Lecture 11

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

- ☐ Sublinear Time Model of Computation
- ☐ Distinct Elements
- ☐ Graph Connectivity
- ☐ Approximating the average degree of a graph

Sublinear Time Algorithms

- The input is so huge that even reading all of it is not feasible
- Solve the problem accessing a *small* portion of the input
 - Need to specify the access model: what queries can be asked?
 - Random Access
 - E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
 - For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there exist an edge between u and v
 - Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)
 - Sample
 - Algorithm receives a random sample from a specific distribution
 - Parameters of interest
 - Number of queries asked
 - Actual runtime (could be sublinear, polynomial, or even exponential)

Example Goals

- Estimate the solution to a problem
 - E.g. what is the average degree in the graph
 - E.g. what is the size of the minimum set cover
- Property Testing: Testing whether the input has a property P, or is far from having the property
 - does the input need to change a lot to have the property
 - total variation distance between a distribution and the closest distribution having the property

Distinct Elements

Property Testing Algorithm for Distinct Elements

Input: n elements

Output: distinguish

- Yes: all elements are distinct
- No: number of distinct elements $\leq (1 \epsilon)n$
- Otherwise report anything

Algorithm?

- Sample a few elements
- If there are any duplicates say FAIL, otherwise say PASS

Analysis

- Always outputs correctly in the Yes case
- How many samples to succeed in the No case? $O(\sqrt{n}/\epsilon)$

Claim: $O(\sqrt{n}/\epsilon)$ suffices

Intuitively

- □ 1,1,2,2,3,3,4,4,...,n/2,n/2
 - How many samples are needed to detect it is a no case?
 - By birthday paradox $O(\sqrt{n})$
 - Birthday paradox: if we take $c\sqrt{n}$ uniformly random samples from [n], with a constant probability, we draw one number twice
- \square 1,1,2,2,3,3, ϵ n, ϵ n, ϵ n+1, ϵ n+2,...,n- ϵ n
 - For the same reason, $O(\sqrt{n}/\epsilon)$
- \square 1,1,1,1,..,1,2,3,..., n- ϵ n
 - Change it to the previous case: $1_1, 1_1, 1_2, 1_2, \dots, 1_{\frac{\epsilon n}{2}}, 1_{\frac{\epsilon n}{2}}, 1_{\frac{\epsilon n}{2}}, 2, 3, 4, \dots, n \epsilon n$
- \square 1,1,1,2,2,3,3,3,3,4,5,6,6,7,7,7,... -> 1,1,2,2,3,3,3,3,4,5,6,6,7,7,...
- \square Assume: there are $\epsilon n/4$ pairs of duplicates

Formal Proof

- S_1 : first sample $O(\sqrt{n})$ elements
- S_2 : next sample $O(\sqrt{n}/\epsilon)$ elements

Overall structure of the proof:

- Pair repeated elements (ignoring one in each odd number of repetitions).
- Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of a duplicate pair
- Claim 2: S_2 will hit second element of one of those pairs with a constant probability

Proof of Claim 1

- S_1 : first $O(\sqrt{n})$ samples,
- Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of duplicate pairs
 - Number of pairs: $\epsilon n/4$
 - Probability of hitting the first element in the pair in a random draw of S_1 is $O(\frac{\epsilon}{4})$
 - Expected number of such hits is $(\frac{\sqrt{n\epsilon}}{4})$
 - Concentration: Since the draws are independent, using Chernoff, the number of such hits is at least $(\frac{\sqrt{n}\epsilon}{8})$ w.h.p.
 - What about repetitions?
 - For any two draws, it happens with probability at most $O(\frac{1}{n})$
 - The expected number of total repetitions is at most $\left(\frac{O(\sqrt{n})^2}{n}\right) = O(1)$
 - By Markov, w.p. at least 1 1/10 the total number of repetitions does not increase O(1)
 - W.p. 1-1/5 , S_1 hits $\Omega(\sqrt{n}\epsilon)$ pairs

Proof of Claim 2

- S_1 : first $O(\sqrt{n})$ samples,
- S_2 : next $O(\sqrt{n}/\epsilon)$ samples,
- Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of duplicate pairs
- Claim 2: S_2 will hit second element of one of those pairs with a constant probability
 - The probability of not hitting the second element in the pairs hit by S_1 is at most

$$\left(1 - \frac{\epsilon \sqrt{n}}{cn}\right)^{c_2 \sqrt{n}/\epsilon} \le \left(1 - \frac{\epsilon}{c\sqrt{n}}\right)^{\frac{c_2 \sqrt{n}}{\epsilon}} \le e^{-c_2/c}$$

- Set c_2 large enough such that the above prob. is at most 1/5
- The overall success probability is 1-1/5-1/5=3/5
- As always can boost the success probability by repeating the whole algorithm multiple times.

