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Announcement

 The schedule has condensed 
 Project presentations are May 24 and 26
 First draft of project is due May 24
 Homework 1 will be out this week



This Lecture

 Core-sets
 Farthest point
 Diversity maximization
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 Task specific

Diameter

Convex Hull is a 1-core-set for Diameter

=

Core-sets [Agarwal, Har-Peled, Varadarajan’05]

Diameter



Example Applications

• The algorithm takes too much time to run on the data
• Compress the data, summarization
• Low storage
• Low communication
• Can be used in other massive data models
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• Error: additive 𝜖𝜖𝜖𝜖 𝑑𝑑 which is (1 + 𝜖𝜖) approximation for 
constant dimension
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Generic Notion

• Weak Core-set (approximates the optimal solution)
• Strong Core-set (approximates any solution)
• Can be a weighted subset
• Additional information (not necessarily the subset)
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Having a composable core-set for a task, automatically gives algorithms in 

several massive data processing models for the same task.

Streaming 
Algorithm

Distributed/Parallel 
(e.g. Map-reduce)

Run-time 
improvement



Multiple Machines
 Each holding part of the data

 Each machine computes a composable core-set and sends it to the coordinator
 Composability guarantees a good solution
 Total communication is low

Application: Distributed/Parallel Systems (e.g. 
Map-Reduce)

Data

Data

Data

Solution

Data

Data

Data

Machine

Machine

Machine

Aggregator
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 Streaming Computation: 
• Processing a sequence of 𝒏𝒏 data elements “on the fly”
• Limited storage 𝒐𝒐(𝒏𝒏)

 Composable Core-set 
• Divide into chunks
• Compute Core-set for each chunk as it arrives

 Space goes down from 𝒏𝒏 to ≈ 𝒏𝒏
 Composability guarantees a good solution

Application to Streaming Computation

…
Core-set Core-set

𝒏𝒏 𝒏𝒏

Core-set
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Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?
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Given a set of objects, how to pick a few of them while maximizing diversity?
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Diversity Maximization

• Searching

Given a set of objects, how to pick a few of them while maximizing diversity?
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Diversity Maximization

• Searching
• Recommender Systems

Given a set of objects, how to pick a few of them while maximizing diversity?

Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206



Diversity Maximization

• Searching
• Recommender Systems
• Summarization
• Object detection, …

A small subset of items must be selected to represent the larger population

Given a set of objects, how to pick a few of them while maximizing diversity?



Objects 
(documents, images, etc)

Feature 
Vectors

Points in a high dimensional 
space

Modeling the Objects



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points while maximizing “diversity”. 

Diversity Maximization: The Model

𝒌𝒌 = 𝟑𝟑



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the 
picked points is maximized.

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the 
picked points is maximized.

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the 
picked points is maximized.

• NP-hard to approximate 
better than 2

• Greedy gives a constant
approximation

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑



Maximizing the minimum pairwise distance

The Greedy Algorithm provides approximation factor 𝑂𝑂(1)

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an empty set 𝑆𝑆

2. For 𝑘𝑘 iterations, add the point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 that is farthest 
away from 𝑆𝑆.
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Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)



Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟



Maximizing the minimum pairwise distance
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𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 3𝑟𝑟



Maximizing the minimum pairwise distance

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟

𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 2𝑟𝑟



Composable Core-set Setting

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1)



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

• Define mapping 𝜇𝜇 from 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} to 𝑆𝑆 s.t. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑖𝑖 ,𝜇𝜇 𝑜𝑜𝑖𝑖 ≤ 𝑟𝑟

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟



Let 𝑉𝑉1, … ,𝑉𝑉𝑚𝑚 be the set of points, 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖
Let 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚 be their core-sets,                𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖
Let 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} be the optimal solution

Let 𝑟𝑟 be the maximum diversity 𝑟𝑟 = max
𝑖𝑖
𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘(𝑆𝑆𝑖𝑖)

Case 1: one of 𝑆𝑆𝑖𝑖 has diversity as good as the optimum: 𝑟𝑟 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

