
Lecture 4
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

Multi-pass Algorithm for Set Cover
 Fractional Set Cover using MWU

Set Cover Problem
Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a
subset of 𝒰𝒰 = {1, … ,𝑛𝑛}

1

4

5
2

3

Set Cover Problem
Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a
subset of 𝒰𝒰 = {1, … ,𝑛𝑛}
Output: a subset 𝒞𝒞 of ℱ such that:

• 𝒞𝒞 covers 𝒰𝒰
• |𝒞𝒞| is minimized

1

4

5
2

3

Set Cover Problem
Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a
subset of 𝒰𝒰 = {1, … ,𝑛𝑛}
Output: a subset 𝒞𝒞 of ℱ such that:

• 𝒞𝒞 covers 𝒰𝒰
• |𝒞𝒞| is minimized

Complexity:
• NP-hard
• Greedy (ln𝑛𝑛)-approximation algorithm

• Pick the set that covers maximum number of
uncovered elements

• Can’t do better unless P=NP
[LY91][RS97][Fei98][AMS06][DS14]

1

4

5
2

3

Set Cover in Massive Data Models

• Studied in the massive data models
• A classic optimization problem
• Application in “Big Data”: Clustering, Topic Coverage
• The streaming setting: [ER’14, DIMV’14, CW’16, HIMV’16, AKL’16, A’17, BEM’17, IMRUVY’17]

Goal: “solve set cover in the streaming model”

• Model:
• Sequential access to 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑚𝑚
• One (or few) passes, sublinear (i.e., 𝑜𝑜(𝑚𝑚𝑛𝑛)) storage
• (Hopefully) decent approximation factor

Naïve Algorithm

Naïve implementations of the greedy algorithm

1. In one pass, keep all the data and run greedy and the end of the
stream

2. In each pass over the stream, keep track of the set that covers
maximum number of uncovered elements.

What it gives
Algorithms Approximation Passes Space Type

Greedy Alg
𝑂𝑂(log𝑛𝑛)
𝑂𝑂(log𝑛𝑛)

1
𝑛𝑛

𝑂𝑂(𝑚𝑚𝑛𝑛)
𝑂𝑂(𝑛𝑛)

Deterministic
Deterministic

𝑛𝑛 = number of elements
𝑚𝑚 = number of sets.

8

Better Greedy

For 𝑇𝑇 = 2𝑖𝑖 where 𝑖𝑖 = log𝑛𝑛 to 0
• In one pass, pick any set that covers at least 𝑇𝑇 yet-uncovered

elements.

 log𝑛𝑛 passes
 Space 𝑂𝑂(𝑛𝑛)
 Exercise: gives 𝑂𝑂(log𝑛𝑛) approximation

What it gives
Algorithms Approximation Passes Space Type

Greedy Alg
𝑂𝑂(log𝑛𝑛)
𝑂𝑂(log𝑛𝑛)

1
𝑛𝑛

𝑂𝑂(𝑚𝑚𝑛𝑛)
𝑂𝑂(𝑛𝑛)

Deterministic
Deterministic

[GS’09] 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(𝑛𝑛 log𝑛𝑛) Deterministic

𝑛𝑛 = number of elements
𝑚𝑚 = number of sets.

10

A Sampling-based algorithm

1. Two simple components used for coverage problems in massive data
models.
• Set Sampling
• Element Sampling

2. The algorithm overview

 Lets assume we know 𝒌𝒌 the value of the optimal solution (min set
cover size)

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, elements
with degree at least m

ℓ
are covered in expectation.

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

Using Chernoff

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

How we use the lemma: set ℓ ≈ 𝑂𝑂(𝑘𝑘)

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2 3 2 1 1 3 2 1 3 2

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2 3 2 1 1 3 2 1 3 2

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

10,6 1,2,5,4 8,2,9,10

4 5 8 10

6,9,7

Degrees: 2 3 2 1 1 3 2 1 3 2

Component I: set sampling

Component II: element sampling

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1,3 10 3,7 1 107

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,3 10 3,7 1 107

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

1,3 10 3,7 1 107

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

10,6 1,2,5,4 6,9,7

4 5

Element Sampling: Sample a few elements and solve the set
cover for the sampled elements.

Component II: element sampling

Element Sampling: Sampling Θ(𝜌𝜌𝜌𝜌 log 𝑚𝑚
𝜖𝜖

) elements uniformly at
random and finding a 𝜌𝜌-approximate cover for the sampled
elements, will cover (1 − 𝜖𝜖) fraction of the original elements
w.h.p.

