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This Lecture

 𝐿𝐿0 Samplers
 Graph Streaming Algorithm



Sketch

 Large Data set 𝑫𝑫
 An algorithm 𝑨𝑨𝑨𝑨𝑨𝑨 that produces the output 𝑨𝑨𝑨𝑨𝑨𝑨(𝑫𝑫)

 Sketch: 𝒇𝒇(𝑫𝑫) which has much smaller size
 𝑨𝑨𝑨𝑨𝒈𝒈′ 𝒇𝒇 𝑫𝑫 ≈ 𝑨𝑨𝑨𝑨𝑨𝑨 𝑫𝑫



Linear Sketch

 Large Data set 𝑿𝑿 ∈ ℝ𝒏𝒏×𝒅𝒅 which is a vector or a matrix
 An algorithm 𝐴𝐴𝐴𝐴𝐴𝐴 that produces the output 𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋)

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑴𝑴 ⋅ 𝑿𝑿 where 𝑴𝑴 ∈ ℝ𝒌𝒌×𝒎𝒎 has much smaller size (𝒌𝒌 × 𝒅𝒅)
 𝐴𝐴𝐴𝐴𝑔𝑔′ 𝑀𝑀 ⋅ 𝑋𝑋 ≈ 𝐴𝐴𝐴𝐴𝐴𝐴 𝑋𝑋

 𝒇𝒇 𝑿𝑿𝟏𝟏 + 𝑿𝑿𝟐𝟐 = 𝒇𝒇 𝑿𝑿𝟏𝟏 + 𝒇𝒇 𝑿𝑿𝟐𝟐
 𝒇𝒇 𝒂𝒂𝑿𝑿 = 𝒂𝒂𝒂𝒂(𝑿𝑿)

𝑀𝑀

𝑋𝑋

𝑀𝑀𝑀𝑀



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Recap - Count Min 

(𝑖𝑖,Δ)
+Δℎ1(𝑖𝑖)

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•



Count-Min as a Linear Sketch

 Data Set: a vector 𝑋𝑋 ∈ ℝ𝑚𝑚

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑀𝑀 ⋅ 𝑋𝑋 where 𝑴𝑴 ∈ ℝ(𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝜹𝜹⋅
𝟏𝟏
𝝐𝝐)×𝒎𝒎

 Each column of 𝑴𝑴𝒊𝒊 ∈ ℝ
(𝟏𝟏𝝐𝝐)×𝒎𝒎 has a 1 in a random row

𝑴𝑴 is concatenation of log 1/𝛿𝛿 such 𝑀𝑀𝑖𝑖

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥8

1, 0, 0, 0, 1, 0, 0, 0
0, 0, 1, 1, 0, 0, 0, 1
0, 1, 0, 0, 0, 1, 1, 0

𝑥𝑥1 + 𝑥𝑥5
𝑥𝑥3 + 𝑥𝑥4 + 𝑥𝑥8
𝑥𝑥2 + 𝑥𝑥6 + 𝑥𝑥7



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Recap - Count Sketch

ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
(𝑖𝑖,Δ)



Count-Sketch as a Linear Sketch

 Data Set: a vector 𝑋𝑋 ∈ ℝ𝑚𝑚

 Sketch: 𝑓𝑓 𝑋𝑋 = 𝑀𝑀 ⋅ 𝑋𝑋 where 𝑀𝑀 ∈ ℝ(log1𝛿𝛿⋅
1
𝜖𝜖2

)×𝑚𝑚

 Each column of 𝑀𝑀𝑖𝑖 ∈ ℝ
( 𝟏𝟏
𝝐𝝐𝟐𝟐

)×𝑚𝑚 has a random ±𝟏𝟏 in a random row
𝑀𝑀 is concatenation of log 1/𝛿𝛿 such 𝑀𝑀𝑖𝑖

𝑥𝑥1
𝑥𝑥2
.
.
.
𝑥𝑥8

1, 0, 0, 0,−1, 0, 0, 0
0, 0, 1,−1, 0, 0, 0, 1
0,−1, 0, 0, 0, 1,−1, 0

𝑥𝑥1 − 𝑥𝑥5
𝑥𝑥3 − 𝑥𝑥4 + 𝑥𝑥8
−𝑥𝑥2 + 𝑥𝑥6 − 𝑥𝑥7



Recap From Previous Lectures

 Streaming model of computation
 Input is a stream of number (insertion-only, insertion-deletion, 

