This Lecture

- Proving Lower Bounds in the streaming model
 - Communication Complexity
 - Index Problem + example
 - Set Disjointness + example
 - Gap Hamming Problem + example
 - Set Cover Lower Bounds (if enough time)
Communication Complexity Model
Model

• Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$
• The goal is to compute a function $f(x_A, x_B)$
• What is the minimum communication required between Alice and Bob
Model

• Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$, edges of a graph are partitioned between Alice and Bob
• The goal is to compute a function $f(x_A, x_B)$, compute MST
• What is the minimum communication required between Alice and Bob (how many bits)
Model

• Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$

• The goal is to compute a function $f(x_A, x_B)$

• What is the minimum communication required between Alice and Bob (how many bits)

 • One round
Model

• Two people Alice and Bob, each of them gets an input, e.g., $x_A, x_B \in \{0,1\}^n$
• The goal is to compute a function $f(x_A, x_B)$
• What is the minimum communication required between Alice and Bob (how many bits)
 • One round
 • Multiple rounds
Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol

\[m(x_A) \]

\[f'(m(x_A, x_B)) \]
Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol
Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol
Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol
Communication Complexity

• Streaming algorithm -> Communication Complexity Protocol
Communication Complexity

• Single pass streaming algorithm with memory usage s, gives a one round Communication Complexity Protocol with total communication s
Communication Complexity

- Single pass streaming algorithm with memory usage s, gives a one round Communication Complexity Protocol with total communication s
 - p-pass streaming with s bits of space yields a protocol with total cc $(2p - 1)s$
Communication Complexity

• **Single pass** streaming algorithm with **memory usage** s, gives a one round Communication Complexity Protocol with **total communication** s
 • p-pass streaming with s bits of space yields a protocol with total cc $(2p - 1)s$

• Any lower bound on the total communication in the CC model, leads to a lower bound on the space usage of any streaming algorithm for the same problem
 • $\Omega(s)$ LB of CC in $(2p - 1)$ rounds $\rightarrow \Omega(\frac{s}{p})$ LB on space of p-pass streaming
Communication Complexity

• Communication Cost of a protocol: worst case (over all possible inputs) number of bits required to transmit

• Communication Complexity: Best possible (over all protocols) Communication cost one can achieve

• Multi party communication with t players
 • Streaming algorithm with s bits space, yields a protocol with total communication $s(t - 1)$

• Lower bound of one-round multi party with t players
 • $\Omega(L)$ LB for total communication, implies $\Omega(L/t)$ LB on space complexity of streaming algorithms

• Randomized Communication Complexity
 • Randomized protocol with public randomness, constant success probability

• Distributional Communication Complexity
 • Inputs of interests are sampled from a given distribution μ
This Lecture

- Proving Lower Bounds in the streaming model
 - Communication Complexity
 - Index Problem + example
 - Set Disjointness + example
 - Gap Hamming Problem + example
 - Set Cover Lower Bounds (if enough time)
The Index Problem

• Alice has a sequence of n bits $x \in \{0,1\}^n$
• Bob has an index $i \in [n]$
• Goal is to output $x(i)$

• One-way (det.) communication complexity of index problem is $\Omega(n)$
 • Suppose Alice sends less than n bits.
 • Then there are two different strings $x_1, x_2 \in \{0,1\}^n$ for which the message from Alice to Bob is the same.
 • If Bob queries the bit which is different in x_1 and x_2, he receives the same answer which is a contradiction.
The Index Problem

• Alice has a sequence of n bits $x \in \{0,1\}^n$
• Bob has an index $i \in [n]$
• Goal is to output $x(i)$

• One-way (deterministic) communication complexity of index problem is $\Omega(n)$
• One-way (randomized) communication complexity of index problem is $\Omega(n)$
Streaming Lower Bound for Connectivity using the Index Problem

Given *edges* of a graph in the streaming fashion, decide if it is connected.