10,6 1,2,5,4 6,9,7

4 5

Component II: element sampling

Element Sampling: Sampling Θ(𝜌𝜌𝜌𝜌 log 𝑚𝑚
𝜖𝜖

) elements uniformly at
random and finding a 𝜌𝜌-approximate cover for the sampled
elements, will cover (1 − 𝜖𝜖) fraction of the original elements
w.h.p.

Component II: element sampling

𝝆𝝆 is the approximation factor of the offline algorithm we use
• log𝑛𝑛 if we want polynomial time algorithm
• 1 if we only care about the space usage of the algorithm

Element Sampling: Sampling Θ(𝜌𝜌𝜌𝜌 log 𝑚𝑚
𝜖𝜖

) elements uniformly at random and finding a
𝜌𝜌-approximate cover for the sampled elements, will cover (1 − 𝜖𝜖) fraction of the
original elements w.h.p.

Component II: element sampling

• Size of the optimal solution is 𝑘𝑘
• There are 𝑚𝑚𝜌𝜌𝜌𝜌 subcollection of sets ℱ′ ⊆ ℱ
• Take one ℱ′ suppose it covers less than (1 − 𝜖𝜖) fraction of the elements
• What is the probability that it becomes a cover after the sampling?
• The probability that we don’t sample of the at least 𝜖𝜖𝑛𝑛 elements.

• 1 − 𝜖𝜖
𝑐𝑐𝑐𝑐𝑐𝑐 log 𝑚𝑚

𝜖𝜖 ≈ 1
𝑒𝑒

𝑐𝑐𝜌𝜌𝜌𝜌 log𝑚𝑚
= 1

𝑚𝑚

𝑐𝑐𝜌𝜌𝜌𝜌

• Overall failure probability is 1
𝑚𝑚

𝑐𝑐−1 𝜌𝜌𝜌𝜌

• So it holds with high probability.

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

Algorithm

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at
least m log 𝑛𝑛

ℓ
are covered w.h.p.

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
Compute a solution of 𝜌𝜌ℓ sets at the end

Algorithm

Element Sampling: Sampling Θ(𝜌𝜌𝜌𝜌 log 𝑚𝑚
𝜖𝜖

) elements uniformly at random and finding a 𝜌𝜌-
approximate cover for the sampled elements, will cover (1 − 𝜖𝜖) fraction of the original
elements w.h.p.

𝝐𝝐 = 𝟏𝟏/𝒏𝒏𝜹𝜹

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol
• Update uncovered elements.

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
Compute a solution of 𝜌𝜌ℓ sets at the end

Algorithm

One pass, space 𝑂𝑂(𝑛𝑛)

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol
• Update uncovered elements.

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
Compute a solution of 𝜌𝜌ℓ sets at the end

Analysis

One pass, space 𝑂𝑂(𝑛𝑛)

Number of Passes: 𝟐𝟐/𝜹𝜹
 (1

𝛿𝛿
) iterations, each 2 passes

 Set sampling pass can be merged with the first pass of the first iteration

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol
• Update uncovered elements.

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑶𝑶(𝒏𝒏), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑶𝑶(𝒎𝒎𝒏𝒏𝜹𝜹)
Compute a solution of 𝜌𝜌ℓ sets at the end

Analysis

One pass, space 𝑶𝑶(𝒏𝒏)

Space Usage: �𝑶𝑶(𝒎𝒎𝒏𝒏𝜹𝜹)
 log𝑛𝑛 different guesses that run in parallel
 For each guess, the space usage is �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol
• Update uncovered elements.

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
Compute a solution of 𝝆𝝆ℓ sets at the end

Analysis

One pass, space 𝑂𝑂(𝑛𝑛)

Approximation Factor: 𝟐𝟐𝝆𝝆/𝜹𝜹 + 𝟐𝟐
Take 𝑘𝑘 ≤ ℓ ≤ 2𝑘𝑘
 ℓ ≤ 2𝑘𝑘 sets for set sampling
 𝜌𝜌ℓ ≤ 2𝜌𝜌𝑘𝑘 sets per pass

Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For 1/𝛿𝛿 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛𝛿𝛿

)-
fraction of the uncovered elements.

