Lecture 2

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

Recap from Lecture 1

Streaming Model

- Huge data set (does not fit into the main memory)
- Only sequential access to the data
 - One pass
 - Few passes (the data is stored somewhere else)
- Use little memory
 - Sublinear in input parameters
 - Sublinear in the input size
- Solve the problem (approximately)

Parameters of Interest:

- 1. Memory usage
- 2. Number of passes
- 3. Approximation Factor
- 4. (Sometimes) query/update time

☐ Insertion-only Stream

1 2 3 4 5 6 7 8 9 10

[0,0,0,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5)

1 2 3 4 5 6 7 8 9 10

 $[0,0,1,0,\mathbf{1},0,0,0,0,0]$

☐ Insertion-only Stream

• Insert(3), Insert(5), Insert(7)

1 2 3 4 5 6 7 8 9 10

 $[0,0,1,0,1,0,\mathbf{1},0,0,0]$

☐ Insertion-only Stream

• Insert(3), Insert(5), Insert(7), Insert(5)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,2,0,1,0,0,0]

☐ Insertion-only Stream

• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7),

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,1,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,0,0,1,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...
- ☐ Turnstile (for vectors, and matrices)
 - Add(i, Δ): Add value Δ to the ith coordinate

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...
- ☐ Turnstile (for vectors, and matrices)
 - Add(i, Δ): Add value Δ to the ith coordinate
 - Add(1,10),

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[**10**,0,0,0,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...
- ☐ Turnstile (for vectors, and matrices)
 - Add(i, Δ): Add value Δ to the ith coordinate
 - Add(1,10), Add(4,5),

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,5,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...
- ☐ Turnstile (for vectors, and matrices)
 - Add(i, Δ): Add value Δ to the ith coordinate
 - Add(1,10), Add(4,5), Add(1,-5)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,0,0,0,0,0,0]

- ☐ Insertion-only Stream
 - Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)
- ☐ Insertion and Deletion (Dynamic)
 - Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
 - May assume at any point #deletions(i)<=#insertions(i)
 - E.g. can be used for numbers, edges of graphs, ...
- ☐ Turnstile (for vectors, and matrices)
 - Add(i, Δ): Add value Δ to the ith coordinate
 - Add(1,10), Add(4,5), Add(1,-5), Add(5,-2)

1 2 3 4 5 6 7 8 9 10

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,**-2**,0,0,0,0,0]

 \square Estimate #Distinct Elements (L_0 norm: #non-zero coordinates)

```
• For D \in \{(1+\epsilon)^i : 0 \le i \le \log n/\epsilon\}
```

• For $D \in \{(1+\epsilon)^i : 0 \le i \le \log n/\epsilon\}$

- Sample each of m coordinates w.p. $\frac{1}{D}$ into set S_j
- If all sampled coordinates are 0, return NO
- Otherwise, return YES

Space usage:

- a single bit (for insertion only)
- A single number in [n] (to also handle deletions)

- For $D \in \{(1+\epsilon)^i : 0 \le i \le \log n/\epsilon\}$
 - For $j \in \left\{1, \dots, k = \frac{(\log 1/\delta)}{\epsilon^2}\right\}$
 - Sample each of m coordinates w.p. $\frac{1}{D}$ into set S_j
 - If all sampled coordinates are 0, return NO
 - Otherwise, return YES
 - Z=#NO
 - If Z > k/e return DE < D
 - Otherwise, return DE > D

Space usage:

- k bits (for insertion only)
- k numbers in [n] (to also handle deletions)

- For $D \in \{(1+\epsilon)^i : 0 \le i \le \log n/\epsilon\}$
 - For $j \in \left\{1, \dots, k = \frac{(\log 1/\delta)}{\epsilon^2}\right\}$
 - Sample each of m coordinates w.p. $\frac{1}{D}$ into set S_j
 - If all sampled coordinates are 0, return NO
 - Otherwise, return YES
 - Z=#NO
 - If Z > k/e return DE < D
 - Otherwise, return DE > D
- Return smallest D for which the above reports DE < D

Space usage:

- $k \log n/\epsilon$ bits (for insertion only)
- $k \log n/\epsilon$ numbers in [n] (to also handle deletions)

