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Recap from Lecture 1



Streaming Model

• Huge data set (does not fit into the main memory)
• Only sequential access to the data 

• One pass
• Few passes (the data is stored somewhere else)

• Use little memory
• Sublinear in input parameters
• Sublinear in the input size 

• Solve the problem (approximately)

…
𝒏𝒏

Parameters of Interest:

1. Memory usage

2. Number of passes

3. Approximation Factor

4. (Sometimes) query/update time 



Streaming Model of Computation

 Insertion-only Stream
[0,0,1,0,3,0,1,0,0,1][0,0,0,0,0,0,0,0,0,0]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,0,0,0,0,0,0]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,1,0,0,0,0,0]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,1,0,1,0,0,0]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,2,0,1,0,0,0]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10) [0,0,1,0,3,0,1,0,0,1][0,0,1,0,3,0,1,0,0,1]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), 

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,1,0,0,0]

[0,0,1,0,3,0,1,0,0,1]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,0,0,1,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), 

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,0,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5), 

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,5,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]
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Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5), Add(1,-5)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,0,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Insertion-only Stream
• Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

 Insertion and Deletion (Dynamic)
• Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
• May assume at any point #deletions(i)<=#insertions(i)
• E.g. can be used for numbers, edges of graphs, …

 Turnstile (for vectors, and matrices)
• Add(i,Δ): Add value Δ to the ith coordinate
• Add(1,10), Add(4,5), Add(1,-5), Add(5,-2)

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5,0,0,5,-2,0,0,0,0,0]

[0,0,1,0,3,0,1,0,0,1]

1 2 3 4 5 6 7 8 9 10



Streaming Model of Computation

 Estimate #Distinct Elements  (𝐿𝐿0 norm: #non-zero coordinates)



Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}



Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

Space usage: 
• a single bit (for insertion 

only)
• A single number in [n]

(to also handle deletions)

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES



Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

Space usage: 
• k bits (for insertion only)
• k numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES



Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

• Return smallest 𝐷𝐷 for which the above reports DE < D

Space usage: 
• 𝑘𝑘log n/𝜖𝜖 bits (for 

insertion only)
• 𝑘𝑘log n/𝜖𝜖 numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES



Basic Algorithm
• For 𝐷𝐷 ∈ { 1 + 𝜖𝜖 𝑖𝑖: 0 ≤ 𝑖𝑖 ≤ log n/𝜖𝜖}

• Return smallest 𝐷𝐷 for which the above reports DE < D

Space usage: 
• 𝑘𝑘log n/𝜖𝜖 bits (for 

insertion only)
• 𝑘𝑘log n/𝜖𝜖 numbers in [n]

(to also handle deletions)

• For 𝑗𝑗 ∈ 1, … , 𝑘𝑘 = (log 1/𝛿𝛿)
𝜖𝜖2

• Z=#NO
• If 𝑍𝑍 > 𝑘𝑘/𝑒𝑒 return DE < D
• Otherwise, return DE > D

• Sample each of 𝑚𝑚 coordinates w.p. 1
𝐷𝐷

into set 𝑆𝑆𝑗𝑗
• If all sampled coordinates are 0, return NO
• Otherwise, return YES

Assumption: access to a 
perfect hash function 
ℎ: 𝑚𝑚 → [𝐷𝐷]



Streaming Model of Computation

 Distinct Elements  (𝐿𝐿0 norm)

Morris Counter (𝐿𝐿1 norm in insertion-only streams)
• Count (approximately) in space better than 𝑂𝑂(log𝑛𝑛)?



Morris Algorithm
• Let 𝑋𝑋 = 0
• Upon receiving INCREMENT()

• Increment 𝑋𝑋 with probability 1
2𝑋𝑋

• Upon receiving QUERY()
• Return �𝑛𝑛 = 2𝑋𝑋-1

Space usage: 
𝑂𝑂(log log𝑛𝑛)

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.

Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2



Issue

• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which 
we can instead always return 0 !)

• How to decrease the failure probability?

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2



How to improve the variance

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

2𝜖𝜖2
⋅ 𝜖𝜖2𝛿𝛿 ≤ 𝛿𝛿



How to improve the space

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators. 
Setting 𝑠𝑠 = Θ( 1

𝜖𝜖2
), each Morris+ estimator succeeds w.p. at least 2

3
. 

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿



Improved algorithm

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators. 
Setting 𝑠𝑠 = Θ( 1

𝜖𝜖2
), each Morris+ estimator succeeds w.p. at least 2

3
. 