• Add the sets to Sol
• Update uncovered elements.

log𝑛𝑛 different guesses
ℓ ∈ {1,2,4, … ,𝑛𝑛}

sample ℓ sets,
One pass, space 𝑂𝑂(𝑛𝑛), ℓ sets

sample (𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚) elements,
In one pass, keep projection of sets on
sampled elements
Space: 𝑂𝑂 𝜌𝜌ℓ𝑛𝑛𝛿𝛿 log𝑚𝑚 ⋅ 𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂 𝜌𝜌𝑚𝑚𝑛𝑛𝛿𝛿 log𝑚𝑚 log𝑛𝑛 = �𝑂𝑂(𝑚𝑚𝑛𝑛𝛿𝛿)
Compute a solution of 𝜌𝜌ℓ sets at the end

Analysis

One pass, space 𝑂𝑂(𝑛𝑛)

Proof of correctness:
 For the right guess 𝑘𝑘 ≤ ℓ < 2𝑘𝑘, every subsample of the elements can be covered by at most 𝑘𝑘 < ℓ sets. Thus

element sampling returns a cover of size at most 𝜌𝜌ℓ < 2𝜌𝜌𝑘𝑘.
 The number of uncovered elements reduces by a factor of 𝑛𝑛𝛿𝛿. So after 1/𝛿𝛿 iterations, all elements are

covered.

What it gives
Algorithms Approximation Passes Space Type

Greedy Alg
𝑂𝑂(log𝑛𝑛)
𝑂𝑂(log𝑛𝑛)

1
𝑛𝑛

𝑂𝑂(𝑚𝑚𝑛𝑛)
𝑂𝑂(𝑛𝑛)

Deterministic
Deterministic

[GS’09] 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(log𝑛𝑛) 𝑂𝑂(𝑛𝑛 log𝑛𝑛) Deterministic
[ER’14] 𝑂𝑂(𝑛𝑛) 1 �𝑂𝑂(𝑛𝑛) Deterministic
[CW’16] 𝑂𝑂(𝑛𝑛𝛿𝛿/𝛿𝛿) ⁄1 𝛿𝛿 − 1 �𝑂𝑂(𝑛𝑛) Deterministic

[HIMV’16] 𝐎𝐎(⁄𝝆𝝆 𝜹𝜹) 𝐎𝐎(⁄𝟏𝟏 𝜹𝜹) �𝑶𝑶(𝐦𝐦𝒏𝒏𝜹𝜹) Randomized

𝑛𝑛 = number of elements
𝑚𝑚 = number of sets.

𝜌𝜌 = approximation guarantee
for offline Set Cover

38

Fractional Set Cover using MWU

Fractional Set Cover

• Each set can be picked fractionally (assigning value 𝑥𝑥𝑖𝑖 ∈ [0,1] to each
set 𝑆𝑆𝑖𝑖)

• The first step in solving covering LPs in stream
• Packing LP (Fractional Maximum Matching)[AG11]

Fractional Solution
of Set Cover

(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑚𝑚)

Randomized
Rounding

Pick 𝑆𝑆𝑖𝑖 w.p. ∝ 𝑥𝑥𝑖𝑖log𝑛𝑛

𝑂𝑂(log𝑛𝑛)-approximate
Integral Solution

The Plan
• The Multiplicative Weight Update framework

• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

The Plan
• The Multiplicative Weight Update framework

• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

MWU to solve packing/covering LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 = O(𝜙𝜙 log𝑛𝑛 /𝜖𝜖2)