- For $D \in \{(1+\epsilon)^i : 0 \le i \le \log n/\epsilon\}$
 - For $j \in \left\{1, \dots, k = \frac{(\log 1/\delta)}{\epsilon^2}\right\}$
 - Sample each of m coordinates w.p. $\frac{1}{D}$ into set S_j
 - If all sampled coordinates are 0, return NO
 - Otherwise, return YES
 - Z=#NO
 - If Z > k/e return DE < D
 - Otherwise, return DE > D
- Return smallest D for which the above reports DE < D

Space usage:

- $k \log n/\epsilon$ bits (for insertion only)
- $k \log n/\epsilon$ numbers in [n] (to also handle deletions)

Assumption: access to a perfect hash function $h: [m] \rightarrow [D]$

- \square Distinct Elements (L_0 norm)
- \square Morris Counter (L_1 norm in insertion-only streams)
 - Count (approximately) in space better than $O(\log n)$?

Morris Algorithm

- Let X = 0
- Upon receiving INCREMENT()
 - Increment X with probability $\frac{1}{2^X}$
- Upon receiving QUERY()
 - Return $\tilde{n} = 2^X-1$

Space usage:

 $O(\log \log n)$

Claim 1. Let X_n denote X after n updates. Then, $\mathbb{E}[2^{X_n}] = n + 1$.

Claim 2.
$$\mathbb{E}[2^{2X_n}] = \frac{3}{2}n^2 + \frac{3}{2}n + 1$$

Claim 2.
$$\mathbb{E}[2^{2X_n}] = \frac{3}{2}n^2 + \frac{3}{2}n + 1$$
 $\Pr[|\tilde{n} - n| > \epsilon n] < \frac{1}{\epsilon^2 n^2} \cdot \frac{n^2}{2} = \frac{1}{2\epsilon^2}$

Issue

$$\Pr[|\tilde{n} - n| > \epsilon n] < \frac{1}{\epsilon^2 n^2} \cdot \frac{n^2}{2} = \frac{1}{2\epsilon^2}$$

• Not very meaningful! RHS is better than ½ only when $\epsilon > 1$ (for which we can instead always return 0!)

How to decrease the failure probability?

How to improve the variance

• Morris+

Average of s Morris estimators. Variance is multiplied by $(\frac{1}{s})$.

Setting $s = \Theta(\frac{1}{\epsilon^2 \delta})$ suffices to get failure probability δ

$$\Pr[|\tilde{n} - n| > \epsilon n] < \frac{1}{2\epsilon^2} \cdot \epsilon^2 \delta \le \delta$$

How to improve the space

Morris+

Average of s Morris estimators. Variance is multiplied by $(\frac{1}{s})$.

Setting $s = \Theta(\frac{1}{\epsilon^2 \delta})$ suffices to get failure probability δ

Morris++

Median of t Morris+ estimators.

Setting $s = \Theta(\frac{1}{\epsilon^2})$, each Morris+ estimator succeeds w.p. at least $\frac{2}{3}$.

By Chernoff and setting $t = \Theta(\log \frac{1}{\delta})$, the failure probability becomes at most δ

Improved algorithm

Morris+

Average of s Morris estimators. Variance is multiplied by $(\frac{1}{s})$.

Setting $s = \Theta(\frac{1}{\epsilon^2 \delta})$ suffices to get failure probability δ

Morris++

Median of t Morris+ estimators.

Setting $s = \Theta(\frac{1}{\epsilon^2})$, each Morris+ estimator succeeds w.p. at least $\frac{2}{3}$.

By Chernoff and setting $t = \Theta(\log \frac{1}{\delta})$, the failure probability becomes at most δ

Total Space of Morris++: $\Theta(\frac{1}{\epsilon^2} \cdot \log \frac{1}{\delta} \cdot \log \log n)$ w.p. at least $1 - \delta$

This Lecture

- AMS (L_2 norm estimation)
- Count-Min (Frequency Estimation)
- Count-Sketch (Frequency Estimation)

L_2 norm Estimation

 \square Start with $x = \overrightarrow{\mathbf{0}} \in \mathbb{R}^m$

- \square Input (turnstile model): a stream of n updates (i, Δ) , meaning $x_i = x_i + \Delta$
- \square Goal: Approximate $||x||_2$ at the end
- ☐ Alon-Matias-Szegedy'96 (AMS) Algorithm

- \square For each of the m coordinates, independently pick a random sign $s_i \in \{-1, +1\}$ with equal probability.
- \square Sketch: maintain $Z = \sum_{i=1}^{n} s_i \cdot x_i$ throughout the stream
- \square Upon receiving (i, Δ) , update $\mathbf{Z} = \mathbf{Z} + (\mathbf{s}_i \cdot \Delta)$
- \square Return \mathbb{Z}^2 as an estimate for $||x||_2^2$

