Lecture 4

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

Multi-pass Algorithm for Set Cover
 Fractional Set Cover using MWU

Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \dots, S_m , each a subset of $\mathcal{U} = \{1, \dots, n\}$

Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- ${\mathcal C}$ covers ${\mathcal U}$
- $|\mathcal{C}|$ is minimized

Set Cover Problem

Input: Collection $\mathcal F$ of sets $S_1,\ldots,S_m,$ each a subset of $\mathcal U=\{1,\ldots,n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- $\mathcal C$ covers $\mathcal U$
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy $(\ln n)$ -approximation algorithm
 - Pick the set that covers maximum number of uncovered elements
- Can't do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

Set Cover in Massive Data Models

- Studied in the massive data models
 - A classic optimization problem
 - Application in "Big Data": Clustering, Topic Coverage
 - The streaming setting: [ER'14, DIMV'14, CW'16, HIMV'16, AKL'16, A'17, BEM'17, IMRUVY'17]

Goal: "solve set cover in **the streaming model**"

- Model:
 - Sequential access to S_1, S_2, \dots, S_m
 - One (or few) passes, sublinear (i.e., o(mn)) storage
 - (Hopefully) decent approximation factor

Naïve Algorithm

Naïve implementations of the greedy algorithm

- 1. In one pass, keep all the data and run greedy and the end of the stream
- 2. In each pass over the stream, keep track of the set that covers maximum number of uncovered elements.

What it gives

Algorithms	Approximation	Passes	Space	Туре
Greedy Alg	$O(\log n)$	1	O(mn)	Deterministic
	$O(\log n)$	n	O(n)	Deterministic

n = number of *elements* m = number of sets.

Better Greedy

- For $T = 2^i$ where $i = \log n$ to 0
 - In one pass, pick any set that covers at least T yet-uncovered elements.

- $\geq \log n$ passes
- > Space O(n)
- \succ Exercise: gives $O(\log n)$ approximation

What it gives

Algorithms	Approximation	Passes	Space	Туре
Greedy Alg	$O(\log n)$ $O(\log n)$	1 n	O(mn) O(n)	Deterministic Deterministic
[GS'09]	$O(\log n)$	$O(\log n)$	$O(n \log n)$	Deterministic

n = number of *elements* m = number of sets.

A Sampling-based algorithm

- 1. Two simple components used for coverage problems in massive data models.
 - Set Sampling
 - Element Sampling
- 2. The algorithm overview

Lets assume we know k the value of the optimal solution (min set cover size)

Set Sampling: After picking ℓ sets uniformly at random, elements with degree at least $\frac{m}{\ell}$ are covered in expectation.

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

$$\ell = 2$$

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

$$\ell = 2$$

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

$$\ell = 2$$

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\epsilon})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \epsilon)$ fraction of the original elements w.h.p.

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\epsilon})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \epsilon)$ fraction of the original elements w.h.p.

 ρ is the approximation factor of the **offline algorithm** we use

- log *n* if we want polynomial time algorithm
- 1 if we only care about the space usage of the algorithm

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\epsilon})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \epsilon)$ fraction of the original elements w.h.p.

- Size of the optimal solution is *k*
- There are $m^{\rho k}$ subcollection of sets $\mathcal{F}' \subseteq \mathcal{F}$
- Take one \mathcal{F}' suppose it covers less than (1ϵ) fraction of the elements
- What is the probability that it becomes a cover after the sampling?
- The probability that we don't sample of the at least ϵn elements.

$$(1-\epsilon)^{\frac{c\rho k \log m}{\epsilon}} \approx \left(\frac{1}{\epsilon}\right)^{c\rho k \log m} = \left(\frac{1}{m}\right)^{c\rho k}$$

rall failure probability is
$$\left(\frac{1}{m}\right)^{(c-1)\rho k}$$

- Overall failure probability is $\left(\frac{1}{m}\right)$
- So it holds with high probability.

