Lecture 2

TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago
Spring 2021

Instructor: Sepideh Mahabadi



Recap from Lecture 1



Streaming Model

* Huge data set (does not fit into the main memory)

* Only sequential access to the data

* One pass
* Few passes (the data is stored somewhere else)

* Use little memory
e Sublinear in input parameters
e Sublinear in the input size

* Solve the problem (approximately)

. N

arameters of Interest:
1. Memory usage

2. Number of passes

3

. Approximation Factor

\4. (Sometimes) query/update time /
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Streaming Model of Computation

12345678910

[0,0,0,0,0,0,0,0,0,0]

 Insertion-only Stream



Streaming Model of Computation

4 Insertion-only Stream 123456780910

¢ |nsert(3) [OIOI]'IOIOIOIOIOIOIO]



Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5) [0,0,1,0,1,0,0,0,0,0]



Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7) [0,0,1,0,1,0,1,0,0,0]



Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7), Insert(5) [0,0,1,0,2,0,1,0,0,0]



Streaming Model of Computation

4 Insertion-only Stream 123456780910

* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10) 0,0,1,0,3,0,1,0,0,1]



Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7),

12345678910

[0,0,1,0,3,0,1,0,0,1]

0,0,1,0,1,0,1,0,0,0]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7), Delete(5)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,0,0,1,0,0,0]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)
* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]



Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)
* Add(i,A): Add value A to the ith coordinate

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
* Add(1,10),

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[10,0,0,0,0,0,0,0,0,0]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
» Add(1,10), Add(4,5),

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[1OIOIOISIOIOIOIOIOIO]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)

* Add(i,A): Add value A to the ith coordinate
* Add(1,10), Add(4,5), Add(1,-5)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[SIOIOISIOIOIOIOIOIO]




Streaming Model of Computation

 Insertion-only Stream
* Insert(3), Insert(5), Insert(7), Insert(5), Insert(5), Insert(10)

[ Insertion and Deletion (Dynamic)

* Insert(3), Insert(5), Insert(7), Delete(5), Insert(5), Delete(7)
* May assume at any point #deletions(i)<=#insertions(i)
e E.g. can be used for numbers, edges of graphs, ...

1 Turnstile (for vectors, and matrices)
* Add(i,A): Add value A to the ith coordinate
 Add(1,10), Add(4,5), Add(1,-5), Add(5,-2)

12345678910

[0,0,1,0,3,0,1,0,0,1]

[0,0,1,0,1,0,0,0,0,0]

[5101015)-21010101010]




Streaming Model of Computation

] Estimate #Distinct Elements (L, norm: #non-zero coordinates)



Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}




Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

m—

s

pace usage:
a single bit (for insertion
only)
A single number in [n]

~

. (to also handle deletions)



Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturnDE <D
Otherwise, return DE > D

4 )

Space usage:
e k bits (for insertion only)
* knumbersin [n]

(to also handle deletions)

M’




Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturnDE <D
Otherwise, return DE > D

(s )

pace usage:
* klog n/e bits (for
insertion only)
* klog n/e numbers in [n]

* Return smallest D for which the above reports DE < D

. (to also handle deletions)



Basic Algorithm

* ForD € {(1+¢€):0<i<logn/e}

rorj € (1, k = (1)

€2

. 1,
e Sample each of m coordinates w.p. - into set S;

* If all sampled coordinates are 0, return NO

* Otherwise, return YES

Z=#NO
If Z > k/ereturn DE <D
Otherwise, return DE > D

(s )

pace usage:
* klog n/e bits (for
insertion only)
* klog n/e numbers in [n]

* Return smallest D for which the above reports DE < D

. (to also handle deletions)
4 )

Assumption: access to a
perfect hash function

h:|m] — [D]

e



Streaming Model of Computation

 Distinct Elements (L, norm)

J Morris Counter (L norm in insertion-only streams)
* Count (approximately) in space better than O(logn)?



Morris Algorithm

e let X =0
e Upon receiving INCREMENT()

* Increment X with probabilityzix

e Upon receiving QUERY()
e Returnfi = 2%-1

Claim 1. Let X,, denote X after n updates. Then, E[2%n] = n + 1.

Claim 2. E[24%n] = %nz + %n + 1

Space usage:
O(loglogn)

Pr[|i — n| > en] <

1

€

2

n




Issue

_ 1 n 1
Pr[|i —n| > en] <— —=

2 2 2
€E°n 2 2€

* Not very meaningful!l RHS is better than %2 only when € > 1 (for which
we can instead always return 0 !)

* How to decrease the failure probability?



