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This Lecture

 Geometric Problems in the Stream



Geometric MST



Model

• Input: Points in 𝟏𝟏, … ,𝚫𝚫 𝒅𝒅 are coming in a stream



Model

• Input: Points in 𝟏𝟏, … ,𝚫𝚫 𝒅𝒅 are coming in a stream
• Goal: Estimate the cost of the MST using small space

• Dynamic setting (the points might get deleted too)
• Approximation factor 𝑂𝑂(𝑑𝑑 ⋅ logΔ)



Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝒔𝒔 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
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Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝒔𝒔 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
• Consider two points 𝑎𝑎 and 𝑏𝑏
• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ
• E.g., if 𝑎𝑎 − 𝑏𝑏 ∞ ≥ ℓ then they will be separated anyways
• 𝑎𝑎 − 𝑏𝑏 ∞ ≤ 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑎𝑎 − 𝑏𝑏 1 ≤ 𝑑𝑑 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑑𝑑 𝑎𝑎 − 𝑏𝑏 ∞ ℓ



Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝑠𝑠 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
• Consider two points 𝑎𝑎 and 𝑏𝑏
• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ

• Consider nested grids of side lengths ℓ𝑖𝑖 ∈ {2𝑖𝑖|0 ≤ 𝑖𝑖 ≤ logΔ} (all shifted 
using the same 𝑠𝑠)

ℓ = 𝟐𝟐𝟎𝟎
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Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝑠𝑠 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
• Consider two points 𝑎𝑎 and 𝑏𝑏
• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ

• Consider nested grids of side lengths ℓ𝑖𝑖 ∈ {2𝑖𝑖|0 ≤ 𝑖𝑖 ≤ logΔ} (all shifted 
using the same 𝑠𝑠) ℓ = 𝟐𝟐𝟐𝟐



Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝑠𝑠 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
• Consider two points 𝑎𝑎 and 𝑏𝑏
• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ

• Consider nested grids of side lengths ℓ𝑖𝑖 ∈ {2𝑖𝑖|0 ≤ 𝑖𝑖 ≤ logΔ} (all shifted 
using the same 𝑠𝑠)

• Build a tree for them
• The nodes corresponds to the cells
• The children of each cell are the cells it contains.
• Call the nodes at height 𝑖𝑖 (corresponding to non-empty cells in the 𝑖𝑖-th grid) as 
𝑇𝑇𝑖𝑖 ⊆ 𝐺𝐺𝑖𝑖

• The weight of the edges from 𝑇𝑇𝑖𝑖 to their parents is 2𝑖𝑖 for 0 ≤ 𝑖𝑖 < logΔ

ℓ
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𝑤𝑤 = 20
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𝑇𝑇1

𝑇𝑇2



Randomly Shifted Grid

 Impose a randomly shifted grid (shifted by a vector 𝑠𝑠 ∈ 0,Δ 𝑑𝑑)
• Let the cell side be of length ℓ
• Consider two points 𝑎𝑎 and 𝑏𝑏
• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ

• Consider nested grids of side lengths ℓ𝑖𝑖 ∈ {2𝑖𝑖|0 ≤ 𝑖𝑖 ≤ logΔ} (all shifted 
using the same 𝑠𝑠)

• Build a tree for them
• The nodes corresponds to the cells
• The children of each cell are the cells it contains.
• Call the nodes at height 𝑖𝑖 (corresponding to non-empty cells in the 𝑖𝑖-th grid) as 

𝑇𝑇𝑖𝑖 ⊆ 𝐺𝐺𝑖𝑖
• The weight of the edges from 𝑇𝑇𝑖𝑖 to their parents is 2𝑖𝑖 for 0 ≤ 𝑖𝑖 < logΔ

• This is a 2-HST (Hierarchically Well-separated Tree)
• Distance from each node to all children are equal
• Weights on each path down the tree decreases by a factor of at least 2, in each level

𝑤𝑤 = 21

𝑤𝑤 = 20

𝑇𝑇0

𝑇𝑇1

𝑇𝑇2



Randomly Shifted Grid

 This is a probabilistic embedding of the metric into a collection of trees with distortion of 𝑂𝑂(𝑑𝑑 logΔ).
• The distance between any two points 𝑎𝑎 and 𝑏𝑏 never decreases, 
• In expectation, each distance does not increase by more than a factor of 𝑂𝑂(𝑑𝑑 logΔ).