Algorithm

Make a guess ℓ of the value of the optimal solution kPreprocessing: perform set sampling

□ Sol \leftarrow sampled sets

```
\log n different guesses \ell \in \{1, 2, 4, \dots, n\}
```

sample ℓ sets, One pass, space O(n), ℓ sets

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

Algorithm

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- $\Box \quad Sol \leftarrow sampled sets$
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol

 $\log n \text{ different guesses} \\ \ell \in \{1, 2, 4, \dots, n\}$

sample ℓ sets, One pass, space O(n), ℓ sets

 $\epsilon = 1/n^{\delta}$

sample $(\rho \ell n^{\delta} \log m)$ elements, In one pass, keep projection of sets on sampled elements Space: $O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)$ = $O\left(\rho m n^{\delta} \log m \log n\right) = \tilde{O}(m n^{\delta})$ Compute a solution of $\rho \ell$ sets at the end

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\epsilon})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \epsilon)$ fraction of the original elements w.h.p.

Algorithm

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- $\Box \quad Sol \leftarrow sampled sets$
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

log *n* different guesses $\ell \in \{1, 2, 4, \dots, n\}$ sample ℓ sets, One pass, space O(n), ℓ sets sample ($\rho \ell n^{\delta} \log m$) elements, In one pass, keep projection of sets on sampled elements Space: $O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)$ $=O(\rho m n^{\delta} \log m \log n) = \tilde{O}(m n^{\delta})$ Compute a solution of $\rho\ell$ sets at the end

Analysis

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- □ Sol \leftarrow sampled sets
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

Number of Passes: $2/\delta$

- \checkmark $(\frac{1}{s})$ iterations, each 2 passes
- $\checkmark\,$ Set sampling pass can be merged with the first pass of the first iteration

log *n* different guesses $\ell \in \{1, 2, 4, \dots, n\}$ sample ℓ sets, One pass, space O(n), ℓ sets sample ($\rho \ell n^{\delta} \log m$) elements, In one pass, keep projection of sets on sampled elements Space: $O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)$ $=O(\rho m n^{\delta} \log m \log n) = \tilde{O}(m n^{\delta})$ Compute a solution of $\rho\ell$ sets at the end

Analysis

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- $\Box \quad Sol \leftarrow sampled sets$
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

Space Usage: $\widetilde{O}(mn^{\delta})$

- \checkmark log *n* different guesses that run in parallel
- ✓ For each guess, the space usage is $\tilde{O}(mn^{\delta})$

log *n* different guesses $\ell \in \{1, 2, 4, \dots, n\}$ sample ℓ sets, One pass, space O(n), ℓ sets sample ($\rho \ell n^{\delta} \log m$) elements, In one pass, keep projection of sets on sampled elements Space: $O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)$ $=O(\rho m n^{\delta} \log m \log n) = \widetilde{O}(m n^{\delta})$ Compute a solution of $\rho\ell$ sets at the end

Analysis

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- $\Box \quad Sol \leftarrow sampled sets$
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

Approximation Factor: $2 ho/\delta+2$

Take $k \le \ell \le 2k$ $\checkmark \ \ell \le 2k$ sets for set sampling $\checkmark \ \rho \ell \le 2\rho k$ sets per pass log *n* different guesses $\ell \in \{1, 2, 4, \dots, n\}$ sample ℓ sets, One pass, space O(n), ℓ sets sample $(\rho \ell n^{\delta} \log m)$ elements, In one pass, keep projection of sets on sampled elements Space: $O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)$ $=O(\rho m n^{\delta} \log m \log n) = \tilde{O}(m n^{\delta})$ Compute a solution of $\rho\ell$ sets at the end
Analysis

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- $\Box \quad Sol \leftarrow sampled sets$
- **D** For $1/\delta$ iterations
 - Use element sampling to cover $(1 \frac{1}{n^{\delta}})$ fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

```
log n different guesses
                     \ell \in \{1, 2, 4, \dots, n\}
sample \ell sets,
One pass, space O(n), \ell sets
sample (\rho \ell n^{\delta} \log m) elements,
In one pass, keep projection of sets on
sampled elements
Space: O\left(\rho \ell n^{\delta} \log m \cdot \frac{m \log n}{\ell}\right)
=O(\rho m n^{\delta} \log m \log n) = \tilde{O}(m n^{\delta})
Compute a solution of \rho\ell sets at the end
```

One pass, space O(n)

Proof of correctness:

- ✓ For the right guess $k \le l < 2k$, every subsample of the elements can be covered by at most k < l sets. Thus element sampling returns a cover of size at most $\rho l < 2\rho k$.
- ✓ The number of uncovered elements reduces by a factor of n^{δ} . So after $1/\delta$ iterations, all elements are covered.

