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This Lecture

J Multi-pass Algorithm for Set Cover
 Fractional Set Cover using MWU



Set Cover Problem

Input: Collection F of sets 54, ..., S,,, each a
subset of U = {1, ..., n}
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Set Cover Problem

Input: Collection F of sets Sy, ..., S,,,, each a
subset of U = {1, ..., n}

Output: a subset C of F such that:

e C coversU
* |C| is minimized

Complexity:
* NP-hard
* Greedy (Inn)-approximation algorithm
e Pick the set that covers maximum number of
uncovered elements

e Can’t do better unless P=NP
[LY91][RS97][Fei98][AMS06][DS14]




Set Cover in Massive Data Models

» Studied in the massive data models
* A classic optimization problem
* Application in “Big Data”: Clustering, Topic Coverage
* The streaming setting: [ER’14, DIMV’14, CW’16, HIMV’16, AKL'16, A’17, BEM’17, IMRUVY’17]

Goal: “solve set cover in the streaming model”

* Model:
* Sequential accessto 5,55, ..., S,
* One (or few) passes, sublinear (i.e., o(mn)) storage
* (Hopefully) decent approximation factor



Naive Algorithm
Naive implementations of the greedy algorithm

1. In one pass, keep all the data and run greedy and the end of the
stream

2. In each pass over the stream, keep track of the set that covers
maximum number of uncovered elements.



What it gives

Algorithms Approximation
Greedy Alg O(logn) 1 O(mn) Determ!n!st!c
O(logn) n 0(n) Deterministic

n = number of elements

m = number of sets.
8



Better Greedy

For T = 2! where i = lognto 0
* In one pass, pick any set that covers at least T yet-uncovered
elements.

» log n passes
» Space 0(n)
» Exercise: gives O (logn) approximation



What it gives

Algorithms Approximation Passes Space Type
O(logn) 1 O (mn) Deterministic
Greedy Al
eeEy A O(logn) n 0O(n) Deterministic
[GS’09] O (logn) O(logn) O(nlogn)  Deterministic

n = number of elements

m = number of sets.
10



A Sampling-based algorithm

1. Two simple components used for coverage problems in massive data
models.

* Set Sampling
* Element Sampling

2. The algorithm overview

» Lets assume we know k the value of the optimal solution (min set
cover size)



Component |: set sampling

Set Sampling: After picking ¥ sets uniformly at random, elements
with degree at least — are covered in expectation.



Component |: set sampling

Set Sampling: After picking ¥ sets uniformly at random, all

elements with degree at least are covered w.h.p.

Using Chernoff ]




Component |: set sampling

Set Sampling: After picking ¢ sets uniformly at random, all
elements with degree at least are covered w.h.p.
 We only need to worry about low degree elements.



Component |: set sampling

Set Sampling: After picking ¢ sets uniformly at random, all
elements with degree at least are covered w.h.p.
 We only need to worry about low degree elements.

How we use the lemma: set £ = O(k) }




Component |: set sampling

Set Sampling: After picking ¥ sets uniformly at random, all
elements with degree at least are covered w.h.p.
 We only need to worry about low degree elements.

£ =2
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Component I: set sampling

Set Sampling: After picking ¥ sets uniformly at random, all
elements with degree at least are covered w.h.p.
 We only need to worry about low degree elements.

Degrees: 2
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Component |: set sampling

Set Sampling: After picking ¥ sets uniformly at random, all
elements with degree at least are covered w.h.p.
 We only need to worry about low degree elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.



Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.
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Component Il: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.



Component Il: element sampling

Element Sampling: Sampling elements uniformly at
random and finding a p-approximate cover for the sampled
elements, will cover fraction of the original elements
w.h.p.



Component Il: element sampling

Element Sampling: Sampling elements uniformly at
random and finding a p-approximate cover for the sampled
elements, will cover fraction of the original elements
w.h.p.

p is the approximation factor of the offline algorithm we use
* logn if we want polynomial time algorithm
* 1if we only care about the space usage of the algorithm



Component Il: element sampling

Element Sampling: Sampling elements uniformly at random and finding a

-approximate cover for the sampled elements, will cover fraction of the
original elements w.h.p.

