
Lecture 2
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi

Recap from Lecture 1

Streaming Model

• Huge data set (does not fit into the main memory)
• Only sequential access to the data

• One pass
• Few passes (the data is stored somewhere else)

• Use little memory
• Sublinear in input parameters
• Sublinear in the input size

• Solve the problem (approximately)

…
𝒏𝒏

Parameters of Interest:

1. Memory usage

2. Number of passes

3. Approximation Factor

4. (Sometimes) query/update time

Streaming Model of Computation

 Insertion-only Stream
[0,0,1,0,3,0,1,0,0,1][0,0,0,0,0,0,0,0,0,0]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,0,0,0,0,0,0]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,1,0,0,0,0,0]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,1,0,1,0,0,0]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,2,0,1,0,0,0]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7),

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,1,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,0,0,1,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10),

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,0,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5),

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,5,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5), Add(1,-5)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5), Add(1,-5), Add(5,-2)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,-2,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10

Streaming Model of Computation

 Estimate #Distinct Elements (𝐿𝐿0 norm: #non-zero coordinates)

Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

Space usage:
• a single bit (for insertion

only)
• A single number in [n]

(to also handle deletions)

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES

Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

Space usage:
• k bits (for insertion only)
• k numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES

Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

• Return smallest 𝐷𝐷 for which the above reports DE < D

Space usage:
• 𝑘𝑘log n/𝜖𝜖 bits (for

insertion only)
• 𝑘𝑘log n/𝜖𝜖 numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES

Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

• Return smallest 𝐷𝐷 for which the above reports DE < D

Space usage:
• 𝑘𝑘log n/𝜖𝜖 bits (for

insertion only)
• 𝑘𝑘log n/𝜖𝜖 numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES

Assumption: access to a
perfect hash function
ℎ: 𝑚𝑚 → [𝐷𝐷]

Streaming Model of Computation

 Distinct Elements (𝐿𝐿0 norm)

Morris Counter (𝐿𝐿1 norm in insertion-only streams)
• Count (approximately) in space better than 𝑂𝑂(log𝑛𝑛)?

Morris Algorithm
• Let 𝑋𝑋 = 0
• Upon receiving INCREMENT()

• Increment 𝑋𝑋 with probability 1
2𝑋𝑋

• Upon receiving QUERY()
• Return �𝑛𝑛 = 2𝑋𝑋-1

Space usage:
𝑂𝑂(log log𝑛𝑛)

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.

Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2

Issue

• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which
we can instead always return 0 !)

• How to decrease the failure probability?

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2

How to improve the variance

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
).

Setting 𝑠𝑠 = Θ(1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

2𝜖𝜖2
⋅ 𝜖𝜖2𝛿𝛿 ≤ 𝛿𝛿

How to improve the space

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
).

Setting 𝑠𝑠 = Θ(1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators.
Setting 𝑠𝑠 = Θ(1

𝜖𝜖2
), each Morris+ estimator succeeds w.p. at least 2

3
.

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿

Improved algorithm

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
).

Setting 𝑠𝑠 = Θ(1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators.
Setting 𝑠𝑠 = Θ(1

𝜖𝜖2
), each Morris+ estimator succeeds w.p. at least 2

3
.

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿

Total Space of Morris++: Θ(1
𝜖𝜖2
⋅ log 1

𝛿𝛿
⋅ log log𝑛𝑛) w.p. at least 1 − 𝛿𝛿

This Lecture
• AMS (𝐿𝐿2 norm estimation)
• Count-Min (Frequency Estimation)
• Count-Sketch (Frequency Estimation)

𝐿𝐿2 norm Estimation

 Start with 𝑥𝑥 = 𝟎𝟎 ∈ ℝ𝑚𝑚

 Input (turnstile model): a stream of 𝑛𝑛 updates (𝑖𝑖,Δ), meaning 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + Δ

 Goal: Approximate 𝑥𝑥 2 at the end

 Alon-Matias-Szegedy’96 (AMS) Algorithm

Basic Algorithm

 For each of the 𝑚𝑚 coordinates, independently pick a random sign 𝒔𝒔𝒊𝒊 ∈
−𝟏𝟏, +𝟏𝟏 with equal probability.