What it gives

Algorithms	Approximation	Passes	Space	Туре
Greedy Alg	$O(\log n)$ $O(\log n)$	1 n	0(mn) 0(n)	Deterministic Deterministic
[GS'09]	$O(\log n)$	$O(\log n)$	$O(n\log n)$	Deterministic
[ER'14]	$O(\sqrt{n})$	1	$ ilde{O}(n)$	Deterministic
[CW'16]	$O(n^{\delta}/\delta)$	$1/\delta - 1$	$ ilde{O}(n)$	Deterministic
[HIMV'16]	$0(oldsymbol{ ho}/oldsymbol{\delta})$	$0(1/\delta)$	$\widetilde{oldsymbol{ heta}}(\mathbf{m} n^{\delta})$	Randomized

ρ = approximation guarantee
for offline Set Cover

n = number of *elements* m = number of sets.

Fractional Set Cover using MWU

Fractional Set Cover

• Each set can be picked fractionally (assigning value $x_i \in [0,1]$ to each set S_i)

- The first step in solving covering LPs in stream
 - Packing LP (Fractional Maximum Matching)[AG11]

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $\succ O(\frac{k \log n}{\epsilon^2})$ passes

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max *k*-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

• The Multiplicative Weight Update framework

- MWU for the Set Cover
- The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $\succ O(\frac{k \log n}{\epsilon^2})$ passes

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max *k*-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

MWU to solve packing/covering LP

Algorithm:

- Instead of solving for all the constraints, solve for a weighted average constraint.
- Take the solution
- The less a constraint is satisfied, the less weight it gets for the next iteration
- Repeat the above for *T* iterations
- Report the average solution found over all iterations.
- $T = O(\phi \log n / \epsilon^2)$

$$\frac{\text{CoveringLP}(A_{n \times m}, c_m, b_n)}{\text{Min } c^T x}$$
$$Ax \ge b$$
$$x \ge 0$$

Covering LP: All $a_{j,i}$ and b_j and c_i are non-negative

Algorithm:

• Instead of solving for all the constraints, solve for a weighted average constraint.

$$\begin{array}{c} x_1 \\ x_2 \end{array} \geq \begin{array}{c} w_1 \\ w_2 \\ w_2 \end{array} \begin{array}{c} b_1 \\ b_2 \\ \dots \\ w_n \end{array} \end{array}$$

$$\frac{\text{CoveringLP}(A_{n \times m}, c_m, b_n)}{\text{Min } c^T x}$$
$$Ax \ge b$$
$$x \ge 0$$
$$\frac{\text{Oracle}(A_{n \times m}, c_m, b_n, p^t)}{\text{Min } c^T x}$$
$$(w^t)^T Ax \ge (w^t)^T b$$
$$x \ge 0$$

Algorithm:

• Instead of solving for all the constraints, solve for <u>CoveringLP($A_{n \times m}, c_m, b_n$)</u> a weighted average constraint. Min $c^T x$ $Ax \ge b$ $x \ge 0$ $\begin{bmatrix} w_{1} \\ w_{2} \\ ... \\ w_{n} \end{bmatrix} \begin{bmatrix} a_{1,1}, ..., a_{1,m} \\ a_{2,1}, ..., a_{2,m} \\ ... \\ a_{n,1}, ..., a_{n,m} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ ... \\ ... \\ w_{n} \end{bmatrix} \ge \begin{bmatrix} w_{1} \\ w_{2} \\ ... \\ w_{n} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ ... \\ b_{n} \end{bmatrix} \begin{bmatrix} Oracle(A_{n \times m}, c_{m}, b_{n}, p^{t}) \\ Oracle(A_{n \times m}, c_{m}, b_{n}, p^{t}) \\ Min \ c^{T} x \\ (w^{t})^{T} A x \ge (w^{t})^{T} b \\ x \ge 0 \end{bmatrix}$

$$\sum_{i=1}^{m} x_i \left(\sum_{j=1}^{n} w_j a_{j,i} \right) \ge \sum_{j=1}^{n} w_j b_j$$