- \Box Claim 1 (our estimator works in expectation): $\mathbb{E}[Z^2] = ||x||_2^2$
- ☐ Claim 2 (our estimator works with good probability)

$$Z = \sum_{i=1}^{m} s_i x_i$$

 \Box Claim 1 (our estimator works in expectation): $\mathbb{E}[Z^2] = ||x||_2^2$

$$\mathbb{E}[Z^2] = \mathbb{E}[(\sum_i s_i x_i)^2] = \mathbb{E}[\sum_{i \neq j} s_i x_i s_j x_j + \sum_i s_i^2 x_i^2] = \sum_{i \neq j} x_i x_j \mathbb{E}[s_i s_j] +$$

$$\sum_i x_i^2 \mathbb{E}[s_i^2]$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

 \Box Claim 1 (our estimator works in expectation): $\mathbb{E}[Z^2] = ||x||_2^2$

$$\mathbb{E}[Z^2] = \mathbb{E}[(\sum_i s_i x_i)^2] = \mathbb{E}[\sum_{i \neq j} s_i x_i s_j x_j + \sum_i s_i^2 x_i^2] = \sum_{i \neq j} x_i x_j \mathbb{E}[s_i s_j] +$$

$$\sum_{i} x_i^2 \mathbb{E} \big[s_i^2 \big]$$

• s_i and s_j are chosen independently (2-wise independence is enough)

$$Z = \sum_{i=1}^{m} s_i x_i$$

 \Box Claim 1 (our estimator works in expectation): $\mathbb{E}[Z^2] = ||x||_2^2$

$$\mathbb{E}[Z^2] = \mathbb{E}[(\sum_i s_i x_i)^2] = \mathbb{E}[\sum_{i \neq j} s_i x_i s_j x_j + \sum_i s_i^2 x_i^2] = \sum_{i \neq j} x_i x_j \mathbb{E}[s_i s_j] +$$

$$\sum_{i} x_{i}^{2} \mathbb{E}[s_{i}^{2}] = 0 + \sum_{i} x_{i}^{2} = ||x||_{2}^{2}$$

Basic Algorithm

 \Box Claim 1 (our estimator works in expectation): $\mathbb{E}[Z^2] = ||x||_2^2$

$$\mathbb{E}[Z^2] = \mathbb{E}[(\sum_i s_i x_i)^2] = \mathbb{E}[\sum_{i \neq j} s_i x_i s_j x_j + \sum_i s_i^2 x_i^2] = \sum_{i \neq j} x_i x_j \mathbb{E}[s_i s_j] +$$

$$\sum_{i} x_{i}^{2} \mathbb{E}[s_{i}^{2}] = 0 + \sum_{i} x_{i}^{2} = ||x||_{2}^{2}$$

- ☐ Claim 2 (our estimator works with high probability) -> Use Chebyshev
 - Need to bound the variance of the estimator

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}[(\sum_i s_i x_i)^4] = \mathbb{E}[\sum_i (s_i x_i)^4] + 6 \cdot \mathbb{E}\left[\sum_{i < j} (s_i s_j x_i x_j)^2\right] + 0$$

e.g.
$$x_1 x_2 x_3 x_4 \mathbb{E}[s_1 s_2 s_3 s_4] = 0$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}[(\sum_i s_i x_i)^4] = \mathbb{E}[\sum_i (s_i x_i)^4] + 6 \cdot \mathbb{E}\left[\sum_{i < j} (s_i s_j x_i x_j)^2\right] + 0$$

e.g.
$$x_1 x_2 x_3 x_4 \mathbb{E}[s_1 s_2 s_3 s_4] = 0$$

e.g.
$$x_1x_2x_3x_4\mathbb{E}[s_1s_2s_3s_4] = 0$$

$$(1/2)x_1x_2x_3x_4\mathbb{E}[s_2s_3s_4|s_1 = 1] - (1/2)x_1x_2x_3x_4\mathbb{E}[s_2s_3s_4|s_1 = -1]$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}[(\sum_i s_i x_i)^4] = \mathbb{E}[\sum_i (s_i x_i)^4] + 6 \cdot \mathbb{E}\left[\sum_{i < j} (s_i s_j x_i x_j)^2\right] + 0$$

