This Lecture

- Sequence sortedness
- Set Cover in Sublinear Time
Sublinear Time Algorithms

• The input is so huge that even reading all of it is not feasible
• Solve the problem accessing a small portion of the input
 • Need to specify the access model: what queries can be asked?
 • Random Access
 • E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
 • For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there exist an edge between u and v
 • Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)
 • Sample
 • Algorithm receives a random sample from a specific distribution
• Parameters of interest
 • Number of queries asked
 • Actual runtime (could be sublinear, polynomial, or even exponential)
Example Goals

• **Estimate** the solution to a problem
 • E.g. what is the average degree in the graph
 • E.g. what is the size of the minimum set cover

• **Property Testing**: Testing whether the input has a property P, or is far from having the property
 • does the input need to change a lot to have the property
 • total variation distance between a distribution and the closest distribution having the property
Sortedness of a sequence
Problem Definition

• **Input:** a list of n numbers: \(a_1, \ldots, a_n\)

• **Output:** distinguish if
 • The list is sorted
 • Far from being sorted: at least \(\epsilon n\) elements need to be deleted so that the list becomes sorted.
 • In other words: the length of the longest increasing sequence is \(\langle (1 - \epsilon)n\)

• **Query model:** given i, what is \(a_i\)

• Randomization
 • If sorted, output PASS
 • If far from being sorted, output FAIL w.p. at least \(\geq 3/4\)
Simple Idea 1

• For a number of iterations
 • sample i and if $a_i > a_{i+1}$, output FAIL
• Otherwise output PASS

• How many iterations?
• Bad example?
 • $1,2,...,n/2, 1,2,...,n/2$
 • Needs $\Omega(n)$ queries
 • It is $\frac{1}{2}$-far from being sorted
Simple Idea 2

• For a number of iterations
 • sample $i < j$ and if $a_i > a_j$, output FAIL

• Otherwise output PASS

• How many iterations?

• Bad example?
 • $2,1,4,3,6,5,...,n,n-1$
 • Must sample two elements from one pair to detect
 • Needs $\Omega(\sqrt{n})$ queries
 • It is $\frac{1}{2}$-far from being sorted

• Goal: $O\left(\frac{\log n}{\epsilon}\right)$
Algorithm

• For $O\left(\frac{1}{\epsilon}\right)$ iterations
 • Sample random a_i
 • Binary search on a_i
 • If Binary Search finds any inconsistencies output FAIL
• Output PASS

• Runtime: $O\left(\frac{\log n}{\epsilon}\right)$

• Correctness:
 • If the list is sorted, it outputs pass
 • Need to show: if it passes the test there are $(1 - \epsilon)n$ elements that are sorted
Analysis

• **Good element**: binary search is successful on it
• Algorithm guarantees that w.h.p the number of good elements is $\geq (1 - \epsilon)n$
• Good elements form increasing sub-sequence
 • If $i < j$ are both good, then need to show $a_i < a_j$
 • Let k be their common ancestor
 • Search for i went left, and search for j went right of k, so $a_i \leq a_k \leq a_j$
• Example: $1,4,2,5,7,11,14,19$
• BST is based on the indices
• Good elements: $1,4,5,7,11,14,19$
• Bad elements: 2
Set Cover
Set Cover Problem

Input: Collection \mathcal{F} of sets S_1, \ldots, S_m, each a subset of $\mathcal{U} = \{1, \ldots, n\}$

Output: a subset \mathcal{C} of \mathcal{F} such that:

- \mathcal{C} covers \mathcal{U}
- $|\mathcal{C}|$ is minimized

Complexity:

- NP-hard
- Greedy $(\ln n)$-approximation algorithm
- Can’t do better unless $P=NP$ [LY91][RS97][Fei98][AMS06][DS14]

“Is it possible to solve minimum set cover in sub-linear time?”
Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]
- No assumption on the order
- Incidence list in (sub-linear) algorithms for graphs
- Sublinear in mn

$n =$ number of elements $m =$ number of sets $k =$ size of the optimal solution
Theorem: There exists an algorithm that with high probability finds an $O(\rho \alpha)$-approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.

Same technique (very similar algorithm) as the streaming model.
Component I: set sampling

Set Sampling: After picking \(\ell \) sets uniformly at random, all elements with degree at least \(\frac{m \log n}{\ell} \) are covered w.h.p.

- We only need to worry about low degree elements.

\[\ell = 2 \]

Degrees:

1 2 3 2 1 1 3 2 1 3 2
Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.