» Size of the optimal solution is k

* There are mP¥ subcollection of sets F' € F

» Take one F' suppose it covers less than (1 — €) fraction of the elements
 What is the probability that it becomes a cover after the sampling?

* The probability that we don’t sample of the at least en elements.

cpk logm 1\ Pk logm 1\ Pk
C -9~ () = ()

1 (c—1)pk
* Overall failure probability is (;)

* So it holds with high probability.




Algorithm ,

L

log n different guesses
?€{1,24,..,n}

Make a guess £ of the value of the optimal solution & -
! Preprocessing: perform set sampling
O Sol « sampled sets

sample ¥ sets,
One pass, space 0(n), € sets
\_

r

Set Sampling: After picking ¥ sets uniformly at random, all elements with degree at
mlogn
2

least are covered w.h.p.




Algorithm

Make a of the value of the optimal solution
: perform
d  Sol « sampled sets
O For iterations
1
Use to cover (1 — F)'

fraction of the uncovered elements.
e Add the sets to Sol

Element Sampling: Sampling

approximate cover for the sampled elements, will cover
elements w.h.p.

-
logn different guesses
?€{1,24,..,n}

\
-~

AN

sample ¥ sets,
kOne pass, space 0(n), € sets

>

sample (p£n® logm) elements,
In one pass, keep projection of sets on

sampled elements
mlogn

Space: 0 (p€n5 logm - T)

=0(pmn5 logmlog n) = 0(mn%)

Compute a solution of pf sets at the end

\

L

J

€ =1/n

elements uniformly at random and finding a p-

fraction of the original



Algorithm

Make a guess ¥ of the value of the optimal solution k

d
a
a

Preprocessing: perform set sampling
Sol « sampled sets
For 1/0 iterations

. 1
* Useelement sampling to cover (1 — F)'

fraction of the uncovered elements.
e Add the sets to Sol
 Update uncovered elements.

P
log n different guesses

?€{1,24,..,n)

\

e
sample ¥ sets,

One pass, space 0(n), € sets
\.

sample (p£n® logm) elements,
In one pass, keep projection of sets on

sampled elements
mlogn

Space: 0 (p£n5 logm - T)

=0(pmn5 logmlogn) = 0(mn%)

\Compute a solution of pf sets at the end

AN

One pass, space 0(n)




Analysis

Make a guess ¥ of the value of the optimal solution k
= 1 Preprocessing: perform set sampling

d Sol « sampled sets

O For 1/ iterations

_ 1
= ¢ Useelement sampling to cover (1 — ﬁ)-

fraction of the uncovered elements.
e Add the sets to Sol
= « Update uncovered elements.

P
log n different guesses

?€{1,24,..,n)

\

e
sample ¥ sets,

One pass, space 0(n), € sets
\.

AN

sample (p£n® logm) elements,
In one pass, keep projection of sets on

sampled elements
mlogn

Space: 0 (p£n5 logm - T)

=0(pmn5 logmlogn) = 0(mn%)

\Compute a solution of pf sets at the end

One pass, space 0(n)

Number of Passes: 2/
v (%) iterations, each 2 passes

v Set sampling pass can be merged with the first pass of the first iteration




Analysis

Make a guess ¥ of the value of the optimal solution k
) Preprocessing: perform set sampling

d Sol « sampled sets

O For 1/ iterations

. 1
* Useelement sampling to cover (1 — F)'

fraction of the uncovered elements.
e Add the sets to Sol
 Update uncovered elements.

P
log n different guesses

?€{1,24,..,n)

\

e
sample ¥ sets,

One pass, space 0(n), ¥ sets
\.

sample (p£n® logm) elements,
In one pass, keep projection of sets on

sampled elements
mlogn

Space: 0 (p£n5 logm - T)

=0(pmn5 logmlogn) = 0(mn?%)

\Compute a solution of pf sets at the end

AN

One pass, space O(n)

Space Usage: 0(mn?®)
v" logn different guesses that run in parallel
v' For each guess, the space usage is 5(mn5)




Analysis

Make a guess ¥ of the value of the optimal solution k
) Preprocessing: perform set sampling

d Sol « sampled sets

O For 1/ iterations

. 1
* Useelement sampling to cover (1 — F)'

fraction of the uncovered elements.
e Add the sets to Sol
 Update uncovered elements.