e.g.
$$x_1 x_2^2 x_3 \mathbb{E}[s_1 s_2^2 s_3] = 0$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}[(\sum_i s_i x_i)^4] = \mathbb{E}[\sum_i (s_i x_i)^4] + 6 \cdot \mathbb{E}\left[\sum_{i < j} (s_i s_j x_i x_j)^2\right] + 0$$

e.g.
$$x_1 x_2^2 x_3 \mathbb{E}[s_1 s_2^2 s_3] = 0$$

e.g. $x_1x_2^2x_3\mathbb{E}[s_1s_2^2s_3]=0$ 4-wise independence is sufficient

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = (\|x\|_2^2)^2 = (\sum_i x_i^2)^2 = \sum_i x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}[(\sum_i s_i x_i)^4] = \mathbb{E}[\sum_i (s_i x_i)^4] + 6 \cdot \mathbb{E}\left[\sum_{i < j} (s_i s_j x_i x_j)^2\right] + 0$$

$$= \mathbb{E}\left[\sum_{i} x_{i}^{4}\right] + \mathbb{E}\left[\sum_{i \neq j} (x_{i} x_{j})^{2}\right] = \|x\|_{4}^{4} + 6\sum_{i < j} x_{i}^{2} x_{j}^{2}$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = \sum_{i} x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}||x||_4^4 + 6\sum_{i < j} x_i^2 x_j^2$$

$$\square \ \mathbb{V}ar\big(Z^2\big) = \|x\|_4^4 + 6 \sum_{i < j} x_i^2 x_j^2 - \|x\|_4^4 - 2 \sum_{i < j} x_i^2 x_j^2 =$$

$$4\sum_{i< j} x_i^2 x_j^2 \le 2(\sum_i x_i^2)^2 = 2\|x\|_2^4$$

$$Z = \sum_{i=1}^{m} s_i x_i$$

$$\square Var(Z^2) = \mathbb{E}[Z^4] - \mathbb{E}[Z^2]^2$$

$$\Box (\mathbb{E}[Z^2])^2 = \sum_{i} x_i^4 + 2 \cdot \sum_{i < j} x_i^2 x_j^2$$

$$\square \mathbb{E}[Z^4] = \mathbb{E}||x||_4^4 + 6\sum_{i < j} x_i^2 x_j^2$$

$$\square \operatorname{Var}(Z^2) \le 2\|x\|_2^4$$

$$\Box \sigma = \sqrt{Var(Z^2)} = \sqrt{2} \|x\|_2^2$$

Basic Algorithm – Chebyshev

$$\square \mathbb{E}[Z^2] = ||x||_2^2$$

$$\Box \sigma = \sqrt{Var(Z^2)} = \sqrt{2} \|x\|_2^2$$

Basic Algorithm – Chebyshev

$$\square \mathbb{E}[Z^2] = \|x\|_2^2$$

$$\square \sigma = \sqrt{Var(Z^2)} = \sqrt{2} \|x\|_2^2$$

☐ Chebyshev:

$$\Pr[|Z^2 - ||x||_2^2 | \ge c||x||_2^2] \le 2/c^2$$

 \square E.g. with **constant** probability our estimator Z^2 is within **constant** factor of the true value $\|x\|_2^2$

Basic Algorithm – Chebyshev

$$\square \mathbb{E}[Z^2] = \|x\|_2^2$$

$$\square \sigma = \sqrt{Var(Z^2)} = \sqrt{2} \|x\|_2^2$$

☐ Chebyshev:

$$\Pr[|Z^2 - ||x||_2^2 | \ge c||x||_2^2] \le 2/c^2$$

 \square E.g. with **constant** probability our estimator Z^2 is within **constant** factor of the true value $\|x\|_2^2$

- ☐ We want to do better!
- \Box Goal: get $(1 + \epsilon)$ approximation with constant probability
- ☐ Repeat Basic algorithm!

