Lecture 6

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

Proving Lower Bounds in the streaming model

- Communication Complexity
- Index Problem + example
- Set Disjointness + example
- Gap Hamming Problem + example
- Set Cover Lower Bounds (if enough time)

- Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$
- The goal is to compute a function $f(x_A, x_B)$
- What is the minimum communication required between Alice and Bob

- Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$, edges of a graph are partitioned between Alice and Bob
- The goal is to compute a function $f(x_A, x_B)$, compute MST
- What is the minimum communication required between Alice and Bob (how many bits)

- Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$
- The goal is to compute a function $f(x_A, x_B)$
- What is the minimum communication required between Alice and Bob (how many bits)
 - One round

- Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$
- The goal is to compute a function $f(x_A, x_B)$
- What is the minimum communication required between Alice and Bob (how many bits)
 - One round
 - Multiple rounds

 Single pass streaming algorithm with memory usage s, gives a one round Communication Complexity Protocol with total communication s

- Single pass streaming algorithm with memory usage s, gives a one round Communication Complexity Protocol with total communication s
 - p-pass streaming with s bits of space yields a protocol with total cc (2p 1)s

- Single pass streaming algorithm with memory usage s, gives a one round Communication Complexity Protocol with total communication s
 - p-pass streaming with s bits of space yields a protocol with total cc (2p 1)s
- Any lower bound on the total communication in the CC model, leads to a lower bound on the space usage of any streaming algorithm for the same problem

•
$$\Omega(s)$$
 LB of CC in $(2p-1)$ rounds $\rightarrow \Omega(\frac{s}{p})$ LB on space of p-pass streaming

- Communication Cost of a protocol : worst case (over all possible inputs) number of bits required to transmit
- Communication Complexity: Best possible (over all protocols) Communication cost one can achieve
- Multi party communication with t players
 - Streaming algorithm with s bits space, yields a protocol with total communication s(t-1)
- Lower bound of *one-round* multi party with *t players*
 - $\Omega(L)$ LB for total communication, implies $\Omega(L/t)$ LB on space complexity of streaming algorithms
- Randomized Communication Complexity
 - Randomized protocol with public randomness, constant success probability
- Distributional Communication Complexity
 - Inputs of interests are sampled from a given distribution μ

This Lecture

Proving Lower Bounds in the streaming model

- Communication Complexity
- Index Problem + example
- Set Disjointness + example
- Gap Hamming Problem + example
- Set Cover Lower Bounds (if enough time)

The Index Problem

- Alice has a sequence of n bits $x \in \{0,1\}^n$
- Bob has an index $i \in [n]$
- Goal is to output x(i)
- One-way (det.) communication complexity of index problem is $\Omega(n)$
 - Suppose Alice sends less than n bits.
 - Then there are two different strings $x_1, x_2 \in \{0,1\}^n$ for which the message from Alice to Bob is the same.
 - If bob queries the bit which is different in x₁ and x₂, he receives the same answer which is a contradiction.

The Index Problem

- Alice has a sequence of n bits $x \in \{0,1\}^n$
- Bob has an index $i \in [n]$
- Goal is to output x(i)
- One-way (deterministic) communication complexity of index problem is $\Omega(n)$
- One-way (randomized) communication complexity of index problem is $\Omega(n)$

Streaming Lower Bound for Connectivity using the Index Problem

Given *edges* of a graph in the streaming fashion, decide if it is connected.

Reduction from Index Problem

- Alice has a sequence of n bits $x \in \{0,1\}^n$
- She builds a graph with a node $s \cup \{v_1, \dots, v_n\}$ where $(s, v_i) \in E$ iff $x_i = 1$.
- Bob has an index $i \in [n]$
- He adds a vertex t and connect it to all v_i but v_i and connects it to s
- Checking connectivity implies knowing x_i

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

- *m* locations on a circle corresponding to Alice's bits
- n/m points on each location if the corresponding bit is 1, otherwise no point

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

- *m* locations on a circle corresponding to Alice's bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding *i*-th point to find out Alice's bit

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

- *m* locations on a circle corresponding to Alice's bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding *i*-th point to find out Alice's bit

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

- *m* locations on a circle corresponding to Alice's bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding *i*-th point to find out Alice's bit
- Total additive error is $O(\frac{n}{m} \cdot \frac{1}{m^2})$

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

Instance

 $\Omega(\epsilon^{-3})$

- *m* locations on a circle corresponding to Alice's bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding *i*-th point to find out Alice's bit
- Total additive error is $O(\frac{n}{m} \cdot \frac{1}{m^2})$
- Thus achieving error $O(n\epsilon)$ requires space

Index Problem: Alice has *m* bits. Bob has an index *i*. Bob wants to know whether the *i*th bit of Alice is 0 or 1.

• This requires $\Omega(m)$ space

Improvement

- Peel the instance and figure out all the bits
- This allows us to encode more bits
- This improves the lower bound to $\Omega(\epsilon^{-\frac{3}{5}})$

Index Problem

- It only works for one way protocols
- Bob can easily send $O(\log n)$ bits to Alice
- Does not work for a general communication protocol (only one-way)

This Lecture

Proving Lower Bounds in the streaming model

- Communication Complexity
- Index Problem + example
- Set Disjointness + example
- Gap Hamming Problem + example
- Set Cover Lower Bounds (if enough time)

Set Disjointness

- Alice and Bob each have a bit string $x_A, x_B \in \{0,1\}^n$
- Goal: Decide if they are disjoint or not, i.e., $\exists i: x_A(i) = x_B(i) = 1$
- Total communication required between Alice and Bob is $\Omega(n)$

Multi Party Set Disjointness

- There are *t* parties
- Each hold a bit string $\in \{0,1\}^n$
- For each index *i*, there is either no party, one party, or all parties with that bit equal to 1.