MWU to solve LP

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥𝑚𝑚

a1,1, … , a1,𝑚𝑚
a2,1, … , a2,𝑚𝑚
…
a𝑛𝑛,1, … , a𝑛𝑛,𝑚𝑚

𝑏𝑏1
𝑏𝑏2
…
𝑏𝑏𝑛𝑛

≥

Covering LP:
All 𝑎𝑎𝑗𝑗,𝑖𝑖 and 𝑏𝑏𝑗𝑗 and 𝑐𝑐𝑖𝑖 are non-negative

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥𝑚𝑚

a1,1, … , a1,𝑚𝑚
a2,1, … , a2,𝑚𝑚
…
a𝑛𝑛,1, … , a𝑛𝑛,𝑚𝑚

𝑏𝑏1
𝑏𝑏2
…
𝑏𝑏𝑛𝑛

≥𝑤𝑤1
𝑤𝑤2
…
𝑤𝑤𝑛𝑛

𝑤𝑤1
𝑤𝑤2
…
𝑤𝑤𝑛𝑛

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥𝑚𝑚

a1,1, … , a1,𝑚𝑚
a2,1, … , a2,𝑚𝑚
…
a𝑛𝑛,1, … , a𝑛𝑛,𝑚𝑚

𝑏𝑏1
𝑏𝑏2
…
𝑏𝑏𝑛𝑛

≥𝑤𝑤1
𝑤𝑤2
…
𝑤𝑤𝑛𝑛

T 𝑤𝑤1
𝑤𝑤2
…
𝑤𝑤𝑛𝑛

T

�
𝑖𝑖=1

𝑚𝑚

𝑥𝑥𝑖𝑖 �
𝑗𝑗=1

𝑛𝑛

𝑤𝑤𝑗𝑗𝑎𝑎𝑗𝑗,𝑖𝑖 ≥ �
𝑗𝑗=1

𝑛𝑛

𝑤𝑤𝑗𝑗𝑏𝑏𝑗𝑗

MWU to solve LP
Algorithm:
• Instead of solving for all the constraints, solve for

a weighted average constraint.

• Take the solution
• The less a constraint is satisfied, the less weight it

gets for the next iteration

• Repeat the above for 𝑇𝑇 iterations
• Report the average solution found over all

iterations.

• 𝑇𝑇 = O(𝜙𝜙 log𝑛𝑛 /𝜖𝜖2)

Oracle(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛 , 𝑝𝑝𝑡𝑡)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
(𝑤𝑤𝑡𝑡)𝑇𝑇𝐴𝐴𝑥𝑥 ≥ (𝑤𝑤𝑡𝑡)𝑇𝑇𝑏𝑏

𝑥𝑥 ≥ 0
𝑤𝑤1 ← (1,⋯ , 1) ⊳ uniform weights
For 𝑡𝑡 = 1, 𝑡𝑡 ≤ 𝑇𝑇 do ⊳ T iterations

𝑥𝑥𝑡𝑡 ← solution of Oracle ⊳ avg constraint w.r.t. 𝑤𝑤𝑡𝑡

𝑤𝑤𝑡𝑡+1 ← 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡)
⊳ decrease weight of constraints oversatisfied by 𝑥𝑥𝑡𝑡

�̅�𝑥 = 𝐔𝐔𝐚𝐚𝐚𝐚(𝑥𝑥1,⋯𝑥𝑥𝑇𝑇)

MWU Update Rule:
𝑤𝑤𝑒𝑒𝑡𝑡+1 ≔ 𝑤𝑤𝑒𝑒𝑡𝑡 1− 𝜺𝜺/𝝓𝝓 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒

∀𝑒𝑒: 𝐴𝐴𝑒𝑒�̅�𝑥 ≥ 𝑏𝑏𝑒𝑒 − 𝜀𝜀

∀𝑒𝑒, 𝑡𝑡:−𝜙𝜙 ≤ 𝐴𝐴𝑒𝑒𝑥𝑥𝑡𝑡 − 𝑏𝑏𝑒𝑒 ≤ 𝜙𝜙

CoveringLP(𝐴𝐴𝑛𝑛×𝑚𝑚, 𝑐𝑐𝑚𝑚, 𝑏𝑏𝑛𝑛)

Min 𝑐𝑐𝑇𝑇𝑥𝑥
𝐴𝐴𝑥𝑥 ≥ 𝑏𝑏
𝑥𝑥 ≥ 0

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

Multiplicative Weight Update (Set Cover)

SET-COVER LP(ℱ, 𝒰𝒰):

Min ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Multiplicative Weight Update (Set Cover)

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

s.t. ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 ∀𝑒𝑒 ∈ 𝒰𝒰
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Feasibility-SET-COVER LP(ℱ, 𝒰𝒰, 𝑘𝑘)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 ∑𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 ∑𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ∑𝑒𝑒∈𝑆𝑆𝑤𝑤𝑒𝑒 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑤𝑤𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰𝑤𝑤𝑒𝑒 Define 𝑤𝑤𝑆𝑆 ≔ ∑𝑒𝑒∈𝑆𝑆𝑤𝑤𝑒𝑒

By normalizing weight vector w (prob. vector 𝑝𝑝):
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approximately!