Graph connectivity

Problem

- Input: a graph G: n vertices, max degree d,
- Output: decide if
 - G is connected
 - ϵ far from being connected, i.e., need to add at least ϵdn edges to make it connected
- Query Model: adjacency list query model
 - Degree query: given v, what is deg(v)
 - Neighbor query: given v, i, what is ith neighbor of v
- Randomized:
 - Output PASS if it is connected
 - Output FAIL w.p. $\geq 3/4$ if it is far from being connected

Intuitively

- ☐ If the graph is far from being connected
 - There are many connected components
 - Many of them should have small size
 - Many nodes in small components

- What can we do?
 - Randomly sample vertices and check the sizes of their connected components

Algorithm

- For $O(\frac{1}{\epsilon d})$ iterations
 - Pick a random node s and run BFS from it until either
 - $\geq (\frac{2}{\epsilon d})$ distinct nodes are encountered
 - Or find that the size of the connected component is less than $\frac{2}{\epsilon d}$
 - Output FAIL
- Output PASS
- ightharpoonupRuntime: $O\left(\frac{1}{\epsilon d} \cdot \frac{2}{\epsilon d} \cdot d\right) = O\left(\frac{1}{\epsilon^2 d}\right)$
- > Correctness:
 - Clearly if it is connected, it passes the test
 - What happens if it is ϵ —far from being connected?

Analysis

- At least ϵdn edges should be added to make the graph connected
- There are at least ϵdn connected components in the graph
- The number of connected components of size larger than $\frac{2}{\epsilon d}$ is at most $\epsilon dn/2$
 - Otherwise the total number of vertices would be larger than $\frac{2}{\epsilon d} \cdot \frac{\epsilon dn}{2} = n$
- Each such component has at least one vertex in it
- The total number of vertices in components of size at most $\frac{2}{\epsilon d}$, is at least $\frac{\epsilon dn}{2}$

•
$$\Pr[PASS] \le \left(1 - \frac{\epsilon dn}{2n}\right)^{\frac{c}{\epsilon d}} \le e^{-\frac{c}{2}} \le 1/4$$
 for large enough c

 \triangleright Algorithm succeeds w.p. $\ge 3/4$

Average degree computation

Average degree problem

- Input: a graph
- Output: the average degree over all vertices \overline{d}
- Query Model:
 - given v, what is deg(v)
 - given v, i, what is ith neighbor of v
- Naïve algorithm?
 - Sample a few vertices, and report their average degree
 - Problem?
 - Degrees are in the range [n], and can have high variance. E.g. the star graph
 - This requires $\Omega(n)$ samples
 - Solution?
 - In general No, e.g. detecting an empty graph (avg deg =0) vs a graph with a single edge (avg deg=1/n) requires $\Omega(n)$ samples
 - Group vertices of similar degrees into buckets (works assuming graph has $\Omega(n)$ edges).

Lower bound of $\Omega(\sqrt{n})$

- G: a cycle of length n
 - Avg deg is 2

• Avg deg is
$$\frac{2(n-c\sqrt{n})+(c\sqrt{n})^2-c\sqrt{n}}{n} \ge 2+c-\frac{3c}{\sqrt{n}} \ge 1+c$$

• Need $\Omega(\sqrt{n})$ queries to find a clique node

Algorithm

- $\beta = \epsilon/c$, bucket the vertices based on powers of $(1 + \beta)$
 - $B_i = \{v: (1+\beta)^{i-1} \le \deg(v) \le (1+\beta)^i\}$
 - Number of buckets is $t = \frac{\log n}{\beta} \le O\left(\frac{\log n}{\epsilon}\right)$
- Total degree
 - Total degree in bucket i is $(1+\beta)^{i-1}|B_i| \leq \deg_{B_i} \leq (1+\beta)^i|B_i|$
 - Overall total degree is $\sum_{i} (1+\beta)^{i-1} |B_i| \le \deg_{total} \le \sum_{i} (1+\beta)^i |B_i|$

Algorithm

- Sample a set of vertices S
- Let S_i be the samples from the ith bucket
- Estimate average degree of B_i using S_i
 - $\rho_i = \frac{|S_i|}{|S|}$, then $\mathbb{E}[\rho_i] = \frac{|B_i|}{n}$. Thus report $\sum_i \rho_i (1+\beta)^{i-1}$
 - Problem: for i s.t. $|S_i|$ is small, the estimate is off
 - Solution? Ignore vertices in such buckets!

