Lecture 2

TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago
Spring 2021

Instructor: Sepideh Mahabadi

Recap from Lecture 1

Streaming Model

* Huge data set (does not fit into the main memory)

* Only sequential access to the data

* One pass
* Few passes (the data is stored somewhere else)

* Use little memory
e Sublinear in input parameters
e Sublinear in the input size

* Solve the problem (approximately)

. N

arameters of Interest:
1. Memory usage

2. Number of passes

3

. Approximation Factor

\4. (Sometimes) query/update time /

[TTTTTITTTITT

[11 1]

n

Streaming Model of Computation

12345678910

[0,0,0,0,0,0,0,0,0,0]

 Insertion-only Stream

Streaming Model of Computation

4 Insertion-only Stream 123456780910

¢ |nsert(3) [OIOI]'IOIOIOIOIOIOIO]

Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5) [0,0,1,0,1,0,0,0,0,0]

Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7) [0,0,1,0,1,0,1,0,0,0]

Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7), Insert(5) [0,0,1,0,2,0,1,0,0,0]

Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10) 0,0,1,0,3,0,1,0,0,1]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7),

12345678910

[0,0,1,0,3,0,1,0,0,1]

0,0,1,0,1,0,1,0,0,0]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7), Delete(5)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,0,0,1,0,0,0]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)
* Add(i,A): Add value A to the ith coordinate

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
* Add(1,10),

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,0,0,0,0,0,0,0]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
» Add(1,10), Add(4,5),

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[1OIOIOISIOIOIOIOIOIO]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
* Add(1,10), Add(4,5), Add(1,-5)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[SIOIOISIOIOIOIOIOIO]

Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)
* Add(i,A): Add value A to the ith coordinate
 Add(1,10), Add(4,5), Add(1,-5), Add(5,-2)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5101015)-21010101010]

Streaming Model of Computation

] Estimate #Distinct Elements (L, norm: #non-zero coordinates)

Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

m—

s

pace usage:
a single bit (for insertion
only)
A single number in [n]

~

. (to also handle deletions)

Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturnDE <D
Otherwise, return DE > D

4)

Space usage:
e k bits (for insertion only)
* knumbersin [n]

(to also handle deletions)

M’

Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturnDE <D
Otherwise, return DE > D

(s)

pace usage:
* klog n/e bits (for
insertion only)
* klog n/e numbers in [n]

* Return smallest D for which the above reports DE < D

. (to also handle deletions)

Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturn DE <D
Otherwise, return DE > D

(s)

pace usage:
* klog n/e bits (for
insertion only)
* klog n/e numbers in [n]

* Return smallest D for which the above reports DE < D

. (to also handle deletions)
4)

Assumption: access to a
perfect hash function

h:|m] — [D]

e

Streaming Model of Computation

 Distinct Elements (L, norm)

J Morris Counter (L norm in insertion-only streams)
* Count (approximately) in space better than O(logn)?

Morris Algorithm

e let X =0
e Upon receiving INCREMENT()

* Increment X with probabilityzix

e Upon receiving QUERY()
e Returnfi = 2%-1

Claim 1. Let X,, denote X after n updates. Then, E[2%n] = n + 1.

Claim 2. E[24%n] = %nz + %n + 1

Space usage:
O(loglogn)

Pr[|i — n| > en] <

1

€

2

n

Issue

_ 1 n 1
Pr[|i —n| > en] <— —=

2 2 2
€E°n 2 2€

* Not very meaningful!l RHS is better than %2 only when € > 1 (for which
we can instead always return 0 !)

* How to decrease the failure probability?

How to improve the variance

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s =) suffices to get failure probability 6

(626

1
Pr|[fi —n| > en] <— <5
2€

How to improve the space

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s =) suffices to get failure probability 6

(628
e Morris++
Median of t Morris+ estimators.

Setting s = @(>), each Morris+ estimator succeeds w.p. at Ieast -

By Chernoff and setting t = O(log 5), the failure probability becomes at most 6

Improved algorithm

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s =) suffices to get failure probability 6

(628
e Morris++
Median of t Morris+ estimators.

