Lecture 13

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

□ Testing properties of distributions

Sublinear Time Algorithms

- The input is so huge that even reading all of it is not feasible
- Solve the problem accessing a *small* portion of the input
 - Need to specify the access model: what queries can be asked?
 - Random Access
 - E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
 - For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there
 exist an edge between u and v
 - Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)
 - Sample
 - Algorithm receives a random sample from a specific distribution
 - Parameters of interest
 - Number of queries asked
 - Actual runtime (could be sublinear, polynomial, or even exponential)

Model

- There is an unknown distribution p over a domain of size [n]
 - We can receive iid samples from *p*
 - Let p_i be the probability of outputting i
- Interested to know if p has a property or far from having the property
 - E.g. being uniform
 - Being close to another distribution \boldsymbol{q}
 - Monotonicity, Unimodal, k-modal, k-flat, ...
- Need to specify the distance measure, i.e., L_1 or L_2 , or KL-divergence, ...
- Sublinear number of samples in *n*?

Testing Uniformity

Is a lottery fair?

Problem Definition

- There is an unknown distribution p over a domain of size [n]
 - We can receive iid samples from p
 - Let p_i be the probability of outputting i
- Goal:
 - pass uniform distribution
 - Fail distributions that are ϵ -far from uniform
 - L_1 distance: $||p U||_1 = \sum_i |p_i \frac{1}{n}| > \epsilon$
 - L_2 distance: $||p U||_2^2 = \sum_i \left(p_i \frac{1}{n}\right)^2 > \epsilon^2$
- Sample complexity in terms of n and ϵ ?

Naïve approach

- Take *m* samples
- Compute the empirical distribution p', i.e., $p'_i = (\#times i apprears)/m$
- If $\|p' U\|_1 > \epsilon$ fail
- Otherwise pass
- Problem: need $\Omega(n)$ samples for this to work using Chernoff

Estimation in L_2 distance using Collision probability

- What is the probability of collision for two samples?
 - $\Pr_{s,t\in p}[s=t] = \sum_{a\in[n]} p(a)^2 = ||p||_2^2$
- What is the collision probability of U?
 - 1/n
- Algorithm: approximate collision probability and compare to 1/n

•
$$||p - U||_2^2 = \sum_{a \in [n]} \left(p(a) - \frac{1}{n} \right)^2 = \sum_{a \in [n]} p(a)^2 - (2/n) \sum_a p(a) + \sum_a \frac{1}{n^2}$$

• $= \sum_a p(a)^2 - \frac{2}{n} + \frac{1}{n} = ||p||_2^2 - \frac{1}{n}$

- Sufficient to get an additive $\frac{\epsilon^2}{2}$ error for L_2^2
 - If p = U, then $||p||_2^2$ is 1/n
 - If $||p U||_2 > \epsilon$ then $||p||_2^2 > \frac{1}{n} + \epsilon^2$
 - So let the threshold for deciding be $\frac{1}{n} + \frac{\epsilon^2}{2}$

How many samples? How to use samples?

- Naïve idea: Take **2***s* samples and count the number of collisions between every consecutive pair.
 - The pairs are independent
- More efficiently: take *s* samples and compare the collision between "all" pairs
 - Have some dependence now
 - Use variance to bound accuracy

Algorithm

- Take s samples X_1, \dots, X_s
- For $1 \le i < j \le s$, let $\sigma_{i,j}$ be 1 if $X_i = X_j$ and 0 otherwise
- Output $A = \frac{\sum_{i < j} \sigma_{i,j}}{\binom{s}{2}}$

Need to show

- It works in expectation
- It works with good probability

Analyzing the expectation

•
$$\mathbb{E}[A] = \frac{\binom{s}{2}\mathbb{E}[\sigma_{i,j}]}{\binom{s}{2}} = \Pr[\sigma_{i,j} = 1] = \|p\|_2^2$$

- Chebyshev $\Pr[|A \mathbb{E}[A]| > \rho] \le Var[A]/\rho^2$
- For additive approximation set $\rho = \epsilon$
- For multiplicative approximation set $\rho = \epsilon \|p\|_2^2$
- Bound Var[A] and show that $\frac{Var[A]}{\epsilon^2 \|p\|_2^4} \ll 1$ if $s = \Omega\left(\frac{\sqrt{n}}{\epsilon^2}\right)$
- Better bound is possible if we have a bound on the max prob of any element

Bounding the variance

Lemma: $Var\left[\sum_{i,j} \sigma_{i,j}\right] \le 2\left(\binom{s}{2} \cdot \|p\|_2^2\right)^{\frac{3}{2}}$

- $\bar{\sigma}_{i,j} = \sigma_{i,j} \mathbb{E}[\sigma_{i,j}]$
- $Var\left[\sum_{i,j}\sigma_{i,j}\right] = \mathbb{E}\left[\left(\sum_{i,j}\bar{\sigma}_{i,j}\right)^{2}\right] = \mathbb{E}\left[\sum_{i< j}\bar{\sigma}_{i,j}^{2} + \sum_{i< j,k< l}\bar{\sigma}_{i,j}\bar{\sigma}_{k,l} + \sum_{i< j,i< l}\bar{\sigma}_{i,j}\bar{\sigma}_{i,l} + \sum_{i< j,k< j}\bar{\sigma}_{i,j}\bar{\sigma}_{k,j}\right]$
- $\mathbb{E}\left[\sum_{i < j} \bar{\sigma}_{i,j}^2\right] \le \mathbb{E}\left[\sum_{i < j} \sigma_{i,j}^2\right] = {s \choose 2} \cdot \|p\|_2^2$
- $\mathbb{E}\left[\sum_{i < j,k < l} \bar{\sigma}_{i,j} \bar{\sigma}_{k,l}\right] = \sum_{i,j,k,l} \mathbb{E}[\bar{\sigma}_{i,j}] \mathbb{E}[\bar{\sigma}_{k,l}] = 0$ by independence of samples.
- $\mathbb{E}\left[\sum_{i < j, i < l} \bar{\sigma}_{i,j} \bar{\sigma}_{i,l}\right] \le \mathbb{E}\left[\sum_{i,j,l} \sigma_{i,j} \sigma_{i,l}\right] \le {s \choose 3} \sum_{x} p(x)^3 \le \frac{s^3}{6} \|p\|_3^3 \le \frac{\sqrt{3}}{2} \left({s \choose 2} \|p\|_2^2\right)^{3/2}$
- $Var\left[\sum_{i,j} \sigma_{i,j}\right] \le {\binom{s}{2}} \cdot \|p\|_2^2 + 0 + \sqrt{3}\left({\binom{s}{2}}\|p\|_2^2\right)^{\frac{3}{2}} \le 2\left({\binom{s}{2}}\|p\|_2^2\right)^{\frac{3}{2}}$

