Lecture 5

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

Geometric Problems in the Stream

Geometric MST

Model

• Input: Points in $\{1, ..., \Delta\}^d$ are coming in a stream

Model

- Input: Points in $\{1, ..., \Delta\}^d$ are coming in a stream
- Goal: Estimate the cost of the MST using small space
- Dynamic setting (the points might get deleted too)
- Approximation factor $O(d \cdot \log \Delta)$

 \Box Impose a randomly shifted grid (shifted by a vector $\mathbf{s} \in [0, \Delta]^d$)

• Let the cell side be of length ℓ

 \Box Impose a randomly shifted grid (shifted by a vector $\mathbf{s} \in [0, \Delta]^d$)

• Let the cell side be of length ℓ

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- E.g., if $||a b||_{\infty} \ge \ell$ then they will be separated anyways
- $||a b||_{\infty} \le ||a b||_2 \le ||a b||_1 \le \sqrt{d} ||a b||_2 \le d||a b||_{\infty}$

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- Consider nested grids of side lengths $\ell_i \in \{2^i | 0 \le i \le \log \Delta\}$ (all shifted using the same s)

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- Consider nested grids of side lengths $\ell_i \in \{2^i | 0 \le i \le \log \Delta\}$ (all shifted using the same s)

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- Consider nested grids of side lengths $\ell_i \in \{2^i | 0 \le i \le \log \Delta\}$ (all shifted using the same s)

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- Consider nested grids of side lengths $\ell_i \in \{2^i | 0 \le i \le \log \Delta\}$ (all shifted using the same s)
 - Build a tree for them
 - The nodes corresponds to the cells
 - The children of each cell are the cells it contains.
 - Call the nodes at height i (corresponding to non-empty cells in the i-th grid) as $T_i \subseteq G_i$
 - The weight of the edges from T_i to their parents is 2^i for $0 \le i < \log \Delta$

- Let the cell side be of length ℓ
- Consider two points *a* and *b*
- They are separated w.p $\|a b\|_{\infty}/\ell \le p \le \|a b\|_1/\ell$
- Consider nested grids of side lengths $\ell_i \in \{2^i | 0 \le i \le \log \Delta\}$ (all shifted using the same s)
 - Build a tree for them
 - The nodes corresponds to the cells
 - The children of each cell are the cells it contains.
 - Call the nodes at height i (corresponding to non-empty cells in the i-th grid) as $T_i \subseteq G_i$
 - The weight of the edges from T_i to their parents is 2^i for $0 \le i < \log \Delta$
 - This is a 2-HST (Hierarchically Well-separated Tree)
 - Distance from each node to all children are equal
 - Weights on each path down the tree decreases by a factor of at least 2, in each level

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points a and b never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ • (so they will be cut)

- They are separated w.p $||a b||_{\infty}/\ell \le p \le ||a b||_1/\ell$ $||a b||_{\infty} \le ||a b||_2 \le ||a b||_1 \le \sqrt{d} ||a b||_2 \le d||a b||_{\infty}$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points a and b never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ • (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{d}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$

They are separated w.p $||a - b||_{\infty}/\ell \le p \le ||a - b||_1/\ell$ $||a - b||_{\infty} \le ||a - b||_2 \le ||a - b||_1 \le \sqrt{d} ||a - b||_2 \le d||a - b||_{\infty}$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_\infty}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{d}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If a and b are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{a}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{d}} \le d_T(a,b)$ (consider the grid G_i where $2^i \le \|a-b\|_2/\sqrt{d}$)

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{d}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{d}} \le d_T(a,b)$

- $2^i \le \sqrt{d} \cdot ||a b||_2$ • $2^i \ge \sqrt{d} \cdot ||a - b||_2$
- $\mathbb{E}[d_T(a,b)] \leq \sum_{i=\log \Delta}^0 \Pr[a, b \text{ are cut by } G_i| \text{ they are not cut by } G_{j>i}] \cdot 2^{i+2} \leq \sqrt{d} \cdot ||a-b||_2 + C_{j>i}$