• If 𝑎𝑎 and 𝑏𝑏 are cut by 𝐺𝐺𝑖𝑖, i.e., their least common ancestor is at level 𝑖𝑖 + 1, then their distance on the tree is 2 2𝑖𝑖+1 − 1 ≈ 2𝑖𝑖+2



Randomly Shifted Grid

 This is a probabilistic embedding of the metric into a collection of trees with distortion of 𝑂𝑂(𝑑𝑑 logΔ).
• The distance between any two points 𝑎𝑎 and 𝑏𝑏 never decreases, 
• In expectation, each distance does not increase by more than a factor of 𝑂𝑂(𝑑𝑑 logΔ).

• If 𝑎𝑎 and 𝑏𝑏 are cut by 𝐺𝐺𝑖𝑖, i.e., their least common ancestor is at level 𝑖𝑖 + 1, then their distance on the tree is 2 2𝑖𝑖+1 − 1 ≈ 2𝑖𝑖+2

• If two points are at distance 𝑎𝑎 − 𝑏𝑏 2 ≥ 𝑑𝑑 ⋅ 2𝑖𝑖, then the probability that they are cut by 𝐺𝐺𝑖𝑖 is at least  𝑎𝑎−𝑏𝑏 ∞
2𝑖𝑖

≥ 𝑎𝑎−𝑏𝑏 2
𝑑𝑑⋅2𝑖𝑖

≥ 1
(so they will be cut)

• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ

• 𝑎𝑎 − 𝑏𝑏 ∞ ≤ 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑎𝑎 − 𝑏𝑏 1 ≤ 𝑑𝑑 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑑𝑑 𝑎𝑎 − 𝑏𝑏 ∞
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2𝑖𝑖

≥ 𝑎𝑎−𝑏𝑏 2
𝑑𝑑⋅2𝑖𝑖

≥ 1
(so they will be cut)

• Otherwise if 𝑎𝑎 − 𝑏𝑏 2 ≤
2𝑖𝑖

𝑑𝑑
, then the probability that they are cut by 𝐺𝐺𝑖𝑖 is at most 𝑎𝑎−𝑏𝑏 1

2𝑖𝑖
≤ 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2

2𝑖𝑖

• They are separated w.p 𝑎𝑎 − 𝑏𝑏 ∞/ℓ ≤ 𝑝𝑝 ≤ 𝑎𝑎 − 𝑏𝑏 1/ℓ
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 This is a probabilistic embedding of the metric into a collection of trees with distortion of 𝑂𝑂(𝑑𝑑 logΔ).
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, then the probability that they are cut by 𝐺𝐺𝑖𝑖 is at most 𝑎𝑎−𝑏𝑏 1
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≤ 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2
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• Otherwise, we have 2
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≤ 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑑𝑑 ⋅ 2𝑖𝑖



Randomly Shifted Grid

 This is a probabilistic embedding of the metric into a collection of trees with distortion of 𝑂𝑂(𝑑𝑑 logΔ).
• The distance between any two points 𝑎𝑎 and 𝑏𝑏 never decreases, 
• In expectation, each distance does not increase by more than a factor of 𝑂𝑂(𝑑𝑑 logΔ).
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≤ 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2

2𝑖𝑖
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𝑑𝑑
≤ 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑑𝑑 ⋅ 2𝑖𝑖

• 𝑎𝑎−𝑏𝑏 2
𝑑𝑑

≤ 𝑑𝑑𝑇𝑇(𝑎𝑎, 𝑏𝑏) (consider the grid 𝐺𝐺𝑖𝑖 where 2𝑖𝑖 ≤ 𝑎𝑎 − 𝑏𝑏 2/ 𝑑𝑑)
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2𝑖𝑖
≤ 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2
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𝑑𝑑
≤ 𝑎𝑎 − 𝑏𝑏 2 ≤ 𝑑𝑑 ⋅ 2𝑖𝑖

• 𝑎𝑎−𝑏𝑏 2
𝑑𝑑

≤ 𝑑𝑑𝑇𝑇(𝑎𝑎, 𝑏𝑏)

