Lecture /

TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago
Spring 2021

Instructor: Sepideh Mahabadi



Announcement

 The schedule has condensed

1 Project presentations are May 24 and 26
[ First draft of project is due May 24

Jd Homework 1 will be out this week



This Lecture

] Core-sets
1 Farthest point
[ Diversity maximization
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Core-sets: a small subset [/ of the data I/ that represents it well.

» Task specific

-~

.

Convex Hull is a 1-core-set for Diameter
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Example Applications

* The algorithm takes too much time to run on the data
* Compress the data, summarization

* Low storage

* Low communication

* Can be used in other massive data models
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* Given a point set P € R? find a core-set S, s.t. for any query point g,
* Far(q,P)/a < Far(q,S) < Far(q, P)
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* Given a point set P € R? find a core-set S, s.t. for any query point g,
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Maintain Distance to Farthest Point (1-center)

* Given a point set P € R? find a core-set S, s.t. for any query point g,
* Far(q,P)/a < Far(q,S) < Far(q, P)

* The points are on one line (two extreme points)
* The query is anywhere (same holds)
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* Given a point set P € R? find a core-set S, s.t. for any query point g,
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* General setting? Better approximation?
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* Given a point set P € R? find a core-set S, s.t. for any query point g,
* Far(q,P)/a < Far(q,S) < Far(q, P)

* General setting?
* Impose a grid of side length er

* For each non-empty cell, keep one point in the core-set (I

. 1\¢
e Size of core-set: (—)

€

* Error: additive erv'd which is (1 + €) approximation for
constant dimension
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Maintain Distance to Farthest Point (1-center)

* Given a point set P € R? find a core-set S, s.t. for any query point g,
* Far(q,P)/a < Far(q,S) < Far(q, P)

* General setting?

* Cover the unit sphere with vectors v; with separation
angle at most €

0
* Project all points to closest line ®, > o
* Use 1-dimensional exact core-set

* Size (i)d_l

* Error: each point is dis-located at most r sine = re



Generic Notion

* Weak Core-set (approximates the optimal solution)
 Strong Core-set (approximates any solution)

* Can be a weighted subset

» Additional information (not necessarily the subset)
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Composable Core-sets

Core-sets with composability property:
“The union of core-sets is a core-set for the union”
» Let f be an optimization function
» Multiple data sets V4, ---,V,,, and their core-sets U, < V,---,U,, < V,,,
= f(U;U--UU,) approximates f(V{U:--UV,,) by a factor a




a —Composable Core-sets

Core-sets with composability property:
“The union of core-sets is a core-set for the union”
> Let f be an optimization function

» Multiple data sets V4, ---,V,,, and their core-sets U, < V,---,U,, < V,,,

= f(U;U--UU,) approximates f(V{U:--UV,,) by




Having a composable core-set for a task, automatically gives algorithms in

several massive data processing models for the same task.

Streaming
Algorithm

Distributed/Parallel
(e.g. Map-reduce)

Run-time
improvement



Application: Distributed/Parallel Systems (e.g.
Map-Reduce)

J Multiple Machines
= Each holding part of the data

1 Each machine computes a composable core-set and sends it to the coordinator
» Composability guarantees a good solution

» Total communication is low

Machine

Machine

Aggregator PSolution

Machine

Hi




Application to Streaming Computation

d Streaming Computation:
Processing a sequence of n data elements “on the fly”
Limited storage
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Application to Streaming Computation

d Streaming Computation:

* Processing a sequence of n data elements “on the fly”
* Limited storage o(n)

(1 Composable Core-set
* Divide into chunks
 Compute Core-set for each chunk as it arrives

» Space goes down from n to =

» Composabili rantees a_ 8000 solutlon
< e

Vn Vn
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Given a set of objects, how to pick a few of them while maximizing diversity?

* Searching Go gl a Q # 0 @

Al Images News Videos Maps More Settings Tools Collections  SafeSearch v

g e type ‘ baby @ rainforest @ xjl @ animal

Jaguar Sedans, SUVs and Sports Cars Jaguar Sedans, SUVs and Sports Cars ... Jaguar - Wikipedia Jaguar Sedans, SUVs and Sports Cars ... Jaguar XJ — Supercharged Luxury Sedan ...
arusa.c juarusa.corr e k lia a 0 al ]
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Given a set of objects, how to pick a few of them while maximizing diversity?

e Searching - .

