Lecture 12

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

Sequence sortednessSet Cover in Sublinear Time

Sublinear Time Algorithms

- The input is so huge that even reading all of it is not feasible
- Solve the problem accessing a *small* portion of the input
 - Need to specify the access model: what queries can be asked?
 - Random Access
 - E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
 - For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there
 exist an edge between u and v
 - Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)
 - Sample
 - Algorithm receives a random sample from a specific distribution
 - Parameters of interest
 - Number of queries asked
 - Actual runtime (could be sublinear, polynomial, or even exponential)

Example Goals

- Estimate the solution to a problem
 - E.g. what is the average degree in the graph
 - E.g. what is the size of the minimum set cover
- Property Testing: Testing whether the input has a property P, or is far from having the property
 - does the input need to change a lot to have the property
 - total variation distance between a distribution and the closest distribution having the property

Sortedness of a sequence

Problem Definition

- Input: a list of n numbers: a_1, \dots, a_n
- Output: distinguish if
 - The list is sorted
 - Far from being sorted: at least
 en elements need to be deleted so that the list becomes sorted.
 - In other words: the length of the longest increasing sequence is $< (1 \epsilon)n$
- Query model: given i, what is a_i
- Randomization
 - If sorted, output PASS
 - If far from being sorted, output FAIL w.p. at least $\geq 3/4$

Simple Idea 1

- For a number of iterations
 - sample *i* and if $a_i > a_{i+1}$, output FAIL
- Otherwise output PASS
- How many iterations?
- Bad example?
 - 1,2,...,n/2, 1,2,...,n/2
 - Needs $\Omega(n)$ queries
 - It is ½ -far from being sorted

Simple Idea 2

- For a number of iterations
 - sample i < j and if $a_i > a_j$, output FAIL
- Otherwise output PASS
- How many iterations?
- Bad example?
 - 2,1,4,3,6,5,...,n,n-1
 - Must sample two elements from one pair to detect
 - Needs $\Omega(\sqrt{n})$ queries
 - It is 1/2 -far from being sorted
- Goal: $O(\frac{\log n}{\epsilon})$

- For $O(\frac{1}{\epsilon})$ iterations
 - Sample random *a_i*
 - Binary search on a_i
 - If Binary Search finds any inconsistencies output FAIL
- Output PASS
- Runtime: $O\left(\frac{\log n}{\epsilon}\right)$
- Correctness:
 - If the list is sorted, it outputs pass
 - Need to show: if it passes the test there are $(1 \epsilon)n$ elements that are sorted

Analysis

- Good element: binary search is successful on it
- Algorithm guarantees that w.h.p the number of good elements is $\geq (1 \epsilon)n$
- Good elements form increasing sub-sequence
 - If i < j are both good, then need to show $a_i < a_j$
 - Let k be their common ancestor
 - Search for *i* went left, and search for *j* went right of *k*, so $a_i \leq a_k \leq a_j$
- Example:1,4,2,5,7,11,14,19
- BST is based on the indices
- Good elements: 1,4,5,7,11,14,19
- Bad elements: 2

Set Cover

Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m , each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- ${\mathcal C}$ covers ${\mathcal U}$
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy (ln *n*)-approximation algorithm
- Can't do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

"Is it possible to solve minimum set cover in **sub-linear time**?"

Sub-linear Time Set Cover

Data Access Model [NO'08,YYI'12]

• No assumption on the order

EltOf(S, i): ith element in S
SetOf(e, j): jth set containing e

- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in *mn*

Part one: upper bound

Theorem: There exists an algorithm that with high probability finds an $O(\rho\alpha)$ -approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

Same technique (very similar algorithm) as the streaming model

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

We only need to worry about low degree elements.

$$\ell = 2$$

Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

We only need to worry about low degree elements.

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.