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿

Total Space of Morris++: Θ( 1
𝜖𝜖2
⋅ log 1

𝛿𝛿
⋅ log log𝑛𝑛) w.p. at least 1 − 𝛿𝛿



This Lecture
• AMS (𝐿𝐿2 norm estimation)
• Count-Min (Frequency Estimation)
• Count-Sketch (Frequency Estimation)



𝐿𝐿2 norm Estimation

 Start with 𝑥𝑥 = 𝟎𝟎 ∈ ℝ𝑚𝑚

 Input (turnstile model): a stream of 𝑛𝑛 updates (𝑖𝑖,Δ), meaning 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + Δ

 Goal: Approximate 𝑥𝑥 2 at the end

 Alon-Matias-Szegedy’96 (AMS) Algorithm



Basic Algorithm

 For each of the 𝑚𝑚 coordinates, independently pick a random sign 𝒔𝒔𝒊𝒊 ∈
−𝟏𝟏, +𝟏𝟏 with equal probability.

 Sketch: maintain 𝒁𝒁 = ∑𝒊𝒊=𝟏𝟏 𝒔𝒔𝒊𝒊 ⋅ 𝒙𝒙𝒊𝒊 throughout the stream

 Upon receiving (𝑖𝑖,Δ), update  𝒁𝒁 = 𝒁𝒁 + (𝒔𝒔𝒊𝒊 ⋅ 𝚫𝚫)

 Return 𝒁𝒁𝟐𝟐 as an estimate for 𝑥𝑥 2
2



Basic Algorithm

 Claim 1 (our estimator works in expectation):  𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

 Claim 2 (our estimator works with good probability)



Basic Algorithm

 Claim 1 (our estimator works in expectation):  𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm

 Claim 1 (our estimator works in expectation):  𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2

• 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are chosen independently (2-wise independence is enough)

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm

 Claim 1 (our estimator works in expectation):  𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2 = 0 + ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 = 𝑥𝑥 2
2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm

 Claim 1 (our estimator works in expectation):  𝔼𝔼 𝒁𝒁𝟐𝟐 = 𝒙𝒙 𝟐𝟐
𝟐𝟐

𝔼𝔼 𝑍𝑍2 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 2 = 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑗𝑗 + ∑𝑖𝑖 𝑠𝑠𝑖𝑖2𝑥𝑥𝑖𝑖2 = ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝔼𝔼 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 +

∑𝑖𝑖 𝑥𝑥𝑖𝑖2𝔼𝔼 𝑠𝑠𝑖𝑖2 = 0 + ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 = 𝑥𝑥 2
2

 Claim 2 (our estimator works with high probability) -> Use Chebyshev
• Need to bound the variance of the estimator



Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2
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 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0
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e.g.  𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4] = 0
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 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
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𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g.  𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4] = 0

1/2 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼 𝑠𝑠2𝑠𝑠3𝑠𝑠4 𝑠𝑠1 = 1 − (1/2)𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝔼𝔼[𝑠𝑠2𝑠𝑠3𝑠𝑠4|𝑠𝑠1 = −1]
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 𝔼𝔼 𝑍𝑍2 2 = 𝑥𝑥 2
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2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0
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𝒊𝒊=𝟏𝟏
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𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g.  𝑥𝑥1𝑥𝑥22𝑥𝑥3𝔼𝔼[𝑠𝑠1𝑠𝑠22𝑠𝑠3] = 0
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2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2
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𝒊𝒊=𝟏𝟏
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𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊

e.g.  𝑥𝑥1𝑥𝑥22𝑥𝑥3𝔼𝔼[𝑠𝑠1𝑠𝑠22𝑠𝑠3] = 0

4-wise independence is sufficient 



Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2
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2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2

2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 = 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 + 6 ⋅ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 + 0

= 𝔼𝔼 ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 𝔼𝔼 ∑𝑖𝑖≠𝑗𝑗 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗
2 = 𝑥𝑥 4

4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm – Bounding variance

V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝔼𝔼 𝑍𝑍4 − 𝔼𝔼 𝑍𝑍2 2

 𝔼𝔼 𝑍𝑍2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 V𝑎𝑎𝑎𝑎 𝑍𝑍2 = 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 − 𝑥𝑥 4

4 − 2∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 =

4∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2 ≤ 2 ∑𝑖𝑖 𝑥𝑥𝑖𝑖2
2 = 2 𝑥𝑥 2