Setting s = @(>), each Morris+ estimator succeeds w.p. at Ieast -

By Chernoff and setting t = O(log 5), the failure probability becomes at most 6

Total Space of Morris++: G)(Ei2 : logg -loglogn) w.p. atleast 1 — 6

This Lecture

* AMS (L, norm estimation)
 Count-Min (Frequency Estimation)

e Count-Sketch (Frequency Estimation)

L, norm Estimation

Q Start with x = 0 € R™

 Input (turnstile model): a stream of n updates (i, A), meaning x; = x; + A
1 Goal: Approximate ||x||, at the end

J Alon-Matias-Szegedy’96 (AMS) Algorithm

Basic Algorithm

 For each of the m coordinates, independently pick a random sign s; €
{—1, +1} with equal probability.

 Sketch: maintain Z = }};_¢ s; - x; throughout the stream
1 Upon receiving (i,A), update Z =Z + (s; - A)

3 Return Z? as an estimate for ||x||%

Basic Algorithm

1 Claim 1 (our estimator works in expectation): IE[ZZ] = IIxII%
1 Claim 2 (our estimator works with good probability)

Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E[Ziij sixiSix; + X stxl| = Qi x; % E[s;s;]| +

ZixiZ]E[Siz]

Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E[Ziij sixiSix; + X stxl| = Qi x; % E[s;s;]| +

Zixiz]E[Siz]

* 5; and s; are chosen independently (2-wise independence is enough)

Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E:Zi;tj sixiSix; + X stxl| = Qi x; % E[s;s;]| +

SixElsi| =0+ E;x = llx]l3

Basic Algorithm

Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3

E[Z*] = E[(X; s;x:)?] = [E:Zi;tj sixiSix; + X stxl| = Qi x; % E[s;s;]| +

SixElsi| =0+ E;x = llx]l3

[Claim 2 (our estimator works with high probability) -> Use Chebyshev
* Need to bound the variance of the estimator

Basic Algorithm — Bounding variance

QVar(Z?) = E[Z*] — E[Z?]?

Basic Algorithm — Bounding variance Z:;S"""
EIVar(ZZ) = E[Z*] — E[Z?]?

Q(E22])" = (Ix3)” = (Bix?)” = Tuxd + 2 e 2247

Basic Algorithm — Bounding variance Z:;S"""

EIVar(ZZ) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.8. X1XX3X4E[$15,535,] =0

Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.8. X1X7X3X4E[$515,535,] =0

(1/2)x1%5x3%4E[s28384|51 = 1] = (1/2)x1 %5032, E[S58384|51 = —1]

Basic Algorithm — Bounding variance Z:;S"""

EIVar(ZZ) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.g. x;x2x3E[s;5%53] = 0

Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.g. xxix3E[s;5553] =0

4-wise independence is sufficient

Basic Algorithm — Bounding variance Z:Zf"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

=]E[Zixf}] + E [Ziij(xixj)zl = llxlls + 6Zi<f xizsz

Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

| 2

Q(E[22])" = T xf +2- iy 27
QE[Z*4] = Ellx|l} + 6 X x2x?

QVar(z?) = llxlls + 6 Xic; xixf — llxlls — 2 Xicjxi %] =

2
4 cixixf < 2(X;xf)" = 2lxll3

Basic Algorithm — Bounding variance

QVar(Z?) = E[Z*] — E[Z?]?

| 2

Q(E[22])" = T xf +2- iy 27
QE[Z*4] = Ellx|l} + 6 X x2x?

A Var(Z?) < 2||x|I3
Qo = /Var(Z2) =2 ||x||3

Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
Qo = Var(Z2) =2 ||x||3

Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
o = \/Var(ZZ) = /2 ||x|I3

O Chebyshev: Pr[|Z% — |Ix]I5 | = cllx|l3] < 2/c?

3 E.g. with constant probability our estimator Z? is within constant factor
of the true value ||x||5

Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
o = \/Var(ZZ) = /2 ||x|I3

O Chebyshev: Pr[|Z% — |Ix]I5 | = cllx|l3] < 2/c?