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

Multiplicative Weight Update (Set Cover)

Assign weight 𝑤𝑤𝑒𝑒 to each
element e (initially one)

Solve the weighted average
constraint approx. w.r.t 𝑝𝑝𝑡𝑡(∝ 𝑤𝑤𝑡𝑡): 𝒙𝒙𝒕𝒕

Update the prob vector

𝒑𝒑𝒆𝒆𝒕𝒕+𝟏𝟏 ≔ 𝒑𝒑𝒆𝒆𝒕𝒕 (𝟏𝟏 − 𝑶𝑶 𝜺𝜺 × ∑𝒙𝒙𝑺𝑺𝒕𝒕 − 𝟏𝟏)

T times

MWU Theorem. After 𝑇𝑇 = 𝑂𝑂(𝜙𝜙 log 𝑛𝑛
𝜀𝜀2

) rounds,

�̅�𝑥 = 1
𝑇𝑇

(𝑥𝑥1 + ⋯+ 𝑥𝑥𝑡𝑡) is an 𝜀𝜀-feasible solution.

∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 1 − 𝜀𝜀 ∀𝑒𝑒 ∈ 𝒰𝒰

Width of
oracle

Bounding the max number of times
an element gets covered

Finally, we can then pick 𝑘𝑘(1 + 𝜖𝜖) sets to cover
all the elements!

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

Given: a probability vector 𝑝𝑝 on the elements, and 𝑘𝑘
Goal: pick (fractionally) 𝑘𝑘 sets by assigning values to 𝑥𝑥𝑆𝑆 such that

1. The total probability (weight) of the sets in the solution is maximized,
i.e., at least (1 − 𝜀𝜀), where
• probability of a set is the sum of the probability of its elements, i.e.,
𝑝𝑝𝑆𝑆 = ∑𝑒𝑒∈𝑆𝑆 𝑝𝑝𝑒𝑒

2. The width (total number of times any element is covered) is small.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

The Oracle

Initial plan:
• solve the Oracle in one pass

and low space,
• gives an algorithm for set

cover with 𝑇𝑇 passes and
low space.

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming
 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜖𝜖2
) passes

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

Implementing MWU in Stream (I)
• Naïve solution for the oracle:

• Width (the number of times an element is covered)
is trivially 𝑘𝑘

• The number of required rounds to obtain (1 + 𝜖𝜖)-
approximation is 𝑂𝑂(𝜌𝜌 log 𝑛𝑛

𝜀𝜀2
)

• Streaming: find the heaviest set w.r.t 𝒑𝒑 in a single
pass over the stream

𝑥𝑥𝑆𝑆 = �𝑘𝑘0
If S is the heaviest set,

Otherwise.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−𝜙𝜙 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 𝜙𝜙 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜀𝜀)-approximation
𝑂𝑂(�𝜌𝜌 log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(𝑛𝑛) space

Performance

Challenge:
Is it possible to find a solution to the
oracle with smaller width?

No, simply all sets may contain a
designated element e and hence
the width of any solution to the
oracle is always k no matter how
the solution is picked.

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝜌𝜌 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝜌𝜌 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Challenge:
Is it possible to find a solution to the
oracle in set system (𝒰𝒰,ℱ) with
smaller width?

No, simply all sets may contain a
designated element e and hence
the width of any solution to the
oracle is always k no matter how
the solution is picked.

 The size of an optimal cover in
both set systems are the same. Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Extended Set System

Extended Set System

ℱ = { 1,2,3 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

1,2,3 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 4,5 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 1,2,3 , 𝟑𝟑,𝟒𝟒,𝟓𝟓 , {2,6}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {6}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

• Idea: Pruning the cover

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Extended Set System

Different Set System?

Extended Set System of 𝓕𝓕:
The set system (𝒰𝒰, �ℱ) (extension
of ℱ) is the collection containing
all subsets of sets in ℱ.

 The size of an optimal cover in
both set systems are the same.
We can easily find an optimal

solution with width one in the
extended set system �ℱ

• Idea: Pruning the cover

 Extended Set System has
exponentially many sets

• Work with the original set
system,

• Solve the oracle on ℱ but and
convert it to a solution for �ℱ

ℱ = { 1,2,3 , 3,4,5 , {𝟐𝟐,𝟔𝟔}}
�ℱ = {

1 , 2 , 3 , 4 , 5 , {𝟔𝟔}
1,2 , 1,3 , 2,3 , 3,4 , 3,5 , 𝟒𝟒,𝟓𝟓 , 2,6

𝟏𝟏,𝟐𝟐,𝟑𝟑 , 3,4,5
}

Implementing MWU in Stream (II)
• We want to solve the oracle for (𝒰𝒰, �ℱ)

• Find some solution for the oracle (𝒰𝒰,ℱ),
• Prune it to get a solution for (𝒰𝒰, �ℱ)

 Obtains width = 1
• The average constraint may not be satisfied any more!

