
Lecture 3
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

 𝐿𝐿0 Samplers
 Graph Streaming Algorithm

Sketch

 Large Data set 𝑫𝑫
 An algorithm 𝑨𝑨𝑨𝑨𝑨𝑨 that produces the output 𝑨𝑨𝑨𝑨𝑨𝑨(𝑫𝑫)

 Sketch: 𝒇𝒇(𝑫𝑫) which has much smaller size
 𝑨𝑨𝑨𝑨𝑨𝑨′ 𝒇𝒇 𝑫𝑫 ≈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝑫𝑫

Linear Sketch

 Large Data set 𝑿𝑿 ∈ ℝ𝒏𝒏×𝒅𝒅 which is a vector or a matrix
 An algorithm 𝐴𝐴𝐴𝐴𝐴𝐴 that produces the output 𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋)

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑴𝑴 ⋅ 𝑿𝑿 where 𝑴𝑴 ∈ ℝ𝒌𝒌×𝒎𝒎 has much smaller size (𝒌𝒌 × 𝒅𝒅)
 𝐴𝐴𝐴𝐴𝐴𝐴′ 𝑀𝑀 ⋅ 𝑋𝑋 ≈ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑋𝑋

 𝒇𝒇 𝑿𝑿𝟏𝟏 + 𝑿𝑿𝟐𝟐 = 𝒇𝒇 𝑿𝑿𝟏𝟏 + 𝒇𝒇 𝑿𝑿𝟐𝟐
 𝒇𝒇 𝒂𝒂𝑿𝑿 = 𝒂𝒂𝒇𝒇(𝑿𝑿)

𝑀𝑀

𝑋𝑋

𝑀𝑀𝑋𝑋

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Recap - Count Min

(𝑖𝑖,Δ)
+Δℎ1(𝑖𝑖)

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•

Count-Min as a Linear Sketch

 Data Set: a vector 𝑋𝑋 ∈ ℝ𝑚𝑚

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑀𝑀 ⋅ 𝑋𝑋 where 𝑴𝑴 ∈ ℝ(𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝜹𝜹⋅
𝟏𝟏
𝝐𝝐)×𝒎𝒎

 Each column of 𝑴𝑴𝒊𝒊 ∈ ℝ
(𝟏𝟏𝝐𝝐)×𝒎𝒎 has a 1 in a random row

𝑴𝑴 is concatenation of log 1/𝛿𝛿 such 𝑀𝑀𝑖𝑖

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥8

1, 0, 0, 0, 1, 0, 0, 0
0, 0, 1, 1, 0, 0, 0, 1
0, 1, 0, 0, 0, 1, 1, 0

𝑥𝑥1 + 𝑥𝑥5
𝑥𝑥3 + 𝑥𝑥4 + 𝑥𝑥8
𝑥𝑥2 + 𝑥𝑥6 + 𝑥𝑥7

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Recap - Count Sketch

ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
(𝑖𝑖,Δ)

Count-Sketch as a Linear Sketch

 Data Set: a vector 𝑋𝑋 ∈ ℝ𝑚𝑚

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑀𝑀 ⋅ 𝑋𝑋 where 𝑀𝑀 ∈ ℝ(log1𝛿𝛿⋅
1
𝜖𝜖2

)×𝑚𝑚

 Each column of 𝑀𝑀𝑖𝑖 ∈ ℝ
(𝟏𝟏
𝝐𝝐𝟐𝟐

)×𝑚𝑚 has a random ±𝟏𝟏 in a random row
𝑀𝑀 is concatenation of log 1/𝛿𝛿 such 𝑀𝑀𝑖𝑖

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥8

1, 0, 0, 0,−1, 0, 0, 0
0, 0, 1,−1, 0, 0, 0, 1
0,−1, 0, 0, 0, 1,−1, 0

𝑥𝑥1 − 𝑥𝑥5
𝑥𝑥3 − 𝑥𝑥4 + 𝑥𝑥8
−𝑥𝑥2 + 𝑥𝑥6 − 𝑥𝑥7

Recap From Previous Lectures

 Streaming model of computation
 Input is a stream of number (insertion-only, insertion-deletion,