P
log n different guesses

?€{1,24,..,n)

\

e
sample ¥ sets,

One pass, space 0(n), € sets
\.

sample (p£n® logm) elements,
In one pass, keep projection of sets on

sampled elements
mlogn

Space: 0 (p£n5 logm - T)

=0(pmn5 logmlogn) = 0(mn%)

\Compute a solution of p? sets at the end

AN

One pass, space 0(n)

Approximation Factor: 2p/é + 2
Take k < ¢ < 2k

v’ ¢ < 2k sets for set sampling
v pf < 2pk sets per pass




Analysis ,

\

log n different guesses
?e{l1,24,..,n}

Make a guess ¥ of the value of the optimal solution k -

) Preprocessing: perform set sampling sample £ sets,

One pass, space 0(n), € sets
\.

d Sol « sampled sets
: . 7

' For 1/¢ iterations ) sample (p£n® logm) elements,

* Useelement sampling to cover (1 — ﬁ)' In one pass, keep projection of sets on

fraction of the uncovered elements. sampled elements
Space: O ( p#ndlo m-m
* Add the sets to Sol pace- U\ p g 7
e Update uncovered elements. =0(pmn®logmlogn) = 0(mn?%)

Compute a solution of pf sets at the end

AN

\_
One pass, space 0(n)

Proof of correctness:
v’ For the right guess k < £ < 2k, every subsample of the elements can be covered by at most k < £ sets. Thus

element sampling returns a cover of size at most pf < 2pk.
v' The number of uncovered elements reduces by a factor of n°. So after 1/§ iterations, all elements are

covered.




What it gives

Algorithms Approximation Space
O(logn) 1 O (mn) Deterministic
Greedy Al
EeEY A O(logn) n 0O(n) Deterministic
[GS’'09] O (logn) O(logn) O(nlogn)  Deterministic
[ER’14] 0(/n) 1 0(n) Deterministic
[CW’16] 0(n®/6) 1/6 —1 0(n) Deterministic
[ HIMV’16] 0(p/8) 0(1/8) O(mn?) Randomized
p = approximation guarantee n = number of elements

for offline Set Cover m = number of sets.
38



Fractional Set Cover using MWU



Fractional Set Cover

* Each set can be picked fractionally (assigning value x; € [0,1] to each

set ;)
Fractional Solution - :
of Set Cover FEICCIIEE 0 (logn)-approximate
( ) Rounding Integral Solution

Pick S; w.p. «

* The first step in solving covering LPs in stream
» Packing LP (Fractional Maximum Matching)[AG11]



The Plan

* The framework
« MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

* Reducing the number of passes to

 Reducing the number of passes to a



The Plan

* The Multiplicative Weight Update framework
« MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming
> 0(k 108 7) passes

€2

* Reducing the number of passes to logarithmic
* Reducing Width via Extended Set System
* Fractional Max k-Cover

 Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



MWU to solve packing/covering LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

e Take the solution

* The less a constraint is satisfied, the less weight it
gets for the next iteration

* Repeat the above for 7" iterations

* Report the average solution found over all
iterations.



MWU to solve LP

a1,1, “er ) al,m x1 bl

a1, -y Ao m X | = | b,

anjl, "en an,m . bn
xm

Covering LP:
All a;; and b; and c¢; are non-negative

CoveringLP(A,,«m, Cm> Pr)

Min ¢l x
Ax > b
x =0




MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for | CoveringLP(A,,xm, ¢m, byy)
a weighted average constraint.