 Sketch: maintain 𝒁𝒁 = ∑𝒊𝒊=𝟏𝟏 𝒔𝒔𝒊𝒊 ⋅ 𝒙𝒙𝒊𝒊 throughout the stream

 Upon receiving (𝑖𝑖,Δ), update 𝒁𝒁 = 𝒁𝒁 + (𝒔𝒔𝒊𝒊 ⋅ 𝚫𝚫)

 Return 𝒁𝒁𝟐𝟐 as an estimate for 𝑥𝑥 2
2

Basic Algorithm

 Claim 1 (our estimator works in expectation): 𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

 Claim 2 (our estimator works with good probability)

Basic Algorithm

 Claim 1 (our estimator works in expectation): 𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm

 Claim 1 (our estimator works in expectation): 𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2

• 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are chosen independently (2-wise independence is enough)

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm

 Claim 1 (our estimator works in expectation): 𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2 = 0 + ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 = 𝑥𝑥 2
2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm

 Claim 1 (our estimator works in expectation): 𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2 = 0 + ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 = 𝑥𝑥 2
2

 Claim 2 (our estimator works with high probability) -> Use Chebyshev
• Need to bound the variance of the estimator

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g. 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4] = 0

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g. 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4] = 0

1/2 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼 𝑠𝑠2𝑠𝑠3𝑠𝑠4 𝑠𝑠1 = 1 − (1/2)𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠2𝑠𝑠3𝑠𝑠4|𝑠𝑠1 = −1]

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g. 𝑥𝑥1𝑥𝑥22𝑥𝑥3𝔼𝔼[𝑠𝑠1𝑠𝑠22𝑠𝑠3] = 0

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g. 𝑥𝑥1𝑥𝑥22𝑥𝑥3𝔼𝔼[𝑠𝑠1𝑠𝑠22𝑠𝑠3] = 0

4-wise independence is sufficient

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

= 𝔼𝔼 ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 = 𝑥𝑥 4

4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 − 𝑥𝑥 4

4 − 2∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 =

4∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 ≤ 2 ∑𝑖𝑖 𝑥𝑥𝑖𝑖2
2 = 2 𝑥𝑥 2

4

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 V𝑎𝑎𝑎𝑎 𝑍𝑍2 ≤ 2 𝑥𝑥 2
4

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

 Chebyshev: Pr 𝑍𝑍2 − 𝑥𝑥 2
2 ≥ 𝑐𝑐 𝑥𝑥 2

2 ≤ 2/𝑐𝑐2

 E.g. with constant probability our estimator 𝑍𝑍2 is within constant factor
of the true value 𝑥𝑥 2

2

Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

 Chebyshev: Pr 𝑍𝑍2 − 𝑥𝑥 2
2 ≥ 𝑐𝑐 𝑥𝑥 2

2 ≤ 2/𝑐𝑐2

 E.g. with constant probability our estimator 𝑍𝑍2 is within constant factor
of the true value 𝑥𝑥 2

2

We want to do better!
 Goal: get 𝟏𝟏 + 𝝐𝝐 approximation with constant probability
 Repeat Basic algorithm!

Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation

 𝔼𝔼 𝑍𝑍′ = 𝔼𝔼 ∑𝑖𝑖 𝑍𝑍𝑖𝑖
2

𝑘𝑘
= 𝔼𝔼 𝑍𝑍1 = 𝑥𝑥 2

2

Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 Variance decreases by a factor of 𝑘𝑘

 V𝑎𝑎𝑎𝑎 𝑍𝑍𝑍 = Var ∑𝑖𝑖 𝑍𝑍𝑖𝑖
2

𝑘𝑘
= ∑𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑖𝑖

2

𝑘𝑘2
= 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍12

𝑘𝑘
= 2 𝑥𝑥 2

4

𝑘𝑘

Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 Variance decreases by a factor of 𝑘𝑘, i.e., V𝑎𝑎𝑎𝑎 𝑍𝑍𝑍 = 2 𝑥𝑥 2
4

𝑘𝑘

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2

𝑘𝑘

Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2/𝑘𝑘 Set 𝒌𝒌 = 𝑶𝑶(𝟏𝟏

𝝐𝝐𝟐𝟐
)

Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2/𝑘𝑘 Set 𝒌𝒌 = 𝑶𝑶(𝟏𝟏

𝝐𝝐𝟐𝟐
)

 Chebyshev Pr 𝑍𝑍𝑍 − 𝑥𝑥 2
2 ≥ 𝑐𝑐𝜖𝜖 𝑥𝑥 2

2 ≤ 1/𝑐𝑐2

 get a 1 + 𝜖𝜖 approximation with a constant probability.