• 𝔼𝔼 𝑑𝑑𝑇𝑇 𝑎𝑎, 𝑏𝑏 ≤ ∑𝑖𝑖=log Δ
0 Pr[𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝐺𝐺_𝑖𝑖|𝑐𝑐𝑡𝑎𝑎𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 𝐺𝐺𝑗𝑗>𝑖𝑖] ⋅ 2𝑖𝑖+2 ≤ 𝑑𝑑 ⋅ 𝑎𝑎 − 𝑏𝑏 2 +

∑𝑖𝑖=log Δ
log 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2 𝑑𝑑⋅ 𝑎𝑎−𝑏𝑏 2

2𝑖𝑖
⋅ 2𝑖𝑖+2 ≤ logΔ ⋅ 𝑑𝑑 ⋅ 𝑎𝑎 − 𝑏𝑏 2

• 2𝑖𝑖 ≤ 𝑑𝑑 ⋅ 𝑎𝑎 − 𝑏𝑏 2

• 2𝑖𝑖 ≥ 𝑑𝑑 ⋅ 𝑎𝑎 − 𝑏𝑏 2
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• Otherwise if 𝑎𝑎 − 𝑏𝑏 2 ≤
2𝑖𝑖

𝑑𝑑
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• In general, this is a very useful technique! (we now need to solve the problem over a tree).



Cost of MST

• Goal: find MST on the tree

• Exercise: Cost of MST on the point set ≤ 𝑂𝑂 𝑑𝑑 ⋅ logΔ ⋅ Cost of MST on the HST

• Exercise: Cost of MST can be approximated by 𝑛𝑛𝑖𝑖 ⋅ 2𝑖𝑖 where 𝑛𝑛𝑖𝑖 is the number of non-empty cells in 𝐺𝐺𝑖𝑖

• Algorithms: estimate 𝑛𝑛𝑖𝑖 for each 𝑖𝑖 throughout the stream 
• Equivalent to the #distinct elements in the stream!

• Total space: �𝑂𝑂(1)



Cost of Minimum Weight Matching

• Goal: estimate the cost of minimum weight matching on the tree
• Intuition: match the points as much as possible inside the cells.

• Exercise: cost of MST can be approximated by 𝑛𝑛 + ∑𝑖𝑖𝑚𝑚𝑖𝑖2𝑖𝑖 where 𝑚𝑚𝑖𝑖 is the number of cells in 𝐺𝐺𝑖𝑖 with 
an odd number of points in them.

• Algorithms: estimate 𝑚𝑚𝑖𝑖 for each 𝑖𝑖 throughout the stream 
• Solve the decision version: for a threshold 𝑇𝑇, decide whether 𝑚𝑚𝑖𝑖 ≤ 𝑇𝑇/10 or 𝑚𝑚𝑖𝑖 ≥ 𝑇𝑇
• Sample the cells w.p. 1/𝑇𝑇 and keep a single bit which is the sum of #point in the sampled cells of 𝐺𝐺𝑖𝑖

mod 2.
• Exercise: the above algorithm has a constant prob of success.



Approximating SVM cost



Streaming Algorithms for SVM

Input: a stream of  𝑛𝑛 labeled data points 𝑃𝑃 = { 𝑝𝑝𝑖𝑖 ,𝑏𝑏𝑖𝑖 } where 
𝑝𝑝𝑖𝑖 ∈ ℝ𝑑𝑑 and 𝑏𝑏𝑖𝑖 ∈ {+1,−1}
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Streaming Algorithms for SVM

Input: a stream of  𝑛𝑛 labeled data points 𝑃𝑃 = { 𝑝𝑝𝑖𝑖 ,𝑏𝑏𝑖𝑖 } where 
𝑝𝑝𝑖𝑖 ∈ ℝ𝑑𝑑 and 𝑏𝑏𝑖𝑖 ∈ {+1,−1}

Goal: Find a sketch so that the SVM cost of any hyper-plane 
can be computed on the fly, i.e., 

- Given: 𝑤𝑤 ∈ ℝ𝑑𝑑 , 𝑏𝑏 ∈ ℝ, compute 

∑𝑝𝑝𝑖𝑖∈𝑃𝑃 max(0,−𝑏𝑏𝑖𝑖 𝑝𝑝𝑖𝑖 ,𝑤𝑤 − 𝑏𝑏 )
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Remove the labels