• Instead find a solution that maximizes coverage
 Coverage remains unchanged after pruning
• There is a cover of size 𝑘𝑘,
 The solution of maximum 𝑘𝑘-coverage satisfies the average constraint of the

set cover too; even after the pruning: ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ ∑𝑒𝑒∈𝒰𝒰 𝑝𝑝𝑒𝑒 = 1

e.g., 𝑥𝑥𝑆𝑆 = �1
0

If S is one of the k heaviest set,
Otherwise.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Next Goal:
Given a set system (𝒰𝒰,ℱ), and a
parameter 𝑘𝑘 , solve the (weighted)
fractional Max k-Cover in one pass

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝜌𝜌 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

Max k-Cover Problem

Input: a collection ℱ of sets S1, ..., Sm
Each S ⊆ 𝒰𝒰 = {1, … ,𝑛𝑛}

Output: k sets of ℱ such that:
Maximizes the total coverage;
|⋃𝑆𝑆∈𝒞𝒞𝑆𝑆|

Complexity:
• NP-hard
• Greedy: (1 − 1

e
)-approximation

• One pass (1 − 𝜀𝜀)-approx. using
�𝑂𝑂(𝑚𝑚/𝜀𝜀2) space [MV17], [BEM17]

Max-Cover-LP(ℱ, 𝒰𝒰, 𝑘𝑘)

Max. ∑𝑒𝑒∈𝒰𝒰 𝑧𝑧𝑒𝑒

s.t. ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘
∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 𝑧𝑧𝑒𝑒 ∀𝑒𝑒 ∈ 𝒰𝒰

𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ
𝑧𝑧𝑒𝑒 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Fractional Max k-Cover

Max-Cover-LP(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

Max. ∑𝑒𝑒∈𝒰𝒰 𝑝𝑝𝑒𝑒𝑧𝑧𝑒𝑒

s.t. ∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘
∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆 ≥ 𝑧𝑧𝑒𝑒 ∀𝑒𝑒 ∈ 𝒰𝒰

𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ
𝑧𝑧𝑒𝑒 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

Weighted Max k-Cover Problem

Input: a collection ℱ of sets S1, ..., Sm
Each S ⊆ 𝒰𝒰 = {1, … ,𝑛𝑛}

Output: k sets of ℱ such that:
Maximizes the total coverage;
|⋃𝑆𝑆∈𝒞𝒞𝑆𝑆|

Complexity:
• NP-hard
• Greedy: (1 − 1

e
)-approximation

• One pass (1 − 𝜀𝜀)-approx. using
�𝑂𝑂(𝑚𝑚/𝜀𝜀2) space [MV17], [BEM17]

Fractional (Weighted) Max k-Cover

Fractional Max k-Cover in One Pass
• Component I (Element Sampling):

1. Sample �𝑂𝑂(𝜌𝜌
𝜀𝜀2

) elements in 𝑈𝑈′ according to 𝒑𝒑.
2. In one pass over the stream: Store ℱ′, the intersection of all sets

in ℱ with 𝑈𝑈′

3. Return the best k-cover of the sampled elements.
• w.h.p. the constructed cover is a (1 − 𝜀𝜀)-approximate solution of

the main instance.
• Required space: �𝑂𝑂(𝑚𝑚𝑘𝑘/𝜀𝜀2)

• Component II (Covering Common Elements):

• In the preprocessing step, pick 𝑥𝑥cmn= 𝜀𝜀𝜌𝜌
𝑚𝑚

, … , 𝜀𝜀𝜌𝜌
𝑚𝑚

• All frequently occurring elements will be covered.
• We can focus on elements with degree ≤ 𝑚𝑚

𝜀𝜀𝜌𝜌

• Required space: �𝑂𝑂 𝑚𝑚
𝜀𝜀𝜌𝜌

× 𝜌𝜌
𝜀𝜀2

= �𝑂𝑂(𝑚𝑚/𝜀𝜀3)

The pruning
We have:
• Solution �⃗�𝑥 on the original set system 𝑈𝑈,ℱ
• The coverage 𝑦𝑦𝑒𝑒 ∶= ∑𝑆𝑆∋𝑒𝑒 𝑥𝑥𝑆𝑆 of every element by the solution of the original set

system �⃗�𝑥 can be computed in one pass.

We need:

• Convert �⃗�𝑥 to a solution 𝑥𝑥′ on the extended set system (𝑈𝑈, �ℱ) so that 𝑥𝑥′ can be
averaged in the end of the 𝑇𝑇 iterations.