Reduction from Index Problem

- Alice has a sequence of n bits $x \in \{0,1\}^n$
- She builds a graph with a node $s \cup \{v_1, \ldots, v_n\}$ where $(s, v_i) \in E$ iff $x_i = 1$.
- Bob has an index $i \in [n]$
- He adds a vertex t and connect it to all v_j but v_i and connects it to s
- Checking connectivity implies knowing x_i
2dim SVM Lower Bound

Index Problem: Alice has m bits. Bob has an index i. Bob wants to know whether the ith bit of Alice is 0 or 1.
- This requires $\Omega(m)$ space

Instance
- m locations on a circle corresponding to Alice’s bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
2dim SVM Lower Bound

Index Problem: Alice has m bits. Bob has an index i. Bob wants to know whether the ith bit of Alice is 0 or 1.
- This requires $\Omega(m)$ space

Instance
- m locations on a circle corresponding to Alice’s bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding i-th point to find out Alice’s bit
2dim SVM Lower Bound

Index Problem: Alice has m bits. Bob has an index i. Bob wants to know whether the ith bit of Alice is 0 or 1.
- This requires $\Omega(m)$ space.

Instance
- m locations on a circle corresponding to Alice’s bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding i-th point to find out Alice’s bit
2dim SVM Lower Bound

Index Problem: Alice has m bits. Bob has an index i. Bob wants to know whether the ith bit of Alice is 0 or 1.
- This requires $\Omega(m)$ space

Instance
- m locations on a circle corresponding to Alice’s bits
- n/m points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding i-th point to find out Alice’s bit
- Total additive error is $O(n/m \cdot \frac{1}{m^2})$
2dim SVM Lower Bound

Index Problem: Alice has \(m \) bits. Bob has an index \(i \). Bob wants to know whether the \(i \)-th bit of Alice is 0 or 1.
- This requires \(\Omega(m) \) space

Instance
- \(m \) locations on a circle corresponding to Alice’s bits
- \(n/m \) points on each location if the corresponding bit is 1, otherwise no point
- Bob can query the hyperplane excluding \(i \)-th point to find out Alice’s bit
- Total additive error is \(O(n/m \cdot 1/m^{2}) \)
- Thus achieving error \(O(n\epsilon) \) requires space \(\Omega(\epsilon^{1/3}) \)
2dim SVM Lower Bound

Index Problem: Alice has \(m \) bits. Bob has an index \(i \). Bob wants to know whether the \(i \)th bit of Alice is 0 or 1.
- This requires \(\Omega(m) \) space

Improvement
- Peel the instance and figure out all the bits
- This allows us to encode more bits
- This improves the lower bound to \(\Omega(\varepsilon^{-3/5}) \)
Index Problem

• It only works for one way protocols
• Bob can easily send $O(\log n)$ bits to Alice
• Does not work for a general communication protocol (only one-way)
This Lecture

- Proving Lower Bounds in the streaming model
 - Communication Complexity
 - Index Problem + example
 - Set Disjointness + example
 - Gap Hamming Problem + example
 - Set Cover Lower Bounds (if enough time)
Set Disjointness

• Alice and Bob each have a bit string $x_A, x_B \in \{0,1\}^n$
• Goal: Decide if they are disjoint or not, i.e., $\exists i: x_A(i) = x_B(i) = 1$
• Total communication required between Alice and Bob is $\Omega(n)$
Multi Party Set Disjointness

• There are t parties
• Each hold a bit string $\in \{0,1\}^n$
• For each index i, there is either no party, one party, or all parties with that bit equal to 1.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>player 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>player 2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>player 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>player 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Question: Is there an index i included by all parties?
• Total Communication required between all parties is $\Omega(n/t)$
Frequency Moment Problem

• Given a stream S of items i_1, \ldots, i_m where each item belongs to $[n]$

k-th moment of S is defined as

$$F_k(S) = x_1^k + \cdots + x_n^k,$$

where x_j is the number of times j appears in the stream S
Streaming Frequency Moment LB using Set Disjointness

- **Reduction from** t-party set disjointness with bit string of length n
- Each player i generates S_i, a set of indices contained by i
- The final stream is $S = S_1, \ldots, S_t$
 - $\{4, 1, 4, 5, 2, 4, 4\}$

Claim. If all indices are contained by 0 or 1 party, then $F_k(S) \leq n$.