Min ¢l x
Ax>Db
x =0
al 1 nEn alm x
Wl = ’ ’ 1 > Wl bl mflnxm» Cm» bn»pt)
W, d2,1, =, d2,m X2 | = wy | by
Min ¢l x
tN\T tNT
Wn an,l, RN an,m . Wn bn (W ) Ax 2 (W ) b

x>0




MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for
a weighted average constraint.

T T
Wy 31,1, . aljm X1 W1 b1
W, d2,1s -+, d2m xy | = |w2 || b2
Wn anjl, "en an’m . Wn bn

CoveringLP(A,xm, cm> bn)

Min ¢l x
Ax > b
x =0

mflnxm' Cm' le' pt)

Min cT x

(wt)TAx > (Wt)Tb
x>0




MWU to solve LP

Algorithm:

* Instead of solving for all the constraints, solve for | CoveringLP(A,,xm, ¢m, byy)
a weighted average constraint.

Min ¢l x
Ax > b
x =0

e Take the solution

* The less a constraint is satisfied, the less weight it
gets for the next iteration

t
* Repeat the above for 7" iterations Oracle(Ayxm, cm, b, °)

* Report the average solution found over all Min cT x
Iterations. (Wt)TAx > (Wt)Tb
« T=0(¢plogn /e?) x>0
wl e« (1,-,1) & uniform weights Mlﬁ/g Updaﬁe Rule: .
Fort =1,t < T do o T iterations witt = wé (1—¢/Pp(Acxt — b))
xt « solution of Oracle = avg constraint w.r.t. wt
witl « Update(w?t, x?) Ve: A, x=>b,—¢

& decrease weight of constraints oversatisfied by x! .
% = avg(xy, - x7) Ve, t: —¢p < Aox" — b, < ¢




The Plan

The Multiplicative Weight Update framework
 MWU for the Set Cover
* The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k log n) passes

€2

Reducing the number of passes to logarithmic
e Reducing Width via Extended Set System
* Fractional Max k-Cover

Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



Multiplicative Weight Update (Set Cover)

SET-COVER LP(F, U):

Min Yser Xs

s.t. ZS:eesxS >1 Ve eU
Xg >0 VS eF




Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Lser Xs < k

Xg >0 VS EF




Multiplicative Weight Update (Set Cover)

LseF Xs < k

s.t.

Ls.eesXs = 1

x520

Feasibility-SET-COVER LP(F, U, k)

Ve €U
VSEeEF

Assign weight w, to each
element e (initially one)

Solve the weighted average
constraint approximately!



Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(F, U, k)

Assign weight w, to each

Yeer Xs < k element e (initially one)
Solve the weighted average
Diect We Lices Xs = Diecu We constraint approximately!
Xg >0 VS eF

Zee’u We ZeES Xs = Zee’u We
ZSET Xs ZeeS We = Zee’u We
QiseF XsWs = decuWe Definews =Y csw,

By normalizing weight vector w (prob. vector p):
diser XsPs = 1



Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
LseF Xs < k

YseF Xsps = 1
Xg > 0

vS eF

Assign weight w, to each
element e (initially one)

Solve the weighted average
constraint approximately!



Multiplicative Weight Update (Set Cover)

Oracle(F, U, k, p)
Assign weight w, to each

< element e (initially one)
Solve the weighted average
DserXsps =2 1—¢ constraint approx. w.r.t pt(ec wt): xt
Xg >0 VS eF
—) < Vewes xs— 1 < Ve €U Update the prob vector

Width of ptt =pt(1-0(e) x (Tx§ — 1))

oracle

logn
¢ Zg ) rounds,

. . MWU Theorem. After T = O(
Bounding the max number of times £

= Ll o ) fanci :
ah element 961-5 covered X =z (x*+--+x")isane felble solution.

Finally, we can then pick k(1 + €) sets to cover
all the elements!