- We only need to worry about low degree elements.
Component II: element sampling

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.
Component II: element sampling

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.
Component II: element sampling

Element Sampling: Sample a few elements and solve the set cover for the sampled elements.
Component II: element sampling

Element Sampling: Sampling $\Theta\left(\frac{\rho k \log m}{\delta}\right)$ elements uniformly at random and finding a ρ-approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.
Algorithm

Make a guess \(\ell \) of the value of the optimal solution \(k \)

\(\log n \) different guesses
\(\ell \in \{1, 2, 4, \ldots, n\} \)
Algorithm

Make a guess ℓ of the value of the optimal solution k
- Preprocessing: perform set sampling
- $\text{Sol} \leftarrow$ sampled sets

$log n$ different guesses $\ell \in \{1, 2, 4, \ldots, n\}$

Sample ℓ sets, number of queries: $n\ell$

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at least $\frac{m \log n}{\ell}$ are covered w.h.p.
Algorithm

Make a guess ℓ of the value of the optimal solution k

- **Preprocessing:** perform set sampling
- **Sol → sampled sets**
- For α iterations
 - Use element sampling to cover $(1 - \frac{1}{n^{1/\alpha}})$ fraction of the uncovered elements.
 - Add the sets to Sol

Element Sampling: Sampling $\Theta\left(\frac{\rho k \log m}{\delta}\right)$ elements uniformly at random and finding a ρ-approximate cover for the sampled elements, will cover $(1 - \delta)$ fraction of the original elements w.h.p.

Log n different guesses $\ell \in \{1, 2, 4, ..., n\}$

Sample ℓ sets, number of queries: $n\ell$

Sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries:

$$O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$$

$$= O\left(\rho mn^{1/\alpha} \log m \log n\right)$$

$\delta = 1/n^{1/\alpha}$
Algorithm

Make a **guess** ℓ of the value of the optimal solution k

- **Preprocessing**: perform **set sampling**
- Sol \leftarrow sampled sets
- For α iterations
 - Use **element sampling** to cover $(1 - \frac{1}{n^{1/\alpha}})$-fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.

$log n$ different guesses
$\ell \in \{1, 2, 4, \ldots, n\}$

Sample ℓ sets,
number of queries: $n\ell$

Sample $(\rho \ell n^{1/\alpha} \log m)$ elements,
number of queries:
$O\left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell}\right)$
$= O(\rho m n^{1/\alpha} \log m \log n)$

Number of queries: $\rho n\ell$
Algorithm

Make a **guess** \(\ell \) of the value of the optimal solution \(k \)

- **Preprocessing**: perform set sampling
- **Sol** ← sampled sets
- For \(\alpha \) iterations
 - Use **element sampling** to cover \((1 - \frac{1}{n^{1/\alpha}}) \)-fraction of the uncovered elements.
 - Add the sets to **Sol**
 - Update uncovered elements.
- If all elements are covered, report **Sol**

- \(\log n \) different guesses
 - \(\ell \in \{1, 2, 4, \ldots, n\} \)
- sample \(\ell \) sets,
 - number of queries: \(n\ell \)
- sample \((\rho \ell n^{1/\alpha} \log m) \) elements,
 - number of queries:
 - \(O \left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell} \right) \)
 - \(= O(\rho mn^{1/\alpha} \log m \log n) \)
- number of queries: \(\rho n\ell \)
Algorithm

Make a guess ℓ of the value of the optimal solution k

- **Preprocessing**: perform set sampling
- **Sol** ← sampled sets
- For α iterations
 - Use element sampling to cover $\left(1 - \frac{1}{n^{1/\alpha}}\right)$-fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.
- If all elements are covered, report Sol

Theorem: start querying with the smaller guesses of ℓ

- Log n different guesses $\ell \in \{1, 2, 4, \ldots, n\}$
- Sample ℓ sets, number of queries: $n\ell$
- Sample $(\rho \ell n^{1/\alpha} \log m)$ elements, number of queries:
 $$O \left(\rho \ell n^{1/\alpha} \log m \frac{m \log n}{\ell} \right)$$
 $$= O(\rho m n^{1/\alpha} \log m \log n)$$
- Number of queries: $\rho n \ell$
Algorithm

Make a guess ℓ of the value of the optimal solution k
- Preprocessing: perform set sampling
- Sol ← sampled sets
- For α iterations
 - Use element sampling to cover $(1 - \frac{1}{n^{1/\alpha}})$-fraction of the uncovered elements.
 - Add the sets to Sol
 - Update uncovered elements.
- If all elements are covered, report Sol

Theorem: There exists an algorithm that with high probability finds an $O(\rho \alpha)$-approximate cover which uses $\tilde{O}(mn^{1/\alpha} + nk)$ number of queries.
Part two: lower bound

Theorem: Any randomized algorithm that with probability at least 2/3 distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.
High Level Approach

1. Construct a **median instance** I^*
 - Minimum Set Cover Size is 3
2. **Randomized Procedure** on I^* to get a **modified instance** I
 - Minimum Set Cover Size is 2
 - I^* and I only differ in a few positions
 - The differences are distributed almost uniformly at random
3. Any algorithm that can detect these two cases requires to query at least $\tilde{\Omega}(mn)$ queries.
The Median Instance