About Angus U.S. Senate: States in the. Marco Rubio - Wikipedia U.S. Senate: States in the. What every Republican senator has said Brian Schatz - Wikipedia Alessandra Biaggi | NY State Senate Mitt Romney - Wikipedia
king.senate.gov senate.gov en.wikipedia.org senate.gov pbs.org en.wikipedia.org nysenate.gov en.wikipedia.org

U.S. Senate: Barack Ob.. Minnesota State Senate Senator Todd Young (@Se... Dan Sullivan (U.S. sena.. Georgia's Got A New Senator While ... Tennessee State Senat... Chuck Grassley, second-oldest senator . Senate Elections 2020: Why Nobod...
senate.gov senate.mn twitter.com en.wikipedia.org fivethirtyeight.com nytimes.com nbcnews.com fortune.com




Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

Save to Pocket

e Searching

100 leading practising scientists ...
timeshighereducation.com

Opinion: Can Prizes Help Women Shatter ... Male scientists more likely to describe...

the-scientist.com

Freelance Revolution: Meet Kolabtree

forbes.com

Scientists Rises, Pew Poll Shows ...

the-scientist.com

Scientist - Wikipedia
independent.co.uk

en.wikipedia.org

Ak

Image Gallery of Mad Scientist Pictures

thoughtco.com

It's a Great Time for the Lif...

psmag.com

| want to be a scientist. What will ... most trust in scientists ...

theglobeandmail.com weforum.org

A message for our scientists - The ... image. image-p

auckland.ac.nz

———— ==
— — | — !

shutterstock.com

Advice for Young Scientists: Be a ...

Scientist as a Young Man ... Scientist.com | World's Leading Al ... How to spot bogus science's..  research into medieval poop ...

Opinion: Scientists have failed to ...



Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

e Searching

 Recommender Systems

Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206



Diversity Maximization

Given a set of objects, how to pick a few of them while maximizing diversity?

Searching

Recommender Systems

Summarization

Object detection, ...

A small subset of items must be selected to represent the larger population



Modeling the Objects

4 ) 4 )
Objects Feature Points in a high dimensional
(documents, images, etc) Vectors space
N —




Diversity Maximization: The Model

Input: a set of n vectors V < R? and a parameter & < d,

Goal: pick k points while maximizing “diversity”.
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Input: a set of n vectors V < R? and a parameter & < d,

Goal: pick k points s.t. the minimum pairwise distance of the

picked points is maximized.

7Y




Minimum Pairwise Distance

Input: a set of n vectors V < R? and a parameter & < d,

Goal: pick k points s.t. the minimum pairwise distance of the

picked points is maximized.

* NP-hard to approximate k=3
better than 2 O

* Greedy gives a constant

7Y

approximation




Maximizing the minimum pairwise distance

l The Greedy Algorithm provides approximation factor O(1) l

Input: a set I/ of n points and a parameter

1. Start with an empty set S

2. For k iterations, add the point p € /' \ S that is farthest
away from 5.

N———
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Maximizing the minimum pairwise distance

Let r be the diversity of S, i.e., min dist(qq,q,)
ql)qZES

Observation: For any pointp € V, we have dist(p,S) <r
e 3qg € Ssuchthatdist(p,q) <r

k=3



Composable Core-set Setting

(" )
The Greedy Algorithm produces a composable core-set of

size k with approximation factor O (1)

N —————————————————
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Let V3, ..., V;,, be the set of points, V=U;V;

Let Sy, ..., S,,, be their core-sets, S=U;S; Goal: div, (S) = div, (V) /c

Let Opt = {0y, ..., 0, } be the optimal solution Goal: divy (S) = divy(Opt)/c

Note: div,(S) = r

Let 7 be the maximum diversity r = max div (S;)
Case 1: one of S; has diversity as good as the optimum: r > div(0Opt)/c
Case 2: r < div(0Opt)/c

»  Define mapping u from Opt = {04, ..., 0y} to S s.t. dist(o;, u(0;)) < r
* Replacing o; with u(o;) has still large diversity

o div({u(o;)}) is approximately as good ad div({o;})
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Input: a set of 1 vectors V < R? and a parameter k < d,

Goal: pick k points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.
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Diversity: Volume

Input: a set of 1 vectors V < R? and a parameter k < d,

Goal: pick k points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

(J Convex optimization + randomized

rounding 0(e*/?) [Nik'15] !
O Hard to approximate within 2(c*) k=2 LN
[CMI"13] °q
dGreedy is used in practice, achieves
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Diversity: Volume

Input: a set of and a parameter 1 < d,

Goal: pick k points s.t. the volume of the parallelepiped spanned by the picked
points is maximized.

(J Convex optimization + randomized

rounding 0(e*/?) [Nik'15] !
O Hard to approximate within 2(c*) k=2 o0
[CMI"13] °q il
dGreedy is used in practice, achieves M[MMMHH
k! [ CMI'O7] o

1 Higher order notion of diversity (not based on pairwise distances only)



The Local Search Algorithm

The Local Search Algorithm produces a composable core-set of with

for the volume maximization problem.