- \square Keep multiple estimators Z_1, \dots, Z_k
- \square Report $Z' = \operatorname{Avg}(Z_1^2, ..., Z_k^2)$
- ☐ Does not change the expectation
- $\square \mathbb{E}[Z'] = \mathbb{E}\left[\frac{\sum_{i} Z_{i}^{2}}{k}\right] = \mathbb{E}[Z_{1}] = ||x||_{2}^{2}$

- \square Keep multiple estimators Z_1, \dots, Z_k
- \square Report $Z' = \operatorname{Avg}(Z_1^2, ..., Z_k^2)$
- \square Does not change the expectation , i.e., $\mathbb{E}[Z'] = \|x\|_2^2$
- \Box Variance decreases by a factor of k

- \square Keep multiple estimators Z_1, \dots, Z_k
- \square Report $Z' = \operatorname{Avg}(Z_1^2, ..., Z_k^2)$
- \square Does not change the expectation , i.e., $\mathbb{E}[Z'] = \|x\|_2^2$
- \square Variance decreases by a factor of k, i.e., $Var(Z') = \frac{2\|x\|_2^4}{k}$
- $\square \ \sigma = \sqrt{Var(Z')} = \sqrt{2} \frac{\|x\|_2^2}{k}$

- \square Keep multiple estimators Z_1, \dots, Z_k
- \square Report $Z' = \operatorname{Avg}(Z_1^2, ..., Z_k^2)$
- \square Does not change the expectation , i.e., $\mathbb{E}[Z'] = \|x\|_2^2$
- $\square \ \sigma = \sqrt{Var(Z')} = \sqrt{2} \|x\|_2^2/k \qquad \text{Set } \mathbf{k} = \mathbf{O}(\frac{1}{\epsilon^2})$

- \square Keep multiple estimators Z_1, \dots, Z_k
- \square Report $Z' = \operatorname{Avg}(Z_1^2, ..., Z_k^2)$
- \square Does not change the expectation , i.e., $\mathbb{E}[Z'] = \|x\|_2^2$
- $\square \ \sigma = \sqrt{Var(Z')} = \sqrt{2} \|x\|_2^2/k \qquad \text{Set } \mathbf{k} = \mathbf{O}(\frac{1}{\epsilon^2})$
- ☐ Chebyshev

$$\Pr[|Z' - ||x||_2^2 | \ge c\epsilon ||x||_2^2] \le 1/c^2$$

 \Box get a $(1 + \epsilon)$ approximation with a constant probability.

Remarks

- \Box To get a $(1 + \epsilon)$ approximation with probability (1δ) .
 - Run $t = O(\log \frac{1}{\delta})$ instances of AMS and take the median
 - By Chernoff Bound, the median of the AMS estimators work
- \square Total space usage $O(\frac{\log_{\delta}^{\frac{1}{\delta}}}{\epsilon^2})$ numbers.
- \square What about keeping the random signs s_i ?
- \square Only need 4-wise independence of s_1, \dots, s_m , (in bounding $\mathbb{E}[(\sum_i s_i x_i)^4])$
- \Box e.g. $\mathbb{E}[s_1 s_2 s_3 s_4] = 0$
- \square Can generate such variables using $O(\log m)$ random bits.

Outline

- So far we learned how to maintain the norm of a vector in small space
- What else can we do in small (e.g. $\tilde{O}(k)$) space?
- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\tilde{x_i}$ that is within $x_i \pm \frac{\|x\|_1}{k}$
- This is specially useful if x_i is large (heavy-hitter), e.g. $|x_i| \ge \frac{||x||_1}{k}$
- (there are at most k such coordinates)

Outline

- So far we learned how to maintain the norm of a vector in small space
- What else can we do in small (e.g. $\tilde{O}(k)$) space?
- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_1}{k}$
- This is specially useful if x_i is large (heavy-hitter), e.g. $|x_i| \ge \frac{||x||_1}{k}$

$$HH_{\phi}^{p}(x) = \{i: |x_{i}| > \phi ||x||_{p}\}$$

Frequency Estimation

- Count-Min
- Count-Sketch

Goal:

- Start with $x = \vec{0} \in \mathbb{R}^m$
- Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$
- (for now assume all coordinates remain positive at all time).

- Keep track of all coordinates with additive error, i.e.,
- for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_1}{k}$

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

```
#rows r = O(\log 1/\delta)
#buckets/row b = O(2k)
```

r

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(2k)$

• Hash $\forall j \leq r \colon h_j \colon [m] \to [b]$

h_1			
h_2			
h_r			

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(2k)$

• Hash $\forall j \leq r \colon h_j \colon [m] \to [b]$

$h_1(i)$	$+\Delta$		
(i, Δ)			