turnstile)
 Norm Approximation
 Coordinate Approximation
 Coordinate Sampling

𝐿𝐿𝑝𝑝-Sampler

 Sample one coordinate of a vector 𝒙𝒙 w.p. 𝒙𝒙𝒊𝒊
𝒑𝒑

𝒙𝒙 𝒑𝒑
𝒑𝒑

 Approximate variant 𝟏𝟏 + 𝝐𝝐 𝒙𝒙𝒊𝒊 𝒑𝒑

𝒙𝒙 𝒑𝒑
𝒑𝒑 + 𝒏𝒏−𝒄𝒄

𝐿𝐿0-Sampler

 Sample one of the non-zero coordinates with uniform probability.

 Sample one coordinate of a vector 𝑥𝑥 w.p. 𝟏𝟏
𝒙𝒙 𝟎𝟎

+ 𝒏𝒏−𝒄𝒄

 Component in many streaming (and more generally big data)
algorithms.
Works under dynamic updates and turnstile

 Assume there are 𝑛𝑛 coordinates and the coordinates are always
integers between [−𝑊𝑊,𝑊𝑊] for 𝑊𝑊 = 𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝(𝑛𝑛)

Algorithm 1

 For 0 ≤ 𝑖𝑖 ≤ log𝑛𝑛 let 𝑺𝑺𝒊𝒊 be a set where each element is picked independently w.p. 1/2𝑖𝑖

o 𝑨𝑨𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋
o 𝑩𝑩𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒋𝒋 ⋅ 𝒙𝒙𝒋𝒋
o 𝑪𝑪𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋𝒓𝒓

𝒋𝒋 mod 𝒑𝒑
 𝒑𝒑 = 𝑂𝑂(𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝 𝑛𝑛) is a prime number and
 𝒓𝒓 is chosen uniformly at random from {1,⋯ ,𝑝𝑝 − 1}

 Assume we can detect some 𝑆𝑆𝑖𝑖 that contains a single non-zero coordinate.
• That coordinate is a random sample.
• Return 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 as the index and 𝑨𝑨𝒊𝒊 as the value.

 How to test 𝑆𝑆𝑖𝑖 has a single non-zero coordinate? 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 ∈ [𝒏𝒏] and 𝑪𝑪𝒊𝒊 = 𝑨𝑨𝒊𝒊𝒓𝒓𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊𝐦𝐦𝐥𝐥𝐦𝐦 𝒑𝒑

Algorithm 1

 For 0 ≤ 𝑖𝑖 ≤ log𝑛𝑛 let 𝑆𝑆𝑖𝑖 be a set where each element is picked independently w.p. 1/2𝑖𝑖

o 𝐴𝐴𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑥𝑥𝑗𝑗
o 𝐵𝐵𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑗𝑗 ⋅ 𝑥𝑥𝑗𝑗
o 𝐶𝐶𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑥𝑥𝑗𝑗𝑟𝑟

𝑗𝑗 mod 𝑝𝑝
 How to test 𝑆𝑆𝑖𝑖 has a single non-zero coordinate? 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 ∈ [𝒏𝒏] and 𝑪𝑪𝒊𝒊 = 𝑨𝑨𝒊𝒊𝒓𝒓𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 mod 𝒑𝒑

 Clearly if 𝑆𝑆𝑖𝑖 has one non-zero coordinate, it passes the test.
 If 𝑆𝑆𝑖𝑖 has more than one non-zero coordinate, it fails with high probability
 Consider the polynomial 𝒇𝒇 𝒚𝒚 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋𝒚𝒚

𝒋𝒋 − 𝑨𝑨𝒊𝒊𝒚𝒚𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 𝐦𝐦𝐥𝐥𝐦𝐦 𝒑𝒑
 Its degree is at most 𝑛𝑛
 𝒑𝒑 = 𝑂𝑂(𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝 𝑛𝑛) and 𝒓𝒓 is chosen randomly
The probability that for a random 𝑟𝑟 it is 0 is at most 𝑛𝑛/(𝑝𝑝 − 1) ≤ 1/𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝(𝑛𝑛)

