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This Lecture

 Testing properties of distributions



Sublinear Time Algorithms

• The input is so huge that even reading all of it is not feasible
• Solve the problem accessing a small portion of the input

• Need to specify the access model: what queries can be asked?
• Random Access

• E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
• For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there 

exist an edge between u and v
• Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)

• Sample
• Algorithm receives a random sample from a specific distribution

• Parameters of interest
• Number of queries asked
• Actual runtime (could be sublinear, polynomial, or even exponential)



Model

• There is an unknown distribution 𝑝𝑝 over a domain of size [𝑛𝑛]
• We can receive iid samples from 𝑝𝑝
• Let 𝑝𝑝𝑖𝑖 be the probability of outputting 𝑖𝑖

• Interested to know if 𝑝𝑝 has a property or far from having the property
• E.g. being uniform
• Being close to another distribution 𝑞𝑞
• Monotonicity, Unimodal, 𝑘𝑘-modal, 𝑘𝑘-flat, …

• Need to specify the distance measure, i.e., 𝐿𝐿1 or 𝐿𝐿2, or KL-divergence, 
…

• Sublinear number of samples in 𝑛𝑛?



Testing Uniformity
Is a lottery fair?



Problem Definition

• There is an unknown distribution 𝑝𝑝 over a domain of size [𝑛𝑛]
• We can receive iid samples from 𝑝𝑝
• Let 𝑝𝑝𝑖𝑖 be the probability of outputting 𝑖𝑖

• Goal: 
• pass uniform distribution
• Fail distributions that are 𝜖𝜖-far from uniform

• 𝐿𝐿1 distance: 𝑝𝑝 − 𝑈𝑈 1 = ∑𝑖𝑖 |𝑝𝑝𝑖𝑖 −
1
𝑛𝑛

| > 𝜖𝜖

• 𝐿𝐿2 distance: 𝑝𝑝 − 𝑈𝑈 2
2 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖 −

1
𝑛𝑛

2
> 𝜖𝜖2

• Sample complexity in terms of 𝑛𝑛 and 𝜖𝜖?



Naïve approach

• Take 𝑚𝑚 samples
• Compute the empirical distribution 𝑝𝑝′, i.e., 𝑝𝑝𝑖𝑖′ = (#times i apprears)/𝑚𝑚
• If 𝑝𝑝′ − 𝑈𝑈 1 > 𝜖𝜖 fail
• Otherwise pass

• Problem: need Ω(𝑛𝑛) samples for this to work using Chernoff



Estimation in 𝐿𝐿2 distance using Collision probability

• What is the probability of collision for two samples?
• Pr
s,t∈𝑝𝑝

[𝑠𝑠 = 𝑡𝑡] = ∑𝑎𝑎∈ 𝑛𝑛 𝑝𝑝 𝑎𝑎 2 = 𝑝𝑝 2
2

• What is the collision probability of 𝑈𝑈?
• 1/𝑛𝑛

• Algorithm: approximate collision probability and compare to 1/𝑛𝑛
• 𝑝𝑝 − 𝑈𝑈 2

2 = ∑𝑎𝑎∈ 𝑛𝑛 𝑝𝑝 𝑎𝑎 − 1
𝑛𝑛

2
= ∑𝑎𝑎∈ 𝑛𝑛 𝑝𝑝 𝑎𝑎 2 − (2/𝑛𝑛)∑𝑎𝑎 𝑝𝑝 𝑎𝑎 + ∑𝑎𝑎

1
𝑛𝑛2

• = ∑𝑎𝑎 𝑝𝑝 𝑎𝑎 2 − 2
𝑛𝑛

+ 1
𝑛𝑛

= 𝑝𝑝 2
2 − 1

𝑛𝑛

• Sufficient to get an additive 𝜖𝜖
2

2
error for 𝐿𝐿22

• If 𝑝𝑝 = 𝑈𝑈, then 𝑝𝑝 2
2 is 1/𝑛𝑛

• If 𝑝𝑝 − 𝑈𝑈 2 > 𝜖𝜖 then 𝑝𝑝 2
2 > 1

𝑛𝑛
+ 𝜖𝜖2

• So let the threshold for deciding be 1
𝑛𝑛

+ 𝜖𝜖2

2



How many samples? How to use samples?

