This Lecture

- Sublinear Time Model of Computation
- Distinct Elements
- Graph Connectivity
- Approximating the average degree of a graph
Sublinear Time Algorithms

• The input is so huge that even reading all of it is not feasible
• Solve the problem accessing a small portion of the input
 • Need to specify the access model: what queries can be asked?
 • Random Access
 • E.g., For an array, given i, return the ith entry of a matrix, i.e., A[i]
 • For a graph, query the adjacency graph: given u,v, return A[u][v], i.e., does there exist an edge between u and v
 • Adjacency List: given u, i, return the ith neighbor of the vertex u (or Null if deg(u)<i)
 • Sample
 • Algorithm receives a random sample from a specific distribution
• Parameters of interest
 • Number of queries asked
 • Actual runtime (could be sublinear, polynomial, or even exponential)
Example Goals

• **Estimate** the solution to a problem
 • E.g. what is the average degree in the graph
 • E.g. what is the size of the minimum set cover

• **Property Testing**: Testing whether the input has a property P, or is far from having the property
 • does the input need to change a lot to have the property
 • total variation distance between a distribution and the closest distribution having the property
Distinct Elements
Property Testing Algorithm for Distinct Elements

Input: n elements

Output: distinguish

- **Yes:** all elements are distinct
- **No:** number of distinct elements \(\leq (1 - \epsilon)n \)
- Otherwise report anything

Algorithm?

- Sample a few elements
- If there are any duplicates say FAIL, otherwise say PASS

Analysis

- Always outputs correctly in the **Yes** case
- How many samples to succeed in the **No** case? \(O(\sqrt{n/\epsilon}) \)
Claim: $O(\sqrt{n}/\epsilon)$ suffices

Intuitively

- $1,1,2,2,3,3,4,4,\ldots,n/2,n/2$
 - How many samples are needed to detect it is a no case?
 - By birthday paradox $O(\sqrt{n})$
 - Birthday paradox: if we take $c\sqrt{n}$ uniformly random samples from $[n]$, with a constant probability, we draw one number twice

- $1,1,2,2,3,3,\epsilon n, \epsilon n, \epsilon n, \epsilon n+1, \epsilon n+2,\ldots,n-\epsilon n$
 - For the same reason, $O(\sqrt{n}/\epsilon)$

- $1,1,1,1,\ldots,1,2,3,\ldots,n-\epsilon n$
 - Change it to the previous case: $\frac{1\epsilon n}{2}, \frac{1\epsilon n}{2}, 2,3,4,\ldots,n-\epsilon n$

- $1,1,1,2,2,3,3,3,3,4,5,6,6,7,7,7,\ldots \rightarrow 1,1,2,2,3,3,3,3,4,5,6,6,7,7,7,\ldots$

- Assume: there are $\epsilon n/4$ pairs of duplicates
Formal Proof

• S_1: first sample $O(\sqrt{n})$ elements
• S_2: next sample $O(\sqrt{n}/\epsilon)$ elements

Overall structure of the proof:

• Pair repeated elements (ignoring one in each odd number of repetitions).
• Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of a duplicate pair
• Claim 2: S_2 will hit second element of one of those pairs with a constant probability
Proof of Claim 1

• S_1: first $O(\sqrt{n})$ samples,

• Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of duplicate pairs
 • Number of pairs: $\epsilon n / 4$
 • Probability of hitting the first element in the pair in a random draw of S_1 is $O(\frac{\epsilon}{4})$
 • Expected number of such hits is $\left(\frac{\sqrt{n} \epsilon}{4}\right)$
 • Concentration: Since the draws are independent, using Chernoff, the number of such hits is at least $\left(\frac{\sqrt{n} \epsilon}{8}\right)$ w.h.p.

• What about repetitions?
 • For any two draws, it happens with probability at most $O\left(\frac{1}{n}\right)$
 • The expected number of total repetitions is at most $\left(\frac{O(\sqrt{n})^2}{n}\right) = O(1)$
 • By Markov, w.p. at least $1 - 1/10$ the total number of repetitions does not increase $O(1)$
 • W.p. $1 - 1/5$, S_1 hits $\Omega(\sqrt{n} \epsilon)$ pairs
Proof of Claim 2

• S_1: first $O(\sqrt{n})$ samples,

• S_2: next $O(\sqrt{n}/\epsilon)$ samples,

• Claim 1: S_1 hits many (i.e., $O(\epsilon \sqrt{n})$) elements which are the first element of duplicate pairs

• Claim 2: S_2 will hit second element of one of those pairs with a constant probability
 • The probability of not hitting the second element in the pairs hit by S_1 is at most
 \[
 \left(1 - \frac{\epsilon \sqrt{n}}{cn} \right)^{c_2 \sqrt{n}/\epsilon} \leq \left(1 - \frac{\epsilon}{c \sqrt{n}} \right)^{\frac{c_2 \sqrt{n}}{\epsilon}} \leq e^{-c_2/c}
 \]
 • Set c_2 large enough such that the above prob. is at most 1/5

• The overall success probability is 1-1/5-1/5=3/5

• As always can boost the success probability by repeating the whole algorithm multiple times.
Graph connectivity
Problem