How to improve the variance

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s = ) suffices to get failure probability 6

(626

1
Pr|[fi —n| > en] <— <5
2€




How to improve the space

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s = ) suffices to get failure probability 6

(628
e Morris++
Median of t Morris+ estimators.

Setting s = @( >), each Morris+ estimator succeeds w.p. at Ieast -

By Chernoff and setting t = O(log 5), the failure probability becomes at most 6



Improved algorithm

e Morris+

: : . : . 1
Average of s Morris estimators. Variance is multiplied by (E)'

Setting s = ) suffices to get failure probability 6

(628
e Morris++
Median of t Morris+ estimators.

Setting s = @( >), each Morris+ estimator succeeds w.p. at Ieast -

By Chernoff and setting t = O(log 5), the failure probability becomes at most 6

Total Space of Morris++: G)(Ei2 : logg -loglogn) w.p. atleast 1 — 6



This Lecture

* AMS (L, norm estimation)
 Count-Min (Frequency Estimation)

e Count-Sketch (Frequency Estimation)



L, norm Estimation

Q Start with x = 0 € R™

 Input (turnstile model): a stream of n updates (i, A), meaning x; = x; + A
1 Goal: Approximate ||x||, at the end

J Alon-Matias-Szegedy’96 (AMS) Algorithm



Basic Algorithm

 For each of the m coordinates, independently pick a random sign s; €
{—1, +1} with equal probability.

 Sketch: maintain Z = }};_¢ s; - x; throughout the stream
1 Upon receiving (i,A), update Z =Z + (s; - A)

3 Return Z? as an estimate for ||x||%



Basic Algorithm

1 Claim 1 (our estimator works in expectation): IE[ZZ] = IIxII%
1 Claim 2 (our estimator works with good probability)



Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E[Ziij sixiSix; + X stxl| = Qi x; % E[s;s; ]| +

ZixiZ]E[Siz]



Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E[Ziij sixiSix; + X stxl| = Qi x; % E[s;s; ]| +

Zixiz]E[Siz]

* 5; and s; are chosen independently (2-wise independence is enough)



Basic Algorithm Z=) s

i=1
Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3
E[Z*] = E[(X; s;x:)?] = [E:Zi;tj sixiSix; + X stxl| = Qi x; % E[s;s; ]| +

SixElsi| =0+ E;x = llx]l3




Basic Algorithm

Q Claim 1 (our estimator works in expectation): E[Z2| = ||x]|3

E[Z*] = E[(X; s;x:)?] = [E:Zi;tj sixiSix; + X stxl| = Qi x; % E[s;s; ]| +

SixElsi| =0+ E;x = llx]l3

[ Claim 2 (our estimator works with high probability) -> Use Chebyshev
* Need to bound the variance of the estimator



Basic Algorithm — Bounding variance

QVar(Z?) = E[Z*] — E[Z?]?



Basic Algorithm — Bounding variance Z:;S"""
EIVar(ZZ) = E[Z*] — E[Z?]?

Q(E22])" = (Ix3)” = (Bix?)” = Tuxd + 2 e 2247



Basic Algorithm — Bounding variance Z:;S"""

EIVar(ZZ) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.8. X1XX3X4E[$15,535,] =0




Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.8. X1X7X3X4E[$515,535,] =0

(1/2)x1%5x3%4E[s28384|51 = 1] = (1/2)x1 %5032, E[S58384|51 = —1]




Basic Algorithm — Bounding variance Z:;S"""

EIVar(ZZ) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.g. x;x2x3E[s;5%53] = 0




Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

e.g. xxix3E[s;5553] =0

4-wise independence is sufficient




Basic Algorithm — Bounding variance Z:Zf"""

QVar(Z?) = E[Z*] — E[Z?]?

QE[24] = E[(T;5x)*] = E[Ti(six)*] + 6 - E [Zicj(si55x0%) | + 0

= ]E[Zixf}] + E [Ziij(xixj)zl = llxlls + 6Zi<f xizsz



Basic Algorithm — Bounding variance Z:;S"""

QVar(Z?) = E[Z*] — E[Z?]?

| 2

Q(E[22])" = T xf +2- iy 27
QE[Z*4] = Ellx|l} + 6 X x2x?

QVar(z?) = llxlls + 6 Xic; xixf — llxlls — 2 Xicjxi %] =

2
4 cixixf < 2(X;xf)" = 2lxll3



Basic Algorithm — Bounding variance

QVar(Z?) = E[Z*] — E[Z?]?

| 2

Q(E[22])" = T xf +2- iy 27
QE[Z*4] = Ellx|l} + 6 X x2x?