Algorithm:

 Instead of solving for all the constraints, solve for a weighted average constraint. 	$\underline{\text{CoveringLP}}(A_{n \times m}, c_m, b_n)$	
 Take the solution 	Min $c^T x$	
 The less a constraint is satisfied, the less weight it gets for the next iteration 	$\begin{array}{l} Ax \ge b \\ x \ge 0 \end{array}$	
 Repeat the above for T iterations 	$\underline{\text{Oracle}}(A_{n \times m}, c_m, b_n, p^t)$	
 Report the average solution found over all iterations. 	$\operatorname{Min} c^T x \\ (w^t)^T A x \ge (w^t)^T b$	
• $T = O(\phi \log n / \epsilon^2)$	$x \ge 0$	
$w^{1} \leftarrow (1, \dots, 1) \qquad \rhd \text{ uniform weights}$ For $t = 1, t \le T$ do \rhd T iterations $x^{t} \leftarrow \text{ solution of Oracle} \rhd and constraint wat w^{t}$	$\frac{\text{MWU Update Rule:}}{w_e^{t+1}} \coloneqq w_e^t \left(1 - \frac{\varepsilon}{\phi} (A_e x^t - b_e)\right)$	
$x^{t} \leftarrow \text{Solution of Oracle } \Rightarrow \text{avg constraint w.r.t. } w^{t+1} \leftarrow \text{Update}(w^{t}, x^{t})$	$\forall e: A_c \bar{x} \geq b_c - \varepsilon$	
\triangleright decrease weight of constraints oversatisfied by x^t		
$\bar{x} = \mathbf{avg}(x_1, \cdots x_T)$	$\forall e, t: -\phi \le A_e x^t - b_e \le \phi$	

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $\succ O(\frac{k \log n}{\epsilon^2})$ passes

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max *k*-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

SET-COVER LP(\mathcal{F} , \mathcal{U}):	
Min $\sum_{S \in \mathcal{F}} x_S$	
s.t. $\sum_{S:e\in S} x_S \ge 1$ $x_S \ge 0$	$\forall e \in \mathcal{U} \\ \forall S \in \mathcal{F}$

Feasibility-SET-COVER LP (\mathcal{F} , \mathcal{U} , k)		
	$\sum_{S\in\mathcal{F}} x_S \leq k$	
s.t.	$\sum_{S:e\in S} x_S \ge 1$ $x_S \ge 0$	$\forall e \in \mathcal{U} \\ \forall S \in \mathcal{F}$

Assign weight w_e to each element e (initially <u>one</u>) Solve the *weighted* average constraint approximately!

$$\begin{split} \underline{\text{Feasibility-SET-COVER LP}}(\mathcal{F}, \mathcal{U}, k) \\ \sum_{S \in \mathcal{F}} x_S &\leq k \\ \sum_{e \in \mathcal{U}} w_e \sum_{e \in S} x_S &\geq \sum_{e \in \mathcal{U}} w_e \\ x_S &\geq 0 \qquad \forall S \in \mathcal{F} \end{split}$$

Assign weight w_e to each element e (initially <u>one</u>)

Solve the *weighted* average constraint approximately!

 $\begin{array}{ll} \sum_{e \in \mathcal{U}} w_e \sum_{e \in S} x_S \geq \sum_{e \in \mathcal{U}} w_e \\ \sum_{S \in \mathcal{F}} x_S \sum_{e \in S} w_e \geq \sum_{e \in \mathcal{U}} w_e \\ \sum_{S \in \mathcal{F}} x_S w_S \geq \sum_{e \in \mathcal{U}} w_e \end{array} \quad \text{Define } w_S \coloneqq \sum_{e \in S} w_e \end{array}$

By *normalizing* weight vector w (prob. vector p): $\sum_{S \in \mathcal{F}} x_S p_S \ge 1$

$$\begin{split} \underline{Oracle}(\mathcal{F},\mathcal{U},k,p) \\ & \sum_{S\in\mathcal{F}} x_S \leq k \\ & \sum_{S\in\mathcal{F}} x_S p_S \geq 1 \\ & x_S \geq 0 \end{split} \quad \forall S\in\mathcal{F} \end{split}$$

Assign weight w_e to each element e (initially <u>one</u>) Solve the *weighted* average

constraint approximately!

