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This Lecture

 Proving Lower Bounds in the streaming model
• Communication Complexity
• Index Problem + example
• Set Disjointness + example
• Gap Hamming Problem + example
• Set Cover Lower Bounds (if enough time)



Communication Complexity 
Model



Model

• Two people Alice and Bob, each of them gets an input, e.g., 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈
0,1 𝑛𝑛

• The goal is to compute a function 𝑓𝑓(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)
• What is the minimum communication required between Alice and 

Bob

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵



Model

• Two people Alice and Bob, each of them gets an input, e.g., 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈
0,1 𝑛𝑛, edges of a graph are partitioned between Alice and Bob

• The goal is to compute a function 𝑓𝑓(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵), compute MST
• What is the minimum communication required between Alice and 

Bob (how many bits)

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵



Model

• Two people Alice and Bob, each of them gets an input, e.g., 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈
0,1 𝑛𝑛

• The goal is to compute a function 𝑓𝑓(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)
• What is the minimum communication required between Alice and 

Bob (how many bits)
• One round

𝑚𝑚(𝑥𝑥𝐴𝐴)
𝑥𝑥𝐴𝐴

𝑥𝑥𝐵𝐵

𝑓𝑓𝑓(𝑚𝑚(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)



Model

• Two people Alice and Bob, each of them gets an input, e.g., 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈
0,1 𝑛𝑛

• The goal is to compute a function 𝑓𝑓(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)
• What is the minimum communication required between Alice and 

Bob (how many bits)
• One round
• Multiple rounds

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵



Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

𝑚𝑚(𝑥𝑥𝐴𝐴)
𝑥𝑥𝐴𝐴

𝑥𝑥𝐵𝐵

𝑓𝑓𝑓(𝑚𝑚(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)



Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

Memory(Alg)
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𝑓𝑓𝑓(𝑚𝑚(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)



Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

Memory(Alg)

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵

𝑓𝑓𝑓(𝑚𝑚(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)



Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

Memory(Alg)

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵

𝑓𝑓𝑓(𝑚𝑚(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)



Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

Memory(Alg)

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵

Output



Communication Complexity

• Single pass streaming algorithm with memory usage 𝑠𝑠, gives 
a one round Communication Complexity Protocol with total 
communication 𝑠𝑠

Memory(Alg)

𝑥𝑥𝐴𝐴
𝑥𝑥𝐵𝐵

Output



Communication Complexity

• Single pass streaming algorithm with memory usage 𝑠𝑠, gives 
a one round Communication Complexity Protocol with total 
communication 𝑠𝑠

• 𝑝𝑝-pass streaming with 𝑠𝑠 bits of space yields a protocol with total cc 2𝑝𝑝 − 1 𝑠𝑠



Communication Complexity

• Single pass streaming algorithm with memory usage 𝑠𝑠, gives 
a one round Communication Complexity Protocol with total 
communication 𝑠𝑠

• 𝑝𝑝-pass streaming with 𝑠𝑠 bits of space yields a protocol with total cc 2𝑝𝑝 − 1 𝑠𝑠

• Any lower bound on the total communication in the CC model, leads 
to a lower bound on the space usage of any streaming algorithm for 
the same problem

• Ω(𝑠𝑠) LB of CC in (2𝑝𝑝 − 1) rounds →Ω(𝑠𝑠
𝑝𝑝

) LB on space of 𝑝𝑝-pass streaming



Communication Complexity

• Communication Cost of a protocol : worst case (over all possible inputs) number of bits 
required to transmit

• Communication Complexity: Best possible (over all protocols) Communication cost one 
can achieve

• Multi party communication with t players
• Streaming algorithm with 𝑠𝑠 bits space, yields a protocol with total communication 𝑠𝑠(𝑡𝑡 − 1)

• Lower bound of one-round multi party with 𝑡𝑡 players
• Ω(𝐿𝐿) LB for total communication, implies Ω(𝐿𝐿/𝑡𝑡) LB on space complexity of streaming algorithms

• Randomized Communication Complexity
• Randomized protocol with public randomness, constant success probability

• Distributional Communication Complexity
• Inputs of interests are sampled from a given distribution 𝜇𝜇



This Lecture

 Proving Lower Bounds in the streaming model
• Communication Complexity
• Index Problem + example
• Set Disjointness + example
• Gap Hamming Problem + example
• Set Cover Lower Bounds (if enough time)



The Index Problem

• Alice has a sequence of 𝑛𝑛 bits 𝑥𝑥 ∈ 0,1 𝑛𝑛

• Bob has an index 𝑖𝑖 ∈ [𝑛𝑛]
• Goal is to output 𝑥𝑥(𝑖𝑖)

• One-way (det.) communication complexity of index problem is Ω(𝑛𝑛)
• Suppose Alice sends less than 𝑛𝑛 bits.
• Then there are two different strings 𝑥𝑥1, 𝑥𝑥2 ∈ 0,1 𝑛𝑛 for which the message 

from Alice to Bob is the same.
• If bob queries the bit which is different in 𝑥𝑥1 and 𝑥𝑥2, he receives the same 

answer which is a contradiction.