Algorithm 1

 Show there is at least one 𝑆𝑆𝑖𝑖 with exactly one non-zero coordinate
 with constant probability

• Let 𝑰𝑰 ⊆ [𝒏𝒏] be the set of indices of non-zero coordinates
• let 𝒊𝒊 ∈ [𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏] be s.t. 2𝑖𝑖−2 ≤ 𝐼𝐼 ≤ 2𝑖𝑖−1,

Pr 𝐼𝐼 ∩ 𝑆𝑆𝑖𝑖 = 1 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 , and ∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}: 𝑘𝑘 ∉ 𝑆𝑆𝑖𝑖 = ∑𝑗𝑗∈𝐼𝐼
1
2𝑖𝑖

1 − 1
2𝑖𝑖

𝐼𝐼 −1
≥

𝐼𝐼
2𝑖𝑖
⋅ 1

𝑒𝑒

𝐼𝐼 −1
2𝑖𝑖−1 ≥ 1

4
⋅ 1

𝑒𝑒

1
2 ≥ 1

8

We can then boost the probability of success by repetition
 Again we need to maintain the sets 𝑆𝑆𝑖𝑖 which needs lots of space.

𝑘𝑘-wise independent

 ℎ: 𝑛𝑛 → [𝐷𝐷] is a 𝒌𝒌-wise independent hash function, if for any 𝑘𝑘 distinct indices

𝑖𝑖1,⋯ , 𝑖𝑖𝑘𝑘 ∈ [𝑛𝑛] and any 𝑘𝑘 values 𝑡𝑡1,⋯ , 𝑡𝑡𝑘𝑘 ∈ 𝐷𝐷

Pr ℎ 𝑖𝑖1 = 𝑡𝑡1,⋯ ,ℎ 𝑖𝑖𝑘𝑘 = 𝑡𝑡𝑘𝑘 =
1

|𝐷𝐷|𝑘𝑘

 E.g. function: ℎ 𝑥𝑥 = 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + ⋯+ 𝑎𝑎0 mod 𝑝𝑝 where coefficients are

chosen randomly from {0,⋯ ,𝑝𝑝 − 1} and 𝑝𝑝 = 𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝(𝐷𝐷) is a prime.

 Can be stored using 𝑂𝑂(𝑘𝑘 log𝐷𝐷) bits

Algorithm 2 – using hash functions

 To define 𝑆𝑆𝑖𝑖,
• Let ℎ: 𝑛𝑛 → [𝑂𝑂(2𝑖𝑖)] be a 𝟐𝟐 −wise independent hash function
• Let 𝑆𝑆𝑖𝑖 = {𝑗𝑗: ℎ 𝑗𝑗 is divisible 𝑏𝑏𝑝𝑝 2𝑖𝑖},
• Thus Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 ≈ 1/2𝑖𝑖

 Again, need to prove that with constant prob. at least one 𝑆𝑆𝑖𝑖 traps exactly one non-zero
coordinate
 Let 𝐼𝐼 be the set of indices of non-zero coordinates, and let 𝑖𝑖 be s.t. 2𝑖𝑖−2 ≤ 𝐼𝐼 ≤ 2𝑖𝑖−1,

Pr 𝐼𝐼 ∩ 𝑆𝑆𝑖𝑖 = 1 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 , and ∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}:𝑘𝑘 ∉ 𝑆𝑆𝑖𝑖 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 Pr[∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}:𝑘𝑘 ∉

Some references for general 𝐿𝐿𝑝𝑝 sampler

Morteza Monemizadeh and David P Woodruff’ 2010. 1-pass relative-
error lp-sampling with applications

 Hossein Jowhari, Mert Sa ̆glam, and G ́abor Tardos’ 2011. Tight
bounds for lp samplers, finding duplicates in streams, and related
problems

Streaming Graph Algorithms

Graph Streaming Algorithms

 Input is a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) with 𝑛𝑛 vertices and 𝑚𝑚 edges

 Arrival model, (edge arrival, vertex arrival)

 Semi Streaming, the space usage of the algorithm is 𝑂𝑂(𝑛𝑛 𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝𝐴𝐴𝑝𝑝𝐴𝐴 𝑛𝑛)

 But other regimes, e.g. 𝑂𝑂 𝑝𝑝𝑝𝑝𝐴𝐴𝑝𝑝 log𝑛𝑛 space and 𝑝𝑝(𝑛𝑛2) space, are also considered.

