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Sublinear Time Algorithms

• The input is so huge that even reading all of it is not feasible
• Solve the problem accessing a small portion of the input

• Need to specify the access model: what queries can be asked?
• Random Access

• E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
• For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there 

exist an edge between u and v
• Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)

• Sample
• Algorithm receives a random sample from a specific distribution

• Parameters of interest
• Number of queries asked
• Actual runtime (could be sublinear, polynomial, or even exponential)



Example Goals

• Estimate the solution to a problem
• E.g. what is the average degree in the graph
• E.g. what is the size of the minimum set cover

• Property Testing: Testing whether the input has a property P, or is far 
from having the property

• does the input need to change a lot to have the property
• total variation distance between a distribution and the closest distribution 

having the property



Sortedness of a sequence



Problem Definition

• Input: a list of n numbers: 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛
• Output: distinguish if

• The list is sorted
• Far from being sorted: at least 𝜖𝜖𝜖𝜖 elements need to be deleted so that the list 

becomes sorted. 
• In other words: the length of the longest increasing sequence is < 1 − 𝜖𝜖 𝜖𝜖

• Query model: given i, what is 𝑎𝑎𝑖𝑖
• Randomization

• If sorted, output PASS
• If far from being sorted, output FAIL w.p. at least ≥ 3/4



Simple Idea 1

• For a number of iterations
• sample 𝑖𝑖 and if 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑖𝑖+1, output FAIL

• Otherwise output PASS

• How many iterations?
• Bad example?

• 1,2,…,n/2, 1,2,…,n/2
• Needs Ω(𝜖𝜖) queries
• It is ½ -far from being sorted



Simple Idea 2

• For a number of iterations
• sample 𝑖𝑖 < 𝑗𝑗 and if 𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑗𝑗, output FAIL

• Otherwise output PASS
• How many iterations?
• Bad example?

• 2,1,4,3,6,5,…,n,n-1
• Must sample two elements from one pair to detect
• Needs Ω( 𝜖𝜖) queries
• It is ½ -far from being sorted

• Goal: 𝑂𝑂(log 𝑛𝑛
𝜖𝜖

)



Algorithm

• For 𝑂𝑂(1
𝜖𝜖
) iterations

• Sample random 𝑎𝑎𝑖𝑖
• Binary search on 𝑎𝑎𝑖𝑖
• If Binary Search finds any inconsistencies output FAIL

• Output PASS

• Runtime: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

• Correctness:
• If the list is sorted, it outputs pass
• Need to show: if it passes the test there are 1 − 𝜖𝜖 𝜖𝜖 elements that are 

sorted



Analysis

• Good element: binary search is successful on it
• Algorithm guarantees that w.h.p the number of good elements is ≥ 1 − 𝜖𝜖 𝜖𝜖
• Good elements form increasing sub-sequence

• If 𝑖𝑖 < 𝑗𝑗 are both good, then need to show 𝑎𝑎𝑖𝑖 < 𝑎𝑎𝑗𝑗
• Let 𝑘𝑘 be their common ancestor 
• Search for 𝑖𝑖 went left, and search for 𝑗𝑗 went right of 𝑘𝑘, so 𝑎𝑎𝑖𝑖 ≤ 𝑎𝑎𝑘𝑘 ≤ 𝑎𝑎𝑗𝑗

• Example:1,4,2,5,7,11,14,19
• BST is based on the indices
• Good elements: 1,4,5,7,11,14,19
• Bad elements: 2
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Set Cover



Set Cover Problem
Input: Collection ℱ of sets 𝑆𝑆1, … , 𝑆𝑆𝑚𝑚, each a subset of 𝒰𝒰 =
{1, … ,𝜖𝜖}
Output: a subset 𝒞𝒞 of ℱ such that:

• 𝒞𝒞 covers 𝒰𝒰
• |𝒞𝒞| is minimized

Complexity:
• NP-hard
• Greedy (ln𝜖𝜖)-approximation algorithm
• Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]
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“Is it possible to solve minimum set cover in sub-linear time?”