The Plan

The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k 1Ogn) passes

€2

Reducing the number of passes to logarithmic
e Reducing Width via Extended Set System
* Fractional Max k-Cover

Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



The Oracle

Given: a on the elements, and

Goal: pick (fractionally) k sets by assigning values to x- such that

of the sets in the solution ,
i.e., at least (1 — ¢€), where

* probability of a set is the sum of the probability of its elements, i.e.,

Ps = ZeES Pe
2. The (total number of times any element is covered)
Oracle(¥, U, k, p) Initial plan:

* solve the Oracle in one pass

Lser Xs <k and low space,

e gives an algorithm for set
cover with T passes and

xs = 0 VSEF low space.

—¢ < Ysees Xs— 1= ¢ Ve eU




The Plan

The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

Implement MWU Oracle Naively in the streaming
> 0(k log n) passes

€2

Reducing the number of passes to logarithmic
e Reducing Width via Extended Set System
* Fractional Max k-Cover

Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



Implementing MWU in Stream (I)
* Naive solution for the oracle: ~ p——)> x5 = {](‘; g:’h:r:ii:ea"ies'tset'

e Width (the number of times an element is covered)
is trivially &

e The number of required rounds to obtain (1 + €)-
klogn)

Performance

(1 + &)-approximation
0(*'°8™/ ,) passes
0(n) space

ﬁhallenge: \

Oracle(F, U, k, p) Is it possible to find a solution to the
oracle with smaller width?

approximation is O( =

» Streaming: find the heaviest set w.r.t p in a single
pass over the stream

Lser Xs S k No, simply all sets may contain a
designated element e and hence
DserXsps =1 —¢ the width of any solution to the

xg =0 VS € F oracle is always k no matter how

—p < YVepes Xs— 1< VeeU k the solution is picked. /




The Plan

* The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(k log n/gz)-pass 0(n)-space

* Reducing the number of passes to logarithmic
e Reducing Width via Extended Set System
* Fractional Max k-Cover

 Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



The Plan

* The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(*'°8"/ ,)-pass 0(n)-space

* Reducing the number of passes to logarithmic
* Reducing Width via Extended Set System
* Fractional Max k-Cover

 Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



Extended Set System
G\allenge: \

Is it possible to find a solution to the
oracle in set system (U,F) with
smaller width?

No, simply all sets may contain a
designated element e and hence
the width of any solution to the

oracle is always k no matter how
the solution is picked.

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F =1{{1,2,3},{3,4,5},{2,6}}
F =
13,12}, {3}, 14}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F =1{{1,2,3},{3,4,5},{2,6}}
F =
(13,2}, {3}, {4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same.

v"We can easily find an optimal
solution with width one in the
extended set system F

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3}, {345}, {2,6}}
F={
11}, 12}, 13}, 4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, {4,5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same.

v"We can easily find an optimal
solution with width one in the
extended set system F

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F=1{{1,2,3},{3,45},{2,6}}
F =
{1},{2},{3}, {4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5},{4,5},{2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same.

v"We can easily find an optimal
solution with width one in the
extended set system F

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F ={{1,2,3},{3,4,5},{2,6}}
F={
11}, {2}, 13}, 4}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, {4, 5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same.

v"We can easily find an optimal
solution with width one in the
extended set system F

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3},{3,4,5},{2,6}}
F={
11}, 12}, 13}, 14}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, {4, 5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in
both set systems are the same.

v"We can easily find an optimal
solution with width one in the
extended set system F

* |dea: Pruning the cover

Different Set System?

Extended Set System of F:
The set system (U, F) (extension

of F) is the collection containing
all subsets of sets in F.

F = {{1,2,3},{3,4,5},{2,6}}
F={
11}, 12}, 13}, 14}, {5}, {6}
{1,2},{1,3},{2,3},{3,4},{3,5}, {4, 5}, {2,6}
{1,2,3},{3,4,5}
}



Extended Set System

v’ The size of an optimal cover in

both set systems are the same. Different Set System?
v'We C.an ea.S”y ﬁ.nd an op'FimaI Extended Set System of F:

SOlut|On W|th W|dth Or\!e IN the The set system (’u,jf') (extension

extended set system F of F) is the collection containing

all subsets of sets in F.