3 E.g. with constant probability our estimator Z? is within constant factor
of the true value ||x||5

J We want to do better!
[Goal: get (1 + €) approximation with constant probability

] Repeat Basic algorithm!

Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

(1 Does not change the expectation

QOE[Z] = E [Ziziz] = E[Z] = ||x|I2

k

Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()
[Does not change the expectation , i.e., E[Z'] = ||x]|5

1 Variance decreases by a factor of k

Y. Z? _ Yvar(zf) _ Var(Z$) _ 2||x||5
k k2 k k

d Var(Z') = Var(

Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[Does not change the expectation , i.e., E[Z'] = ||x]|5

2|1xll5
k

[Variance decreases by a factor of k, i.e., Var(Z') =

do = \/Var(Z’) = \/5”3;{”%

Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[Does not change the expectation , i.e., E[Z'] = ||x]|5

Qo =Var(Z) =VZIx|3/k Setk=0(5

Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[Does not change the expectation , i.e., E[Z'] = ||x]|5

Qo =Var(Z) =VZIx|3/k Setk=0(5

[Chebyshev PrHZ’ — |1x|I5 ‘ > ceIIxII%] <1/c?
 get a (1 + €) approximation with a constant probability.

Remarks

 To get a (1 + €) approximation with probability (1 — §).
e Runt = 0(log§) instances of AMS and take the median
* By Chernoff Bound, the median of the AMS estimators work

1
] Total space usage 0(%) humbers.

J What about keeping the random signs s;?
O Only need 4-wise independence of sy, ..., Sy, (in bounding E[(3; s;x;)*])
de.g E[s;s,535,] =0

[Can generate such variables using O (log m) random bits.

Outline

* So far we learned how to maintain the norm of a vector in small space

* What else can we do in small (e.g. O(k)) space?

* We can keep track of all coordinates with additive error, i.e., for each
x4

coordinate we can report X; that is within x; +

x4
k

* This is specially useful if x; is large (heavy-hitter), e.g. |x;| =

* (there are at most k such coordinates)

Outline

* So far we learned how to maintain the norm of a vector in small space

* What else can we do in small (e.g. O(k)) space?

* We can keep track of all coordinates with additive error, i.e., for each
x4

coordinate we can report X; that is within x; +

[1x]14
k

* This is specially useful if x; is large (heavy-hitter), e.g. |x;| =

HH} (x) = {i: |x;| > ¢lixll,)}

Frequency Estimation

Goal:

+ Start with x = 0 € R™
* Turnstile Model: input is a stream of updates (i, A), where i € [m]
* (for now assume all coordinates remain positive at all time).

* Keep track of all coordinates with additive error, i.e.,

* for each coordinate we can report X; that is within x; + %

Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#rows r =0(log1/6)
#buckets/row b =0(2k)

Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

hy (i +A
&L * Update: C[j,h;(i)] +=A

o,

Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

/LI A ‘I * Update: C[j,h;(i)]+=A
. . y 1 l =
LR5E A

Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

oyt | —
(l A)m‘ +A ¢ Update: C[], h](l)] +=A
h3(l) _|_A °

Count Min

Query(i), where i € [m]

Each Bucket is an over-estimation of x;

(1)

* Update: C[j,h;(i)] +=A

Count Min

Query(i), where i € [m]

Each Bucket is an over-estimation of x;

* Update: C[j,h;(i)] +=A

(D)

* Estimate £; := min C[j, h;(i)]
J

Count Min

Query(i), where i € [m]

Estimation guarantee: w.p (1 — 9)

Hrows r =0(log1/9) lx; — % < (1/k) - |Ix]l;

#buckets/row b =0(2k)

* Update: C[j,h;(i)] +=A
(0)

* Estimate £; := min C[j, h;(i)]
J

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* For i’ € [m] Let Z,/ be the indicator variable which is 1[hj(i’) = hj(i)]

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
¢ C[], hj(l)] = X; + ZifiiZi/xi/