Sub-linear Time Set Cover

Data Access Model [NO’08,YYI’12]

• No assumption on the order 
• Incidence list in (sub-linear) algorithms for graphs
• Sublinear in 𝒎𝒎𝒎𝒎

EltOf(𝑺𝑺, 𝒊𝒊): 𝑖𝑖th element in 𝑺𝑺
SetOf(𝒆𝒆, 𝒋𝒋): 𝑗𝑗th set containing 𝒆𝒆

𝒎𝒎 = number of elements     𝒎𝒎 = number of sets       𝒌𝒌 = size of the optimal solution



Part one: upper bound

Theorem: There exists an algorithm that with high probability 
finds an O(𝜌𝜌𝜌𝜌)-approximate cover which uses �𝑂𝑂(𝒎𝒎𝒎𝒎𝟏𝟏/𝜶𝜶 + 𝒎𝒎𝒌𝒌)
number of queries.

Same technique (very similar algorithm) as the streaming model



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

ℓ = 2

Degrees: 2        3         2        1          1        3         2         1         3         2

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10



Component I: set sampling

Set Sampling: After picking ℓ sets uniformly at random, all 
elements with degree at least m log 𝑛𝑛

ℓ
are covered w.h.p.

• We only need to worry about low degree elements.

10,6 1,2,5,4 8,2,9,10

4 5 8 10

6,9,7

Degrees: 2        3         2        1          1        3         2         1         3 2



Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set 
cover for the sampled elements.



Component II: element sampling

1,3 10 3,7 1 107

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set 
cover for the sampled elements.



Component II: element sampling

1,6,3,9 10,6 3,2,7 1,2,5,4 6,9,7 8,2,9,10

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Element Sampling: Sample a few elements and solve the set 
cover for the sampled elements.



Component II: element sampling

Element Sampling: Sampling Θ(𝜌𝜌𝑘𝑘 log 𝑚𝑚
𝛿𝛿

) elements uniformly at 
random and finding a 𝜌𝜌-approximate cover for the sampled 
elements, will cover (1 − 𝛿𝛿) fraction of the original elements 
w.h.p.

10,6 1,2,5,4 6,9,7

4 5



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

Set Sampling: After picking ℓ sets uniformly at random, all elements with degree at 
least m log 𝑛𝑛

ℓ
are covered w.h.p.



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For  𝜌𝜌 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛1/𝛼𝛼)-

fraction of the uncovered elements.
• Add the sets to Sol

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

sample (𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚)
elements, 
number of queries: 
𝑂𝑂 𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂(𝜌𝜌𝑚𝑚𝜖𝜖1/𝛼𝛼 log𝑚𝑚 log𝜖𝜖)

Element Sampling: Sampling Θ(𝜌𝜌𝑘𝑘 log 𝑚𝑚
𝛿𝛿

) elements uniformly at random and finding a 𝜌𝜌-
approximate cover for the sampled elements, will cover (1 − 𝛿𝛿) fraction of the original 
elements w.h.p.

𝜹𝜹 = 𝟏𝟏/𝒎𝒎𝟏𝟏/𝜶𝜶



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For  𝜌𝜌 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛1/𝛼𝛼)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

number of queries: 𝜌𝜌𝜖𝜖ℓ

sample (𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚)
elements, 
number of queries: 
𝑂𝑂 𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂(𝜌𝜌𝑚𝑚𝜖𝜖1/𝛼𝛼 log𝑚𝑚 log𝜖𝜖)



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For  𝜌𝜌 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛1/𝛼𝛼)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

 If all elements are covered, report Sol

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

number of queries: 𝜌𝜌𝜖𝜖ℓ

sample (𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚)
elements, 
number of queries: 
𝑂𝑂 𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂(𝜌𝜌𝑚𝑚𝜖𝜖1/𝛼𝛼 log𝑚𝑚 log𝜖𝜖)



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For  𝜌𝜌 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛1/𝛼𝛼)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

 If all elements are covered, report Sol

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

number of queries: 𝜌𝜌𝜖𝜖ℓ

sample (𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚)
elements, 
number of queries: 
𝑂𝑂 𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂(𝜌𝜌𝑚𝑚𝜖𝜖1/𝛼𝛼 log𝑚𝑚 log𝜖𝜖)

Theorem: start querying with the smaller guesses of ℓ



Algorithm
Make a guess ℓ of the value of the optimal solution 𝑘𝑘
 Preprocessing: perform set sampling
 Sol ← sampled sets
 For  𝜌𝜌 iterations

• Use element sampling to cover (1 − 1
𝑛𝑛1/𝛼𝛼)-

fraction of the uncovered elements.
• Add the sets to Sol
• Update uncovered elements.