* |dea: Pruning the cover

F = {{123},{345},{2,6}}

» Extended Set System has F =
exponentially many sets {1},{2},{3},{4}, {5}, {6}
. : {1,2},{1,3},{2,3},{3,4},{3,5},{4,5},{2,6}
Work with the set (12.3) (3.4.5)
system, )

e Solve the oracle on F but and
convert it to a solution for F



Implementing MWU in Stream (Il)

* We want to solve the oracle for (U, 75)
* Find some solution for the oracle (U, F), =» ¢ o Xg = {
* Prune it to get a solution for (U, F)

+/ Obtains width = 1
xThe average constraint may not be satisfied any more!

1 IfSis one of the k heaviest set,
0 Otherwise.

* Instead find a solution that maximizes coverage
\/Coverage remains unchanged after pruning

* There is a cover of size k,

/ The solution of maximum k-coverage satisfies the average constraint of the
set cover too; even after the pruning: YiseF XsPs = DiocyuPe = 1

Oracle(F, U, k, p)

diser Xs < k (Next Goal: A
Given a set system (U,F), and a
diserXsps =1 —¢ parameter k, solve the (weighted)
xs 20 VSEF fractional Max k-Cover in one pass

—1<)seesxs—1=<1 VeeU | \_ J




The Plan

* The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

* Reducing the number of passes to logarithmic
* Reducing Width via Extended Set System
* Fractional Max k-Cover

* Reducing the number of passes to a constant



Max k-Cover Problem

Input: a collection F of sets S, ..., S,

FachSc U ={1,...,n} Fractional Max k-Cover
Max-Cover-LP(F, U, k)

Output: k sets of F such that:

ti Max. Z
Maximizes the total coverage, Leeu Ze

[UsecS| s.t. YserXs <k
DseesXs 2 Ze Ve €U
Complexity: Xg =0 VSEF
° NP_hard Zo <1 Ve e U

* Greedy: (1 — %)-approximation

* One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]



Weighted Max k-Cover Problem

Input: a collection F of sets S, ..., S,

FachS € U = {1, . n} Fractional (Weighted) Max k-Cover
Max-Cover-LP(F, U, k, p)

Output: k sets of F such that:

fAAi Max. VA
Maximizes the total coverage, Ziecu PeZe

[UsecS| s.t. YserXs <k
DseesXs 2 Ze Ve €U
Complexity: Xg =0 VSEF
° NP_hard Zo <1 Ve e U

* Greedy: (1 — %)-approximation

* One pass (1 — g)-approx. using
0(m/e?) space [MV17], [BEM17]



Fractional Max k-Cover in One Pass

 Component | (Element Sampling):
1. Sample 6(3%) elements in U’ according to p.

2. In one pass over the stream: Store F’', the intersection of all sets
in F with U’

3. Return the best k-cover of the sampled elements.

* w.h.p. the constructed cover is a (1 — €)-approximate solution of
the main instance.

* Required space: O(mk/e?)

 Component Il (Covering Common Elements):

* |n the preprocessing step, pick xcmn=<§, §>

)

m m
* All frequently occurring elements will be covered.

. m
* We can focus on elements with degree < -

e Required space: O (mk X 3) = 0(m/e®)

£ g2



The pruning

We have:
* Solution x on the original set system (U, F)

* The coverage y, := ).s5, X5 Of every element by the solution of the original set
system X can be computed in one pass.

We need:

« Convert X to a solution x’ on the extended set system (U, F) so that x’ can be
averaged in the end of the T iterations.

* The coverage y, := Y.¢5, Xs by the solution X' to update the weights of MWU

» The Pruning: needs to be done fractionally.

There exists a polynomial time algorithm to prune the fractional

solution X of the maximum coverage on (U, F) to get a solution x of (U, F)
s.t. the coverage of every element is capped by 1, i.e., y, = Min(y,, 1).



Implementing MWU in Stream (Il)

* Solve fractional Max k Cover in one pass find X and in one pass y,
* Obtain x' and y, using the lemma.

« x' satisfies the average constraint.