4

𝒁𝒁 = �
𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊
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 𝔼𝔼 𝑍𝑍2 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖4 + 2 ⋅ ∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 𝔼𝔼 𝑍𝑍4 = 𝔼𝔼 𝑥𝑥 4
4 + 6∑𝑖𝑖<𝑗𝑗 𝑥𝑥𝑖𝑖2𝑥𝑥𝑗𝑗2

 V𝑎𝑎𝑎𝑎 𝑍𝑍2 ≤ 2 𝑥𝑥 2
4

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2
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𝒊𝒊=𝟏𝟏

𝒎𝒎

𝒔𝒔𝒊𝒊𝒙𝒙𝒊𝒊



Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2



Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

 Chebyshev: Pr 𝑍𝑍2 − 𝑥𝑥 2
2 ≥ 𝑐𝑐 𝑥𝑥 2

2 ≤ 2/𝑐𝑐2

 E.g. with constant probability our estimator 𝑍𝑍2 is within constant factor 
of the true value 𝑥𝑥 2

2



Basic Algorithm – Chebyshev

𝔼𝔼 𝑍𝑍2 = 𝑥𝑥 2
2

𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍2 = 2 𝑥𝑥 2
2

 Chebyshev: Pr 𝑍𝑍2 − 𝑥𝑥 2
2 ≥ 𝑐𝑐 𝑥𝑥 2

2 ≤ 2/𝑐𝑐2

 E.g. with constant probability our estimator 𝑍𝑍2 is within constant factor 
of the true value 𝑥𝑥 2

2

We want to do better! 
 Goal: get 𝟏𝟏 + 𝝐𝝐 approximation with constant probability
 Repeat Basic algorithm!



Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation 

 𝔼𝔼 𝑍𝑍′ = 𝔼𝔼 ∑𝑖𝑖 𝑍𝑍𝑖𝑖
2

𝑘𝑘
= 𝔼𝔼 𝑍𝑍1 = 𝑥𝑥 2

2



Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 Variance decreases by a factor of 𝑘𝑘

 V𝑎𝑎𝑎𝑎 𝑍𝑍𝑍 = Var ∑𝑖𝑖 𝑍𝑍𝑖𝑖
2

𝑘𝑘
= ∑𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑖𝑖

2

𝑘𝑘2
= 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍12

𝑘𝑘
= 2 𝑥𝑥 2

4

𝑘𝑘



Overall AMS Algorithm
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 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 Variance decreases by a factor of 𝑘𝑘, i.e.,  V𝑎𝑎𝑎𝑎 𝑍𝑍𝑍 = 2 𝑥𝑥 2
4

𝑘𝑘

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2

𝑘𝑘



Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2/𝑘𝑘 Set 𝒌𝒌 = 𝑶𝑶( 𝟏𝟏

𝝐𝝐𝟐𝟐
)



Overall AMS Algorithm

 Keep multiple estimators 𝒁𝒁𝟏𝟏,⋯ ,𝒁𝒁𝒌𝒌
 Report 𝒁𝒁𝒁 = 𝐀𝐀𝐀𝐀𝐀𝐀 𝒁𝒁𝟏𝟏𝟐𝟐, … ,𝒁𝒁𝒌𝒌𝟐𝟐

 Does not change the expectation , i.e., 𝔼𝔼 𝑍𝑍′ = 𝑥𝑥 2
2

 𝜎𝜎 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑍𝑍𝑍 = 2 𝑥𝑥 2
2/𝑘𝑘 Set 𝒌𝒌 = 𝑶𝑶( 𝟏𝟏

𝝐𝝐𝟐𝟐
)

 Chebyshev Pr 𝑍𝑍𝑍 − 𝑥𝑥 2
2 ≥ 𝑐𝑐𝜖𝜖 𝑥𝑥 2

2 ≤ 1/𝑐𝑐2

 get a 1 + 𝜖𝜖 approximation with a constant probability.



Remarks

 To get a 1 + 𝜖𝜖 approximation with probability (𝟏𝟏 − 𝜹𝜹).
• Run 𝑡𝑡 = 𝑂𝑂(log 1

𝛿𝛿
) instances of AMS and take the median

• By Chernoff Bound, the median of the AMS estimators work

 Total space usage 𝑂𝑂(
log1𝛿𝛿
𝜖𝜖2

) numbers. 