• The coverage 𝑦𝑦𝑒𝑒′ ∶= ∑𝑆𝑆∋𝑒𝑒 𝑥𝑥𝑆𝑆′ by the solution 𝑥𝑥′ to update the weights of MWU
• 𝒑𝒑𝒆𝒆𝒕𝒕+𝟏𝟏 ≔ 𝒑𝒑𝒆𝒆𝒕𝒕 𝟏𝟏 − 𝑶𝑶 𝜺𝜺 × 𝒚𝒚𝒆𝒆′ − 𝟏𝟏

The Pruning: needs to be done fractionally.

Lemma: There exists a polynomial time algorithm to prune the fractional
solution �⃗�𝑥 of the maximum coverage on (𝑈𝑈,ℱ) to get a solution 𝑥𝑥′ of (𝑈𝑈, �ℱ)
s.t. the coverage of every element is capped by 1, i.e., 𝑦𝑦𝑒𝑒′ = Min(𝑦𝑦𝑒𝑒 , 1).

Implementing MWU in Stream (II)
• Solve fractional Max 𝑘𝑘 Cover in one pass find �⃗�𝑥 and in one pass 𝑦𝑦𝑒𝑒

• Obtain 𝑥𝑥′ and 𝑦𝑦𝑒𝑒′ using the lemma.

• 𝑥𝑥′ satisfies the average constraint.

• Update the probabilities according to 𝑦𝑦𝑒𝑒′

• width is 1

• The number of required rounds of MWU is 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2

)

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜖𝜖)-approximation
𝑂𝑂(�log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(⁄𝑚𝑚 𝜀𝜀3) space

Performance

Challenge:
Can we run several rounds of MWU in
one pass of the streaming algorithm?

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝜌𝜌 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(�log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑚𝑚/𝜖𝜖3)-space

Component I (Element Sampling):
Sample �𝑂𝑂(𝜌𝜌

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:

𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝜀𝜀)

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝜀𝜀)
Component I (Element Sampling):

Sample �𝑂𝑂(𝜌𝜌𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝜀𝜀)

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

To perform 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

)
rounds together Rejection Sampling: To

adjust the probability 𝑝𝑝𝑒𝑒 Keep each
sample w.p.

⁄𝑝𝑝𝑒𝑒𝑡𝑡+ℓ 𝑝𝑝𝑒𝑒𝑡𝑡𝑛𝑛𝑂𝑂(1/𝜀𝜀𝑑𝑑)

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:
𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Reducing the Number of Passes Further!

Perform several rounds of MWU in one pass
× But probability distribution 𝑝𝑝 changes over the iterations
× Element sampling is done w.r.t. 𝑝𝑝

Space increases by 𝑛𝑛𝑂𝑂(1/𝜀𝜀𝑑𝑑)

#passes decreases by 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

)

Setting ℓ = 𝑂𝑂(log 𝑛𝑛
𝜀𝜀2𝑑𝑑

) rounds, 𝑝𝑝𝑒𝑒

increases at most by 𝑛𝑛𝑂𝑂(1𝜀𝜀𝜀𝜀)
Component I (Element Sampling):

Sample �𝑂𝑂(𝜌𝜌𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝜀𝜀)

𝜀𝜀2
) elements according to 𝒑𝒑.

Return the best k-cover of the sampled
elements.

Key observation:
The probability vector 𝑝𝑝 changes slowly.

After ℓ rounds of MWU:
𝑝𝑝𝑒𝑒𝑡𝑡+ℓ ≤ 𝑝𝑝𝑒𝑒𝑡𝑡 1 + 𝑂𝑂 𝜀𝜀 ℓ

Rejection Sampling: To
adjust the probability 𝑝𝑝𝑒𝑒

Implementing MWU in Stream (II)
• Algorithm will go over 𝑑𝑑 passes:

• Sample �𝑂𝑂(𝜌𝜌𝑛𝑛
𝑂𝑂(1/𝜀𝜀𝜀𝜀)

𝜀𝜀2
) elements for each of the 𝑂𝑂 log 𝑛𝑛

𝜖𝜖2𝑑𝑑
rounds assigned to

this pass.
• In one pass find the projection of all sets on these sampled elements in
�𝑂𝑂 𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀) space. (this uses the common element component).

• For each of the 𝑂𝑂 log 𝑛𝑛
𝜖𝜖2𝑑𝑑

rounds.

• Adjust the samples properly.
• Solve fractional Max 𝑘𝑘 Cover find 𝑥𝑥𝑆𝑆
• Update the probabilities for all the sampled elements

• In one pass update the probabilities for all the elements.