(1 + €)-approximation
0('°8 "/ 2) passes
0(™/.s) space

* Update the probabilities according to y,
* widthis 1

logn

* The number of required rounds of MWU is O ( )

g2

Oracle(F, U, k, p)

[Challenge: A
Can we run several rounds of MWU in
one pass of the streaming algorithm?

Lser Xs < k

diserXsps =1 —¢
.X'SZO VS eF \ j
_1SZS:eESxS_1S]- Ve €U




The Plan

* The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1 + £)-appx 0(*'°8"/ ,)-pass 0(n)-space

* Reducing the number ot passes to logarithmic
* Reducing Width via Extended Set System
* Fractional Max k-Cover

005" s | 00/ sace
 Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance



Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

?
The probability vector p changes slowly. pttt < pi(1+0(9))
. logn
Setting £ = O rounds,
Component | (Element Sampling): 8 ( £2d ) De

Ak - increases at most b no(é)
Sample 0(8—2) elements according to p. y

Return the best k-cover of the sampled
elements.




Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After £ rounds of MWU:
Key observation:

Y
The probability vector p changes slowly. P§+£ = pé(l + 0(8))
. . logn
Setting £ = O( gzd) rounds, p,

Component | (Element Sampling):

1
~ kn0(/ed) increases at most by n°Ga

Sample O( = ) elements according to p.
Return the best k-cover of the sampled
elements.

To perform O(IZngn)

+ Rejection Sampling: To rounds together
adjust the probability p, Keep each
sample w.p.

pg+{’/pgn0(1/ed)




Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
x But probability distribution p changes over the iterations
x Element sampling is done w.r.t. p

. After € rounds of MWU:
Key observation:

The probability vector p changes slowly. pttt < pt(1+ O(e))

Component | (Element Sampling): o
O(1/ed)

Sample O(kn ———) elements according to p. increases at most by n- ‘ed

Return the best k-cover of the sampled
elements.

0(1/ed)

Space increases by n
+ Rejection Sampling: To ‘ #passes decreases by O
adjust the probability p,

lgn




Implementing MWU in Stream (Il)

* Algorithm will go over d passes:

* Sample for each of the assigned to
this pass.
* In one pass find the projection of all sets on these sampled elements in
. (this uses the common element component).

logn

rounds.
7)

* For each of the O (

62
e Adjust the samples properly.

* Solve fractional Max k Cover find xg

e Update the probabilities for all the sampled elements

* In one pass update the probabilities for all the elements.

Performance

(1 + &)-approximation
0(d) passes
0 (mn°(/4€)) space

Oracle(F, U, k, p)
dser Xs <k

diserXsps =1 —¢
sto VS eF
—1SZS:365X5—1S1 YeeU




The Plan

* The Multiplicative Weight Update framework
* MWU for the Set Cover
* The average constraint: Oracle

* Implement MWU Oracle Naively in the streaming

(1+ e)-appx | O(*'°8 "/ 2)-pass 0(n)-space

e Reducing the number of passes to logarithmic
* Reducing Width via Extended Set System
* Fractional Max k-Cover

(1+¢&)-appx | 0(°8"/,)-pass 0(m/e3)-space

 Reducing the number of passes to a constant
* Running several rounds of MWU together by sampling in advance

0(1/6)-pass 0 (mn°®/9)_space



Summary

 Considered MWU for solving fractional-Set Cover

* Change the set system to extended set system.

1 : :
One pass for each of the 0(¢ ;g n) iterations.
. : - k1l -
Trivial solution gets ¢ = k giving 0 (——=—) (1 + &)-approximation

€2

_ 0(klogn /€?) passes
No way to reduce the width to smaller than k.

0(n) space

Solution remains the same.
(1 + €)-approximation
0('°8 "/ 2) passes

0(™/.s) space

Goal changes to weighted maximum coverage that

is preserved under the pruning.
Obtain ¢ = 1 giving O(IOEan) pass algorithm

* Run several rounds of MWU together

= The probabilities change slowly over iterations.
= Sample more elements in advance and adjust the

= Get constant pass algorithm.

Performance

(1 + &)-approximation
0(1/6) passes
0 (mn°W©/9) space

probability.
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