 $\sum_{i=\log\Delta}^{\log\sqrt{d}\cdot\|a-b\|_2} \frac{\sqrt{d}\cdot\|a-b\|_2}{2^i} \cdot 2^{i+2} \le \log\Delta \cdot \sqrt{d} \cdot \|a-b\|_2$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{d}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{d}} \le d_T(a,b)$

- $2^i \le \sqrt{d} \cdot ||a b||_2$ • $2^i \ge \sqrt{d} \cdot ||a - b||_2$
- $\mathbb{E}[d_T(a,b)] \leq \sum_{i=\log \Delta}^0 \Pr[a, b \text{ are cut by } G_i| \text{ they are not cut by } G_{j>i}] \cdot 2^{i+2} \leq \sqrt{d} \cdot ||a b||_2 + C_{j>i}$

 $\sum_{i=\log\Delta}^{\log\sqrt{d}\cdot\|a-b\|_2} \frac{\sqrt{d}\cdot\|a-b\|_2}{2^i} \cdot 2^{i+2} \le \log\Delta \cdot \sqrt{d} \cdot \|a-b\|_2$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_{\infty}}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{a}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{d}} \leq d_T(a,b)$

- $2^i \le \sqrt{d} \cdot ||a b||_2$ • $2^i \ge \sqrt{d} \cdot ||a - b||_2$
- $\mathbb{E}[d_T(a,b)] \leq \sum_{i=\log \Delta}^0 \Pr[a, b \text{ are cut by } G_i| \text{ they are not cut by } G_{j>i}] \cdot 2^{i+2} \leq \sqrt{d} \cdot ||a-b||_2 + C_{j>i}$

 $\sum_{i=\log\Delta}^{\log\sqrt{d}\cdot\|a-b\|_2} \frac{\sqrt{d}\cdot\|a-b\|_2}{2^i} \cdot 2^{i+2}$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_\infty}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{a}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{a}} \leq d_T(a,b)$
- $\mathbb{E}[d_T(a,b)] \leq \sum_{i=\log\Delta}^0 \Pr[a, b \text{ are cut by } G_i | \text{they are not cut by } G_{j>i}] \cdot 2^{i+2} \leq \sqrt{d} \cdot ||a-b||_2 + \sum_{i=\log\Delta}^{\log\sqrt{d} \cdot ||a-b||_2} \frac{\sqrt{d} \cdot ||a-b||_2}{2^i} \cdot 2^{i+2} \leq \log\Delta \cdot \sqrt{d} \cdot ||a-b||_2$

 \Box This is a probabilistic embedding of the metric into a collection of trees with distortion of $O(d \log \Delta)$.

- The distance between any two points *a* and *b* never decreases,
- In expectation, each distance does not increase by more than a factor of $O(d \log \Delta)$.
- If *a* and *b* are cut by G_i , i.e., their least common ancestor is at level i + 1, then their distance on the tree is $2(2^{i+1} 1) \approx 2^{i+2}$
- If two points are at distance $||a b||_2 \ge \sqrt{d} \cdot 2^i$, then the probability that they are cut by G_i is at least $\frac{||a b||_\infty}{2^i} \ge \frac{||a b||_2}{\sqrt{d} \cdot 2^i} \ge 1$ (so they will be cut)
- Otherwise if $||a b||_2 \le \frac{2^i}{\sqrt{a}}$, then the probability that they are cut by G_i is at most $\frac{||a b||_1}{2^i} \le \frac{\sqrt{d} \cdot ||a b||_2}{2^i}$
- Otherwise, we have $\frac{2^i}{\sqrt{d}} \le ||a b||_2 \le \sqrt{d} \cdot 2^i$
- $\frac{\|a-b\|_2}{\sqrt{a}} \leq d_T(a,b)$
- $\mathbb{E}[d_T(a,b)] \leq \sum_{i=\log\Delta}^{0} \Pr[a, b \text{ are cut by } G_i | \text{they are not cut by } G_{j>i}] \cdot 2^{i+2} \leq \sqrt{d} \cdot ||a-b||_2 + \sum_{i=\log\Delta}^{\log\sqrt{d} \cdot ||a-b||_2} \frac{\sqrt{d} \cdot ||a-b||_2}{2^i} \cdot 2^{i+2} \leq \log\Delta \cdot \sqrt{d} \cdot ||a-b||_2$
- In general, this is a very useful technique! (we now need to solve the problem over a tree).