Case 2: 𝑟𝑟 ≤ 𝑑𝑑𝑑𝑑𝑑𝑑 𝑂𝑂𝑂𝑂𝑂𝑂 /c

• Define mapping 𝜇𝜇 from 𝑂𝑂𝑂𝑂𝑂𝑂 = {𝑜𝑜1, … , 𝑜𝑜𝑘𝑘} to 𝑆𝑆 s.t. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑖𝑖 ,𝜇𝜇 𝑜𝑜𝑖𝑖 ≤ 𝑟𝑟

• Replacing 𝑜𝑜𝑖𝑖 with 𝜇𝜇 𝑜𝑜𝑖𝑖 has still large diversity

• 𝑑𝑑𝑑𝑑𝑑𝑑( 𝜇𝜇 𝑜𝑜𝑖𝑖 ) is approximately as good ad 𝑑𝑑𝑑𝑑𝑑𝑑( 𝑜𝑜𝑖𝑖 )

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑉𝑉 /𝑐𝑐

Goal: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑂𝑂𝑂𝑂𝑂𝑂 /𝑐𝑐
Note: 𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 𝑆𝑆 ≥ 𝑟𝑟



Diversity: Volume



Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked 
points is maximized.



Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked 
points is maximized.



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked 
points is maximized.

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

Convex optimization + randomized 
rounding 𝑂𝑂(𝑒𝑒𝑘𝑘/2) [Nik’15]

 Hard to approximate within 𝛺𝛺(𝑐𝑐𝑘𝑘)
[CMI’13]

Greedy is used in practice, achieves 
𝑘𝑘! [CMI’07]



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝑘𝑘 points s.t. the volume of the parallelepiped spanned by the picked 
points is maximized.

Diversity: Volume

𝒌𝒌 = 𝟐𝟐

 Higher order notion of diversity (not based on pairwise distances only)

Convex optimization + randomized 
rounding 𝑂𝑂(𝑒𝑒𝑘𝑘/2) [Nik’15]

 Hard to approximate within 𝛺𝛺(𝑐𝑐𝑘𝑘)
[CMI’13]

Greedy is used in practice, achieves 
𝑘𝑘! [CMI’07]



The Local Search Algorithm

The Local Search Algorithm produces a composable core-set of size 𝑘𝑘 with

approximation factor 𝑂𝑂 𝑘𝑘 𝑘𝑘 for the volume maximization problem.





Local Search

Local Search

Local Search



Local Search

MAX-k-VOL ≥ 𝟏𝟏
𝒌𝒌𝒌𝒌
⋅MAX-k-VOL

Local Search

Local Search



The Local Search Algorithm 

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



The Local Search Algorithm 

𝒌𝒌 = 𝟑𝟑

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}



To bound the run time

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

Start with a crude approximation 
(Greedy algorithm)

If it increases by at least a factor of  
(1 + 𝜖𝜖)



Checking the condition

𝑞𝑞𝑝𝑝

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t. replacing 𝑞𝑞 with 
𝑝𝑝 increases the volume, then swap them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒒𝒒,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 )

(𝒌𝒌 − 𝟏𝟏)-dimensional Subspace



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Will define shortly



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐



𝒌𝒌-Directional Height

Given 
• a point set 𝑃𝑃, and



𝒌𝒌-Directional Height
𝐺𝐺

Given 
• a point set 𝑃𝑃, and
• a 𝑘𝑘 − 1 -dimensional subspace 𝑮𝑮 (direction), 



𝒌𝒌-Directional Height
𝑝𝑝

ℓ

𝐺𝐺

Given 
• a point set 𝑃𝑃, and
• a 𝑘𝑘 − 1 -dimensional subspace 𝑮𝑮 (direction), 
The 𝒌𝒌-Directional Height of 𝑃𝑃 in the direction of 𝐺𝐺 is defined as 

𝐦𝐦𝐦𝐦𝐦𝐦
𝒑𝒑∈𝑷𝑷

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒑𝒑,𝑮𝑮)



𝜶𝜶 −Core-set for 𝒌𝒌-Directional Height
𝑣𝑣

ℓ

𝑉𝑉:
𝑈𝑈:𝑢𝑢

ℓ
𝛼𝛼

A subset of points that preserve the 𝑘𝑘-directional height for all subspaces 𝐺𝐺 of 
dimension 𝑘𝑘 − 1 at the same time upto an approximation factor 𝛼𝛼.