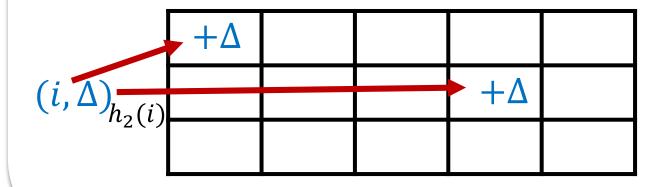
• Update: $C[j, h_j(i)] += \Delta$

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(2k)$

• Hash $\forall j \leq r \colon h_j \colon [m] \to [b]$



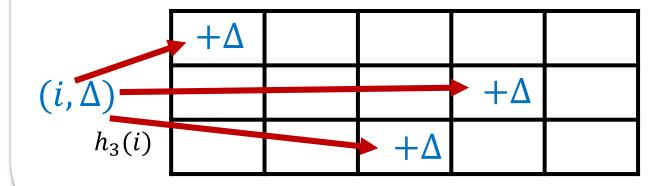
• Update: $C[j, h_j(i)] += \Delta$

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(2k)$

• Hash $\forall j \leq r \colon h_j \colon [m] \to [b]$

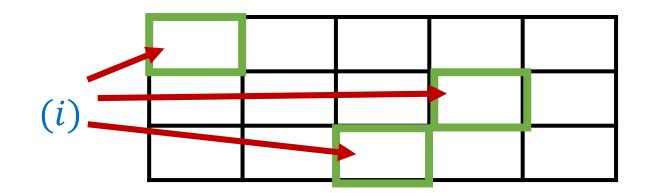


• Update: $C[j, h_j(i)] += \Delta$

•

Query(i), where $i \in [m]$

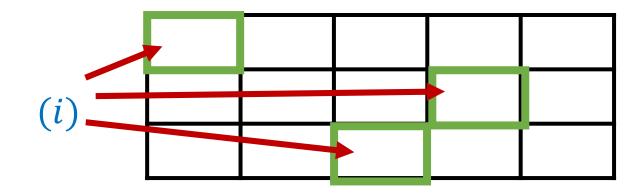
Each Bucket is an over-estimation of x_i



• Update: $C[j, h_j(i)] += \Delta$

Query(i), where $i \in [m]$

Each Bucket is an over-estimation of x_i

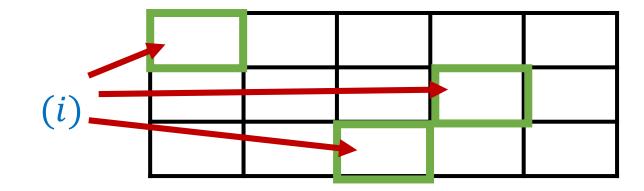


- Update: $C[j, h_j(i)] += \Delta$
- Estimate $\hat{x}_i := \min_j C[j, h_j(i)]$

Query(i), where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(2k)$



Estimation guarantee: w.p $(1 - \delta)$

$$|x_i - \hat{x}_i| \le (1/k) \cdot ||\boldsymbol{x}||_1$$

- Update: $C[j, h_j(i)] += \Delta$
- Estimate $\hat{x}_i := \min_j C[j, h_j(i)]$

Estimation guarantee: w.p $(1 - \delta)$ $|x_i - \hat{x}_i| \le (1/k) \cdot ||x||_1$

$$|x_i - \hat{x}_i| \le (1/k) \cdot ||\boldsymbol{x}||_1$$

• Fix j, and consider h_i (which we assume is 2-wise independent)

Estimation guarantee: w.p
$$(1 - \delta)$$

 $|x_i - \hat{x}_i| \le (1/k) \cdot ||x||_1$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- For $i' \in [m]$ Let $Z_{i'}$ be the indicator variable which is $\mathbf{1}[h_j(i') = h_j(i)]$

Estimation guarantee: w.p
$$(1 - \delta)$$

 $|x_i - \hat{x}_i| \le (1/k) \cdot ||x||_1$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} x_{i'}$

Estimation guarantee: w.p
$$(1 - \delta)$$

 $|x_i - \hat{x}_i| \le (1/k) \cdot ||x||_1$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} x_{i'} \coloneqq x_i + \text{Err}$

Estimation guarantee: w.p $(1 - \delta)$ $|x_i - \hat{x}_i| \le (1/k) \cdot ||x||_1$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} x_{i'} \coloneqq x_i + Err$
- Thus the expected error is $\mathbb{E}[Err] = \left(\frac{1}{B}\right) \sum_{i' \neq i} x_{i'} \le \|x\|_1/2k$