• A Data structure for each of +1 and -1 labels separately
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Remove the labels

• A Data structure for each of +1 and -1 labels separately
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Remove the labels

• A Data structure for each of +1 and -1 labels separately

New Problem: Given a stream of points 𝑝𝑝𝑖𝑖 ∈ ℝ𝑑𝑑, process them such that given a 
query hyperplane denoted by 𝑤𝑤, 𝑏𝑏 , computes

∑𝑝𝑝∈𝑃𝑃 max{ 𝑤𝑤,𝑝𝑝 − 𝑏𝑏, 0}

𝒘𝒘



Algorithm for 2-dimensions: Naïve algorithm

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ
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Algorithm for 2-dimensions: Naïve algorithm

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ

1

1

• Approximate ∑𝑖𝑖 𝑍𝑍𝑖𝑖 where 0 ≤ 𝑍𝑍𝑖𝑖 ≤ 2
• Sample one of 𝑍𝑍𝑖𝑖 and report 𝑍𝑍′ = 𝑛𝑛 ⋅ 𝑍𝑍𝑖𝑖

• 𝔼𝔼 𝑍𝑍′ = ∑𝑖𝑖
1
𝑛𝑛
⋅ (𝑛𝑛 ⋅ 𝑍𝑍𝑖𝑖) = ∑𝑖𝑖 𝑍𝑍𝑖𝑖

• 𝑉𝑉𝑎𝑎𝑎𝑎 𝑍𝑍′ ≤ 𝔼𝔼 𝑍𝑍′2 = ∑𝑖𝑖
1
𝑛𝑛
⋅ 𝑛𝑛 ⋅ 𝑍𝑍𝑖𝑖 2 ≤ 2𝑛𝑛2

• Sample 𝑐𝑐 of them and report the average times 𝑛𝑛, 
• Unbiased estimator
• Variance 1

𝑡𝑡
⋅ 2𝑛𝑛2

• Pr 𝑣𝑣′ − 𝑣𝑣 ≥ 𝜖𝜖𝑛𝑛 ≤
1
𝑡𝑡⋅𝑛𝑛

2⋅2

𝜖𝜖𝑛𝑛 2 = 2
𝜖𝜖2𝑡𝑡

• We need to sample Ω(1/𝜖𝜖2)
• The error is additive 𝜖𝜖Δ𝑛𝑛



Algorithm for 2-dimensions: Naïve algorithm

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ

1

1

• Sketch: Sample and keep Ω(1/𝜖𝜖2) points
• Algorithm: Estimate the cost using sampled points (scale 

them accordingly by 𝑛𝑛/𝑐𝑐)



Can we improve the space complexity over 𝜖𝜖−2?

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ

1

1



Algorithm for 2-dimensions

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ

Natural Idea: 
• Partition to a grid of side length 𝝐𝝐
• Keep the mean in each grid and the number of 

points

1/ 𝜖𝜖
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• Partition to a grid of side length 𝝐𝝐
• Keep the mean in each grid and the number of 

points
• For cells far from the line compute the 

distance exactly
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Algorithm for 2-dimensions

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
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• Partition to a grid of side length 𝝐𝝐
• Keep the mean in each grid and the number of 

points
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distance exactly
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Memory is 𝑂𝑂(1/𝜖𝜖) Error is 𝑂𝑂(𝑛𝑛 𝜖𝜖)

 No improvement yet



Algorithm for 2-dimensions

Given a set of 𝑛𝑛 points on the 0,1 × 0,1 plane, process them to compute 
the cost for any line query ℓ

Natural Idea: 
• Partition to a grid of side length 𝝐𝝐
• Keep the mean in each grid and the number of 

points
• For cells far from the line compute the 

distance exactly
• 𝑤𝑤, 𝑝𝑝1 − 𝑏𝑏 + 𝑤𝑤, 𝑝𝑝2 − 𝑏𝑏 = 𝑤𝑤, 𝑝𝑝1 + 𝑝𝑝2 − 2𝑏𝑏

• For intersecting cells, ignore

1/ 𝜖𝜖

1/ 𝜖𝜖

Memory is 𝑂𝑂(1/𝜖𝜖) Error is 𝑂𝑂(𝑛𝑛 𝜖𝜖)

