Lecture 3

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

*L*₀ Samplers
 Graph Streaming Algorithm

Sketch

Large Data set **D**

 \Box An algorithm *Alg* that produces the output *Alg(D)*

□ Sketch: f(D) which has much smaller size □ $Alg'(f(D)) \approx Alg(D)$

Linear Sketch

□ Large Data set $X \in \mathbb{R}^{n \times d}$ which is a **vector** or a **matrix** □ An algorithm *Alg* that produces the output *Alg(X)*

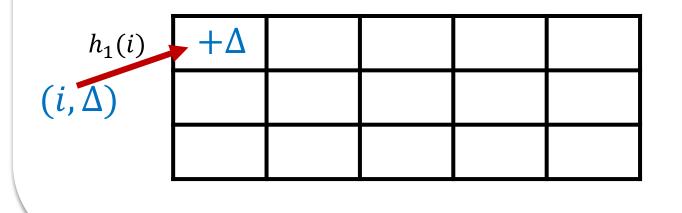
□ Sketch: $f(X) = M \cdot X$ where $M \in \mathbb{R}^{k \times m}$ has much smaller size $(k \times d)$ □ $Alg'(M \cdot X) \approx Alg(X)$ M $f(X_1 + X_2) = f(X_1) + f(X_2)$ > f(aX) = af(X)

Recap - Count Min

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows $r = O(\log 1/\delta)$ **#buckets**/row b = O(2k)

• Hash
$$\forall j \leq r: h_j: [m] \rightarrow [b]$$



• Update: $C[j, h_j(i)] += \Delta$

•

Count-Min as a Linear Sketch

□ Data Set: a vector X ∈ ℝ^m
□ Sketch: f(X) = M · X where M ∈ ℝ<sup>(log¹/_δ, 1/ϵ)×m</sub>
□ Each column of M_i ∈ ℝ^{(1/ϵ)×m} has a 1 in a random row
□ M is concatenation of log 1/δ such M_i
</sup>

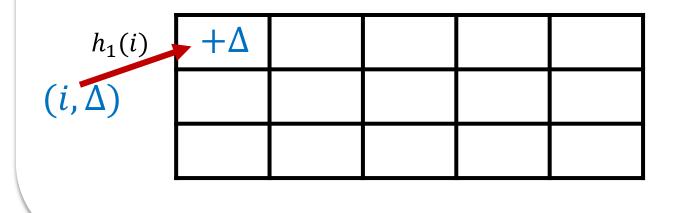
$$\left(\begin{array}{c} 1, 0, 0, 0, 1, 0, 0, 0 \\ 0, 0, 1, 1, 0, 0, 0, 1 \\ 0, 1, 0, 0, 0, 1, 1, 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ . \\ . \\ . \\ x_8 \end{array}\right) = \left(\begin{array}{c} x_1 + x_5 \\ x_1 + x_5 \\ x_3 + x_4 + x_8 \\ x_2 + x_6 + x_7 \end{array}\right)$$

Recap - Count Sketch

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows $r = O(\log 1/\delta)$ **#buckets**/row b = O(9k) • Hash $h_j: [m] \rightarrow [b]$

• Sign
$$\sigma_j \colon [m] \to \{-1, +1\}$$



• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$

•

Count-Sketch as a Linear Sketch

□ Data Set: a vector $X \in \mathbb{R}^m$ □ Sketch: $f(X) = M \cdot X$ where $M \in \mathbb{R}^{(\log \frac{1}{\delta} \cdot \frac{1}{\epsilon^2}) \times m}$ □ Each column of $M_i \in \mathbb{R}^{(\frac{1}{\epsilon^2}) \times m}$ has a random ± 1 in a random row □ M is concatenation of $\log 1/\delta$ such M_i

$$\begin{pmatrix} 1, 0, 0, 0, -1, 0, 0, 0 \\ 0, 0, 1, -1, 0, 0, 0, 1 \\ 0, -1, 0, 0, 0, 1, -1, 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ . \\ . \\ . \\ . \\ x_8 \end{pmatrix} = \begin{pmatrix} x_1 - x_5 \\ x_3 - x_4 + x_8 \\ -x_2 + x_6 - x_7 \end{pmatrix}$$