Construction: is randomized. For every S,e the set S contains e with probability $1 - p_0$ where $p_0 = \sqrt{\frac{9 \log m}{n}}$

Properties: by Chernoff, most of such instances have the following properties:

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is $O(\log m)$
3. The intersection is at least $\Omega(n)$
4. For each element, the number of sets not covering it is at most $6m \sqrt{\frac{\log m}{n}}$
5. For any pair of elements the number of sets containing only the first element is at least $\frac{m \sqrt{9 \log m}}{4 \sqrt{n}}$
6. For any three sets, the number of elements in the first two but not in the third one is at least $6 \sqrt{n \log m}$

Take one such instance I^* with the above properties
The Median Instance

Sets

Elements

\[e \in S \]
\[e \not\in S \]
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

$U = \{e_1, e_2, e_3, e_4\}$

$S_1 = \{e_2, e_3\}$

$S_2 = \{e_2, e_4\}$
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2

$U = \{e_1, e_2, e_3, e_4\}$

$S_1 = \{e_2, e_3\}$

$S_2 = \{e_2, e_4\} \leftarrow e_1$
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2

$U = \{e_1, e_2, e_3, e_4\}$

$S_1 = \{e_2, e_3\}$

$S_2 = \{e_2, e_4\}$
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2

$U = \{e_1, e_2, e_3, e_4\}$

$S_1 = \{e_2, e_3\}$
$S_2 = \{e_2, e_4\}$
$S_3 = \{e_4, e_1\}$
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2.
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2.
 - Pick a random set S_3 that contains e_1 but not e_2.
 - S_2 and S_3 swap e_1 and e_2.

$U = \{e_1, e_2, e_3, e_4\}$

Modified instance

$S_1 = \{e_2, e_3\}$
$S_2 = \{e_2, e_4\}$
$S_3 = \{e_4, e_1\}$

$S_1 = \{e_2, e_3\}$
$S_2 = \{e_1, e_4\}$
$S_3 = \{e_4, e_2\}$

Only four positions changes in the query access model.
Generating a Modified Instance

Pick two random sets S_1 and S_2 and turn them into a set cover. How?

- For each uncovered element $e_1 \in U \setminus (S_1 \cup S_2)$,
 - Add e_1 to S_2
 - Remove an element $e_2 \in S_2 \cap S_1$ from S_2
 - Pick a random set S_3 that contains e_1 but not e_2
 - S_2 and S_3 swap e_1 and e_2

$U = \{e_1, e_2, e_3, e_4\}$

Modified instance

$S_1 = \{e_2, e_3\}$
$S_2 = \{e_1, e_4\}$
$S_3 = \{e_4, e_2\}$

Only four positions changes in the query access model.
The Randomized Procedure

- Median Instance
- Pick two Sets
 Uniformly at Random
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- **Find the elements that are not covered**
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both

\[S_1 \]
\[S_2 \]
The Randomized Procedure

- Median Instance
- Pick two Sets
 - Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
The Randomized Procedure

• Median Instance
• Pick two Sets Uniformly at Random
• Find the elements that are not covered
• Also find the elements that are covered by both
• Assign one element in the intersection to each uncovered element
• In iteration:
 • Find a candidate set

\[S_1 \]
\[S_2 \]
\[e_1 \]
\[e_2 \]
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- **In iteration:**
 - Find a candidate set
 - **swap**
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - **swap**
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element

In iteration:
- Find a candidate set
- swap
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

\[S_1 \]
\[S_2 \]
\[e_1 \]
\[e_2 \]
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- **In iteration:**
 - Find a candidate set
 - **swap**
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

\[S_1, S_2 \]
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap
The Randomized Procedure

- Median Instance
- Pick two Sets Uniformly at Random
- Find the elements that are not covered
- Also find the elements that are covered by both
- Assign one element in the intersection to each uncovered element
- In iteration:
 - Find a candidate set
 - swap

- By Property 2 of median instance:
 - the total number of uncovered elements is $O(\log m)$
 - Thus in total only $O(\log m)$ positions have changed.
Overall Argument

Lemma: For any element e and any set S, the probability that pair participate in a swap is almost uniform, i.e., $O\left(\frac{\log m}{mn}\right)$.

- Using other properties of the median instances

Input:
- W.p. $1/c$ the input is the median instance I^*
- W.p. $1/c$ the input is a randomly generated modified instance I

Theorem: Any randomized algorithm that with probability at least $2/3$ distinguishes whether the minimum Set Cover size is 2 or at least 3 requires $\tilde{\Omega}(mn)$ number of queries.
Next Lecture

More sublinear time algorithms
 Sublinear Time Algorithms and Lower Bounds for Set Cover