 If a cell has too many points partition further.
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Data Structure
• Consider a Quad tree on the set of points of 

starting with a 1
ϵ

by 1
ϵ

grid
• If there are many (≥ 𝑛𝑛𝜖𝜖) points in a cell 

partition further, until for each cell either
• Side length is at most 𝝐𝝐
• Number of points is at most 𝒏𝒏𝝐𝝐



Quad Tree Approach

Data Structure
• Consider a Quad tree on the set of points of 

starting with a 1
ϵ

by 1
ϵ

grid
• If there are many (≥ 𝑛𝑛𝜖𝜖) points in a cell 

partition further, until for each cell either
• Side length is at most 𝝐𝝐
• Number of points is at most 𝒏𝒏𝝐𝝐

Memory: 
• height of the tree is log 1/𝜖𝜖
• Number of Cells is 𝑂𝑂 1

𝜖𝜖
log 1/𝜖𝜖 ≈ 𝜖𝜖−1



Quad Tree Approach

Data Structure
• Consider a Quad tree on the set of points of 

starting with a 1
ϵ

by 1
ϵ

grid
• If there are many (≥ 𝑛𝑛𝜖𝜖) points in a cell 

partition further, until for each cell either
• Side length is at most 𝝐𝝐
• Number of points is at most 𝒏𝒏𝝐𝝐

Error (caused by intersecting cells)
• Cells with large number of points

• Side Length is ≤ 𝜖𝜖
• Total Error is 𝒏𝒏𝝐𝝐

• Other cells:
• Side length ℓ, total error at most ℓ ⋅ 𝒏𝒏𝝐𝝐 ⋅ (𝟏𝟏/ℓ) = 𝒏𝒏𝝐𝝐
• Sum over all ℓ, the error is 𝑂𝑂(𝑛𝑛𝜖𝜖 log(1/𝜖𝜖))



So far

• First Approach (keep the number of points and the mean for each cell of a grid)

• Second Approach (keep the number of points and the mean for each cell of a quad tree)

• Third Approach

Memory is 𝑂𝑂(1/𝜖𝜖) Error is 𝑂𝑂(𝑛𝑛 𝜖𝜖)

Memory is 𝑂𝑂(1/𝜖𝜖) Error is 𝑂𝑂(𝑛𝑛𝜖𝜖)

Memory is 𝑂𝑂(1/𝜖𝜖) Error is 𝑂𝑂(𝑛𝑛𝜖𝜖5/4)



To improve from 𝜖𝜖−1 to 𝜖𝜖−4/5



To improve from 𝜖𝜖−1 to 𝜖𝜖−4/5

 For each cell, also keep a random point from the cell, in case of intersection with 
the line.

• Don’t ignore the intersecting cells, instead use the random point to estimate the cost

Why does it help? 
• In expectation we get the correct value for all (including intersecting) cells. 

 By bounding the variance, we can show the improvement. 
• Over multiple cells, the over estimation and under estimations cancel out.



To improve from 𝜖𝜖−1 to 𝜖𝜖−4/5

 For each cell, also keep a random point from the cell, in case of intersection with 
the line.

• Take a cell 𝑐𝑐 with side length ℓ that intersects with the line, and let 𝑛𝑛𝑐𝑐 be the 
number of points in the cell. What is the variance in the cell?
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𝑛𝑛𝑐𝑐 ⋅ ℓ 2 ≤ 𝑛𝑛𝑐𝑐ℓ 2 ≤ 𝑛𝑛𝜖𝜖 2ℓ2

• The variance over all cells with side length ℓ (there are 1/ℓ of them) is at most 
𝑛𝑛𝜖𝜖 2ℓ (since the samples are chosen independently).
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• The standard Deviation is �𝑂𝑂(𝑛𝑛𝜖𝜖
5
4) which gives a better Chebyshev’s inequality.



How to make it work in the streaming model

Challenge: The quad tree partitioning depends on all the data.

Solution: whenever a cell becomes too heavy, partition it further, but 
only the upcoming points will be assigned to children.
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