Recap From Previous Lectures

□ Streaming model of computation

Input is a stream of number (insertion-only, insertion-deletion, turnstile)

- □ Norm Approximation
- Coordinate Approximation
- **Coordinate Sampling**

$$L_p$$
-Sampler

□ Sample one coordinate of a vector \boldsymbol{x} w.p. $\frac{|x_i|^p}{||\boldsymbol{x}||_p^p}$ □ Approximate variant $(1 + \epsilon) \frac{|x_i|^p}{||\boldsymbol{x}||_p^p} + n^{-c}$

$$L_0$$
-Sampler

□ Sample one of the non-zero coordinates with uniform probability. □ Sample one coordinate of a vector *x* w.p. $\frac{1}{\|x\|_0} + n^{-c}$

- Component in many streaming (and more generally big data) algorithms.
- > Works under dynamic updates and turnstile

□ Assume there are *n* coordinates and the coordinates are always integers between [-W, W] for W = poly(n)

Algorithm 1

 \Box For $0 \le i \le \log n$ let S_i be a set where each element is picked independently w.p. $1/2^i$

 $\geq \mathbf{p} = O(poly n)$ is a prime number and

 $\succ \mathbf{r}$ is chosen uniformly at random from $\{1, \dots, p-1\}$

 \Box Assume we can detect some S_i that contains a single non-zero coordinate.

- That coordinate is a random sample.
- Return B_i/A_i as the index and A_i as the value.

 \Box How to test S_i has a single non-zero coordinate? $B_i/A_i \in [n]$ and $C_i = A_i r^{B_i/A_i} \mod p$

Algorithm 1

□ For $0 \le i \le \log n$ let S_i be a set where each element is picked independently w.p. $1/2^i$ $\circ A_i = \sum_{j \in S_i} x_j$ $\circ B_i = \sum_{j \in S_i} j \cdot x_j$ $\circ C_i = \sum_{j \in S_i} x_j r^j \mod p$

 \Box How to test S_i has a single non-zero coordinate? $B_i/A_i \in [n]$ and $C_i = A_i r^{B_i/A_i} \mod p$

- \succ Clearly if S_i has one non-zero coordinate, it passes the test.
- \succ If S_i has more than one non-zero coordinate, it fails with high probability
 - > Consider the polynomial $f(y) = \sum_{j \in S_i} x_j y^j A_i y^{B_i/A_i} \mod p$
 - \succ Its degree is at most n

 $\mathbf{P} = O(poly n)$ and \mathbf{r} is chosen randomly

The probability that for a random r it is 0 is at most $n/(p-1) \leq 1/poly(n)$

Algorithm 1

□ Show there is at least one S_i with exactly one non-zero coordinate
 ➤ with constant probability

- Let $I \subseteq [n]$ be the set of indices of non-zero coordinates
- let $\mathbf{i} \in [\log n]$ be s.t. $2^{i-2} \le |I| \le 2^{i-1}$,

 $\Pr[|I \cap S_i| = 1] = \sum_{j \in I} \Pr[j \in S_i, \text{ and } \forall k \in I \setminus \{j\}: k \notin S_i] = \sum_{j \in I} \left(\frac{1}{2^i}\right) \left(1 - \frac{1}{2^i}\right)^{|I| - 1} \ge \frac{1}{2^i}$

 $\frac{|I|}{2^{i}} \cdot \left(\frac{1}{e}\right)^{\frac{|I|-1}{2^{i}-1}} \ge \frac{1}{4} \cdot \left(\frac{1}{e}\right)^{\frac{1}{2}} \ge \frac{1}{8}$