Remarks

 To get a 1 + 𝜖𝜖 approximation with probability (𝟏𝟏 − 𝜹𝜹).
• Run 𝑡𝑡 = 𝑂𝑂(log 1

𝛿𝛿
) instances of AMS and take the median

• By Chernoff Bound, the median of the AMS estimators work

 Total space usage 𝑂𝑂(
log1𝛿𝛿
𝜖𝜖2

) numbers.

What about keeping the random signs 𝑠𝑠𝑖𝑖?
 Only need 4-wise independence of 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, (in bounding 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4)
 e.g. 𝔼𝔼 𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4 = 0
 Can generate such variables using 𝑂𝑂 log𝑚𝑚 random bits.

Outline

• So far we learned how to maintain the norm of a vector in small space
• What else can we do in small (e.g. �𝑂𝑂(𝑘𝑘)) space?
• We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1
𝑘𝑘

• This is specially useful if 𝑥𝑥𝑖𝑖 is large (heavy-hitter), e.g. 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥 1
𝑘𝑘

• (there are at most 𝑘𝑘 such coordinates)

Outline

• So far we learned how to maintain the norm of a vector in small space
• What else can we do in small (e.g. �𝑂𝑂(𝑘𝑘)) space?
• We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1
𝑘𝑘

• This is specially useful if 𝑥𝑥𝑖𝑖 is large (heavy-hitter), e.g. 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥 1
𝑘𝑘

𝑯𝑯𝑯𝑯𝝓𝝓
𝒑𝒑 (𝒙𝒙) = {𝒊𝒊: 𝒙𝒙𝒊𝒊 > 𝝓𝝓 𝒙𝒙 𝒑𝒑}

Frequency Estimation
• Count-Min
• Count-Sketch

Goal:

• Start with 𝑥𝑥 = 𝟎𝟎 ∈ ℝ𝑚𝑚

• Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ 𝑚𝑚
• (for now assume all coordinates remain positive at all time).

• Keep track of all coordinates with additive error, i.e.,

• for each coordinate we can report �𝒙𝒙𝒊𝒊 that is within 𝒙𝒙𝒊𝒊 ± 𝒙𝒙 𝟏𝟏
𝒌𝒌

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

𝑟𝑟

𝑏𝑏

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

ℎ1

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

ℎ2

ℎ𝑟𝑟

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

(𝑖𝑖,Δ)
+Δℎ1(𝑖𝑖)

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

+Δ

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

+Δ
ℎ2(𝑖𝑖)(𝑖𝑖,Δ)

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

+Δ

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

+Δ
+Δℎ3(𝑖𝑖)

(𝑖𝑖,Δ)
• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•

Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

Each Bucket is an over-estimation of 𝒙𝒙𝒊𝒊

Count Min

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ
(𝑖𝑖)

Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

Each Bucket is an over-estimation of 𝒙𝒙𝒊𝒊

Count Min

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

• Estimate �𝑥𝑥𝑖𝑖 ≔ 𝐦𝐦𝐦𝐦𝐦𝐦
𝑗𝑗

𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(2𝑘𝑘)

Count Min

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

• Estimate �𝑥𝑥𝑖𝑖 ≔ 𝐦𝐦𝐦𝐦𝐦𝐦
𝑗𝑗

𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• For 𝑖𝑖′ ∈ [𝑚𝑚] Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + Err

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

• By Markov, Pr 𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

• By Markov, Pr 𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2

• By Independence of the rows: Pr 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2𝑟𝑟
≤ 𝛿𝛿

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1

Outline

• We can keep track of all coordinates with additive error, i.e., for each
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1

𝑘𝑘
• CountMin

• We can keep track of all coordinates with additive error, i.e., for each
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝒙𝒙 𝟐𝟐

𝒌𝒌
• CountSketch

CountSketch

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

𝑟𝑟

𝑏𝑏

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
(𝑖𝑖,Δ)

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•ℎ2(𝑖𝑖)

+Δ
−Δ(𝑖𝑖,Δ)

Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

ℎ3(𝑖𝑖)