 If all elements are covered, report Sol

log𝜖𝜖 different guesses
ℓ ∈ {1,2,4, … , 𝜖𝜖}

sample ℓ sets, 
number of queries: 𝜖𝜖ℓ

number of queries: 𝜌𝜌𝜖𝜖ℓ

sample (𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚)
elements, 
number of queries: 
𝑂𝑂 𝜌𝜌ℓ𝜖𝜖1/𝛼𝛼 log𝑚𝑚𝑚𝑚 log 𝑛𝑛

ℓ
=𝑂𝑂(𝜌𝜌𝑚𝑚𝜖𝜖1/𝛼𝛼 log𝑚𝑚 log𝜖𝜖)

Theorem: There exists an algorithm that with high probability 
finds an O(𝜌𝜌𝜌𝜌)-approximate cover which uses �𝑂𝑂(𝒎𝒎𝒎𝒎𝟏𝟏/𝜶𝜶 + 𝒎𝒎𝒌𝒌)
number of queries.



Part two: lower bound

Theorem: Any randomized algorithm that with probability at least 
2/3 distinguishes whether the minimum Set Cover size is 2 or at 
least 3 requires �𝛀𝛀(𝒎𝒎𝒎𝒎) number of queries.



High Level Approach

1. Construct a median instance 𝐼𝐼∗
• Minimum Set Cover Size is 3

2. Randomized Procedure on 𝐼𝐼∗ to get a modified instance 𝐼𝐼
• Minimum Set Cover Size is 2
• 𝐼𝐼∗ and 𝐼𝐼 only differ in a few positions
• The differences are distributed almost uniformly at 

random

3. Any algorithm that can detect  these two cases requires to 
query at least �Ω(𝑚𝑚𝜖𝜖) queries.



The Median Instance
Construction: is randomized. For every 𝑆𝑆, 𝑒𝑒 the set 𝑆𝑆 contains 𝑒𝑒 with 

probability 1 − 𝑝𝑝0 where 𝑝𝑝0 = 9 log𝑚𝑚
𝑛𝑛

Properties: by Chernoff, most of such instances have the following properties:

Take one such instance 𝐼𝐼∗ with the above properties

1. No 2 sets cover all the elements
2. For any two sets the number of uncovered elements is 𝑂𝑂 log𝑚𝑚
3. The intersection is at least Ω(𝜖𝜖)

4. For each element, the number of sets not covering it is at most 6𝑚𝑚 log𝑚𝑚
𝑛𝑛

5. For any pair of elements the number of sets containing only the first element is 

at least 𝑚𝑚 9 log𝑚𝑚
4√𝑛𝑛

6. For any three sets, the number of elements in the first two but not in the third 
one is at least 6 𝜖𝜖 log𝑚𝑚



The Median Instance
Se

ts
Elements

𝑒𝑒 ∈ 𝑆𝑆

𝑒𝑒 ∉ 𝑆𝑆



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?
• For each uncovered element 𝑒𝑒1 ∈ 𝑈𝑈 ∖ 𝑆𝑆1 ∪ 𝑆𝑆2 , 

• Add 𝑒𝑒1 to 𝑆𝑆2

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒 𝒆𝒆𝟏𝟏



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?
• For each uncovered element 𝑒𝑒1 ∈ 𝑈𝑈 ∖ 𝑆𝑆1 ∪ 𝑆𝑆2 , 

• Add 𝑒𝑒1 to 𝑆𝑆2
• Remove an  element 𝑒𝑒2 ∈ 𝑆𝑆2 ∩ 𝑆𝑆1 from 𝑆𝑆2

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒 𝒆𝒆𝟏𝟏

𝒆𝒆𝟐𝟐



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?
• For each uncovered element 𝑒𝑒1 ∈ 𝑈𝑈 ∖ 𝑆𝑆1 ∪ 𝑆𝑆2 , 

• Add 𝑒𝑒1 to 𝑆𝑆2
• Remove an  element 𝑒𝑒2 ∈ 𝑆𝑆2 ∩ 𝑆𝑆1 from 𝑆𝑆2
• Pick a random set 𝑆𝑆3 that contains 𝑒𝑒1 but not 𝑒𝑒2