Count Min

Estimation guarantee: w.p $(1 - \delta)$ $|x_i - \hat{x}_i| \le (1/k) \cdot ||\mathbf{x}||_1$

$$|x_i - x_i| \le (1/k) \cdot ||\mathbf{x}||_1$$

- Fix j, and consider h_i (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1}|h_i(i')=h_i(i)|$
- $C[j, h_i(i)] = x_i + \sum_{i' \neq i} Z_{i'} x_{i'} := x_i + Err$
- Thus the expected error is $\mathbb{E}[Err] = \left(\frac{1}{R}\right) \sum_{i' \neq i} x_{i'} \leq \|x\|_1/2k$
- By Markov, $\Pr\left|\frac{Err}{r} > \frac{\|x\|_1}{r}\right| \leq \frac{1}{2}$

Count Min

$$|x_i - \hat{x}_i| \le (1/k) \cdot ||\mathbf{x}||_1$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} x_{i'} \coloneqq x_i + Err$
- Thus the expected error is $\mathbb{E}[Err] = \left(\frac{1}{B}\right) \sum_{i' \neq i} x_{i'} \leq \|x\|_1/2k$
- By Markov, $\Pr\left[Err > \frac{\|x\|_1}{k}\right] \le \frac{1}{2}$
- By Independence of the rows: $\Pr\left[MinErr > \frac{\|x\|_1}{k}\right] \le \frac{1}{2^r} \le \delta$

Outline

- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_1}{k}$
- CountMin

- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_2}{\sqrt{k}}$
- CountSketch

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

```
#rows r = O(\log 1/\delta)
#buckets/row b = O(9k)
```

r

Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(9k)$

• Hash
$$h_j:[m] \rightarrow [b]$$

• Sign σ_i : $[m] \rightarrow \{-1, +1\}$

$h_1(i)$	$+\Delta$		
(i, Δ)			

• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$

•

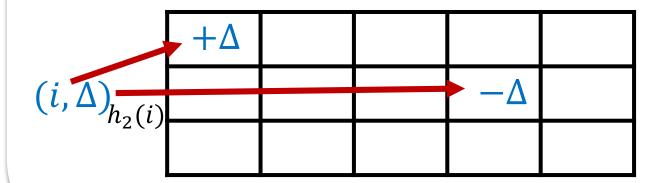
Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(9k)$

• Hash
$$h_j:[m] \to [b]$$

• Sign σ_i : $[m] \rightarrow \{-1, +1\}$



• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$

•

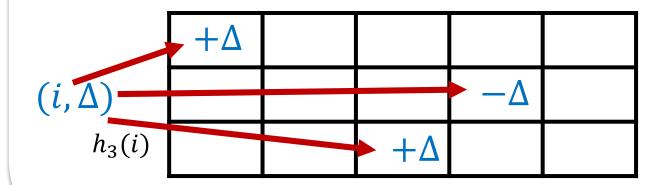
Turnstile Model: input is a stream of updates (i, Δ) , where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(9k)$

• Hash
$$h_j:[m] \rightarrow [b]$$

• Sign σ_i : $[m] \rightarrow \{-1, +1\}$



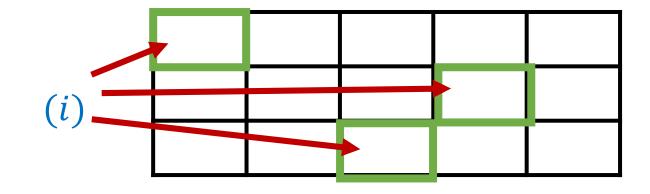
• Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$

•

Query(i), where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(9k)$



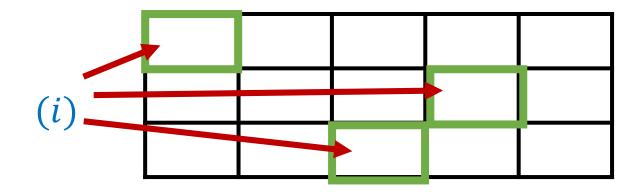
- Hash $h_j:[m] \rightarrow [b]$
- Sign σ_j : $[m] \rightarrow \{-1, +1\}$

- Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$
- Estimate $\hat{x}_i = \text{median}_j \sigma_j(i)C[j, h_j(i)]$

Query(i), where $i \in [m]$

#rows
$$r = O(\log 1/\delta)$$

#buckets/row $b = O(9k)$



$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Update: $C[j, h_j(i)] += \sigma_j(i) \cdot \Delta$
- Estimate $\hat{x}_i = \text{median}_j \sigma_j(i) C[j, h_j(i)]$