• Naïve idea: Take 𝟐𝟐𝒔𝒔 samples and count the number of collisions 
between every consecutive pair. 

• The pairs are independent

• More efficiently: take 𝒔𝒔 samples and compare the collision between 
“all” pairs

• Have some dependence now
• Use variance to bound accuracy



Algorithm

• Take 𝑠𝑠 samples 𝑋𝑋1,⋯ ,𝑋𝑋𝑠𝑠
• For 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑠𝑠, let 𝜎𝜎𝑖𝑖,𝑗𝑗 be 1 if 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑗𝑗 and 0 otherwise

• Output 𝐴𝐴 =
∑𝑖𝑖<𝑗𝑗 𝜎𝜎𝑖𝑖,𝑗𝑗

𝑠𝑠
2

Need to show
• It works in expectation
• It works with good probability 



Analyzing the expectation

• 𝔼𝔼 𝐴𝐴 =
𝑠𝑠
2 𝔼𝔼 𝜎𝜎𝑖𝑖,𝑗𝑗

𝑠𝑠
2

= Pr 𝜎𝜎𝑖𝑖,𝑗𝑗 = 1 = 𝑝𝑝 2
2

• Chebyshev Pr 𝐴𝐴 − 𝔼𝔼 𝐴𝐴 > 𝜌𝜌 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉[𝐴𝐴]/𝜌𝜌2

• For additive approximation set 𝜌𝜌 = 𝜖𝜖
• For multiplicative approximation set 𝜌𝜌 = 𝜖𝜖 𝑝𝑝 2

2

• Bound 𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴 and show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴
𝜖𝜖2 𝑝𝑝 2

4 ≪ 1 if 𝑠𝑠 = Ω 𝑛𝑛
𝜖𝜖2

• Better bound is possible if we have a bound on the max prob of any 
element



Bounding the variance

Lemma: 𝑉𝑉𝑉𝑉𝑉𝑉 ∑𝑖𝑖,𝑗𝑗 𝜎𝜎𝑖𝑖,𝑗𝑗 ≤ 2 𝑠𝑠
2 ⋅ 𝑝𝑝 2

2
3
2

• �𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝜎𝜎𝑖𝑖,𝑗𝑗 − 𝔼𝔼 𝜎𝜎𝑖𝑖,𝑗𝑗

• 𝑉𝑉𝑉𝑉𝑉𝑉 ∑𝑖𝑖,𝑗𝑗 𝜎𝜎𝑖𝑖,𝑗𝑗 = 𝔼𝔼 ∑𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑗𝑗
2 = 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑗𝑗2 + ∑𝑖𝑖<𝑗𝑗,𝑘𝑘<𝑙𝑙 �𝜎𝜎𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑘𝑘,𝑙𝑙 + ∑𝑖𝑖<𝑗𝑗,𝑖𝑖<𝑙𝑙 �𝜎𝜎𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑙𝑙 + ∑𝑖𝑖<𝑗𝑗,𝑘𝑘<𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑘𝑘,𝑗𝑗

• 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑗𝑗2 ≤ 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗 𝜎𝜎𝑖𝑖,𝑗𝑗2 = 𝑠𝑠
2 ⋅ 𝑝𝑝 2

2

• 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗,𝑘𝑘<𝑙𝑙 �𝜎𝜎𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑘𝑘,𝑙𝑙 = ∑𝑖𝑖,𝑗𝑗,𝑘𝑘,𝑙𝑙 𝔼𝔼[ �𝜎𝜎𝑖𝑖,𝑗𝑗]𝔼𝔼[ �𝜎𝜎𝑘𝑘,𝑙𝑙] = 0 by independence of samples.