 Graph might be insertion-only, or dynamic (e.g. edges might get deleted).

 Random order streams are also considered in this model.

Warm up I - Undirected Connectivity Problem

 Given a stream of edges, maintain the connected components.

 Requires Ω(𝑛𝑛) space

 Simple Algorithm, for insertion-only streams

• Maintain a spanning forest (only requires 𝑶𝑶(𝒏𝒏) space)

• Upon arrival of 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) see if 𝑪𝑪 𝒖𝒖 = 𝑪𝑪(𝒗𝒗) then do nothing. Otherwise merge the

components 𝐶𝐶 𝑢𝑢 and 𝐶𝐶(𝑣𝑣)

 This is much better than 𝑂𝑂(𝑚𝑚) which could be as large as Ω 𝑛𝑛2

What about deletions?

Warm up II - 𝑘𝑘- Edge Connectivity

 Goal: Is the graph 𝑘𝑘-Edge Connected? (e.g. 𝑘𝑘-edge disjoint paths between any pair of vertices)

 Sketch: Maintain 𝑘𝑘 forests 𝑭𝑭𝟏𝟏,⋯ ,𝑭𝑭𝒌𝒌

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), find the first forest 𝐹𝐹𝑖𝑖 where 𝑒𝑒 connects different connected components

in 𝐹𝐹𝑖𝑖 and add the edge to it. Otherwise ignore the edge

 space: 𝑂𝑂(𝑛𝑛𝑘𝑘) which if 𝑘𝑘 is small, is much smaller than 𝑛𝑛2

 Correctness:

• If the union of the forests 𝐅𝐅 = 𝑭𝑭𝟏𝟏 ∪⋯∪ 𝑭𝑭𝒌𝒌 are 𝑘𝑘-connected, then so is 𝐺𝐺
• If 𝐺𝐺 is 𝑘𝑘-connected, but 𝐹𝐹 is not, then there should be a cut in 𝐹𝐹 with less than 𝑘𝑘 edges passing it.
• So one 𝐹𝐹𝑖𝑖 has no edge passing the cut, but there was one edge in 𝐺𝐺 passing it. This is a contradiction

Warm up III – Unweighted Matching

 Goal: Find a maximum matching in the graph

 Sketch: Maintain a maximal matching

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), if both 𝑢𝑢 and 𝑣𝑣 are unmatched, keep 𝑒𝑒 in the solution, otherwise ignore

the edge

 space: 𝑂𝑂(𝑛𝑛)

 Approximation factor: 2

• For each edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) in the optimal matching 𝑀𝑀∗ that is not in the reported solution 𝑀𝑀, charge it
to the edge in 𝑀𝑀 which is incident to either 𝑢𝑢 or 𝑣𝑣

• Such an edge should exist otherwise we had picked 𝑒𝑒 in 𝑀𝑀
• Each edge in 𝑀𝑀 is charged at most twice

Warm up III – Unweighted Matching

 Goal: Find a maximum matching in the graph

 Sketch: Maintain a maximal matching

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), if both 𝑢𝑢 and 𝑣𝑣 are unmatched, keep 𝑒𝑒 in the solution, otherwise ignore

the edge

 space: 𝑂𝑂(𝑛𝑛)

 Approximation factor: 2

Many works on streaming matching (weighted, random order streams, more than one pass, lower bound
results …)

Undirected connectivity in dynamic graphs

 Given a stream of edge insertion and deletions, maintain the connected

components of the graph

 Requires Ω(𝑛𝑛) space

 Insertion only, we get 𝑂𝑂(𝑛𝑛) space algorithm

 Ingredients
• An offline algorithm
• Vector representation
• 𝐿𝐿0 sampler

An offline algorithm

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4

An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

• In the worst case at every iteration every two connected components
merge, so it takes log𝑛𝑛 iterations at most. 2

