Lecture 7

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

Announcement

- ☐ The schedule has condensed
- ☐ Project presentations are May 24 and 26
- ☐ First draft of project is due May 24
- ☐ Homework 1 will be out this week

This Lecture

- ☐ Core-sets
- ☐ Farthest point
- ☐ Diversity maximization

Core-sets: a small subset U of the data V that represents it well.

Core-sets: a small subset U of the data V that represents it well.

Core-sets: a small subset *U* of the data *V* that represents it well.

Solving the problem over core-set *U*

Solving the problem over dataset *V* (approximately)

Core-sets: a small subset U of the data V that represents it well.

> Task specific

Solving the problem over core-set *U*

Solving the problem over dataset *V* (approximately)

 α -Core-sets: a small subset U of the data V that represents it well.

> Task specific

Solving the problem over core-set *U*

Solving the problem over dataset *V* (approximately)

$$\approx \frac{1}{\alpha}$$

Core-sets: a small subset *U* of the data *V* that represents it well.

> Task specific

Convex Hull is a 1-core-set for Diameter

Example Applications

- The algorithm takes too much time to run on the data
- Compress the data, summarization
- Low storage
- Low communication
- Can be used in other massive data models

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

• The points are on one line

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

The points are on one line (two extreme points)

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$
- The points are on one line (two extreme points)
- The query is anywhere (same holds)

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - O(1)-approximation is easy
 - Take any point $p_1 \in P$ and the farthest to it $p_2 \in P$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$
- General setting?
 - O(1)-approximation is easy
 - Take any point $p_1 \in P$ and the farthest to it $p_2 \in P$
 - Let $r = dist(p_1, p_2)$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$
- General setting?
 - O(1)-approximation is easy
 - Take any point $p_1 \in P$ and the farthest to it $p_2 \in P$
 - Let $r = dist(p_1, p_2)$
 - $Far(q,S) \ge r/2$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$
- General setting?
 - O(1)-approximation is easy
 - Take any point $p_1 \in P$ and the farthest to it $p_2 \in P$
 - Let $r = dist(p_1, p_2)$
 - $Far(q,S) \ge r/2$
 - $Far(q, P) \le dist(q, p_1) + r \le 2r$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

General setting? Better approximation?

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - Impose a grid of side length ϵr
 - For each non-empty cell, keep one point in the core-set

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - Impose a grid of side length ϵr
 - For each non-empty cell, keep one point in the core-set
 - Size of core-set: $\left(\frac{1}{\epsilon}\right)^d$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - Impose a grid of side length ϵr
 - For each non-empty cell, keep one point in the core-set
 - Size of core-set: $\left(\frac{1}{\epsilon}\right)^d$
 - Error: additive $\epsilon r\sqrt{d}$ which is $(1+\epsilon)$ approximation for constant dimension

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$
- General setting?
 - Cover the unit sphere with vectors v_i with separation angle at most ϵ
 - Project all points to closest line
 - Use 1-dimensional exact core-set
 - Size $\left(\frac{1}{\epsilon}\right)^{d-1}$
 - Error: each point is dis-located at most $r \sin \epsilon \approx r\epsilon$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - Cover the unit sphere with vectors v_i with separation angle at most ϵ
 - Project all points to closest line
 - Use 1-dimensional exact core-set
 - Size $\left(\frac{1}{\epsilon}\right)^{d-1}$
 - Error: each point is dis-located at most $r \sin \epsilon \approx r\epsilon$

- Given a point set $P \in \mathbb{R}^d$ find a core-set S, s.t. for any query point q,
- $Far(q, P)/\alpha \le Far(q, S) \le Far(q, P)$

- General setting?
 - Cover the unit sphere with vectors v_i with separation angle at most ϵ
 - Project all points to closest line
 - Use 1-dimensional exact core-set
 - Size $\left(\frac{1}{\epsilon}\right)^{d-1}$
 - Error: each point is dis-located at most $r \sin \epsilon \approx r\epsilon$

Generic Notion

- Weak Core-set (approximates the optimal solution)
- Strong Core-set (approximates any solution)
- Can be a weighted subset
- Additional information (not necessarily the subset)

Core-sets with composability property:

Core-sets with composability property:

- \triangleright Let f be an optimization function
- \triangleright Multiple data sets V_1, \dots, V_m

Core-sets with composability property:

- \triangleright Let f be an optimization function
- \succ Multiple data sets V_1, \dots, V_m and their core-sets $U_1 \subset V_1, \dots, U_m \subset V_m$,

Core-sets with composability property:

- \triangleright Let f be an optimization function
- \succ Multiple data sets V_1, \dots, V_m and their core-sets $U_1 \subset V_1, \dots, U_m \subset V_m$,

Core-sets with composability property:

- \triangleright Let f be an optimization function
- \triangleright Multiple data sets V_1, \dots, V_m and their core-sets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - $f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor α

lpha —Composable Core-sets

Core-sets with composability property:

- \triangleright Let f be an optimization function
- ightharpoonup Multiple data sets V_1, \dots, V_m and their core-sets $U_1 \subset V_1, \dots, U_m \subset V_m$,
 - $lacksquare f(U_1 \cup \cdots \cup U_m)$ approximates $f(V_1 \cup \cdots \cup V_m)$ by a factor lpha

$$f\left(\begin{array}{c} \vdots \\ \alpha \end{array}\right) \approx \frac{1}{\alpha} f\left(\begin{array}{c} \vdots \\ \alpha \end{array}\right)$$

Having a **composable core-set** for a task, **automatically** gives **algorithms** in **several** massive data processing **models** for the same task.

Application: Distributed/Parallel Systems (e.g. Map-Reduce)

- ☐ Multiple Machines
 - Each holding part of the data
- ☐ Each machine computes a composable core-set and sends it to the coordinator
- Composability guarantees a good solution
- > Total communication is low

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives

- ☐ Streaming Computation:
 - Processing a sequence of n data elements "on the fly"
 - Limited storage o(n)
- ☐ Composable Core-set
 - Divide into chunks
 - Compute Core-set for each chunk as it arrives
- Space goes down from n to $\approx \sqrt{n}$
- Composability guarantees a good solution

 Core-set

 Core-set

 Core-set

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

- Searching
- Recommender Systems

Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206

Given a set of objects, how to pick a few of them while maximizing diversity?

- Searching
- Recommender Systems
- Summarization
- Object detection, ...

A small subset of items must be selected to represent the larger population

Modeling the Objects

Objects (documents, images, etc)

Feature Vectors

Points in a high dimensional space

Diversity Maximization: The Model

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points while maximizing "diversity".

Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the minimum pairwise distance of the picked points is maximized.

Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the minimum pairwise distance of the picked points is maximized.

Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick *k* points s.t. the minimum pairwise distance of the picked points is maximized.

- NP-hard to approximate better than 2
- Greedy gives a constant approximation

The Greedy Algorithm provides approximation factor O(1)

Input: a set V of n points and a parameter k

- 1. Start with an empty set S
- 2. For k iterations, add the point $p \in V \setminus S$ that is farthest away from S.

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation: For any point $p \in V$, we have $dist(p, S) \leq r$

• $\exists q \in S \text{ such that } dist(p,q) \leq r$

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation: For any point $p \in V$, we have $dist(p, S) \leq r$

• $\exists q \in S$ such that $dist(p,q) \leq r$

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation: For any point $p \in V$, we have $dist(p, S) \leq r$

• $\exists q \in S \text{ such that } dist(p,q) \leq r$

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation: For any point $p \in V$, we have $dist(p, S) \leq r$

• $\exists q \in S$ such that $dist(p,q) \leq r$

Composable Core-set Setting

The Greedy Algorithm produces a composable core-set of

size k with approximation factor O(1)

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let V_1, \dots, V_m be the set of points,

 $V = \bigcup_i V_i$

Let S_1, \dots, S_m be their core-sets,

 $S = \bigcup_i S_i$

Goal: $div_k(S) \ge div_k(V)/c$

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$ Goal: $div_k(S) \ge div_k(V)/c$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Let S_1, \dots, S_m be their core-sets,

 $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Let r be the maximum diversity $r = \max_{i} div_k(S_i)$

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Note: $div_k(S) \ge r$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Let r be the maximum diversity $r = \max_{i} div_k(S_i)$

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Note: $div_k(S) \ge r$

Case 1: one of S_i has diversity as good as the optimum: $r \ge div(Opt)/c$

Let S_1, \dots, S_m be their core-sets,

 $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Note: $div_k(S) \ge r$

Let r be the maximum diversity $r = \max_{i} div_k(S_i)$

Case 1: one of S_i has diversity as good as the optimum: $r \ge div(Opt)/c$

Case 2: $r \leq div(Opt)/c$

Let S_1, \dots, S_m be their core-sets,

 $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Note: $div_k(S) \ge r$

Let r be the maximum diversity $r = \max_{i} div_k(S_i)$

Case 1: one of S_i has diversity as good as the optimum: $r \ge div(Opt)/c$

Case 2: $r \leq div(Opt)/c$

Define mapping μ from $Opt = \{o_1, ..., o_k\}$ to S s.t. $dist(o_i, \mu(o_i)) \le r$

Let S_1, \dots, S_m be their core-sets,

 $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Goal: $div_k(S) \ge div_k(V)/c$

Goal: $div_k(S) \ge div_k(Opt)/c$

Note: $div_k(S) \ge r$

Let r be the maximum diversity $r = \max_{i} div_k(S_i)$

Case 1: one of S_i has diversity as good as the optimum: $r \ge div(Opt)/c$

Case 2: $r \leq div(Opt)/c$

- Define mapping μ from $Opt = \{o_1, ..., o_k\}$ to S s.t. $dist(o_i, \mu(o_i)) \le r$
- Replacing o_i with $\mu(o_i)$ has still large diversity
- $div(\{\mu(o_i)\})$ is approximately as good ad $div(\{o_i\})$

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the **volume of the parallelepiped** spanned by the picked points is maximized.