A Var(Z?) < 2||x|I3
Qo = /Var(Z2) =2 ||x||3




Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
Qo = Var(Z2) =2 ||x||3




Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
o = \/Var(ZZ) = /2 ||x|I3

O Chebyshev: Pr[|Z% — |Ix]I5 | = cllx|l3] < 2/c?

3 E.g. with constant probability our estimator Z? is within constant factor
of the true value ||x||5



Basic Algorithm — Chebyshev

QE[Z?] = ||x]|3
o = \/Var(ZZ) = /2 ||x|I3

O Chebyshev: Pr[|Z% — |Ix]I5 | = cllx|l3] < 2/c?

3 E.g. with constant probability our estimator Z? is within constant factor
of the true value ||x||5

J We want to do better!
[ Goal: get (1 + €) approximation with constant probability

] Repeat Basic algorithm!



Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

(1 Does not change the expectation

QOE[Z] = E [Ziziz ] = E[Z] = ||x|I2

k



Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()
[ Does not change the expectation , i.e., E[Z'] = ||x]|5

1 Variance decreases by a factor of k

Y. Z? _ Yvar(zf) _ Var(Z$) _ 2||x||5
k k2 k k

d Var(Z') = Var(



Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[ Does not change the expectation , i.e., E[Z'] = ||x]|5

2|1xll5
k

[ Variance decreases by a factor of k, i.e., Var(Z') =

do = \/Var(Z’) = \/5”3;{”%




Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[ Does not change the expectation , i.e., E[Z'] = ||x]|5

Qo =Var(Z) =VZIx|3/k  Setk=0(5




Overall AMS Algorithm

 Keep multiple estimators Z4, -+, Z},
d Report Z' = Avg(ZZ, ...,Z,Z()

[ Does not change the expectation , i.e., E[Z'] = ||x]|5

Qo =Var(Z) =VZIx|3/k  Setk=0(5

[ Chebyshev PrHZ’ — |1x|I5 ‘ > ceIIxII%] <1/c?
 get a (1 + €) approximation with a constant probability.




Remarks

 To get a (1 + €) approximation with probability (1 — §).
e Runt = 0(log§) instances of AMS and take the median
* By Chernoff Bound, the median of the AMS estimators work

1
] Total space usage 0( %) humbers.

J What about keeping the random signs s;?
O Only need 4-wise independence of sy, ..., Sy, (in bounding E[(3; s;x;)*])
de.g E[s;s,535,] =0

[ Can generate such variables using O (log m) random bits.



Outline

* So far we learned how to maintain the norm of a vector in small space

* What else can we do in small (e.g. O(k)) space?

* We can keep track of all coordinates with additive error, i.e., for each
x4

coordinate we can report X; that is within x; +

x4
k

* This is specially useful if x; is large (heavy-hitter), e.g. |x;| =

* (there are at most k such coordinates)



Outline

* So far we learned how to maintain the norm of a vector in small space

* What else can we do in small (e.g. O(k)) space?

* We can keep track of all coordinates with additive error, i.e., for each
x4

coordinate we can report X; that is within x; +

[1x]14
k

* This is specially useful if x; is large (heavy-hitter), e.g. |x;| =

HH} (x) = {i: |x;| > ¢lixll,)}



Frequency Estimation



Goal:

+ Start with x = 0 € R™
* Turnstile Model: input is a stream of updates (i, A), where i € [m]
* (for now assume all coordinates remain positive at all time).

* Keep track of all coordinates with additive error, i.e.,

* for each coordinate we can report X; that is within x; + %



Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#rows r =0(log1/6)
#buckets/row b =0(2k)




Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)




Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

hy (i +A
&L * Update: C[j,h;(i)] +=A

o,




Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

/LI A ‘I * Update: C[j,h;(i)]+=A
. . y 1 l =
LR5E A




Count Min

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#trows r =0(log1/9) * Hash Vj <r: h;:[m] - [b]
#buckets/row b =0(2k)

oyt | —
(l A)m‘ +A ¢ Update: C[], h](l)] +=A
h3(l) _|_A °




Count Min

Query(i), where i € [m]

Each Bucket is an over-estimation of x;

(1)

* Update: C[j,h;(i)] +=A




Count Min

Query(i), where i € [m]

Each Bucket is an over-estimation of x;

* Update: C[j,h;(i)] +=A

(D)

* Estimate £; := min C[j, h;(i)]
J




Count Min

Query(i), where i € [m]

Estimation guarantee: w.p (1 — 9)

Hrows r =0(log1/9) lx; — % < (1/k) - |Ix]l;

#buckets/row b =0(2k)

* Update: C[j,h;(i)] +=A
(0)

* Estimate £; := min C[j, h;(i)]
J




Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)



Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* For i’ € [m] Let Z,/ be the indicator variable which is 1[hj(i’) = hj(i)]



Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
¢ C[], hj(l)] = X; + ZifiiZi/xi/



Count Min

Estimation guarantee: w.p (1 — 0)
X — % < (1/k) - lIxll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 C|j,hi(D)| = x; + X1,y Zyxy = x; + Err




Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected erroris E[Err]| = (%) e X < lxll/2k



Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected error is E[Err]| = (%) e X < lxll /2k

* By Markov, Pr [Err > IIxII1] S%



Estimation guarantee: w.p (1 — 0)

Count Min I, — %] < (1/k) - |Ixll4

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
 Clj, (D] =x; + Xyrpi Zypxy = x; + Err

* Thus the expected error is E[Err]| = (%) e X < lxll /2k

* By Markov, Pr [Err > ”9;"1] < %

* By Independence of the rows: Pr [MinErr > ”3;”1] < 2—17, <0



Outline

* We can keep track of all coordinates with additive error, i.e., for each
1|1

coordinate we can report X; that is within x; +

e CountMin

* We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report X; that is within x; + —”\7%2

 CountSketch



CountSketch



Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#rows r =0(log1/6)
#buckets/row b =0(9%k)




Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

W+A

(5 Update: C[j,h;(i)] +=o;(i) - A




Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}
s \ I
"y * Update: C[j,h;())] +=0;()-A

0




Count Sketch

Turnstile Model: input is a stream of updates (i, A), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

4 |
(i,\) —A
hs(0) +A ’

Update: C[j,h;(i)] +=o;(i) - A




Count Sketch

Query(i), where i € [m]

#irows r =0(log1/9) * Hash h;:[m] - [b]
#tbuckets/row b =0(9k) + Sign g;:[m] > {1, +1}

* Update: C[j,h;())] +=0;() - A

(D)

* Estimate x; = median, g;({)C[j, h; (i)]
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Query(i), where i € [m]

Estimation guarantee: w.p (1 — 9)

#rows r =0(log1/6) ~
#buckets/row b =0(9k) g — 2l < (1/VE) - llxll
(D) * Update: C[j, h;(@)] +=0;(i) - A
[
* Estimate x; = median, g;({)C[j, h; (i)]




Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
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Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]
* Clj, (D] =x; + Xy, Zyro; ((D)xyr = x; + Err
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Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

» Goal: the expected error is E[|Err|] < ||x||,/(3Vk)




Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

. IIxIIz] 1
By Markov, Pr[|Err| > NG = 3




Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

. IIxIIz] 1
By Markov, Pr[|Err| > NG < -

1
c logg

e By Chernoff: Pr [MedianErr > ”\7%2] <e 3 <9
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Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ X2 Zi0j(1)xp == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)
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Estimation guarantee: w.p (1 — 0)

x; — %] < (1/Vk) - lIxll;

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ XNy Ziroj(i')xyr == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]




Jensen’s inequality

Jensen’s inequality: In our application:
@ is convex d(x) = x*
¢(Elx]) < E[¢(x)] (E[|Err|])* < E[|Err|”]

E[|Err|] < \/IE[ Err|?]




Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1|h;(i") = h; ()]

. C[],h D] =x+2.:Z; 1o (1)x;r = x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE |Err|?]

1/2
. < ( [Zz’m lrx 7+ le lzillelea](ll)aj(lz)x ,D

l1-'/—'l2



Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ Xy Zyrop(i)xy == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]

2 2 - N1\ /2
-s( iriixifrﬁ[zir]+zil,iziixirm[zilzizca(zl)q(lz)]) _




Estimation guarantee: w.p (1 — 0)

Count Sketch x; — % < (1/VE) - ||l

* Fix j, and consider h; (which we assume is 2-wise independent)
* Let Z;s be the indicator variable which is 1[hj(i’) = hj(i)]

- C|j, hj(i)] =x;+ XNy Ziroj(i')xyr == x; + Err

* Goal: the expected erroris E[|Err|] < ||x||./(3Vk)

* By Jensen’s inequality E[|Err|] < \/IE[IErrIZ]

, | \1/2
‘s ( i X7 E[Z;] + Zil,iziixi’IE[ZilziZO-j(ll)O'j(lz)]) =

1/2 || || | x|]
(Zl’il[E(Z )xz’) : 2 = 335




Outline

* We can keep track of all coordinates with additive error, i.e., for each
1|1

coordinate we can report X; that is within x; +

e CountMin

* We can keep track of all coordinates with additive error, i.e., for each

coordinate we can report X; that is within x; + —”\7%2

 CountSketch



Next Lecture

* Lo sampler
* More combinatorial Algorithms
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