Cost of MST

- Goal: find MST on the tree
- Exercise: Cost of MST on the point set $\leq O(d \cdot \log \Delta) \cdot \text{Cost}$ of MST on the HST
- Exercise: Cost of MST can be approximated by $n_i \cdot 2^i$ where n_i is the number of non-empty cells in G_i

- Algorithms: estimate n_i for each i throughout the stream
- Equivalent to the #distinct elements in the stream!
- Total space: $\tilde{O}(1)$

Cost of Minimum Weight Matching

- Goal: estimate the cost of minimum weight matching on the tree
- Intuition: match the points as much as possible inside the cells.
- Exercise: cost of MST can be approximated by $n + \sum_i m_i 2^i$ where m_i is the number of cells in G_i with an odd number of points in them.

- Algorithms: estimate m_i for each i throughout the stream
- Solve the decision version: for a threshold T, decide whether $m_i \leq T/10$ or $m_i \geq T$
- Sample the cells w.p. 1/T and keep a single bit which is the sum of #point in the sampled cells of G_i mod 2.
- Exercise: the above algorithm has a constant prob of success.

Approximating SVM cost

Streaming Algorithms for SVM

Input: a stream of *n* labeled data points $P = \{(p_i, y_i)\}$ where $p_i \in \mathbb{R}^d$ and $y_i \in \{+1, -1\}$

Streaming Algorithms for SVM

Input: a stream of *n* labeled data points $P = \{(p_i, y_i)\}$ where $p_i \in \mathbb{R}^d$ and $y_i \in \{+1, -1\}$

Goal: Find a sketch so that the SVM cost of any hyper-plane can be computed on the fly, i.e.,

- **Given:** $w \in \mathbb{R}^d$, $b \in \mathbb{R}$, compute

 $\sum_{p_i \in P} \max(0, -y_i[\langle p_i, w \rangle - b])$

Remove the labels

• A Data structure for each of +1 and -1 labels separately

Remove the labels

• A Data structure for each of +1 and -1 labels separately

Remove the labels

• A Data structure for each of +1 and -1 labels separately

New Problem: Given a stream of points $p_i \in \mathbb{R}^d$, process them such that given a query hyperplane denoted by w, b, computes

 $\sum_{p \in P} \max\{\langle w, p \rangle - b, 0\}$

Algorithm for 2-dimensions: Naïve algorithm

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Algorithm for 2-dimensions: Naïve algorithm

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

- Approximate $\sum_i Z_i$ where $0 \le Z_i \le \sqrt{2}$
- Sample one of Z_i and report $Z' = n \cdot Z_i$

•
$$\mathbb{E}[Z'] = \sum_{i} \left(\frac{1}{n}\right) \cdot (n \cdot Z_i) = \sum_{i} Z_i$$

•
$$Var(Z') \leq \mathbb{E}[Z'^2] = \sum_i \left(\frac{1}{n}\right) \cdot (n \cdot Z_i)^2 \leq 2n^2$$

- Sample t of them and report the average times n, 1
 - Unbiased estimator
 - Variance $\left(\frac{1}{t}\right) \cdot 2n^2$

•
$$\Pr[|v' - v| \ge \epsilon n] \le \frac{\frac{1}{t} \cdot n^2 \cdot 2}{(\epsilon n)^2} = \frac{2}{\epsilon^2 t}$$

- We need to sample $\Omega(1/\epsilon^2)$
- The error is additive $\epsilon \Delta n$

Algorithm for 2-dimensions: Naïve algorithm

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

- Sketch: Sample and keep $\Omega(1/\epsilon^2)$ points
- Algorithm: Estimate the cost using sampled points (scale them accordingly by n/t)

1

1

Can we improve the space complexity over ϵ^{-2} ?