Finally, we can then pick $k(1 + \epsilon)$ sets to cover all the elements!

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $\succ O(\frac{k \log n}{\epsilon^2})$ passes

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max *k*-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

The Oracle

Given: a probability vector *p* on the elements, and *k*

Goal: pick (fractionally) k sets by assigning values to x_S such that

- 1. The total probability (weight) of the sets in the solution is maximized, i.e., at least (1ε) , where
 - probability of a set is the sum of the probability of its elements, i.e., $p_S = \sum_{e \in S} p_e$
- 2. The width (total number of times any *element is covered*) is *small*.

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $\succ O(\frac{k \log n}{\epsilon^2})$ passes

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

Implementing MWU in Stream (I)

• Naïve solution for the oracle:

• Width (the number of times an element is covered) is trivially *k*

- The number of required rounds to obtain $(1 + \epsilon)$ -approximation is $O(\frac{k \log n}{\epsilon^2})$
- Streaming: find the heaviest set w.r.t p in a single pass over the stream

$$\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ & \sum_{S \in \mathcal{F}} x_S \leq k \\ & \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ & x_S \geq 0 \\ -\phi \leq \sum_{S:e \in S} x_S - 1 \leq \phi \quad \forall e \in \mathcal{U} \end{split}$$

Challenge:

Is it possible to find a solution to the oracle with **smaller width**?

No, simply all sets may contain a **designated element** *e* and hence the width of any solution to the oracle is always k no matter how the solution is picked.

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx $O({k \log n}/{\varepsilon^2})$ -pass $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max *k*-Cover
- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $O(\frac{k \log n}{c^2})$ -pass

• Reducing the number of passes to logarithmic

- Reducing Width via Extended Set System
- Fractional Max k-Cover

 $(1 + \varepsilon)$ -appx

- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

 $\tilde{O}(n)$ -space

Challenge:

Is it possible to find a solution to the oracle in <u>set system</u> $(\mathcal{U},\mathcal{F})$ with <u>smaller width</u>?

No, simply all sets may contain a **designated element** *e* and hence the width of any solution to the oracle is always k no matter how the solution is picked.

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\} \\ \tilde{\mathcal{F}} = \{ \\ \{1\},\{2\},\{3\},\{4\},\{5\},\{6\} \\ \{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\} \\ \\ \{1,2,3\},\{3,4,5\} \\ \}
```

✓ The size of an optimal cover in both set systems are the same.

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\} \\ \tilde{\mathcal{F}} = \{ \\ \{1\},\{2\},\{3\},\{4\},\{5\},\{6\} \\ \{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\} \\ \\ \{1,2,3\},\{3,4,5\} \\ \}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{2,6\}\}\tilde{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{4,5\},\{2,6\}\{1,2,3\},\{3,4,5\}\}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1, 2, 3\}, \{3, 4, 5\}, \{2, 6\}\} \\ \breve{\mathcal{F}} = \{ \\ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\} \\ \{1, 2\}, \{1, 3\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}, \{2, 6\} \\ \\ \{1, 2, 3\}, \{3, 4, 5\} \\ \\ \}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\}, \{3,4,5\}, \{2,6\}\} \\ \breve{\mathcal{F}} = \{ \\ \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\} \\ \{1,2\}, \{1,3\}, \{2,3\}, \{3,4\}, \{3,5\}, \{4,5\}, \{2,6\} \\ \\ \{1,2,3\}, \{3,4,5\} \\ \}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2,6}\}\}\check{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4,5}\},\{2,6\}\{\mathbf{1,2,3}\},\{3,4,5\}\}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$
 - Idea: Pruning the cover

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2,6}\}\}\check{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4,5}\},\{2,6\}\{\mathbf{1,2,3}\},\{3,4,5\}\}
```

- ✓ The size of an optimal cover in both set systems are the same.
- ✓ We can easily find an optimal solution with width <u>one</u> in the extended set system $\check{\mathcal{F}}$
 - Idea: Pruning the cover
- Extended Set System has exponentially many sets
 - Work with the <u>original</u> set system,
 - Solve the oracle on ${\mathcal F}$ but and convert it to a solution for $\check{{\mathcal F}}$

Different Set System?