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.



𝑽𝑽 is the point set
𝑺𝑺 = 𝐿𝐿𝐿𝐿 𝑉𝑉 is the core-set produced by local search

Local Search

𝑽𝑽𝑺𝑺

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.



Need to prove:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Local Search

𝑽𝑽𝑺𝑺

Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.



Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝



𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



𝑝𝑝

𝑮𝑮

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐
𝑝𝑝

𝑮𝑮

≤ 2𝑘𝑘𝑘𝑘
≤ 𝑥𝑥

≤ 𝑥𝑥
≤ 𝑥𝑥

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



𝑯𝑯𝑝𝑝

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)



𝑯𝑯

We can write 𝑝𝑝𝐻𝐻 as linear combination of 
core-set points,

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑝𝑝𝐻𝐻



𝑯𝑯

𝑝𝑝𝐻𝐻

Properties of 
Local Search

We can write 𝑝𝑝𝐻𝐻 as linear combination of 
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



We can write 𝑝𝑝𝐻𝐻 as linear combination of 
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of 
Local Search

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

𝑯𝑯−𝒊𝒊

𝑞𝑞𝑖𝑖



𝑯𝑯
𝑝𝑝𝐻𝐻

We can write 𝑝𝑝𝐻𝐻 as linear combination of 
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of 
Local Search



𝑯𝑯
𝑝𝑝𝐻𝐻

𝑮𝑮

We can write 𝑝𝑝𝐻𝐻 as linear combination of 
core-set points, with small coefficient.

𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

Properties of 
Local Search

Triangle 
Inequality 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌

≤ 𝑘𝑘𝑘𝑘

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥



𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 𝑘𝑘𝑘𝑘

≤ 𝑘𝑘𝑘𝑘

𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝒌𝒌

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌



𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻≤ 2𝑘𝑘𝑘𝑘

Local Search Lemma:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance of the point set to 𝐺𝐺 is 
approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

Goal: 𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem:
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐



Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization

Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝒐𝒐𝟏𝟏

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑
𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟐𝟐

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝒐𝒐𝟑𝟑

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑜𝑜2

𝑜𝑜3

𝑜𝑜1

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑽𝑽 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑺𝑺 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑶𝑶𝑶𝑶𝑶𝑶 = 𝒐𝒐𝟏𝟏, … ,𝒐𝒐𝒌𝒌 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



 Lose a factor of at most 𝛼𝛼 at each iteration 

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}
Since we have a 𝜶𝜶 core-set for 𝑘𝑘-

directional height

Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑜𝑜1, … , 𝑜𝑜𝑘𝑘 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Let 𝑉𝑉 = ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 be the union of the point sets 

Let  𝑆𝑆 = ⋃𝑖𝑖 𝑆𝑆𝑖𝑖 be the union of core-sets

Let 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑜𝑜1, … , 𝑜𝑜𝑘𝑘 ⊂ 𝑉𝑉 be the optimal subset of points maximizing the volume

𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑂𝑂𝑂𝑂𝑂𝑂

For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

• Let 𝑞𝑞𝑖𝑖 ∈ 𝑆𝑆 be the point that is farthest away from 𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆∖ 𝑜𝑜𝑖𝑖

• 𝑆𝑆𝑆𝑆𝑆𝑆 ← 𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑞𝑞𝑖𝑖 ∖ {𝑜𝑜𝑖𝑖}

 Lose a factor of at most 𝛼𝛼 at each iteration 

 Total approximation factor 𝛼𝛼𝑘𝑘

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 composable core-set for volume maximization



Local Search Lemma
Local Search gives a 𝟐𝟐𝟐𝟐 −approximate core-set for k-directional height.

Height-Volume Lemma
Any 𝜶𝜶 core-set for 𝒌𝒌-directional height gives a 𝜶𝜶𝒌𝒌 core-set for volume maximization

Theorem
Local Search produces a 𝑂𝑂(𝑘𝑘)𝑘𝑘 core-set for volume maximization.

𝜶𝜶 = 𝟐𝟐𝟐𝟐
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