□ We can then boost the probability of success **by repetition**

 \Box Again we need to maintain the sets S_i which needs lots of space.

k-wise independent

□ $h: [n] \rightarrow [D]$ is a *k*-wise independent hash function, if for any *k* distinct indices $i_1, \dots, i_k \in [n]$ and any *k* values $t_1, \dots, t_k \in [D]$

$$\Pr[h(i_1) = t_1, \cdots, h(i_k) = t_k] = \frac{1}{|D|^k}$$

➤ E.g. function: $h(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0 \mod p$ where coefficients are chosen randomly from $\{0, \dots, p-1\}$ and p = poly(D) is a prime.

 \succ Can be stored using $O(k \log D)$ bits

Algorithm 2 – using hash functions

 \Box To define S_i ,

- Let $h: [n] \rightarrow [O(2^i)]$ be a 2 -wise independent hash function
- Let $S_i = \{j: h(j) \text{ is divisible } by 2^i\},$
- Thus $\Pr[j \in S_i] \approx 1/2^i$

 \Box Again, need to prove that with constant prob. at least one S_i traps **exactly one** non-zero coordinate

 \Box Let *I* be the set of indices of non-zero coordinates, and let *i* be s.t. $2^{i-2} \leq |I| \leq 2^{i-1}$,

 $\Pr[|I \cap S_i| = 1] = \sum_{j \in I} \Pr[j \in S_i, \text{ and } \forall k \in I \setminus \{j\}: k \notin S_i] = \sum_{j \in I} \Pr[j \in S_i] \Pr[\forall k \in I \setminus \{j\}: k \notin S_i]$

Some references for general L_p sampler

Morteza Monemizadeh and David P Woodruff' 2010. 1-pass relativeerror lp-sampling with applications

Hossein Jowhari, Mert Saglam, and G abor Tardos' 2011. Tight bounds for lp samplers, finding duplicates in streams, and related problems

Streaming Graph Algorithms

Graph Streaming Algorithms

 \Box Input is a graph G(V, E) with *n* vertices and *m* edges

Arrival model, (edge arrival, vertex arrival)

 \Box Semi Streaming, the space usage of the algorithm is O(n polylog n)

 \Box But other regimes, e.g. $O(poly \log n)$ space and $o(n^2)$ space, are also considered.

Graph might be insertion-only, or dynamic (e.g. edges might get deleted).

□ Random order streams are also considered in this model.

Warm up I - Undirected Connectivity Problem

Given a stream of edges, maintain the connected components.

 \Box Requires $\Omega(n)$ space

□ Simple Algorithm, for insertion-only streams

- Maintain a spanning forest (only requires O(n) space)
- Upon arrival of e = (u, v) see if C(u) = C(v) then do **nothing**. Otherwise **merge** the components C(u) and C(v)
- > This is much better than O(m) which could be as large as $\Omega(n^2)$
- > What about deletions?

Warm up II - k - Edge Connectivity

□ Goal: Is the graph *k*-Edge Connected? (e.g. *k*-edge disjoint paths between any pair of vertices)

Sketch: Maintain k forests F₁, ..., F_k

• Upon arrival of e = (u, v), find the first forest F_i where e connects different connected components in F_i and add the edge to it. Otherwise ignore the edge

□ space: O(nk) which if k is small, is much smaller than n^2

Correctness:

- If the union of the forests $\mathbf{F} = F_1 \cup \cdots \cup F_k$ are k-connected, then so is G
- If G is k-connected, but F is not, then there should be a cut in F with less than k edges passing it.
- So one F_i has no edge passing the cut, but there was one edge in G passing it. This is a contradiction

Warm up III – Unweighted Matching

Goal: Find a maximum matching in the graph

Sketch: Maintain a maximal matching

Upon arrival of *e* = (*u*, *v*), if both *u* and *v* are unmatched, keep *e* in the solution, otherwise ignore the edge

 \Box space: O(n)