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Natural Idea:

- Partition to a grid of side length $\sqrt{\epsilon}$
- Keep the mean in each grid and the number of points

Memory is $O(1/\epsilon)$

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Natural Idea:

- Partition to a grid of side length $\sqrt{\epsilon}$
- Keep the mean in each grid and the number of points
- For cells far from the line compute the distance exactly
 - $\langle w, p_1 \rangle b + \langle w, p_2 \rangle b = \langle w, p_1 + p_2 \rangle 2b$

Memory is $O(1/\epsilon)$

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Natural Idea:

- Partition to a grid of side length $\sqrt{\epsilon}$
- Keep the mean in each grid and the number of points
- For cells far from the line compute the distance exactly
 - $\langle w, p_1 \rangle b + \langle w, p_2 \rangle b = \langle w, p_1 + p_2 \rangle 2b$
- For intersecting cells, ignore

Memory is $O(1/\epsilon)$

Error is $O(n\sqrt{\epsilon})$

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Natural Idea:

- Partition to a grid of side length $\sqrt{\epsilon}$
- Keep the mean in each grid and the number of points
- For cells far from the line compute the distance exactly
 - $\langle w, p_1 \rangle b + \langle w, p_2 \rangle b = \langle w, p_1 + p_2 \rangle 2b$
- For intersecting cells, ignore

Memory is $O(1/\epsilon)$

Error is $O(n\sqrt{\epsilon})$

No improvement yet

Given a set of n points on the $[0,1] \times [0,1]$ plane, process them to compute the cost for any line query ℓ

Natural Idea:

- Partition to a grid of side length $\sqrt{\epsilon}$
- Keep the mean in each grid and the number of points
- For cells far from the line compute the distance exactly
 - $\langle w, p_1 \rangle b + \langle w, p_2 \rangle b = \langle w, p_1 + p_2 \rangle 2b$
- For intersecting cells, ignore

Memory is $O(1/\epsilon)$

Error is $O(n\sqrt{\epsilon})$

If a cell has too many points partition further.

Data Structure

• Consider a Quad tree on the set of points of starting with a $\frac{1}{\sqrt{\epsilon}}$ by $\frac{1}{\sqrt{\epsilon}}$ grid

Data Structure

- Consider a Quad tree on the set of points of starting with a $\frac{1}{\sqrt{\epsilon}}$ by $\frac{1}{\sqrt{\epsilon}}$ grid
- If there are many $(\geq n\epsilon)$ points in a cell partition further, until for each cell either
 - Side length is at most *e*
 - Number of points is at most $n\epsilon$

Data Structure

- Consider a Quad tree on the set of points of starting with a $\frac{1}{\sqrt{\epsilon}}$ by $\frac{1}{\sqrt{\epsilon}}$ grid
- If there are many $(\geq n\epsilon)$ points in a cell partition further, until for each cell either
 - Side length is at most *e*
 - Number of points is at most $n\epsilon$

Memory:

- height of the tree is $\log 1/\epsilon$
- Number of Cells is $O\left(\frac{1}{\epsilon}\log 1/\epsilon\right) \approx \epsilon^{-1}$

Data Structure

- Consider a Quad tree on the set of points of starting with a $\frac{1}{\sqrt{\epsilon}}$ by $\frac{1}{\sqrt{\epsilon}}$ grid
- If there are many $(\geq n\epsilon)$ points in a cell partition further, until for each cell either
 - Side length is at most *e*
 - Number of points is at most $n\epsilon$