*Proof.*** $F_k(S) = (x_1^k + x_2^k + \cdots + x_n^k) \leq n$
(x_i denotes the number of times index i appears in S; $\forall i, x_i \in \{0,1\}$)

Claim. If an index contained by all parties, then $F_k(S) \geq t^k$.

*Proof.*** $F_k(S) = (x_1^k + x_2^k + \cdots + x_n^k) \geq t^k$
($\exists i, x_i = t$)

\rightarrow if $t^k > 2n$, then a 2-approx. of F_k solves t-party set disjointness with bit string of length n

An s-space streaming 2-approximation of $F_k \stackrel{\text{yields}}{\rightarrow} s(t - 1)$ bit protocol of t-party set disjointness with bit string of length n

$\Omega(n/t)$ CC of t-party set disjointness(n) \rightarrow 2-approximation streaming alg. of F_k requires $\Omega \left(\frac{n}{t^2} \right) = \Omega(n^{1 - \frac{2}{k}})$ bits space
This Lecture

- Proving Lower Bounds in the streaming model
 - Communication Complexity
 - Index Problem + example
 - Set Disjointness + example
 - Gap Hamming Problem + example
 - Set Cover Lower Bounds (if enough time)
Gap Hamming Problem

• Alice and Bob each have a bit string $x_A, x_B \in \{0,1\}^n$
• Goal: Compute the Hamming distance between x_A and x_B

• Computing Hamming distance within an additive error of \sqrt{n} requires $\Omega(n)$ communication (e.g., deciding if $H(x_A, x_B) \geq \frac{n}{2} + \sqrt{n}$ or $H(x_A, x_B) \leq \frac{n}{2} - \sqrt{n}$)
Streaming LB for Distinct Elements using Gap Hamming

• Reduction from Hamming distance between x_A and x_B
 • S_A: the indices of 1-bit in Alice’s string
 • S_B: the indices of 1-bit in Bob’s string

Observation. $2F_0(S) = |x_A| + |x_B| + \Delta(x_A, x_B)$

Hamming distance is hard even if we know both x_A and x_A have exactly $\binom{n}{2}$ 1s.

Claim. $(1 + \epsilon)$-approx. of DE, approximate Hamming distance within

$$\frac{\epsilon(n + \Delta(x_A + x_B))}{2} \leq n\epsilon$$

Hence, for $\epsilon \approx 1/\sqrt{n}$, any $(1 + \epsilon)$-approx. of DE has space complexity $\Omega(1/\epsilon^2)$
This Lecture

- Proving Lower Bounds in the streaming model
 - Communication Complexity
 - Index Problem + example
 - Set Disjointness + example
 - Gap Hamming Problem + example
 - Set Cover Lower Bounds (if enough time)
Lower bound: single pass

• Have seen that \(O(1) \) passes can reduce space requirements
• What can(not) be done in one pass?
• We show that distinguishing between \(k = 2 \) and \(k = 3 \) requires \(\tilde{\Omega}(mn) \) space
Many vs One Set-Disjointness

- Two sets cover U iff their complements are disjoint
- Consider the following one-way communication complexity problem:
 - Alice: sets $S_1, ..., S_m$
 - Bob: set S_B
 - Question: is S_B disjoint from any of S_i’s?

The randomized one-round communication complexity of Many vs. One Set-Disjointness is $\Omega(mn)$ if error probability is $1/poly(m)$.
Many vs One Set-Disjointness

The randomized one-round communication complexity of Many vs. One Set-Disjointness is $\Omega(mn)$ if error probability is $1/\text{poly}(m)$.

- Alice’s sets are selected *uniformly* at random
- There exist poly(m) sets S_B such that if Bob learns answers to all of them, he can recover all S_i’s with high probability
- Bob can recover mn random bits from $o(mn)$ bits of communication -> *contradiction*
Recovering Alice’s Collection

• Recovery procedure
 • Suppose that Bob has a set S_B that is disjoint from exactly one S_i (we do not know which one)
 • Call it a “good seed” for S_i
 • Then Bob queries all extensions $S_B \cup \{e\}$ to recover S_i

• Bob’s queries:
 • A random “seed” of size $\log c m$ is disjoint from exactly one S_i w.p. $m^{-O(c)}$
 • Try $m^{O(c)}$ times

• Recover all S_i