turnstile)
 Norm Approximation
 Coordinate Approximation
 Coordinate Sampling



𝐿𝐿𝑝𝑝-Sampler

 Sample one coordinate of a vector 𝒙𝒙 w.p. 𝒙𝒙𝒊𝒊
𝒑𝒑

𝒙𝒙 𝒑𝒑
𝒑𝒑

 Approximate variant 𝟏𝟏 + 𝝐𝝐 𝒙𝒙𝒊𝒊 𝒑𝒑

𝒙𝒙 𝒑𝒑
𝒑𝒑 + 𝒏𝒏−𝒄𝒄



𝐿𝐿0-Sampler

 Sample one of the non-zero coordinates with uniform probability.

 Sample one coordinate of a vector 𝑥𝑥 w.p. 𝟏𝟏
𝒙𝒙 𝟎𝟎

+ 𝒏𝒏−𝒄𝒄

 Component in many streaming (and more generally big data) 
algorithms.
Works under dynamic updates and turnstile 

 Assume there are 𝑛𝑛 coordinates and the coordinates are always 
integers between [−𝑊𝑊,𝑊𝑊] for  𝑊𝑊 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)



Algorithm 1

 For 0 ≤ 𝑖𝑖 ≤ log𝑛𝑛 let 𝑺𝑺𝒊𝒊 be a set where each element is picked independently w.p. 1/2𝑖𝑖

o 𝑨𝑨𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋
o 𝑩𝑩𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒋𝒋 ⋅ 𝒙𝒙𝒋𝒋
o 𝑪𝑪𝒊𝒊 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋𝒓𝒓

𝒋𝒋 mod 𝒑𝒑
 𝒑𝒑 = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛) is a prime number and 
 𝒓𝒓 is chosen uniformly at random from {1,⋯ ,𝑝𝑝 − 1}

 Assume we can detect some 𝑆𝑆𝑖𝑖 that contains a single non-zero coordinate. 
• That coordinate is a random sample.
• Return 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 as the index and 𝑨𝑨𝒊𝒊 as the value.

 How to test 𝑆𝑆𝑖𝑖 has a single non-zero coordinate? 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 ∈ [𝒏𝒏] and 𝑪𝑪𝒊𝒊 = 𝑨𝑨𝒊𝒊𝒓𝒓𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊𝐦𝐦𝐦𝐦𝐦𝐦 𝒑𝒑



Algorithm 1

 For 0 ≤ 𝑖𝑖 ≤ log𝑛𝑛 let 𝑆𝑆𝑖𝑖 be a set where each element is picked independently w.p. 1/2𝑖𝑖

o 𝐴𝐴𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑥𝑥𝑗𝑗
o 𝐵𝐵𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑗𝑗 ⋅ 𝑥𝑥𝑗𝑗
o 𝐶𝐶𝑖𝑖 = ∑𝑗𝑗∈𝑆𝑆𝑖𝑖 𝑥𝑥𝑗𝑗𝑟𝑟

𝑗𝑗 mod 𝑝𝑝
 How to test 𝑆𝑆𝑖𝑖 has a single non-zero coordinate? 𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 ∈ [𝒏𝒏] and 𝑪𝑪𝒊𝒊 = 𝑨𝑨𝒊𝒊𝒓𝒓𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 mod 𝒑𝒑

 Clearly if 𝑆𝑆𝑖𝑖 has one non-zero coordinate, it passes the test.
 If 𝑆𝑆𝑖𝑖 has more than one non-zero coordinate, it fails with high probability
 Consider the polynomial 𝒇𝒇 𝒚𝒚 = ∑𝒋𝒋∈𝑺𝑺𝒊𝒊 𝒙𝒙𝒋𝒋𝒚𝒚