Element Sampling: Sampling $\Theta(\frac{\rho k \log m}{\delta})$ elements uniformly at random and finding a ρ -approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

log *n* different guesses $\ell \in \{1, 2, 4, ..., n\}$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **D** For α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ -fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

sample ℓ sets, number of queries: $n\ell$ sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$ $= O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n\ell$

 $\log n \text{ different guesses} \\ \ell \in \{1, 2, 4, \dots, n\}$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **D** For α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ -fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

If all elements are covered, report Sol

sample ℓ sets, number of queries: $n\ell$ sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$ $= O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n\ell$

 $\log n \text{ different guesses} \\ \ell \in \{1, 2, 4, \dots, n\}$

Make a guess ℓ of the value of the optimal solution kPreprocessing: perform set sampling

- Sol ← sampled sets
- **D** For α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ -fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

If all elements are covered, report Sol

sample ℓ sets, number of queries: $n\ell$ sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$ $=O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n \ell$

Theorem: start querying with the smaller guesses of $\boldsymbol{\ell}$

log *n* different guesses $\ell \in \{1,2,4,...,n\}$

Make a guess ℓ of the value of the optimal solution k

- Preprocessing: perform set sampling
- Sol ← sampled sets
- **D** For α iterations
 - Use element sampling to cover $(1 \frac{1}{n^{1/\alpha}})$ -fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

If all elements are covered, report Sol

sample ℓ sets, number of queries: $n\ell$

sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries: $O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$ = $O(\rho m n^{1/\alpha} \log m \log n)$

number of queries: $\rho n\ell$

Theorem: There exists an algorithm that with high probability finds an $O(\rho\alpha)$ -approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

Part two: lower bound

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.

High Level Approach

- 1. Construct a median instance I^*
 - Minimum Set Cover Size is 3
- 2. Randomized Procedure on I^* to get a modified instance I
 - Minimum Set Cover Size is 2
 - I* and I only differ in a few positions
 - The differences are distributed almost uniformly at random
- 3. Any algorithm that can detect these two cases requires to query at least $\widetilde{\Omega}(mn)$ queries.

The Median Instance

Construction: is randomized. For every *S*, *e* the set *S* contains *e* with

probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Properties: by Chernoff, most of such instances have the following properties:

- 1. No 2 sets cover all the elements
- 2. For any two sets the number of uncovered elements is $O(\log m)$
- 3. The intersection is at least $\Omega(n)$
- 4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
- 5. For any pair of elements the number of sets containing only the first element is at least $\frac{m\sqrt{9\log m}}{4\sqrt{n}}$
- 6. For any three sets, the number of elements in the first two but not in the third one is at least $6\sqrt{n\log m}$

Take one such instance I^* with the above properties

The Median Instance

Elements

$$e \in S$$

$$e \notin S$$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

$$U = \{e_1, e_2, e_3, e_4\}$$

S₁ = { e_2, e_3 }

$$S_2 = \{e_2, e_4\}$$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\} \leftarrow e_1$$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2

$$U = \{e_1, e_2, e_3, e_4\}$$

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\} \leftarrow e_1$$

$$\rightarrow e_2$$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2

*S*₁ *S*₂

S₃ =

- Remove an element $e_2 \in S_2 \cap S_1$ from S_2
- Pick a random set S_3 that contains e_1 but not e_2

$$U = \{e_1, e_2, e_3, e_4\}$$

= $\{e_2, e_3\}$
= $\{e_2, e_4\}$
= $\{e_4, e_1\}$

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$$U = \{e_1, e_2, e_3, e_4\}$$
 Modified instance

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_2, e_4\}$$

$$S_3 = \{e_4, e_1\}$$
 Swap

$$S_1 = \{e_2, e_3\}$$

$$S_2 = \{e_1, e_4\}$$

$$S_3 = \{e_4, e_1\}$$

Only four positions changes in the query access model.

Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

- Median Instance
- Pick two Sets Uniformly at Random

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

 e_1

 e_2

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

 e_1

 e_2

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- Median Instance
- Pick two Sets
 Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

Overall Argument

Lemma: For any element *e* and any set *S*, the probability that pair participate in a swap is almost uniform, i.e., $O(\frac{\log m}{mn})$.

Using other properties of the median instances

Input:

- W.p. 1/c the input is the median instance I^*
- W.p. 1/c the input is a randomly generated modified instance *I*

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.

Next Lecture

More sublinear time algorithms

Sublinear Time Algorithms and Lower Bounds for Set Cover