• 𝔼𝔼 ∑𝑖𝑖<𝑗𝑗,𝑖𝑖<𝑙𝑙 �𝜎𝜎𝑖𝑖,𝑗𝑗 �𝜎𝜎𝑖𝑖,𝑙𝑙 ≤ 𝔼𝔼 ∑𝑖𝑖,𝑗𝑗,𝑙𝑙 𝜎𝜎𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖,𝑙𝑙 ≤ 𝑠𝑠
3 ∑𝑥𝑥 𝑝𝑝 𝑥𝑥 3 ≤ 𝑠𝑠3

6
𝑝𝑝 3

3 ≤ 3
2

𝑠𝑠
2 𝑝𝑝 2

2
3/2

• 𝑉𝑉𝑉𝑉𝑉𝑉 ∑𝑖𝑖,𝑗𝑗 𝜎𝜎𝑖𝑖,𝑗𝑗 ≤ 𝑠𝑠
2 ⋅ 𝑝𝑝 2

2 + 0 + 3 𝑠𝑠
2 𝑝𝑝 2

2
3
2 ≤ 2 𝑠𝑠

2 𝑝𝑝 2
2

3/2

• 𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴
𝜖𝜖2 𝑝𝑝 2

4 ≤
2 𝑠𝑠

2 𝑝𝑝 2
2
3
2⋅ 1𝑠𝑠

2
𝜖𝜖2 𝑝𝑝 2

4 ≤ 2 𝑠𝑠
2
−12 𝑝𝑝 2

−1𝜖𝜖−2 ≤ 1/3 if 𝑠𝑠 = Ω( 𝑛𝑛
𝜖𝜖2

)



Overview of other properties



Closeness of two distributions

• Algorithm knows 𝑞𝑞 and wants to realize if 𝑝𝑝 and 𝑞𝑞 are close or far.

• Reduction to uniformity testing
• Relabel the domain so that 𝑞𝑞 is monotone (we know 𝑞𝑞) so this can be done
• Partition the domain into 𝑂𝑂(log𝑛𝑛) parts, so that each group is almost flat

• Differ by (1 + 𝜖𝜖) multiplicative
• 𝑞𝑞 is close to uniform in each part

• Test
• 𝑝𝑝 is close to uniform in each part
• 𝑝𝑝 has the right weight in each bucket



Bucketing 

• 𝑅𝑅0 = 𝑗𝑗: 𝑞𝑞 𝑗𝑗 < 1
𝑛𝑛 log 𝑛𝑛

• Total probability of them is only 1/ log𝑛𝑛 which is less than 𝜖𝜖

• 𝑅𝑅𝑖𝑖 = 𝑗𝑗: 1+𝜖𝜖 𝑖𝑖−1

𝑛𝑛 log 𝑛𝑛
≤ 𝑞𝑞 𝑗𝑗 < 1+𝜖𝜖 𝑖𝑖

𝑛𝑛 log 𝑛𝑛
• All probabilities are within a 1 + 𝜖𝜖 factor of each other

• Total number of buckets is only log 𝑛𝑛
𝜖𝜖

• Let 𝑍𝑍 be the following distribution
• Pick bucket 𝑖𝑖 with probability ∑𝑗𝑗∈𝑅𝑅𝑖𝑖 𝑞𝑞(𝑗𝑗)
• Pick an element uniformly at random from bucket 𝑖𝑖

• We show that 𝑍𝑍 and 𝑞𝑞 are close



Single bucket

• Let
• 𝑞𝑞𝑖𝑖 be 𝑞𝑞 conditioned on 𝑖𝑖-th bucket
• 𝑈𝑈𝑖𝑖 be uniform on the bucket
• ℓ the number of elements in the bucket