𝒋𝒋 − 𝑨𝑨𝒊𝒊𝒚𝒚𝑩𝑩𝒊𝒊/𝑨𝑨𝒊𝒊 𝐦𝐦𝐦𝐦𝐦𝐦 𝒑𝒑
 Its degree is at most 𝑛𝑛
 𝒑𝒑 = 𝑂𝑂(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛) and 𝒓𝒓 is chosen randomly
The probability that for a random 𝑟𝑟 it is 0 is at most 𝑛𝑛/(𝑝𝑝 − 1) ≤ 1/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛)



Algorithm 1

 Show there is at least one 𝑆𝑆𝑖𝑖 with exactly one non-zero coordinate
 with constant probability

• Let 𝑰𝑰 ⊆ [𝒏𝒏] be the set of indices of non-zero coordinates
• let 𝒊𝒊 ∈ [𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏] be s.t. 2𝑖𝑖−2 ≤ 𝐼𝐼 ≤ 2𝑖𝑖−1,

Pr 𝐼𝐼 ∩ 𝑆𝑆𝑖𝑖 = 1 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 , and ∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}: 𝑘𝑘 ∉ 𝑆𝑆𝑖𝑖 = ∑𝑗𝑗∈𝐼𝐼
1
2𝑖𝑖

1 − 1
2𝑖𝑖

𝐼𝐼 −1
≥

𝐼𝐼
2𝑖𝑖
⋅ 1

𝑒𝑒

𝐼𝐼 −1
2𝑖𝑖−1 ≥ 1

4
⋅ 1

𝑒𝑒

1
2 ≥ 1

8

We can then boost the probability of success by repetition
 Again we need to maintain the sets 𝑆𝑆𝑖𝑖 which needs lots of space.



𝑘𝑘-wise independent

 ℎ: 𝑛𝑛 → [𝐷𝐷] is a 𝒌𝒌-wise independent hash function, if for any 𝑘𝑘 distinct indices 

𝑖𝑖1,⋯ , 𝑖𝑖𝑘𝑘 ∈ [𝑛𝑛] and any 𝑘𝑘 values 𝑡𝑡1,⋯ , 𝑡𝑡𝑘𝑘 ∈ 𝐷𝐷

Pr ℎ 𝑖𝑖1 = 𝑡𝑡1,⋯ ,ℎ 𝑖𝑖𝑘𝑘 = 𝑡𝑡𝑘𝑘 =
1

|𝐷𝐷|𝑘𝑘

 E.g. function: ℎ 𝑥𝑥 = 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 + ⋯+ 𝑎𝑎0 mod 𝑝𝑝 where coefficients are 

chosen randomly from {0,⋯ ,𝑝𝑝 − 1} and 𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝐷𝐷) is a prime.

 Can be stored using 𝑂𝑂(𝑘𝑘 log𝐷𝐷) bits



Algorithm 2 – using hash functions 

 To define 𝑆𝑆𝑖𝑖, 
• Let ℎ: 𝑛𝑛 → [𝑂𝑂(2𝑖𝑖)] be a 𝟐𝟐 −wise independent hash function
• Let 𝑆𝑆𝑖𝑖 = {𝑗𝑗: ℎ 𝑗𝑗 is divisible 𝑏𝑏𝑏𝑏 2𝑖𝑖}, 
• Thus Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 ≈ 1/2𝑖𝑖

 Again, need to prove that with constant prob. at least one 𝑆𝑆𝑖𝑖 traps exactly one non-zero 
coordinate
 Let 𝐼𝐼 be the set of indices of non-zero coordinates, and let 𝑖𝑖 be s.t. 2𝑖𝑖−2 ≤ 𝐼𝐼 ≤ 2𝑖𝑖−1,