Error (caused by intersecting cells)

- Cells with large number of points
 - Side Length is $\leq \epsilon$
 - Total Error is *ne*
- Other cells:
 - Side length ℓ , total error at most $\ell \cdot n\epsilon \cdot (1/\ell) = n\epsilon$
 - Sum over all ℓ , the error is $O(n\epsilon \log(1/\epsilon))$

So far

• First Approach (keep the number of points and the mean for each cell of a grid)

• Second Approach (keep the number of points and the mean for each cell of a quad tree)

• Third Approach

Error is $O(n\epsilon^{5/4})$

To improve from ϵ^{-1} to $\epsilon^{-4/5}$

To improve from
$$\epsilon^{-1}$$
 to $\epsilon^{-4/5}$

- For each cell, also keep a random point from the cell, in case of intersection with the line.
 - Don't ignore the intersecting cells, instead use the random point to estimate the cost
- > Why does it help?
 - In expectation we get the correct value for all (including intersecting) cells.
- > By bounding the variance, we can show the improvement.
 - Over multiple cells, the over estimation and under estimations cancel out.

To improve from ϵ^{-1} to $\epsilon^{-4/5}$

- For each cell, also keep a random point from the cell, in case of intersection with the line.
- Take a cell c with side length ℓ that intersects with the line, and let n_c be the number of points in the cell. What is the variance in the cell?
- $Var[n_c \cdot \max\{0, D(r_c, L)\}] \le \sum_{i=1}^{n_c} \left(\frac{1}{n_c}\right) (n_c \cdot \ell)^2 \le (n_c \ell)^2 \le (n\epsilon)^2 \ell^2$
- The variance over all cells with side length ℓ (there are $1/\ell$ of them) is at most $(n\epsilon)^2 \ell$ (since the samples are chosen independently).

To improve from
$$\epsilon^{-1}$$
 to $\epsilon^{-4/5}$

- For each cell, also keep a random point from the cell, in case of intersection with the line.
- Take a cell c with side length ℓ that intersects with the line, and let n_c be the number of points in the cell. What is the variance in the cell?
- $Var[n_c \cdot \max\{0, D(r_c, L)\}] \le \sum_{i=1}^{n_c} \left(\frac{1}{n_c}\right) (n_c \cdot \ell)^2 \le (n_c \ell)^2 \le (n\epsilon)^2 \ell^2$
- The variance over all cells with side length ℓ (there are $1/\ell$ of them) is at most $(n\epsilon)^2 \ell$ (since the samples are chosen independently).
- Sum over different side lengths $\epsilon \leq \ell \leq \sqrt{\epsilon}$, the total variance is $\tilde{O}((n\epsilon)^2 \sqrt{\epsilon})$

To improve from ϵ^{-1} to $\epsilon^{-4/5}$

- For each cell, also keep a random point from the cell, in case of intersection with the line.
- Take a cell c with side length ℓ that intersects with the line, and let n_c be the number of points in the cell. What is the variance in the cell?
- $Var[n_c \cdot \max\{0, D(r_c, L)\}] \le \sum_{i=1}^{n_c} \left(\frac{1}{n_c}\right) (n_c \cdot \ell)^2 \le (n_c \ell)^2 \le (n\epsilon)^2 \ell^2$
- The variance over all cells with side length ℓ (there are $1/\ell$ of them) is at most $(n\epsilon)^2 \ell$ (since the samples are chosen independently).
- Sum over different side lengths $\epsilon \leq \ell \leq \sqrt{\epsilon}$, the total variance is $\tilde{O}((n\epsilon)^2 \sqrt{\epsilon})$
- The standard Deviation is $\tilde{O}(n\epsilon^{\frac{5}{4}})$ which gives a better Chebyshev's inequality.

How to make it work in the streaming model

Challenge: The quad tree partitioning depends on all the data.

Solution: whenever a cell becomes too heavy, partition it further, but only the upcoming points will be assigned to children.