Estimation guarantee: w.p $(1 - \delta)$ $|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||x||_2$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\mathbf{x}||_2$$

- Fix j, and consider h_i (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1}[h_i(i') = h_i(i)]$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \le ||x||_2/(3\sqrt{k})$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \le ||x||_2/(3\sqrt{k})$
- By Markov, $\Pr\left[|Err| > \frac{\|x\|_2}{\sqrt{k}}\right] \le \frac{1}{3}$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \le ||x||_2/(3\sqrt{k})$
- By Markov, $\Pr\left[|Err| > \frac{\|x\|_2}{\sqrt{k}}\right] \le \frac{1}{3}$
- By Chernoff: $\Pr\left[MedianErr > \frac{\|x\|_2}{\sqrt{k}}\right] \le e^{-\frac{c\log\frac{1}{\delta}}{3}} \le \delta$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \leq ||x||_2/(3\sqrt{k})$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \leq ||x||_2/(3\sqrt{k})$
- By Jensen's inequality $\mathbb{E}[|Err|] \leq \sqrt{\mathbb{E}[|Err|^2]}$

Jensen's inequality

Jensen's inequality:

 ϕ is convex

$$\phi(\mathbb{E}[x]) \le \mathbb{E}[\phi(x)]$$

In our application:

$$\phi(\mathbf{x}) \coloneqq \mathbf{x}^{2}$$

$$(\mathbb{E}[|Err|])^{2} \leq \mathbb{E}[|Err|^{2}]$$

$$\mathbb{E}[|Err|] \leq \sqrt{\mathbb{E}[|Err|^{2}]}$$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\mathbf{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \le ||x||_2/(3\sqrt{k})$
- By Jensen's inequality $\mathbb{E}[|Err|] \leq \sqrt{\mathbb{E}[|Err|^2]}$

•
$$\leq \left(\mathbb{E}\left[\sum_{i'\neq i} Z_{i'} x_{i'}^2 + \sum_{\substack{i_1,i_2\neq i\\i_1\neq i_2}} Z_{i_1} Z_{i_2} \sigma_j(i_1) \sigma_j(i_2) x_{i'}^2\right]\right)^{1/2} =$$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \le ||x||_2/(3\sqrt{k})$
- By Jensen's inequality $\mathbb{E}[|Err|] \leq \sqrt{\mathbb{E}[|Err|^2]}$

•
$$\leq \left(\sum_{i'\neq i} x_{i'}^2 \mathbb{E}[Z_{i'}] + \sum_{\substack{i_1,i_2\neq i\\i_1\neq i_2}} x_{i'}^2 \mathbb{E}[Z_{i_1} Z_{i_2} \sigma_j(i_1) \sigma_j(i_2)]\right)^{1/2} =$$

$$|x_i - \hat{x}_i| \le (1/\sqrt{k}) \cdot ||\boldsymbol{x}||_2$$

- Fix j, and consider h_j (which we assume is 2-wise independent)
- Let $Z_{i'}$ be the indicator variable which is $\mathbf{1} \big[h_j(i') = h_j(i) \big]$
- $C[j, h_j(i)] = x_i + \sum_{i' \neq i} Z_{i'} \sigma_j(i') x_{i'} \coloneqq x_i + Err$
- Goal: the expected error is $\mathbb{E}[|Err|] \leq ||x||_2/(3\sqrt{k})$
- By Jensen's inequality $\mathbb{E}[|Err|] \leq \sqrt{\mathbb{E}[|Err|^2]}$

•
$$\leq \left(\sum_{i'\neq i} x_{i'}^2 \mathbb{E}[Z_{i'}] + \sum_{\substack{i_1,i_2\neq i\\i_1\neq i_2}} x_{i'}^2 \mathbb{E}[Z_{i_1} Z_{i_2} \sigma_j(i_1) \sigma_j(i_2)]\right)^{1/2} =$$

•
$$\left(\sum_{i'\neq i} \mathbb{E}(Z_{i'}) x_{i'}^2\right)^{1/2} \le \frac{\|x\|_2}{\sqrt{B}} \le \frac{\|x\|_2}{3\sqrt{k}}$$

Outline

- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_1}{k}$
- CountMin

- We can keep track of all coordinates with additive error, i.e., for each coordinate we can report $\widetilde{x_i}$ that is within $x_i \pm \frac{\|x\|_2}{\sqrt{k}}$
- CountSketch

Next Lecture

- L_0 sampler
- More combinatorial Algorithms