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒
𝑺𝑺𝟑𝟑 = 𝒆𝒆𝟒𝟒,𝒆𝒆𝟏𝟏



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?
• For each uncovered element 𝑒𝑒1 ∈ 𝑈𝑈 ∖ 𝑆𝑆1 ∪ 𝑆𝑆2 , 

• Add 𝑒𝑒1 to 𝑆𝑆2
• Remove an  element 𝑒𝑒2 ∈ 𝑆𝑆2 ∩ 𝑆𝑆1 from 𝑆𝑆2
• Pick a random set 𝑆𝑆3 that contains 𝑒𝑒1 but not 𝑒𝑒2
• 𝑆𝑆2 and 𝑆𝑆3 swap 𝑒𝑒1 and 𝑒𝑒2

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟏𝟏,𝒆𝒆𝟒𝟒
𝑺𝑺𝟑𝟑 = 𝒆𝒆𝟒𝟒,𝒆𝒆𝟐𝟐

𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒
𝑺𝑺𝟑𝟑 = 𝒆𝒆𝟒𝟒,𝒆𝒆𝟏𝟏

Only four positions changes in the query access model.

Modified instance

Swap



Generating a Modified Instance

Pick two random sets 𝑆𝑆1 and 𝑆𝑆2 and turn them into a set cover. 
How?
• For each uncovered element 𝑒𝑒1 ∈ 𝑈𝑈 ∖ 𝑆𝑆1 ∪ 𝑆𝑆2 , 

• Add 𝑒𝑒1 to 𝑆𝑆2
• Remove an  element 𝑒𝑒2 ∈ 𝑆𝑆2 ∩ 𝑆𝑆1 from 𝑆𝑆2
• Pick a random set 𝑆𝑆3 that contains 𝑒𝑒1 but not 𝑒𝑒2
• 𝑆𝑆2 and 𝑆𝑆3 swap 𝑒𝑒1 and 𝑒𝑒2

𝑼𝑼 = 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑, 𝒆𝒆𝟒𝟒
𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟏𝟏,𝒆𝒆𝟒𝟒
𝑺𝑺𝟑𝟑 = 𝒆𝒆𝟒𝟒,𝒆𝒆𝟐𝟐

𝑺𝑺𝟏𝟏 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟑𝟑
𝑺𝑺𝟐𝟐 = 𝒆𝒆𝟐𝟐,𝒆𝒆𝟒𝟒
𝑺𝑺𝟑𝟑 = 𝒆𝒆𝟒𝟒,𝒆𝒆𝟏𝟏

Only four positions changes in the query access model.

Modified instance

Swap
Two in ElemOf oracles

+
Two in SetOf oracles



• Median Instance
• Pick two Sets 

Uniformly at Random

𝑆𝑆1

𝑆𝑆2

The Randomized Procedure



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements 

that are not covered

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the 

elements that are 
covered by both

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

𝑒𝑒1 𝑒𝑒2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2



• Median Instance
• Pick two Sets 

Uniformly at Random
• Find the elements that 

are not covered
• Also find the elements 

that are covered by 
both

• Assign one element in 
the intersection to 
each uncovered 
element

• In iteration:
• Find a candidate 

set
• swap

The Randomized Procedure

𝑆𝑆1

𝑆𝑆2

• By Property 2 of median instance: 
 the total number of uncovered elements is 

𝑂𝑂 log𝑚𝑚
• Thus in total only 𝑂𝑂 log𝑚𝑚 positions have 

changed. 



Overall Argument

Lemma: For any element 𝑒𝑒 and any set 𝑆𝑆, the probability that pair 
participate in a swap is almost uniform, i.e., 𝑂𝑂(log 𝑚𝑚

𝑚𝑚𝑛𝑛
).

• Using other properties of the median instances

Input:
• W.p. 1/c  the input is the median instance 𝐼𝐼∗
• W.p. 1/c  the input is a randomly generated modified instance 𝐼𝐼

Theorem: Any randomized algorithm that with probability at least 
2/3 distinguishes whether the minimum Set Cover size is 2 or at 
least 3 requires �𝛀𝛀(𝒎𝒎𝒎𝒎) number of queries.



Next Lecture

More sublinear time algorithms
Sublinear Time Algorithms and Lower Bounds for Set Cover
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