What about keeping the random signs 𝑠𝑠𝑖𝑖? 
 Only need 4-wise independence of 𝑠𝑠1, … , 𝑠𝑠𝑚𝑚, (in bounding 𝔼𝔼 ∑𝑖𝑖 𝑠𝑠𝑖𝑖𝑥𝑥𝑖𝑖 4 )
 e.g. 𝔼𝔼 𝑠𝑠1𝑠𝑠2𝑠𝑠3𝑠𝑠4 = 0
 Can generate such variables using 𝑂𝑂 log𝑚𝑚 random bits.



Outline

• So far we learned how to maintain the norm of a vector in small space
• What else can we do in small (e.g. �𝑂𝑂(𝑘𝑘)) space? 
• We can keep track of all coordinates with additive error, i.e., for each 

coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1
𝑘𝑘

• This is specially useful if 𝑥𝑥𝑖𝑖 is large (heavy-hitter), e.g. 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥 1
𝑘𝑘

• (there are at most 𝑘𝑘 such coordinates)



Outline

• So far we learned how to maintain the norm of a vector in small space
• What else can we do in small (e.g. �𝑂𝑂(𝑘𝑘)) space? 
• We can keep track of all coordinates with additive error, i.e., for each 

coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1
𝑘𝑘

• This is specially useful if 𝑥𝑥𝑖𝑖 is large (heavy-hitter), e.g. 𝑥𝑥𝑖𝑖 ≥ 𝑥𝑥 1
𝑘𝑘

𝑯𝑯𝑯𝑯𝝓𝝓
𝒑𝒑 (𝒙𝒙) = {𝒊𝒊: 𝒙𝒙𝒊𝒊 > 𝝓𝝓 𝒙𝒙 𝒑𝒑}



Frequency Estimation
• Count-Min
• Count-Sketch



Goal:

• Start with 𝑥𝑥 = 𝟎𝟎 ∈ ℝ𝑚𝑚

• Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ 𝑚𝑚
• (for now assume all coordinates remain positive at all time).

• Keep track of all coordinates with additive error, i.e., 

• for each coordinate we can report �𝒙𝒙𝒊𝒊 that is within 𝒙𝒙𝒊𝒊 ± 𝒙𝒙 𝟏𝟏
𝒌𝒌



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

𝑟𝑟

𝑏𝑏



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

ℎ1

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

ℎ2

ℎ𝑟𝑟



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

(𝑖𝑖,Δ)
+Δℎ1(𝑖𝑖)

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

+Δ

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

+Δ
ℎ2(𝑖𝑖)(𝑖𝑖,Δ)

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

+Δ

• Hash ∀𝑗𝑗 ≤ 𝑟𝑟: ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]

+Δ
+Δℎ3(𝑖𝑖)

(𝑖𝑖,Δ)
• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

•



Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

Each Bucket is an over-estimation of 𝒙𝒙𝒊𝒊

Count Min

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ
(𝑖𝑖)



Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

Each Bucket is an over-estimation of 𝒙𝒙𝒊𝒊

Count Min

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

• Estimate �𝑥𝑥𝑖𝑖 ≔ 𝐦𝐦𝐦𝐦𝐦𝐦
𝑗𝑗

𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)



Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(2𝑘𝑘)

Count Min

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += Δ

• Estimate �𝑥𝑥𝑖𝑖 ≔ 𝐦𝐦𝐦𝐦𝐦𝐦
𝑗𝑗

𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• For 𝑖𝑖′ ∈ [𝑚𝑚] Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + Err

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

• By Markov, Pr 𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Count Min

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

• Thus the expected error is 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 = 1
𝐵𝐵
∑𝑖𝑖′≠𝑖𝑖 𝑥𝑥𝑖𝑖′ ≤ 𝑥𝑥 1/2𝑘𝑘

• By Markov, Pr 𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2

• By Independence of the rows: Pr 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 1
𝑘𝑘

≤ 1
2𝑟𝑟
≤ 𝛿𝛿

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/𝑘𝑘) ⋅ 𝒙𝒙 1



Outline

• We can keep track of all coordinates with additive error, i.e., for each 
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1

𝑘𝑘
• CountMin

• We can keep track of all coordinates with additive error, i.e., for each 
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝒙𝒙 𝟐𝟐

𝒌𝒌
• CountSketch



CountSketch



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

𝑟𝑟

𝑏𝑏



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

ℎ1(𝑖𝑖)

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
(𝑖𝑖,Δ)



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•ℎ2(𝑖𝑖)