Algorithm

Algorithm

- Sample a set of vertices S
- Let $S_i = B_i \cap S$ be the samples from the *i*th bucket

• If
$$|S_i| \ge \sqrt{\frac{\epsilon}{n}} \cdot \frac{|S|}{c \cdot t}$$
 (this means $|S| > \sqrt{n/\epsilon} \cdot t$)
• $\rho_i = \frac{|S_i|}{|S|}$

- Else $\rho_i = 0$
- Output $\sum_{i} \rho_{i} (1+\beta)^{i-1}$

Not over estimating:

- \triangleright if $\rho_i = \frac{|B_i|}{n}$, then $\sum_i \rho_i (1+\beta)^{i-1} = \sum_i \frac{|B_i|}{n} \cdot \deg_{B_i} \leq \bar{d}$
- For large buckets, $\rho_i \leq \frac{|B_i|}{n} (1 + \gamma)$, thus $\sum_i \rho_i (1 + \beta)^{i-1} \leq \bar{d} (1 + \gamma)$
- what about underestimating?

Under estimation

- > if there were no small bucket:
 - For large buckets, $\rho_i \geq \frac{|B_i|}{n} (1 \gamma)$, thus $\sum_i \rho_i (1 + \beta)^{i-1} \geq \sum_i \frac{|B_i|}{n} (1 \gamma) (1 + \beta)^{i-1} \geq \frac{1 \gamma}{1 + \beta} \sum_i \frac{|B_i|}{n} \cdot (1 + \beta)^i \geq (1 \gamma) (1 \beta) \cdot \bar{d}$
- > Three types of edges:
 - Large-large (both endpoints in large buckets), counted twice
 - Large-small (one endpoint in a large bucket, one in small), counted once
 - Small-small (both endpoints in small buckets), never counted
- How many small-small edges?
 - By Chernoff, for a small bucket i, $\frac{|B_i|}{n} \approx \frac{|S_i|}{n}$ thus $|B_i| \leq \sqrt{\frac{\epsilon}{n}} \cdot \frac{2n}{ct} = \frac{2\sqrt{\epsilon n}}{ct}$

Under estimation

- > if there were no small bucket:
 - $\text{For large buckets, } \rho_i \geq \frac{|B_i|}{n} \frac{(1-\gamma)}{n}, \text{ thus } \sum_i \rho_i (1+\beta)^{i-1} \geq \sum_i \frac{|B_i|}{n} (1-\gamma) (1+\beta)^{i-1} \geq \frac{1-\gamma}{1+\beta} \sum_i \frac{|B_i|}{n} \cdot (1+\beta)^i \geq (1-\gamma) (1-\beta) \cdot \bar{d}$
- > Three types of edges:
 - Large-large (both endpoints in large buckets), counted twice
 - Large-small (one endpoint in a large bucket, one in small), counted once
 - Small-small (both endpoints in small buckets), never counted
- How many small-small edges?
 - By Chernoff, for a small bucket i, $|B_i| \le \sqrt{\frac{\epsilon}{n}} \cdot \frac{2n}{ct} = \frac{2\sqrt{\epsilon n}}{ct}$
 - Thus the total number of such edges is at most $\left(\frac{t \cdot 2\sqrt{\epsilon n}}{ct}\right)^2 \leq O\left(\frac{\epsilon n}{c^2}\right) = O(\epsilon n)$
 - We can ignore them as long as the graph has total degree $\Omega(n)$, i.e., gives $(1+\epsilon)$ multiplicative approximation
- Overall approximation: $2 + \epsilon$

Further improvement

- Need to estimate the fraction of large-small edges and account for them
- How? Randomly sample few edges and check if it is large-small
- How to implement such an oracle? Approximate it
 - Pick a random node v in a bucket B_i
 - Pick a random neighbor of v
 - Works if all vertices have the same degree!
 - Approximately works inside the buckets!
 - $\alpha_i :=$ fraction of large-small edges
 - Repeat the above to get good probability
- Output of the algorithm $\sum_{i} \rho_{i} (\mathbf{1} + \boldsymbol{\alpha_{i}}) (1 + \beta)^{i-1}$

Final Algorithm

Algorithm

- Sample a set of vertices S
- Let $S_i = B_i \cap S$ be the samples from the *i*th bucket

• If
$$|S_i| \ge \sqrt{\frac{\epsilon}{n}} \cdot \frac{|S|}{c \cdot t}$$

•
$$\rho_i = \frac{|S_i|}{|S|}$$

- For all $v \in S_i$,
 - Pick a random neighbor u of v

•
$$X_v = \begin{cases} 1, & u \text{ is small} \\ 0, & \text{otherwise} \end{cases}$$

•
$$\alpha_i = \frac{\sum_{v} X_v}{|S_i|}$$

• Output $\sum_{i} \rho_i (1 + \alpha_i) (1 + \beta)^{i-1}$