty set 𝑆𝑆

2. For 𝑘𝑘 iterations, add the point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 that is farthest
away from 𝑆𝑆.

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 2𝑟𝑟

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 3𝑟𝑟

Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 2𝑟𝑟

Composable Core-set Setting

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1)

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

• Define mapping 𝜇𝜇 from 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} to 𝑆𝑆 s.t. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑖𝑖 ,𝜇𝜇 𝑜𝑜𝑖𝑖 ≤ 𝑟𝑟

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟

Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets, 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

• Define mapping 𝜇𝜇 from 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} to 𝑆𝑆 s.t. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑖𝑖 ,𝜇𝜇 𝑜𝑜𝑖𝑖 ≤ 𝑟𝑟

• Replacing 𝑜𝑜𝑖𝑖 with 𝜇𝜇 𝑜𝑜𝑖𝑖 has still large diversity

• 𝑑𝑑𝑑𝑑𝑑𝑑(𝜇𝜇 𝑜𝑜𝑖𝑖) is approximately as good ad 𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜𝑖𝑖)

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟

Diversity: Volume

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Convex optimization + randomized
rounding 𝑂𝑂(𝑒𝑒𝑘𝑘/2) [Nik’15]

 Hard to approximate within 𝛺𝛺(𝑐𝑐𝑘𝑘)
[CMI’13]

Greedy is used in practice, achieves
𝑘𝑘! [CMI’07]

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

 Higher order notion of diversity (not based on pairwise distances only)

Convex optimization + randomized
rounding 𝑂𝑂(𝑒𝑒𝑘𝑘/2) [Nik’15]

 Hard to approximate within 𝛺𝛺(𝑐𝑐𝑘𝑘)
[CMI’13]

Greedy is used in practice, achieves
𝑘𝑘! [CMI’07]

The Local Search Algorithm

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 𝑘𝑘 for the volume maximization problem.

Local Search

Local Search

Local Search

Local Search

MAX-k-VOL ≥ 𝟏𝟏
𝒌𝒌𝒌𝒌
⋅MAX-k-VOL

Local Search

Local Search

The Local Search Algorithm

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

The Local Search Algorithm

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

To bound the run time

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

Start with a crude approximation
(Greedy algorithm)

If it increases by at least a factor of
(1 + 𝜖𝜖)

Checking the condition

𝑞𝑞𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒒𝒒,𝑯𝑯𝑺𝑺∖ 𝒒𝒒)

(𝒌𝒌 − 𝟏𝟏)-dimensional Subspace

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Will define shortly

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐

𝒌𝒌-Directional Height

Given
• a point set 𝑃𝑃, and

𝒌𝒌-Directional Height
𝐺𝐺

Given
• a point set 𝑃𝑃, and
• a 𝑘𝑘 − 1 -dimensional subspace 𝑮𝑮 (direction),

𝒌𝒌-Directional Height
𝑝𝑝

ℓ

𝐺𝐺

Given
• a point set 𝑃𝑃, and
• a 𝑘𝑘 − 1 -dimensional subspace 𝑮𝑮 (direction),
The 𝒌𝒌-Directional Height of 𝑃𝑃 in the direction of 𝐺𝐺 is defined as

𝐦𝐦𝐦𝐦𝐦𝐦
𝒑𝒑∈𝑷𝑷

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑮𝑮)

𝜶𝜶 −Core-set for 𝒌𝒌-Directional Height
𝑣𝑣

ℓ

𝑉𝑉:
𝑈𝑈:𝑢𝑢

ℓ
𝛼𝛼

A subset of points that preserve the 𝑘𝑘-directional height for all subspaces 𝐺𝐺 of
dimension 𝑘𝑘 − 1 at the same time upto an approximation factor 𝛼𝛼.

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝐿𝐿 𝑉𝑉 is the core-set produced by local search

Local Search

𝑽𝑽𝑺𝑺

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Need to prove:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Local Search

𝑽𝑽𝑺𝑺

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑮𝑮

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐
𝑝𝑝

𝑮𝑮

≤ 2𝑘𝑘𝑘𝑘
≤ 𝑥𝑥

≤ 𝑥𝑥
≤ 𝑥𝑥

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯

We can write 𝑝𝑝𝐻𝐻 as linear combination of
core-set points,

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑝𝑝𝐻𝐻

𝑯𝑯

𝑝𝑝𝐻𝐻

Properties of
Local Search

We can write 𝑝𝑝𝐻𝐻 as linear combination of
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

We can write 𝑝𝑝𝐻𝐻 as linear combination of
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of
Local Search

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

𝑯𝑯−𝒊𝒊

𝑞𝑞𝑖𝑖

𝑯𝑯
𝑝𝑝𝐻𝐻

We can write 𝑝𝑝𝐻𝐻 as linear combination of
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of
Local Search

𝑯𝑯
𝑝𝑝𝐻𝐻

𝑮𝑮

We can write 𝑝𝑝𝐻𝐻 as linear combination of
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of
Local Search

Triangle
Inequality 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌

≤ 𝑘𝑘𝑘𝑘

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 𝑘𝑘𝑘𝑘

≤ 𝑘𝑘𝑘𝑘

𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝒌𝒌

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻≤ 2𝑘𝑘𝑘𝑘

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺, the maximum distance of the point set to 𝐺𝐺 is
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem:
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑
𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

 Lose a factor of at most 𝛼𝛼 at each iteration

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}
Since we have a 𝜶𝜶 core-set for 𝑘𝑘-

directional height

Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑜𝑜1, … , 𝑜𝑜𝑘𝑘 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets

Let 𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑜𝑜1, … , 𝑜𝑜𝑘𝑘 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

 Lose a factor of at most 𝛼𝛼 at each iteration

 Total approximation factor 𝛼𝛼𝑘𝑘

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐

	Lecture 7
	Announcement
	This Lecture
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Core-sets [Agarwal, Har-Peled, Varadarajan’05]
	Example Applications
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Maintain Distance to Farthest Point (1-center)
	Generic Notion
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	Composable Core-sets
	𝜶−Composable Core-sets
	Slide Number 36
	Application: Distributed/Parallel Systems (e.g. Map-Reduce)
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Application to Streaming Computation
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Diversity Maximization
	Slide Number 54
	Diversity Maximization: The Model
	Minimum Pairwise Distance
	Minimum Pairwise Distance
	Minimum Pairwise Distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Maximizing the minimum pairwise distance
	Composable Core-set Setting
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Diversity: Volume
	Diversity: Volume
	Diversity: Volume
	Diversity: Volume
	Diversity: Volume
	The Local Search Algorithm
	Slide Number 86
	Slide Number 87
	Slide Number 88
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	The Local Search Algorithm
	To bound the run time
	Checking the condition
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	𝒌-Directional Height
	𝒌-Directional Height
	𝒌-Directional Height
	𝜶−Core-set for 𝒌-Directional Height
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 119
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144