+Δ
−Δ(𝑖𝑖,Δ)



Turnstile Model: input is a stream of updates (𝑖𝑖,Δ), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

ℎ3(𝑖𝑖)

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

•

+Δ
−Δ

+Δ
(𝑖𝑖,Δ)



Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Hash ℎ𝑗𝑗: 𝑚𝑚 → [𝑏𝑏]
• Sign 𝜎𝜎𝑗𝑗: 𝑚𝑚 → {−1, +1}

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

• Estimate �𝑥𝑥𝑖𝑖 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐧𝐧𝐣𝐣 𝜎𝜎𝑗𝑗(𝑖𝑖)𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)



Query(𝑖𝑖), where 𝑖𝑖 ∈ [𝑚𝑚]

#rows r  =𝑂𝑂(log 1/𝛿𝛿)
#buckets/row   b = 𝑂𝑂(9𝑘𝑘)

Count Sketch

• Update:  𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)] += 𝜎𝜎𝑗𝑗(𝑖𝑖) ⋅ Δ

• Estimate �𝑥𝑥𝑖𝑖 = 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐧𝐧𝐣𝐣 𝜎𝜎𝑗𝑗(𝑖𝑖)𝐶𝐶[𝑗𝑗,ℎ𝑗𝑗(𝑖𝑖)]
(𝑖𝑖)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

• By Markov, Pr |𝐸𝐸𝐸𝐸𝐸𝐸| > 𝑥𝑥 2
𝑘𝑘

≤ 1
3

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

• By Markov, Pr |𝐸𝐸𝐸𝐸𝐸𝐸| > 𝑥𝑥 2
𝑘𝑘

≤ 1
3

• By Chernoff: Pr 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 > 𝑥𝑥 2
𝑘𝑘

≤ 𝑒𝑒−
𝑐𝑐 log1𝛿𝛿
3 ≤ 𝛿𝛿

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Count Sketch

• Fix 𝑗𝑗, and consider ℎ𝑗𝑗 (which we assume is 2-wise independent)

• Let 𝑍𝑍𝑖𝑖′ be the indicator variable which is  𝟏𝟏 ℎ𝑗𝑗 𝑖𝑖′ = ℎ𝑗𝑗 𝑖𝑖
• 𝐶𝐶 𝑗𝑗, ℎ𝑗𝑗 𝑖𝑖 = 𝑥𝑥𝑖𝑖 + ∑𝑖𝑖′≠𝑖𝑖 𝑍𝑍𝑖𝑖′𝜎𝜎𝑗𝑗(𝑖𝑖′)𝑥𝑥𝑖𝑖′ ≔ 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝐸𝐸𝐸𝐸
• Goal: the expected error is 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝑥𝑥 2/(3 𝑘𝑘)
• By Jensen’s inequality 𝔼𝔼 |𝐸𝐸𝐸𝐸𝐸𝐸| ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

Estimation guarantee: w.p (1 − 𝛿𝛿)
𝑥𝑥𝑖𝑖 − �𝑥𝑥𝑖𝑖 ≤ (1/ 𝑘𝑘) ⋅ 𝒙𝒙 2



Jensen’s inequality

Jensen’s inequality:

𝜙𝜙 is convex

𝜙𝜙 𝔼𝔼 𝑥𝑥 ≤ 𝔼𝔼[𝜙𝜙 𝑥𝑥 ]

In our application:

𝜙𝜙 x ≔ x2

𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2 ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2

𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 ≤ 𝔼𝔼 𝐸𝐸𝐸𝐸𝐸𝐸 2
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1/2
=

• ∑𝑖𝑖′≠𝑖𝑖 𝔼𝔼 𝑍𝑍𝑖𝑖′ 𝑥𝑥𝑖𝑖′
2 1/2

≤ 𝑥𝑥 2
𝐵𝐵
≤ 𝑥𝑥 2

3 𝑘𝑘

Estimation guarantee: w.p (1 − 𝛿𝛿)
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Outline

• We can keep track of all coordinates with additive error, i.e., for each 
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝑥𝑥 1

𝑘𝑘
• CountMin

• We can keep track of all coordinates with additive error, i.e., for each 
coordinate we can report �𝑥𝑥𝑖𝑖 that is within 𝑥𝑥𝑖𝑖 ± 𝒙𝒙 𝟐𝟐

𝒌𝒌
• CountSketch



Next Lecture

• 𝐿𝐿0 sampler
• More combinatorial Algorithms
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