The Index Problem

• Alice has a sequence of 𝑛𝑛 bits 𝑥𝑥 ∈ 0,1 𝑛𝑛

• Bob has an index 𝑖𝑖 ∈ [𝑛𝑛]
• Goal is to output 𝑥𝑥(𝑖𝑖)

• One-way (deterministic) communication complexity of index problem 
is Ω 𝑛𝑛

• One-way (randomized) communication complexity of index problem 
is Ω(𝑛𝑛)



Streaming Lower Bound for Connectivity using the Index 
Problem

Given edges of a graph in the streaming fashion, decide if it is connected.

Reduction from Index Problem
• Alice has a sequence of 𝑛𝑛 bits 𝑥𝑥 ∈ 0,1 𝑛𝑛

• She builds a graph with a node 𝑠𝑠 ∪ 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 where 𝑠𝑠, 𝑣𝑣𝑖𝑖 ∈ 𝐸𝐸 iff 𝑥𝑥𝑖𝑖 = 1.
• Bob has an index 𝑖𝑖 ∈ 𝑛𝑛
• He adds a vertex 𝑡𝑡 and connect it to all 𝑣𝑣𝑗𝑗 but 𝑣𝑣𝑖𝑖 and connects it to 𝑠𝑠
• Checking connectivity implies knowing 𝑥𝑥𝑖𝑖



2dim SVM Lower Bound

Instance
• 𝒎𝒎 locations on a circle corresponding to 

Alice’s bits
• 𝒏𝒏/𝒎𝒎 points on each location if the 

corresponding bit is 1, otherwise no point

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space

𝑛𝑛
𝑚𝑚

points



2dim SVM Lower Bound

Instance
• 𝒎𝒎 locations on a circle corresponding to 

Alice’s bits
• 𝒏𝒏/𝒎𝒎 points on each location if the 

corresponding bit is 1, otherwise no point
• Bob can query the hyperplane excluding 𝑖𝑖-th 

point to find out Alice’s bit

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space

𝑛𝑛
𝑚𝑚

points



2dim SVM Lower Bound

Instance
• 𝒎𝒎 locations on a circle corresponding to 

Alice’s bits
• 𝒏𝒏/𝒎𝒎 points on each location if the 

corresponding bit is 1, otherwise no point
• Bob can query the hyperplane excluding 𝑖𝑖-th 

point to find out Alice’s bit

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space

𝑛𝑛
𝑚𝑚

points𝑂𝑂(1/𝑚𝑚)



2dim SVM Lower Bound

Instance
• 𝒎𝒎 locations on a circle corresponding to 

Alice’s bits
• 𝒏𝒏/𝒎𝒎 points on each location if the 

corresponding bit is 1, otherwise no point
• Bob can query the hyperplane excluding 𝑖𝑖-th 

point to find out Alice’s bit
• Total additive error is O(𝒏𝒏

𝒎𝒎
⋅ 𝟏𝟏
𝒎𝒎𝟐𝟐)

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space

𝑛𝑛
𝑚𝑚

points

𝑶𝑶(
𝟏𝟏
𝒎𝒎𝟐𝟐)



2dim SVM Lower Bound

Instance
• 𝒎𝒎 locations on a circle corresponding to 

Alice’s bits
• 𝒏𝒏/𝒎𝒎 points on each location if the 

corresponding bit is 1, otherwise no point
• Bob can query the hyperplane excluding 𝑖𝑖-th 

point to find out Alice’s bit
• Total additive error is O(𝒏𝒏

𝒎𝒎
⋅ 𝟏𝟏
𝒎𝒎𝟐𝟐)

• Thus achieving error 𝑂𝑂 𝑛𝑛𝑛𝑛 requires space 

𝛀𝛀(𝝐𝝐−
𝟏𝟏
𝟑𝟑)

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space

𝑛𝑛
𝑚𝑚

points

𝑶𝑶(
𝟏𝟏
𝒎𝒎𝟐𝟐)



2dim SVM Lower Bound

Improvement
• Peel the instance and figure out all the bits
• This allows us to encode more bits