□ Approximation factor: 2

- For each edge e = (u, v) in the optimal matching M^* that is not in the reported solution M, charge it to the edge in M which is incident to either u or v
- Such an edge should exist otherwise we had picked *e* in *M*
- Each edge in *M* is charged at most twice

Warm up III – Unweighted Matching

Goal: Find a maximum matching in the graph

Sketch: Maintain a maximal matching

Upon arrival of *e* = (*u*, *v*), if both *u* and *v* are unmatched, keep *e* in the solution, otherwise ignore the edge

 \Box space: O(n)

Approximation factor: 2

Many works on streaming matching (weighted, random order streams, more than one pass, lower bound results ...)

Undirected connectivity in dynamic graphs

Given a stream of edge insertion and deletions, maintain the connected components of the graph

 \Box Requires $\Omega(n)$ space

 \Box Insertion only, we get O(n) space algorithm

Ingredients

- An offline algorithm
- Vector representation
- L_0 sampler

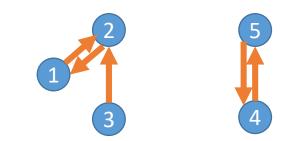
For all $v \in V$, let CC(v) = v

For all $v \in V$, let CC(v) = v

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked

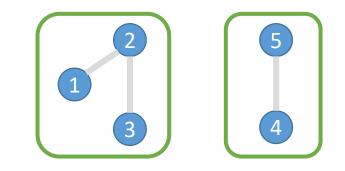
For all $v \in V$, let CC(v) = v

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked



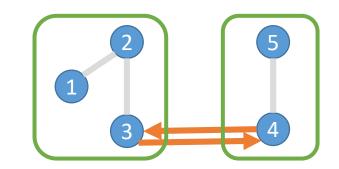
For all $v \in V$, let CC(v) = v

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked



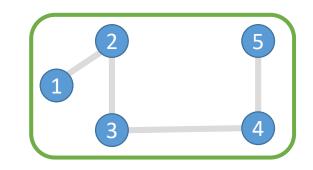
For all $v \in V$, let CC(v) = v

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked



For all $v \in V$, let CC(v) = v

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked

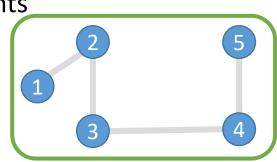


For all $v \in V$, let CC(v) = v

For log *n* iterations

- Pick an incident edge to each connected component
- Merge the components that have an incident edge which we picked

• In the worst case at every iteration every two connected components merge, so it takes log *n* iterations at most.



Vector representation

 \Box For each node $v \in V$

- let $x_v \in \{-1, 0, 1\}^{\binom{n}{2}}$ where
- for each edge e = (u, v) where u < v, we set $x_u(e) = 1$ and $x_v(e) = -1$
- the rest of the entries are zero.

(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)

$$x_1 = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0)$$

$$\Box \quad x_2 = (-1,0,0, 0, 1, 0, 0, 0, 0, 0)$$

$$\Box x_{(1,2)} = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0)$$

$$\Box x_{(4,5)} = (0, 0, 0, 0, 0, 0, 0, -1, 0, 0)$$

 \succ Main property: for a subset of vertices $U \subseteq V$, Support $(\sum_{v \in U} x_v) = E(U, V \setminus U)$

Sketching Algorithm for Connectivity

Sketch: Pick $\log n$ of L_0 - sampler sketches M_t

• Maintain $M_t x_v$ for all $t \le O(\log n)$ and $v \in V$

> Total space usage $O(n \cdot poly \log n) = \widetilde{O}(n)$

Algorithm (is run after the stream ends):

 \Box Initially for all $v \in V$ set CC(v) = v

 \Box For t = 1 to $\log n$, for each remaining component C

- Compute $M_t(\sum_{v \in C} x_v) = \sum_{v \in C} M_t x_v$
- Pick one edge from $E(C, V \setminus C)$ if one exists
- Merge the connected components