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
−Δ

+Δ
(𝑖𝑖,Δ)

Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

• Estimate �𝑥𝑥𝑖𝑖 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐧𝐧𝐣𝐣 𝜎𝜎𝑗𝑗(𝑖𝑖)𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Update: 𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

• Estimate �𝑥𝑥𝑖𝑖 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐧𝐧𝐣𝐣 𝜎𝜎𝑗𝑗(𝑖𝑖)𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

• By Markov, Pr |𝐸𝐸𝐸𝐸𝐸𝐸| > 𝑥𝑥 2
𝑘𝑘

≤ 1
3

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

• By Markov, Pr |𝐸𝐸𝐸𝐸𝐸𝐸| > 𝑥𝑥 2
𝑘𝑘

≤ 1
3

• By Chernoff: Pr 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 2
𝑘𝑘

≤ 𝑒𝑒−
𝑐𝑐 log1𝛿𝛿
3 ≤ 𝛿𝛿

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)
• By Jensen’s inequality 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Jensen’s inequality

Jensen’s inequality:

𝜙𝜙 is convex

𝜙𝜙 𝔼𝔼 𝑥𝑥 ≤ 𝔼𝔼[𝜙𝜙 𝑥𝑥]

In our application:

𝜙𝜙 x ≔ x2

𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2 ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)
• By Jensen’s inequality 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

• ≤ 𝔼𝔼 ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′
2 + ∑𝑖𝑖1,𝑖𝑖2≠𝑖𝑖

𝑖𝑖1≠𝑖𝑖2

𝑍𝑍𝑖𝑖1𝑍𝑍𝑖𝑖2𝜎𝜎𝑗𝑗 𝑖𝑖1 𝜎𝜎𝑗𝑗 𝑖𝑖2 𝑥𝑥𝑖𝑖′
2 1/2

=

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)
• By Jensen’s inequality 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

• ≤ ∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′
2𝔼𝔼[𝑍𝑍𝑖𝑖′] + ∑𝑖𝑖1,𝑖𝑖2≠𝑖𝑖

𝑖𝑖1≠𝑖𝑖2

𝑥𝑥𝑖𝑖′
2𝔼𝔼 𝑍𝑍𝑖𝑖1𝑍𝑍𝑖𝑖2𝜎𝜎𝑗𝑗 𝑖𝑖1 𝜎𝜎𝑗𝑗 𝑖𝑖2

1/2
=

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is 𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)
• By Jensen’s inequality 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

• ≤ ∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′
2𝔼𝔼[𝑍𝑍𝑖𝑖′] + ∑𝑖𝑖1,𝑖𝑖2≠𝑖𝑖

𝑖𝑖1≠𝑖𝑖2

𝑥𝑥𝑖𝑖′
2𝔼𝔼 𝑍𝑍𝑖𝑖1𝑍𝑍𝑖𝑖2𝜎𝜎𝑗𝑗 𝑖𝑖1 𝜎𝜎𝑗𝑗 𝑖𝑖2

1/2
=

• ∑𝑖𝑖′≠𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖′ 𝑥𝑥𝑖𝑖′
2 1/2

≤ 𝑥𝑥 2
𝐵𝐵
≤ 𝑥𝑥 2

3 𝑘𝑘

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2

Outline

• We can keep track of all coordinates with additive error, i.e., for each
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1

𝑘𝑘
• CountMin

• We can keep track of all coordinates with additive error, i.e., for each
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝒙𝒙 𝟐𝟐

𝒌𝒌
• CountSketch

Next Lecture

• 𝐿𝐿0 sampler
• More combinatorial Algorithms

	Lecture 2
	Recap from Lecture 1
	Streaming Model
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Streaming Model of Computation
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Streaming Model of Computation
	Morris Algorithm
	Issue
	How to improve the variance
	How to improve the space
	Improved algorithm
	This Lecture
	 𝐿 2 norm Estimation
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Bounding variance
	Basic Algorithm – Chebyshev
	Basic Algorithm – Chebyshev
	Basic Algorithm – Chebyshev
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Overall AMS Algorithm
	Remarks
	Outline
	Outline
	Frequency Estimation
	Goal:
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Count Min
	Outline
	CountSketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Count Sketch
	Jensen’s inequality
	Count Sketch
	Count Sketch
	Count Sketch
	Outline
	Next Lecture