Question: Is there an index *i* included by all parties?

• Total Communication required between all parties is $\Omega(n/t)$

Frequency Moment Problem

• Given a stream S of items i_1, \dots, i_m where each item belongs to [n]k-th moment of S is defined as $F_k(S) = x_1^k + \dots + x_n^k$,

where x_i is the number of times *j* appears in the stream S

Streaming Frequency Moment LB using Set Disjointness

1 2 3 4 5 6

- Reduction from *t*-party set disjointness with bit string of length *n*
- Each player *i* generates S_i , a set of indices contained by *i*
- The final stream is $S = S_1, ..., S_t$
 - {4, 1,4,5, 2,4, 4}
- • Claim. If all indices are contained by 0 or 1 party, then $F_k(S) \leq n$. *Proof.* $F_k(S) = (x_1^k + x_2^k + \dots + x_n^k) \le n$ (x_i denotes the number of times index i appears in S; $\forall i, x_i \in \{0,1\}$)
- Claim. If an index contained by all parties, then $F_k(S) \ge t^k$. *Proof.* $F_k(S) = (x_1^k + x_2^k + \dots + x_n^k) \ge t^k \quad (\exists i, x_i = t)$
- \rightarrow if $t^k > 2n$, then a 2-approx. of F_k solves t-party set disjointness with bit string of length n

An s-space streaming 2-approximation of $F_k \xrightarrow{\text{yields}} s(t-1)$ bit protocol of t-party set disjointness with bit string of length n $\Omega(n/t)$ CC of t-party set disjointness(n) \rightarrow 2-approximation streaming alg. of F_k requires $\Omega\left(\frac{n}{t^2}\right) = \Omega(n^{1-\frac{2}{k}})$ bits space

This Lecture

Proving Lower Bounds in the streaming model

- Communication Complexity
- Index Problem + example
- Set Disjointness + example
- Gap Hamming Problem + example
- Set Cover Lower Bounds (if enough time)

Gap Hamming Problem

- Alice and Bob each have a bit string $x_A, x_B \in \{0,1\}^n$
- Goal: Compute the Hamming distance between x_A and x_B
- Computing Hamming distance within an additive error of \sqrt{n} requires $\Omega(n)$ communication (e.g., deciding if $H(x_A, x_B) \ge \frac{n}{2} + \sqrt{n}$ or $H(x_A, x_B) \le \frac{n}{2} \sqrt{n}$)

Streaming LB for Distinct Elements using Gap Hamming

- Reduction from Hamming distance between x_A and x_B
 - S_A : the indices of 1-bit in Alice's string
 - S_B : the indices of 1-bit in Bob's string

Observation. $2F_0(S) = |x_A| + |x_B| + \Delta(x_A, x_B)$

Hamming distance is hard even if we know both x_A and x_A have exactly $(\frac{n}{2})$ 1s.

Claim. $(1 + \epsilon)$ -approx. of DE, approximate Hamming distance within $\frac{\epsilon (n + \Delta (x_A + x_B))}{2} \le n\epsilon$

Hence, for $\epsilon \approx 1/\sqrt{n}$, any $(1 + \epsilon)$ -approx. of DE has space complexity $\Omega(1/\epsilon^2)$

This Lecture

Proving Lower Bounds in the streaming model

- Communication Complexity
- Index Problem + example
- Set Disjointness + example
- Gap Hamming Problem + example
- Set Cover Lower Bounds (if enough time)

Lower bound: single pass

- Have seen that O(1) passes can reduce space requirements
- What can(not) be done in one pass?
- We show that distinguishing between k = 2 and k = 3 requires $\widetilde{\Omega}$ (*mn*) space

Many vs One Set-Disjointness

- Two sets cover U iff their complements are disjoint
- Consider the following one-way communication complexity problem:
 - Alice: sets S_1, \ldots, S_m
 - Bob: set S_B
 - Question: is S_B disjoint from any of S_i 's ?

The randomized one-round communication complexity of Many vs. One Set-Disjointness is $\Omega(mn)$ if error probability is 1/poly(m).

Many vs One Set-Disjointness

The randomized one-round communication complexity of Many vs. One Set-Disjointness is $\Omega(mn)$ if error probability is 1/poly(m).

- Alice's sets are selected *uniformly* at random
- There exist poly(m) sets S_B such that if Bob learns answers to all of them, he can recover all S_i's with high probability
- Bob can recover mn random bits from o(mn) bits of communication -> contradiction

Recovering Alice's Collection

- Recovery procedure
 - Suppose that Bob has a set S_B that is disjoint from *exactly* one S_i (we do not know which one)
 - Call it a "good seed" for S_i
 - Then Bob queries all extensions $S_B \cup \{e\}$ to recover S_i
- Bob's queries:
 - A random "seed" of size $c \log m$ is disjoint from exactly one S_i w.p. $m^{-O(c)}$
 - Try *m^{0(c)}* times
- Recover all S_i