•
$$\frac{Var[A]}{\epsilon^2 \|p\|_2^4} \le \frac{2\left(\binom{s}{2}\|p\|_2^2\right)^{\frac{1}{2}} \cdot \frac{1}{\binom{s}{2}}}{\epsilon^2 \|p\|_2^4} \le 2\binom{s}{2}^{-\frac{1}{2}} \|p\|_2^{-1} \epsilon^{-2} \le 1/3 \text{ if } s = \Omega(\frac{\sqrt{n}}{\epsilon^2})$$

Overview of other properties

Closeness of two distributions

- Algorithm knows q and wants to realize if p and q are close or far.
- Reduction to uniformity testing
 - Relabel the domain so that q is monotone (we know q) so this can be done
 - Partition the domain into $O(\log n)$ parts, so that each group is almost flat
 - Differ by $(1 + \epsilon)$ multiplicative
 - *q* is close to uniform in each part
 - Test
 - *p* is close to uniform in each part
 - *p* has the right weight in each bucket

Bucketing

•
$$R_0 = \left\{ j : q(j) < \frac{1}{n \log n} \right\}$$

• Total probability of them is only $1/\log n$ which is less than ϵ

•
$$R_i = \left\{ j : \frac{(1+\epsilon)^{i-1}}{n\log n} \le q(j) < \frac{(1+\epsilon)^i}{n\log n} \right\}$$

- All probabilities are within a $(1 + \epsilon)$ factor of each other
- Total number of buckets is only $\frac{\log n}{\epsilon}$
- Let Z be the following distribution
 - Pick bucket *i* with probability $\sum_{j \in R_i} q(j)$
 - Pick an element uniformly at random from bucket *i*
- We show that Z and q are close

Single bucket

• Let

- q_i be q conditioned on i-th bucket
- U_i be uniform on the bucket
- ℓ the number of elements in the bucket
- Lemma: q_i and U_i are ϵ -close under L_1 distance and ϵ^2/ℓ -close over L_2^2 distance
 - Let x_1, \cdots, x_ℓ be the conditional probabilities
 - Clearly, $x_1 \leq \frac{1}{\ell} \leq x_\ell$ and so $x_\ell \leq (1+\epsilon)x_1 \leq (1+\epsilon)/\ell$ and $x_1 \geq \frac{1}{\ell(1+\epsilon)} \geq \frac{1-\epsilon}{\ell}$
 - So $|x_j \frac{1}{\ell}| \le \epsilon/\ell$ and thus the L_1 distance is at most ϵ and the L_2^2 is at most $\frac{\epsilon^2}{\ell}$
 - So $\|q_i\|_2^2 \leq (1+\epsilon^2)/\ell$

Single bucket algorithm

- Algorithm: Estimate $||p_i||_2^2$ and fail if $> \frac{1+\epsilon^2}{|R_i|}$
- Lemma: if $||p_i||_2^2 \le (1 + \epsilon^2)/|R_i|$ then $||q_i p_i||_1 \le 2\epsilon$
 - Both q_i and p_i are close to uniform
 - Use triangle inequality

Overall algorithm

- Bucket q
- Calculate total weight of q in each bucket
- Estimate total weight p assigns to each bucket ($O(\log n)$ samples)
- If L_1 distance between bucket weights is more than ϵ , reject
- For each bucket with weight more than $\epsilon/2k$ where k is the number of buckets
 - Estimate collision probability p_i (need $O(\frac{\sqrt{nk \log n}}{\epsilon^2})$ samples of p)
 - Fail if the estimate is bigger than $(1 + \epsilon^2)/|R_i|$

Correctness

- One way is clear
- If p and q pass the test
 - Total weight of skipped buckets is at most ϵ
 - p_i is ϵ -close to q_i in each bucket
 - Bucket weight of p and q are $\epsilon\text{-close}$
- Overall they will be $O(\epsilon) close$
- Testing identity can be reduced to $O(\log n)$ uniformity testing

Other properties

□ Testing closeness: both q and p are unknown and we can get samples from them, requires $\Theta(n^{\frac{2}{3}})$

- Two phase approach:
 - Sample to detect heavy elements of both
 - Estimate distance of heavy elements and light elements separately

 \Box Approximating distance between two distributions (if $\|p-q\|_1 < \epsilon$ or $\Omega(1)$) requires nearly linear samples)

• Estimating
$$||p - q||_1$$
 requires $\Theta\left(\frac{n}{\log n}\right)$ samples.

Testing independence where we receive samples from the joint distribution over [n]x[m], the goal is to check if the marginal are independent

• Can be done in
$$\tilde{O}(n^{\frac{2}{3}}m^{\frac{1}{3}})$$
 assuming $n > m$