Extended Set System of \mathcal{F} :

```
\mathcal{F} = \{\{1,2,3\},\{3,4,5\},\{\mathbf{2,6}\}\}\check{\mathcal{F}} = \{\{1\},\{2\},\{3\},\{4\},\{5\},\{\mathbf{6}\}\}\{1,2\},\{1,3\},\{2,3\},\{3,4\},\{3,5\},\{\mathbf{4,5}\},\{2,6\}\{\mathbf{1,2,3}\},\{3,4,5\}\}
```

Implementing MWU in Stream (II)

- We want to solve the oracle for $(\mathcal{U}, \check{\mathcal{F}})$
 - Find some solution for the oracle $(\mathcal{U}, \mathcal{F})$, \Longrightarrow e.g., $x_S = \begin{cases} 1 & \text{If S is one of the k heaviest set,} \\ 0 & \text{Otherwise.} \end{cases}$
 - Prune it to get a solution for $(\mathcal{U}, \check{\mathcal{F}})$
 - \checkmark Obtains width = 1

The average constraint may not be satisfied any more!

- Instead find a solution that maximizes coverage
 - Coverage remains unchanged after pruning
 - There is a cover of size k,

 \checkmark The solution of maximum k-coverage satisfies the average constraint of the set cover too; even after the pruning: $\sum_{S \in \mathcal{F}} x_S p_S \ge \sum_{e \in \mathcal{I}} p_e = 1$

 $\underline{\mathbf{Oracle}}(\mathcal{F}, \mathcal{U}, k, p)$

 $\sum_{S \in \mathcal{F}} x_S \leq k$

 $\begin{array}{ll} \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ x_S \geq 0 & \forall S \in \mathcal{F} \end{array}$

 $-1 \leq \sum_{S:e \in S} x_S - 1 \leq 1 \qquad \forall e \in \mathcal{U}$

Next Goal:

Given a set system (\mathcal{U},\mathcal{F}), and a parameter k, solve the (weighted) fractional Max *k*-Cover in one pass

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $O(\frac{k \log n}{c^2})$ -pass

 $\tilde{O}(n)$ -space

• Reducing the number of passes to logarithmic

- Reducing Width via Extended Set System
- Fractional Max k-Cover

 $(1 + \varepsilon)$ -appx

• Reducing the number of passes to a constant

Max k-Cover Problem

Input: a collection \mathcal{F} of sets $S_1, ..., S_m$ Each $S \subseteq \mathcal{U} = \{1, ..., n\}$

Output: k sets of \mathcal{F} such that: Maximizes the total coverage; $|\bigcup_{S \in \mathcal{C}} S|$

Complexity:

- NP-hard
- Greedy: $(1 \frac{1}{e})$ -approximation
- One pass (1ε) -approx. using $\tilde{O}(m/\varepsilon^2)$ space [MV17], [BEM17]

Fractional Max k-Cover

$\underline{Max}\operatorname{-}\!\mathbf{Cover}\operatorname{-}\!\mathbf{LP}(\mathcal{F},\mathcal{U},k)$			
Max.	$\sum_{e\in\mathcal{U}} z_e$		
s.t.	$\sum_{S \in \mathcal{F}} x_S \leq k$ $\sum_{S:e \in S} x_S \geq z_e$ $x_a \geq 0$	$\forall e \in \mathcal{U}$	
	$z_{e} \leq 0$	$\forall e \in \mathcal{U}$	

Weighted Max k-Cover Problem

Input: a collection \mathcal{F} of sets $S_1, ..., S_m$ Each $S \subseteq \mathcal{U} = \{1, ..., n\}$

Output: k sets of \mathcal{F} such that: Maximizes the total coverage; $|\bigcup_{S \in \mathcal{C}} S|$