3

1

5

4

Vector representation

 For each node 𝑣𝑣 ∈ 𝑉𝑉
• let 𝒙𝒙𝒗𝒗 ∈ −𝟏𝟏,𝟎𝟎,𝟏𝟏

𝒏𝒏
𝟐𝟐 where

• for each edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) where 𝑢𝑢 < 𝑣𝑣, we set 𝑥𝑥𝑢𝑢 𝑒𝑒 = 1 and 𝑥𝑥𝑣𝑣 𝑒𝑒 = −1
• the rest of the entries are zero.

 𝑥𝑥1 = 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
 𝑥𝑥2 = −1,0, 0, 0, 1, 0, 0, 0, 0, 0
 𝑥𝑥(1,2) = 0, 1, 0, 0, 1, 0, 0, 0, 0, 0
 𝑥𝑥(4,5) = 0, 0, 0, 0, 0, 0, 0,−1, 0, 0

Main property: for a subset of vertices 𝑈𝑈 ⊆ 𝑉𝑉, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐥𝐥𝐒𝐒𝐒𝐒 ∑𝒗𝒗∈𝑼𝑼 𝒙𝒙𝒗𝒗 = 𝑬𝑬(𝑼𝑼,𝑽𝑽 ∖ 𝑼𝑼)

2

3

1

5

4

(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)(4,5)

Sketching Algorithm for Connectivity

Sketch: Pick log𝑛𝑛 of 𝐿𝐿0 - sampler sketches 𝑴𝑴𝒕𝒕

• Maintain 𝑴𝑴𝒕𝒕𝒙𝒙𝒗𝒗 for all 𝑡𝑡 ≤ 𝑂𝑂(log𝑛𝑛) and 𝑣𝑣 ∈ 𝑉𝑉

Total space usage 𝑶𝑶 𝒏𝒏 ⋅ 𝒑𝒑𝒑𝒑𝑨𝑨𝒚𝒚 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 = �𝑶𝑶(𝒏𝒏)

Algorithm (is run after the stream ends):

 Initially for all 𝑣𝑣 ∈ 𝑉𝑉 set 𝐶𝐶𝐶𝐶 𝑣𝑣 = 𝑣𝑣

 For 𝒕𝒕 = 𝟏𝟏 𝑡𝑡𝑝𝑝 log𝑛𝑛 , for each remaining component 𝐶𝐶

• Compute 𝑴𝑴𝒕𝒕 ∑𝒗𝒗∈𝑪𝑪 𝒙𝒙𝒗𝒗 = ∑𝒗𝒗∈𝑪𝑪𝑴𝑴𝒕𝒕 𝒙𝒙𝒗𝒗

• Pick one edge from 𝑬𝑬(𝑪𝑪,𝑽𝑽 ∖ 𝑪𝑪) if one exists

• Merge the connected components

2

3

1

5

4

	Lecture 3
	This Lecture
	Sketch
	Linear Sketch
	Recap - Count Min
	Count-Min as a Linear Sketch
	Recap - Count Sketch
	Count-Sketch as a Linear Sketch
	Recap From Previous Lectures
	 𝐿 𝑝 -Sampler
	 𝐿 0 -Sampler
	Algorithm 1
	Algorithm 1
	Algorithm 1
	𝑘-wise independent
	Algorithm 2 – using hash functions
	Some references for general 𝐿 𝑝 sampler
	Streaming Graph Algorithms
	Graph Streaming Algorithms
	Warm up I - Undirected Connectivity Problem
	Warm up II - 𝑘- Edge Connectivity
	Warm up III – Unweighted Matching
	Warm up III – Unweighted Matching
	Undirected connectivity in dynamic graphs
	An offline algorithm
	An offline algorithm
	An offline algorithm
	An offline algorithm
	An offline algorithm
	An offline algorithm
	An offline algorithm
	An offline algorithm
	Vector representation
	Sketching Algorithm for Connectivity