Oracle(ℱ, 𝒰𝒰, 𝑘𝑘, 𝑝𝑝)
∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆 ≤ 𝑘𝑘

∑𝑆𝑆∈ℱ 𝑥𝑥𝑆𝑆𝑝𝑝𝑆𝑆 ≥ 1 − 𝜀𝜀
𝑥𝑥𝑆𝑆 ≥ 0 ∀𝑆𝑆 ∈ ℱ

−1 ≤ ∑𝑆𝑆:𝑒𝑒∈𝑆𝑆 𝑥𝑥𝑆𝑆− 1 ≤ 1 ∀𝑒𝑒 ∈ 𝒰𝒰

(1 + 𝜀𝜀)-approximation
𝑂𝑂(𝑑𝑑) passes
�𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(1/𝑑𝑑𝜀𝜀)) space

Performance

The Plan

• The Multiplicative Weight Update framework
• MWU for the Set Cover
• The average constraint: Oracle

• Implement MWU Oracle Naively in the streaming

• Reducing the number of passes to logarithmic
• Reducing Width via Extended Set System
• Fractional Max k-Cover

• Reducing the number of passes to a constant
• Running several rounds of MWU together by sampling in advance

(1 + 𝜀𝜀)-appx 𝑂𝑂(�𝜌𝜌 log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑛𝑛)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(�log 𝑛𝑛
𝜀𝜀2)-pass �𝑂𝑂(𝑚𝑚/𝜖𝜖3)-space

(1 + 𝜀𝜀)-appx 𝑂𝑂(1/𝛿𝛿)-pass �𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(𝜹𝜹/𝜀𝜀))-space

(1 + 𝜀𝜀)-approximation
𝑂𝑂(𝑘𝑘 log𝑛𝑛 /𝜖𝜖2) passes
�𝑂𝑂(𝑛𝑛) space

Performance

Summary
• Considered MWU for solving fractional-Set Cover

 One pass for each of the 𝑂𝑂(𝜙𝜙 log 𝑛𝑛
𝜖𝜖2

) iterations.

 Trivial solution gets 𝜙𝜙 = 𝑘𝑘 giving 𝑂𝑂(𝜌𝜌 log 𝑛𝑛
𝜖𝜖2

)
 No way to reduce the width to smaller than 𝑘𝑘.

• Change the set system to extended set system.
 Solution remains the same.
 Goal changes to weighted maximum coverage that

is preserved under the pruning.

 Obtain 𝜙𝜙 = 1 giving 𝑂𝑂(log 𝑛𝑛
𝜖𝜖2

) pass algorithm

• Run several rounds of MWU together
 The probabilities change slowly over iterations.
 Sample more elements in advance and adjust the

probability.
 Get constant pass algorithm.

(1 + 𝜀𝜀)-approximation
𝑂𝑂(1/𝛿𝛿) passes
�𝑂𝑂(𝑚𝑚𝑛𝑛𝑂𝑂(𝛿𝛿/𝜀𝜀)) space

Performance

(1 + 𝜖𝜖)-approximation
𝑂𝑂(�log 𝑛𝑛

𝜀𝜀2) passes
�𝑂𝑂(⁄𝑚𝑚 𝜀𝜀3) space

Performance

	Lecture 4
	This Lecture
	Set Cover Problem
	Set Cover Problem
	Set Cover Problem
	Set Cover in Massive Data Models
	Naïve Algorithm
	What it gives
	Better Greedy
	What it gives
	A Sampling-based algorithm
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component I: set sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Component II: element sampling
	Algorithm
	Algorithm
	Algorithm
	Analysis
	Analysis
	Analysis
	Analysis
	What it gives
	Fractional Set Cover using MWU
	Fractional Set Cover
	 The Plan
	 The Plan
	MWU to solve packing/covering LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	MWU to solve LP
	 The Plan
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	Multiplicative Weight Update (Set Cover)
	 The Plan
	The Oracle
	 The Plan
	Implementing MWU in Stream (I)
	 The Plan
	 The Plan
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Extended Set System
	Implementing MWU in Stream (II)
	 The Plan
	Max k-Cover Problem
	Weighted Max k-Cover Problem
	Fractional Max k-Cover in One Pass
	The pruning
	Implementing MWU in Stream (II)
	 The Plan
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Reducing the Number of Passes Further!
	Implementing MWU in Stream (II)
	 The Plan
	Summary