Pr 𝐼𝐼 ∩ 𝑆𝑆𝑖𝑖 = 1 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 , and ∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}:𝑘𝑘 ∉ 𝑆𝑆𝑖𝑖 = ∑𝑗𝑗∈𝐼𝐼 Pr 𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 Pr[∀𝑘𝑘 ∈ 𝐼𝐼 ∖ {𝑗𝑗}:𝑘𝑘 ∉



Some references for general 𝐿𝐿𝑝𝑝 sampler

Morteza Monemizadeh and David P Woodruff’ 2010. 1-pass relative-
error lp-sampling with applications

 Hossein Jowhari, Mert Sa ̆glam, and G ́abor Tardos’ 2011. Tight 
bounds for lp samplers, finding duplicates in streams, and related 
problems



Streaming Graph Algorithms



Graph Streaming Algorithms

 Input is a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸) with 𝑛𝑛 vertices and 𝑚𝑚 edges

 Arrival model, (edge arrival, vertex arrival)

 Semi Streaming, the space usage of the algorithm is 𝑂𝑂(𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛)

 But other regimes, e.g. 𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 log𝑛𝑛 space and 𝑜𝑜(𝑛𝑛2) space, are also considered.

 Graph might be insertion-only, or dynamic (e.g. edges might get deleted).

 Random order streams are also considered in this model.



Warm up I - Undirected Connectivity Problem

 Given a stream of edges, maintain the connected components.

 Requires Ω(𝑛𝑛) space

 Simple Algorithm, for insertion-only streams

• Maintain a spanning forest (only requires 𝑶𝑶(𝒏𝒏) space)

• Upon arrival of 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) see if 𝑪𝑪 𝒖𝒖 = 𝑪𝑪(𝒗𝒗) then do nothing. Otherwise merge the 

components 𝐶𝐶 𝑢𝑢 and 𝐶𝐶(𝑣𝑣)

 This is much better than 𝑂𝑂(𝑚𝑚) which could be as large as Ω 𝑛𝑛2

What about deletions?



Warm up II - 𝑘𝑘- Edge Connectivity

 Goal: Is the graph 𝑘𝑘-Edge Connected? (e.g. 𝑘𝑘-edge disjoint paths between any pair of vertices)

 Sketch: Maintain 𝑘𝑘 forests 𝑭𝑭𝟏𝟏,⋯ ,𝑭𝑭𝒌𝒌

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), find the first forest 𝐹𝐹𝑖𝑖 where 𝑒𝑒 connects different connected components 

in 𝐹𝐹𝑖𝑖 and add the edge to it. Otherwise ignore the edge

 space: 𝑂𝑂(𝑛𝑛𝑛𝑛) which if 𝑘𝑘 is small, is much smaller than 𝑛𝑛2

 Correctness:

• If the union of the forests 𝐅𝐅 = 𝑭𝑭𝟏𝟏 ∪⋯∪ 𝑭𝑭𝒌𝒌 are 𝑘𝑘-connected, then so is 𝐺𝐺
• If 𝐺𝐺 is 𝑘𝑘-connected, but 𝐹𝐹 is not, then there should be a cut in 𝐹𝐹 with less than 𝑘𝑘 edges passing it. 
• So one 𝐹𝐹𝑖𝑖 has no edge passing the cut, but there was one edge in 𝐺𝐺 passing it. This is a contradiction



Warm up III – Unweighted Matching

 Goal: Find a maximum matching in the graph

 Sketch: Maintain a maximal matching

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), if both 𝑢𝑢 and 𝑣𝑣 are unmatched, keep 𝑒𝑒 in the solution, otherwise ignore 

the edge

 space: 𝑂𝑂(𝑛𝑛)

 Approximation factor: 2

• For each edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) in the optimal matching 𝑀𝑀∗ that is not in the reported solution 𝑀𝑀, charge it 
to the edge in 𝑀𝑀 which is incident to either 𝑢𝑢 or 𝑣𝑣

• Such an edge should exist otherwise we had picked 𝑒𝑒 in 𝑀𝑀
• Each edge in 𝑀𝑀 is charged at most twice