Complexity:

- NP-hard
- Greedy: $(1 \frac{1}{e})$ -approximation
- One pass (1ε) -approx. using $\tilde{O}(m/\varepsilon^2)$ space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

$\underline{Max-Cover-LP}(\mathcal{F}, \mathcal{U}, k, \frac{p}{P})$			
Max.	$\sum_{e \in \mathcal{U}} \frac{p_e}{z_e}$		
s.t.	$\begin{array}{l} \sum_{S \in \mathcal{F}} x_S \leq k \\ \sum_{S:e \in S} x_S \geq z_e \\ x_S \geq 0 \end{array}$	$\forall e \in \mathcal{U} \\ \forall S \in \mathcal{F}$	
	$z_e \leq 1$	$\forall e \in \mathcal{U}$	
Fractional Max k-Cover in One Pass

- Component I (Element Sampling):
 - 1. Sample $\tilde{O}(\frac{k}{\epsilon^2})$ elements in U' according to **p**.
 - 2. <u>In one pass</u> over the stream: Store \mathcal{F}' , the intersection of all sets in \mathcal{F} with U'
 - 3. Return the best *k*-cover of the sampled elements.
 - w.h.p. the constructed cover is a (1ε) -approximate solution of the main instance.
 - Required space: $\tilde{O}(mk/\varepsilon^2)$
- Component II (Covering Common Elements):
 - In the preprocessing step, pick $x^{\text{cmn}} = \left\langle \frac{\varepsilon k}{m}, \dots, \frac{\varepsilon k}{m} \right\rangle$
 - All frequently occurring elements will be covered.
 - We can focus on elements with degree $\leq \frac{m}{\epsilon k}$
 - Required space: $\tilde{O}\left(\frac{m}{\varepsilon k} \times \frac{k}{\varepsilon^2}\right) = \tilde{O}(m/\varepsilon^3)$

The pruning

We have:

- Solution \vec{x} on the original set system (U, \mathcal{F})
- The coverage $y_e := \sum_{S \ni e} x_S$ of every element by the solution of the original set system \vec{x} can be computed in one pass.

We need:

- Convert \vec{x} to a solution $\vec{x'}$ on the extended set system (U, \check{F}) so that $\vec{x'}$ can be averaged in the end of the T iterations.
- The coverage y'_e := Σ_{S∋e} x_S' by the solution x' to update the weights of MWU
 p^{t+1}_e := p^t_e(1 − O(ε) × (y_e' − 1))

> The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional solution \vec{x} of the maximum coverage on (U, \mathcal{F}) to get a solution $\vec{x'}$ of $(U, \check{\mathcal{F}})$ s.t. the coverage of every element is capped by 1, i.e., $y_e' = \text{Min}(y_e, 1)$.

Implementing MWU in Stream (II)

- Solve fractional Max k Cover in one pass find \vec{x} and in one pass y_e
- Obtain $\overrightarrow{x'}$ and y'_e using the lemma.
- $\vec{x'}$ satisfies the average constraint.
- Update the probabilities according to y'_e
- width is 1
- The number of required rounds of MWU is $O(\frac{\log n}{c^2})$


```
\begin{split} \underline{Oracle}(\mathcal{F}, \mathcal{U}, k, p) \\ & \sum_{S \in \mathcal{F}} x_S \leq k \\ & \sum_{S \in \mathcal{F}} x_S p_S \geq 1 - \varepsilon \\ & x_S \geq 0 \qquad \forall S \in \mathcal{F} \\ -1 \leq \sum_{S:e \in S} x_S - 1 \leq 1 \quad \forall e \in \mathcal{U} \end{split}
```

Challenge:

Can we run several rounds of MWU in one pass of the streaming algorithm?