Count Min

Estimation guarantee: w.p (1 — 0)
X — % < (1/k) - lIxll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 C|j,hi(D)| = x; + X1,y Zyxy = x; + Err

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected erroris E[Err]| = (%) e X < lxll/2k

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected error is E[Err]| = (%) e X < lxll /2k

* By Markov, Pr [Err > IIxII1] S%

Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected error is E[Err]| = (%) e X < lxll /2k

* By Markov, Pr [Err > ”9;"1] < %

* By Independence of the rows: Pr [MinErr > ”3;”1] < 2—17, <0

Outline

* We can keep track of all coordinates with additive error, i.e., for each
1|1

coordinate we can report X; that is within x; +

e CountMin

* We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report X; that is within x; + —”\7%2

 CountSketch

CountSketch

Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#rows r =0(log1/6)
#buckets/row b =0(9%k)

Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

W+A

(5 Update: C[j,h;(i)] +=o;(i) - A

Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}
s \ I
"y * Update: C[j,h;())] +=0;()-A

0

Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

4 |
(i,\) —A
hs(0) +A ’

Update: C[j,h;(i)] +=o;(i) - A

Count Sketch

Query(i), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

* Update: C[j,h;())] +=0;() - A

(D)

* Estimate x; = median, g;({)C[j, h; (i)]

Count Sketch

Query(i), where i € [m]

Estimation guarantee: w.p (1 — 9)

#rows r =0(log1/6) ~
#buckets/row b =0(9k) g — 2l < (1/VE) - llxll
(D) * Update: C[j, h;(@)] +=0;(i) - A
[
* Estimate x; = median, g;({)C[j, h; (i)]

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]

Count Sketch

Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
* Clj, (D] =x; + Xy, Zyro; ((D)xyr = x; + Err

Count Sketch

Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

» Goal: the expected error is E[|Err|] < ||x||,/(3Vk)

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

. IIxIIz] 1
By Markov, Pr[|Err| > NG = 3

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

. IIxIIz] 1
By Markov, Pr[|Err| > NG < -

1
c logg

e By Chernoff: Pr [MedianErr > ”\7%2] <e 3 <9

Count Sketch

Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

Count Sketch

Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ XNy Ziroj(i')xyr == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]

Jensen’s inequality

Jensen’s inequality: In our application:
@ is convex d(x) = x*
¢(Elx]) < E[¢(x)] (E[|Err|])* < E[|Err|”]

E[|Err|] < \/IE[Err|?]

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]

. C[],h D] =x+2.:Z; 1o (1)x;r = x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE |Err|?]

1/2
. < ([Zz’m lrx 7+ le lzillelea](ll)aj(lz)x ,D

l1-'/—'l2

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ Xy Zyrop(i)xy == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]

2 2 - N1\ /2
-s(iriixifrﬁ[zir]+zil,iziixirm[zilzizca(zl)q(lz)]) _

Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ XNy Ziroj(i')xyr == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]

, | \1/2
‘s (i X7 E[Z;] + Zil,iziixi’IE[ZilziZO-j(ll)O'j(lz)]) =

1/2 || || | x|]
(Zl’il[E(Z)xz’) : 2 = 335

Outline

* We can keep track of all coordinates with additive error, i.e., for each
1|1

coordinate we can report X; that is within x; +

e CountMin

* We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report X; that is within x; + —”\7%2

 CountSketch

Next Lecture

* Lo sampler
* More combinatorial Algorithms

	Lecture 2
	Recap from Lecture 1
	Streaming Model
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Streaming Model of Computation
	Morris Algorithm
	Issue
	How to improve the variance
	How to improve the space
	Improved algorithm
	This Lecture
	 𝐿 2 norm Estimation
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Chebyshev
	Basic Algorithm – Chebyshev
	Basic Algorithm – Chebyshev
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Remarks
	Outline
	Outline
	Frequency Estimation
	Goal:
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Outline
	CountSketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Jensen’s inequality
	Count Sketch
	Count Sketch
	Count Sketch
	Outline
	Next Lecture