Warm up III – Unweighted Matching

 Goal: Find a maximum matching in the graph

 Sketch: Maintain a maximal matching

• Upon arrival of 𝒆𝒆 = (𝒖𝒖,𝒗𝒗), if both 𝑢𝑢 and 𝑣𝑣 are unmatched, keep 𝑒𝑒 in the solution, otherwise ignore 

the edge

 space: 𝑂𝑂(𝑛𝑛)

 Approximation factor: 2

Many works on streaming matching (weighted, random order streams, more than one pass, lower bound 
results …)



Undirected connectivity in dynamic graphs

 Given a stream of edge insertion and deletions, maintain the connected 

components of the graph

 Requires Ω(𝑛𝑛) space

 Insertion only, we get 𝑂𝑂(𝑛𝑛) space algorithm

 Ingredients
• An offline algorithm
• Vector representation
• 𝐿𝐿0 sampler



An offline algorithm
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An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗

2

3

1

5

4



An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5
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An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4



An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4



An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4



An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

2

3

1

5

4



An offline algorithm

For all 𝑣𝑣 ∈ 𝑉𝑉, let 𝑪𝑪𝑪𝑪 𝒗𝒗 = 𝒗𝒗
For log𝑛𝑛 iterations

• Pick an incident edge to each connected component
• Merge the components that have an incident edge which we picked

• In the worst case at every iteration every two connected components 
merge, so it takes log𝑛𝑛 iterations at most. 2
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Vector representation

 For each node 𝑣𝑣 ∈ 𝑉𝑉
• let 𝒙𝒙𝒗𝒗 ∈ −𝟏𝟏,𝟎𝟎,𝟏𝟏

𝒏𝒏
𝟐𝟐 where 

• for each edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) where 𝑢𝑢 < 𝑣𝑣, we set 𝑥𝑥𝑢𝑢 𝑒𝑒 = 1 and 𝑥𝑥𝑣𝑣 𝑒𝑒 = −1
• the rest of the entries are zero.

 𝑥𝑥1 = 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
 𝑥𝑥2 = −1,0, 0, 0, 1, 0, 0, 0, 0, 0
 𝑥𝑥(1,2) = 0, 1, 0, 0, 1, 0, 0, 0, 0, 0
 𝑥𝑥(4,5) = 0, 0, 0, 0, 0, 0, 0,−1, 0, 0

Main property: for a subset of vertices 𝑈𝑈 ⊆ 𝑉𝑉, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 ∑𝒗𝒗∈𝑼𝑼 𝒙𝒙𝒗𝒗 = 𝑬𝑬(𝑼𝑼,𝑽𝑽 ∖ 𝑼𝑼)
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Sketching Algorithm for Connectivity

Sketch: Pick log𝑛𝑛 of 𝐿𝐿0 - sampler sketches 𝑴𝑴𝒕𝒕

• Maintain 𝑴𝑴𝒕𝒕𝒙𝒙𝒗𝒗 for all 𝑡𝑡 ≤ 𝑂𝑂(log𝑛𝑛) and 𝑣𝑣 ∈ 𝑉𝑉

Total space usage 𝑶𝑶 𝒏𝒏 ⋅ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 = �𝑶𝑶(𝒏𝒏)

Algorithm (is run after the stream ends):

 Initially for all 𝑣𝑣 ∈ 𝑉𝑉 set 𝐶𝐶𝐶𝐶 𝑣𝑣 = 𝑣𝑣

 For 𝒕𝒕 = 𝟏𝟏 𝑡𝑡𝑡𝑡 log𝑛𝑛 , for each remaining component 𝐶𝐶

• Compute 𝑴𝑴𝒕𝒕 ∑𝒗𝒗∈𝑪𝑪 𝒙𝒙𝒗𝒗 = ∑𝒗𝒗∈𝑪𝑪𝑴𝑴𝒕𝒕 𝒙𝒙𝒗𝒗

• Pick one edge from 𝑬𝑬(𝑪𝑪,𝑽𝑽 ∖ 𝑪𝑪) if one exists

• Merge the connected components
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