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the **volume of the parallelepiped** spanned by the picked points is maximized.

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the **volume of the parallelepiped** spanned by the picked points is maximized.

- □ Convex optimization + randomized rounding $O(e^{k/2})$ [Nik'15]
- lacktriangle Hard to approximate within $\Omega(c^k)$ [CMI'13]
- Greedy is used in practice, achieves k! [CMI'07]

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the **volume of the parallelepiped** spanned by the picked points is maximized.

- □ Convex optimization + randomized rounding $O(e^{k/2})$ [Nik'15]
- \square Hard to approximate within $\Omega(c^k)$ [CMI'13]
- Greedy is used in practice, achieves k! [CMI'07]

☐ Higher order notion of diversity (not based on pairwise distances only)

The Local Search Algorithm produces a composable core-set of size k with approximation factor $O(k)^k$ for the volume maximization problem.

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

To bound the run time

Input: a set V of n points a

Start with a crude approximation (Greedy algorithm)

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

If it increases by at least a factor of $(1+\epsilon)$

Checking the condition

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing q with p increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

Local Search gives a 2k —approximate core-set for k-directional height.

Will define shortly

Local Search gives a 2k —approximate core-set for k-directional height.

Height-Volume Lemma

Any α core-set for k-directional height gives a α^k core-set for volume maximization

Local Search gives a 2k —approximate core-set for k-directional height.

Height-Volume Lemma

Any α core-set for k-directional height gives a α^k core-set for volume maximization

Local Search gives a 2k —approximate core-set for k-directional height.

Height-Volume Lemma

Any α core-set for k-directional height gives a α^k core-set for volume maximization

$$\alpha = 2k$$

Theorem

Local Search produces a $O(k)^k$ core-set for volume maximization.

k-Directional Height

Given

• a point set *P*, and

k-Directional Height

Given

- a point set *P*, and
- a (k-1)-dimensional subspace G (direction),

k-Directional Height

Given

- a point set P, and
- a (k-1)-dimensional subspace G (direction),

The k-Directional Height of P in the direction of G is defined as

$$\max_{p \in P} dist(p, G)$$

α —Core-set for k-Directional Height

A subset of points that preserve the k-directional height for all subspaces G of dimension k-1 at the same time upto an approximation factor α .

Local Search gives a 2k —approximate core-set for k-directional height.

Local Search gives a 2k —approximate core-set for k-directional height.

- > V is the point set
- $\triangleright S = LS(V)$ is the core-set produced by local search

Local Search gives a 2k —approximate core-set for k-directional height.

Need to prove:

For any (k-1)-dimensional subspace G

$$\max_{q \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Goal: $d(p,G) \leq 2kx$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

We can write p_H as linear combination of core-set points,

$$p_H = \sum_{i=1}^k \alpha_i q_i$$

We can write p_H as linear combination of core-set points, with small coefficient.

$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. $\text{all } |\alpha_i| \le 1$

We can write p_H as linear combination of core-set points, with **small coefficient**.

$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

We can write p_H as linear combination of core-set points, with small coefficient.

$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

We can write p_H as linear combination of core-set points, with small coefficient.

$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Triangle Inequality

 $d(p_H,G) \leq kx$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

$$d(p, p_H) \leq kx$$

$$d(p_H,G) \leq kx$$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Goal: $d(p,G) \leq 2kx$

Local Search gives a 2k —approximate core-set for k-directional height.

Height-Volume Lemma

Any α core-set for k-directional height gives a α^k core-set for volume maximization

$$\alpha = 2k$$

Theorem:

Local Search produces a $O(k)^k$ core-set for volume maximization.

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

 $Sol \leftarrow Opt$ For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1 \text{ to } k$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1 \text{ to } k$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

 $Sol \leftarrow Opt$ For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

$$Sol \leftarrow Opt$$

$$For i = 1 to k$$

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is fa
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Since we have a α core-set for k-directional height

 \triangleright Lose a factor of at most α at each iteration

Any α core-set for k-directional height gives a α^k composable core-set for volume maximization

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For
$$i = 1$$
 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

- \triangleright Lose a factor of at most α at each iteration
- \triangleright Total approximation factor α^k

Local Search gives a 2k —approximate core-set for k-directional height.

Height-Volume Lemma

Any α core-set for k-directional height gives a α^k core-set for volume maximization

$$\alpha = 2k$$

Theorem

Local Search produces a $O(k)^k$ core-set for volume maximization.