Local Search

Local Search

Local Search

1]




Local Search

Local Search

Local Search

1]

MAX-k-VOL [ ] 2 % . MAX-k-VOL [



The Local Search Algorithm

Input: a set I/ of n points and a parameter
1. Start with an arbitrary subset of k points

2. While there exists a point and s.t. replacing g with
p increases the volume, then swap them, i.e.,
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The Local Search Algorithm

Input: a set I/ of n points and a parameter
1. Start with an arbitrary subset of k points

2. While there exists a point and s.t. replacing g with
p increases the volume, then swap them, i.e.,



To bound the run time

Start with a crude approximation

Input: a set I/ of 1 points : (Greedy algorithm)

1. Start with an arbitrary subset of k points S © V/

2. While there existsa pointp € I/ \ Sand g € 5 s.t. replacing g with
p increases the volume, then swap them, i.e., S = S U {p} \ {q}

If it increases by at least a factor of
(1+¢€)




Checking the condition

Input: a set I/ of n points and a parameter &

1. Start with an arbitrary subset of k points S © VV

2. While there existsa pointp € I/ \ Sand g € 5 s.t. replacing g with

p increases the volume, then swap them, i.e.,, 5 = S U {p}\ {g}

)

X

dist(p, Hs\(q) > dist(q, Hs\(g})

N
P q
=

ii (k — 1)-dimensional Subspace l

\



Local Search Lemma
Local Search gives a 2k —approximate core-set for k-directional height.

I Will define shortly l
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Local Search gives a 2k —approximate core-set for k-directional height.
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Height-Volume Lemma
Any o core-set for k-directional height gives a ™ core-set for volume maximization
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Local Search Lemma

Local Search gives a 2k —approximate core-set for k-directional height.
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L

Height-Volume Lemma

Any o core-set for k-directional height gives a ™ core-set for volume maximization
. A

k




Local Search Lemma

Local Search gives a 2/ —approximate core-set for k-directional height.
\ A

o

Height-Volume Lemma

Any o core-set for k-directional height gives a o core-set for volume maximization
A\ A
a =2k
4 A
Theorem

Local Search produces a O(k)¥ core-set for volume maximization.
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k-Directional Height

Given

e a point set P, and

* a (k — 1)-dimensional subspace G (direction),

The k-Directional Height of P in the direction of G is defined as
r}r)ngpx dist(p, G)



a —Core-set for k-Directional Height

V: @
U: @

A subset of points that preserve the k-directional height for G of
dimension k — 1 upto an approximation factor «a.



Local Search Lemma
Local Search gives a 2k —approximate core-set for k-directional height.
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Local Search Lemma

Local Search gives a 2k —approximate core-set for k-directional height.
\

S V

» V is the point set
» S = LS(V) is the core-set produced by local search
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Need to prove:
For any (k — 1)-dimensional subspace G

1
. -1 .
- max dist(q,G) = o ax dist(p, G)
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We can write py as linear combination of
core-set points,

vk
Pu = Lij=1%iq;
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Local Search gives a 2/ —approximate core-set for k-directional height.
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Height-Volume Lemma

k

Any o core-set for k-directional height gives a ™ core-set for volume maximization

a=2k

4 )
Theorem:
Local Search produces a O(k)¥ core-set for volume maximization.
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Any « core-set for k-directional height gives a «
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composable core-set for volume maximization
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Let V = U; V; be the union of the point sets

Let S = U;S; be the union of core-sets

Let Opt = {04, ..., 04} € V be the optimal subset of points maximizing the volume

Sol « Opt
Fori=1tok

* Letg; € S be the point that is fz
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> Lose a factor of at most a at each iteration

~

Since we have a o core-set for k-
directional height



Height-Volume Lemma
Any for gives a " composable core-set for volume maximization

Let V = U; V; be the union of the point sets

Let S = U;S; be the union of core-sets

Let Opt = {04, ..., 0} € V be the optimal subset of points maximizing the volume

Sol « Opt O 0
Fori=1tok ° ¢ O
O
* Letg; € S be the point that is farthest away from Hg,p\ (5 ©
®

* Sol « SoluU{qg;}\ {o;} -

> Lose a factor of at most a at each iteration

> Total approximation factor a”®



Local Search Lemma

Local Search gives a 2/ —approximate core-set for k-directional height.
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Height-Volume Lemma

Any o core-set for k-directional height gives a o core-set for volume maximization
A\ A
a =2k
4 A
Theorem

Local Search produces a O(k)¥ core-set for volume maximization.
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