• This improves the lower bound to Ω(𝑛𝑛−
3
5)

Index Problem: Alice has 𝒎𝒎 bits. Bob has an index 𝒊𝒊. Bob wants to know whether the 
𝑖𝑖th bit of Alice is 0 or 1.
• This requires Ω(𝑚𝑚) space



Index Problem

• It only works for one way protocols
• Bob can easily send 𝑂𝑂(log𝑛𝑛) bits to Alice 
• Does not work for a general communication protocol (only one-way)



This Lecture

 Proving Lower Bounds in the streaming model
• Communication Complexity
• Index Problem + example
• Set Disjointness + example
• Gap Hamming Problem + example
• Set Cover Lower Bounds (if enough time)



Set Disjointness

• Alice and Bob each have a bit string 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈ 0,1 𝑛𝑛

• Goal: Decide if they are disjoint or not, i.e.,  ∃𝑖𝑖: 𝑥𝑥𝐴𝐴 𝑖𝑖 = 𝑥𝑥𝐵𝐵 𝑖𝑖 = 1
• Total communication required between Alice and Bob is Ω(𝑛𝑛)



Multi Party Set Disjointness

• There are 𝑡𝑡 parties
• Each hold a bit string ∈ 0,1 𝑛𝑛

• For each index 𝑖𝑖, there is either no party, one party, or all parties with that bit equal to 1.

0 0 0 1 0 0
1 0 0 1 1 0
0
0

1 0 1
0 0 1

0 0
0 0

Question: Is there an index 𝑖𝑖 included by all parties?
• Total Communication required between all parties is Ω(𝑛𝑛/𝑡𝑡)

player 1
player 2
player 3
player 4

1 2 3 4 5 6



Frequency Moment Problem

• Given a stream S of items 𝑖𝑖1,⋯ , 𝑖𝑖𝑚𝑚 where each item belongs to [𝑛𝑛]
𝑘𝑘-th moment of S is defined as 

𝐹𝐹𝑘𝑘 𝑆𝑆 = 𝑥𝑥1𝑘𝑘 + ⋯+ 𝑥𝑥𝑛𝑛𝑘𝑘,
where 𝑥𝑥𝑗𝑗 is the number of times 𝑗𝑗 appears in the stream S



Streaming Frequency Moment LB using Set 
Disjointness
• Reduction from 𝑡𝑡-party set disjointness with bit string of length 𝑛𝑛
• Each player 𝑖𝑖 generates 𝑆𝑆𝑖𝑖 , a set of indices contained by 𝑖𝑖
• The final stream is 𝑆𝑆 = 𝑆𝑆1 , … , 𝑆𝑆𝑡𝑡

• {4, 1, 4, 5, 2, 4, 4}

• Claim. If all indices are contained by 0 or 1 party, then 𝐹𝐹𝑘𝑘 𝑆𝑆 ≤ 𝑛𝑛.
Proof. 𝐹𝐹𝑘𝑘 𝑆𝑆 = 𝑥𝑥1𝑘𝑘 + 𝑥𝑥2𝑘𝑘 + ⋯+ 𝑥𝑥𝑛𝑛𝑘𝑘 ≤ 𝑛𝑛 (𝑥𝑥𝑖𝑖 denotes the number of times index 𝑖𝑖 appears in 𝑆𝑆; ∀𝑖𝑖, 𝑥𝑥𝑖𝑖 ∈ {0,1})

• Claim. If an index contained by all parties, then 𝐹𝐹𝑘𝑘 𝑆𝑆 ≥ 𝑡𝑡𝑘𝑘.
Proof. 𝐹𝐹𝑘𝑘 𝑆𝑆 = 𝑥𝑥1𝑘𝑘 + 𝑥𝑥2𝑘𝑘 + ⋯+ 𝑥𝑥𝑛𝑛𝑘𝑘 ≥ 𝑡𝑡𝑘𝑘 (∃𝑖𝑖, 𝑥𝑥𝑖𝑖 = 𝑡𝑡)

→ if 𝑡𝑡𝑘𝑘 > 2𝑛𝑛, then a 2-approx. of 𝐹𝐹𝑘𝑘 solves 𝑡𝑡-party set disjointness with bit string of length 𝑛𝑛

An s-space streaming 2-approximation of 𝐹𝐹𝑘𝑘
yields

𝑠𝑠(𝑡𝑡 − 1) bit protocol of 𝑡𝑡-party set disjointness with bit string of length 𝑛𝑛