• Lemma: 𝑞𝑞𝑖𝑖 and 𝑈𝑈𝑖𝑖 are 𝜖𝜖 −close under 𝐿𝐿1 distance and 𝜖𝜖2/ℓ-close over 𝐿𝐿22 distance
• Let 𝑥𝑥1,⋯ , 𝑥𝑥ℓ be the conditional probabilities 
• Clearly, 𝑥𝑥1 ≤

1
ℓ
≤ 𝑥𝑥ℓ and so 𝑥𝑥ℓ ≤ 1 + 𝜖𝜖 𝑥𝑥1 ≤ (1 + 𝜖𝜖)/ℓ and 𝑥𝑥1 ≥

1
ℓ 1+𝜖𝜖

≥ 1−𝜖𝜖
ℓ

• So 𝑥𝑥𝑗𝑗 −
1
ℓ
≤ 𝜖𝜖/ℓ and thus the 𝐿𝐿1 distance is at most 𝜖𝜖 and the 𝐿𝐿22 is at most 𝜖𝜖

2

ℓ
• So 𝑞𝑞𝑖𝑖 2

2 ≤ 1 + 𝜖𝜖2 /ℓ



Single bucket algorithm

• Algorithm: Estimate 𝑝𝑝𝑖𝑖 2
2 and fail if > 1+𝜖𝜖2

𝑅𝑅𝑖𝑖
• Lemma: if 𝑝𝑝𝑖𝑖 2

2 ≤ (1 + 𝜖𝜖2)/|𝑅𝑅𝑖𝑖| then 𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖 1 ≤ 2𝜖𝜖
• Both 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝑖𝑖 are close to uniform
• Use triangle inequality



Overall algorithm

• Bucket 𝑞𝑞
• Calculate total weight of 𝑞𝑞 in each bucket
• Estimate total weight 𝑝𝑝 assigns to each bucket (𝑂𝑂(log𝑛𝑛) samples)
• If 𝐿𝐿1 distance between bucket weights is more than 𝜖𝜖, reject
• For each bucket with weight more than 𝜖𝜖/2𝑘𝑘 where 𝑘𝑘 is the number 

of buckets
• Estimate collision probability 𝑝𝑝𝑖𝑖 (need 𝑂𝑂( 𝑛𝑛𝑘𝑘 log 𝑛𝑛

𝜖𝜖2
) samples of 𝑝𝑝)

• Fail if the estimate is bigger than (1 + 𝜖𝜖2)/|𝑅𝑅𝑖𝑖|



Correctness

• One way is clear
• If 𝑝𝑝 and 𝑞𝑞 pass the test 

• Total weight of skipped buckets is at most 𝜖𝜖
• 𝑝𝑝𝑖𝑖 is 𝜖𝜖-close to 𝑞𝑞𝑖𝑖 in each bucket
• Bucket weight of 𝑝𝑝 and 𝑞𝑞 are 𝜖𝜖-close

• Overall they will be 𝑂𝑂 𝜖𝜖 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• Testing identity can be reduced to 𝑂𝑂(log𝑛𝑛) uniformity testing



Other properties

 Testing closeness: both 𝑞𝑞 and 𝑝𝑝 are unknown and we can get samples from them, 
requires Θ 𝑛𝑛

2
3

• Two phase approach:
• Sample to detect heavy elements of both
• Estimate distance of heavy elements and light elements separately

 Approximating distance between two distributions (if 𝑝𝑝 − 𝑞𝑞 1 < 𝜖𝜖 or Ω(1)) requires 
nearly linear samples)

• Estimating 𝑝𝑝 − 𝑞𝑞 1 requires Θ 𝑛𝑛
log 𝑛𝑛

samples.

 Testing independence where we receive samples from the joint distribution over 
[n]x[m], the goal is to check if the marginal are independent

• Can be done in �𝑂𝑂(𝑛𝑛
2
3𝑚𝑚

1
3) assuming 𝑛𝑛 > 𝑚𝑚

 …
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