The Plan

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx $O({k \log n}/{\varepsilon^2})$ -pass $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover

 $(1+\varepsilon)$ -appx $O(\frac{\log n}{\varepsilon^2})$ -pass $\tilde{O}(m/\epsilon^3)$ -space

- Reducing the number of passes to a constant
 - Running several rounds of MWU together by sampling in advance

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- × But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

Component I (Element Sampling): Sample $\tilde{O}(\frac{k}{\varepsilon^2})$ elements according to **p**. Return the best *k*-cover of the sampled elements. After ℓ rounds of MWU: $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e increases at most by $n^{O(\frac{1}{\varepsilon d})}$

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- × But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

 $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e increases at most by $n^{O(\frac{1}{\varepsilon d})}$

After ℓ rounds of MWU:

To perform $O(\frac{\log n}{\varepsilon^2 d})$ rounds together

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass

- \times But probability distribution p changes over the iterations
- × Element sampling is done w.r.t. p

Key observation:

The probability vector p changes slowly.

Component I (Element Sampling): Sample $\tilde{O}(\frac{kn^{O(1/\varepsilon d)}}{\varepsilon^2})$ elements according to p. Return the best *k*-cover of the sampled elements. After ℓ rounds of MWU: $p_e^{t+\ell} \le p_e^t (1+O(\varepsilon))^{\ell}$ Setting $\ell = O(\frac{\log n}{\varepsilon^2 d})$ rounds, p_e

increases at most by $n^{O(\frac{1}{\varepsilon d})}$

Space increases by $n^{O(1/\varepsilon d)}$ **#passes** decreases by $O(\frac{\log n}{\varepsilon^2 d})$

Implementing MWU in Stream (II)

- Algorithm will go over *d* passes:
 - Sample $\tilde{O}(\frac{kn^{O(1/\varepsilon d)}}{\varepsilon^2})$ elements for each of the $O\left(\frac{\log n}{\epsilon^2 d}\right)$ rounds assigned to this pass.
 - In one pass find the projection of all sets on these sampled elements in $\tilde{O}(mn^{O(1/d\varepsilon)})$ space. (this uses the common element component).
 - For each of the $O\left(\frac{\log n}{\epsilon^2 d}\right)$ rounds.
 - Adjust the samples properly.
 - Solve fractional Max k Cover find x_S
 - Update the probabilities for all the sampled elements
 - In one pass update the probabilities for all the elements.

$$\begin{split} \underline{\text{Oracle}}(\mathcal{F}, \mathcal{U}, k, p) \\ \sum_{S \in \mathcal{F}} x_S &\leq k \\ \\ \sum_{S \in \mathcal{F}} x_S p_S &\geq 1 - \varepsilon \\ x_S &\geq 0 \qquad \forall S \in \mathcal{F} \\ -1 &\leq \sum_{S:e \in S} x_S - 1 \leq 1 \quad \forall e \in \mathcal{U} \end{split}$$

The Plan

- The Multiplicative Weight Update framework
 - MWU for the Set Cover
 - The average constraint: Oracle
- Implement MWU Oracle Naively in the streaming

 $(1+\varepsilon)$ -appx $O(\frac{k \log n}{\varepsilon^2})$ -pass $\tilde{O}(n)$ -space

- Reducing the number of passes to logarithmic
 - Reducing Width via Extended Set System
 - Fractional Max k-Cover

• Running several rounds of MWU together by sampling in advance

 $1+\varepsilon$)-appx $0(1/\delta)$ -pass $ilde{O}(mn^{O(\delta/\varepsilon)})$ -space

Summary

- Considered MWU for solving fractional-Set Cover
 - One pass for each of the $O(\frac{\phi \log n}{\epsilon^2})$ iterations.
 - Trivial solution gets $\phi = k$ giving $O(\frac{k \log n}{\epsilon^2})$
 - No way to reduce the width to smaller than k.
- Change the set system to extended set system.
 - Solution remains the same.
 - Goal changes to weighted maximum coverage that is preserved under the pruning.
 - Obtain $\phi = 1$ giving $O(\frac{\log n}{\epsilon^2})$ pass algorithm
- Run several rounds of MWU together
 - The probabilities change slowly over iterations.
 - Sample more elements in advance and adjust the probability.
 - Get constant pass algorithm.

Performance $(1 + \varepsilon)$ -approximation $O(k \log n / \epsilon^2)$ passes $\tilde{O}(n)$ space

Performance

 $(1 + \epsilon)$ -approximation $O(\frac{\log n}{s^2})$ passes $\tilde{O}(m/\epsilon^3)$ space