Ω(𝑛𝑛/𝑡𝑡) CC of 𝑡𝑡-party set disjointness(n) → 2-approximation streaming alg. of 𝐹𝐹𝑘𝑘 requires Ω 𝑛𝑛
𝑡𝑡2

= Ω(𝑛𝑛1−
2
𝑘𝑘) bits space

player 1
player 2
player 3
player 4

1 2 3 4 5 6
0 0 0 1 0 0
1 0 0 1 1 0
0
0

1 0 1
0 0 1

0 0
0 0
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Gap Hamming Problem

• Alice and Bob each have a bit string 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ∈ 0,1 𝑛𝑛

• Goal: Compute the Hamming distance between 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵

• Computing Hamming distance within an additive error of 𝑛𝑛 requires 
Ω(𝑛𝑛) communication (e.g., deciding if 𝐻𝐻 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ≥ 𝑛𝑛

2
+ 𝑛𝑛 or 

𝐻𝐻 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ≤ 𝑛𝑛
2
− 𝑛𝑛)



Streaming LB for Distinct Elements using Gap 
Hamming
• Reduction from Hamming distance between 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵

• 𝑆𝑆𝐴𝐴: the indices of 1-bit in Alice’s string
• 𝑆𝑆𝐵𝐵: the indices of 1-bit in Bob’s string

Observation. 2𝐹𝐹0 𝑆𝑆 = 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 + Δ(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)
Hamming distance is hard even if we know both 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐴𝐴 have exactly (𝑛𝑛

2
) 1s.

Claim. 1 + 𝑛𝑛 -approx. of DE, approximate Hamming distance within 
𝑛𝑛 𝑛𝑛 + Δ 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵

2
≤ 𝑛𝑛𝑛𝑛

Hence, for 𝑛𝑛 ≈ 1/ 𝑛𝑛, any (1 + 𝑛𝑛)-approx. of DE has space complexity Ω(1/𝑛𝑛2)
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Lower bound: single pass
• Have seen that 𝑂𝑂(1) passes can reduce space requirements
• What can(not) be done in one pass?
• We show that distinguishing between 𝑘𝑘 = 2 and 𝑘𝑘 = 3

requires �Ω (𝑚𝑚𝑛𝑛) space



Many vs One Set-Disjointness

• Two sets cover 𝑈𝑈 iff their complements are disjoint
• Consider the following one-way communication complexity problem:

• Alice: sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚
• Bob: set 𝑆𝑆𝐵𝐵
• Question: is 𝑆𝑆𝐵𝐵 disjoint from any of 𝑆𝑆𝑖𝑖’s ?

The randomized one-round communication complexity of Many vs. One Set-
Disjointness is Ω(𝑚𝑚𝑛𝑛) if error probability is 1/poly(m).



Many vs One Set-Disjointness

• Alice’s sets are selected uniformly at random

The randomized one-round communication complexity of Many vs. One Set-
Disjointness is Ω(𝑚𝑚𝑛𝑛) if error probability is 1/poly(m).

𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟏𝟏𝟎𝟎
𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎
𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

⋮
𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

s

• There exist poly(m) sets 𝑆𝑆𝐵𝐵 such that if Bob 
learns answers to all of them, he can recover 
all 𝑆𝑆𝑖𝑖’s with high probability

• Bob can recover 𝑚𝑚𝑛𝑛 random bits from o(𝑚𝑚𝑛𝑛)
bits of communication -> contradiction

𝑚𝑚

𝑛𝑛



Recovering Alice’s Collection

𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟏𝟏𝟎𝟎
𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎
𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

⋮
𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟏𝟏⋯𝟏𝟏𝟎𝟎𝟎𝟎

𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎

s

𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟏𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎⋯𝟎𝟎𝟎𝟎𝟎𝟎• Recover all 𝑆𝑆𝑖𝑖

𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏𝟎𝟎𝟏𝟏⋯𝟎𝟎𝟏𝟏𝟎𝟎

• Bob’s queries: 
• A random “seed” of size 𝑐𝑐𝑐𝑐𝑐𝑚𝑚 is disjoint from 

exactly one 𝑆𝑆𝑖𝑖 w.p. 𝑚𝑚−𝑂𝑂(𝑐𝑐)

• Try 𝑚𝑚𝑂𝑂(𝑐𝑐) times

• Recovery procedure
• Suppose that Bob has a set 𝑆𝑆𝐵𝐵 that is disjoint 

from exactly one 𝑆𝑆𝑖𝑖 (we do not know which one)
• Call it a “good seed” for 𝑆𝑆𝑖𝑖

• Then Bob queries all extensions 𝑆𝑆𝐵𝐵 ∪ {e} to 
recover 𝑆𝑆𝑖𝑖
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