• **Input**: a graph G: n vertices, max degree d,

• **Output**: decide if
 - G is connected
 - ϵ — far from being connected, i.e., need to add at least ϵdn edges to make it connected

• **Query Model**: adjacency list query model
 - Degree query: given v, what is $\text{deg}(v)$
 - Neighbor query: given v, i, what is ith neighbor of v

• Randomized:
 - Output PASS if it is connected
 - Output FAIL w.p. $\geq 3/4$ if it is far from being connected
Intuitively

- If the graph is far from being connected
 - There are many connected components
 - Many of them should have small size
 - Many nodes in small components

- What can we do?
 - Randomly sample vertices and check the sizes of their connected components
Algorithm

• For $O\left(\frac{1}{\epsilon d}\right)$ iterations
 • Pick a random node s and run BFS from it until either
 • $\geq \left(\frac{2}{\epsilon d}\right)$ distinct nodes are encountered
 • Or find that the size of the connected component is less than $\frac{2}{\epsilon d}$
 • Output FAIL
 • Output PASS

- Runtime: $O\left(\frac{1}{\epsilon d} \cdot \frac{2}{\epsilon d} \cdot d\right) = O\left(\frac{1}{\epsilon^2 d}\right)$
- Correctness:
 • Clearly if it is connected, it passes the test
 • What happens if it is ϵ—far from being connected?
Analysis

- If the graph is ϵ -far from being connected
 - At least ϵdn edges should be added to make the graph connected
 - There are at least ϵdn connected components in the graph
 - The number of connected components of size larger than $\frac{2}{\epsilon d}$ is at most $\epsilon dn/2$
 - Otherwise the total number of vertices would be larger than $\frac{2}{\epsilon d} \cdot \frac{\epsilon dn}{2} = n$
 - Each such component has at least one vertex in it
 - The total number of vertices in components of size at most $\frac{2}{\epsilon d}$, is at least $\frac{\epsilon dn}{2}$
 - $\Pr[\text{PASS}] \leq \left(1 - \frac{\epsilon dn}{2n}\right)^{\frac{c}{\epsilon d}} \leq e^{\frac{-c}{2}} \leq 1/4$ for large enough c

- Algorithm succeeds w.p. $\geq 3/4$
Average degree computation
Average degree problem

- **Input:** a graph
- **Output:** the average degree over all vertices \bar{d}
- **Query Model:**
 - given v, what is $\text{deg}(v)$
 - given v, i, what is ith neighbor of v
- **Naïve algorithm?**
 - Sample a few vertices, and report their average degree
- **Problem?**
 - Degrees are in the range $[n]$, and can have high variance. E.g. the star graph
 - This requires $\Omega(n)$ samples
- **Solution?**
 - In general No, e.g. detecting an empty graph (avg deg =0) vs a graph with a single edge (avg deg=1/n) requires $\Omega(n)$ samples
 - Group vertices of similar degrees into buckets (works assuming graph has $\Omega(n)$ edges).
Lower bound of $\Omega(\sqrt{n})$

- G: a cycle of length n
 - Avg deg is 2
- G': union of i) a cycle of length $n - c\sqrt{n}$, and ii) a clique of size $c\sqrt{n}$
 - Avg deg is $\frac{2(n-c\sqrt{n})+(c\sqrt{n})^2-c\sqrt{n}}{n} \geq 2 + c - \frac{3c}{\sqrt{n}} \geq 1 + c$
- Need $\Omega(\sqrt{n})$ queries to find a clique node
Algorithm

- $\beta = \epsilon / c$, bucket the vertices based on powers of $(1 + \beta)$
 - $B_i = \{v: (1 + \beta)^{i-1} \leq \deg(v) \leq (1 + \beta)^i\}$
 - Number of buckets is $t = \frac{\log n}{\beta} \leq O\left(\frac{\log n}{\epsilon}\right)$

- Total degree
 - Total degree in bucket i is $(1 + \beta)^{i-1}|B_i| \leq \deg_{B_i} \leq (1 + \beta)^i|B_i|$
 - Overall total degree is $\sum_i (1 + \beta)^{i-1}|B_i| \leq \deg_{total} \leq \sum_i (1 + \beta)^i|B_i|$

- Algorithm
 - Sample a set of vertices S
 - Let S_i be the samples from the ith bucket
 - Estimate average degree of B_i using S_i
 - $\rho_i = \frac{|S_i|}{|S|}$, then $\mathbb{E}[\rho_i] = \frac{|B_i|}{n}$. Thus report $\sum_i \rho_i (1 + \beta)^{i-1}$
 - Problem: for i s.t. $|S_i|$ is small, the estimate is off
 - Solution? Ignore vertices in such buckets!
Algorithm

• Sample a set of vertices S
• Let $S_i = B_i \cap S$ be the samples from the ith bucket
• If $|S_i| \geq \sqrt{\frac{\epsilon}{n}} \cdot \frac{|S|}{c \cdot t}$ (this means $|S| > \sqrt{n/\epsilon \cdot t}$)

 • $\rho_i = \frac{|S_i|}{|S|}$
 • Else $\rho_i = 0$
 • **Output** $\sum_i \rho_i (1 + \beta)^{i-1}$

➢ Not over estimating:

 ➢ if $\rho_i = \frac{|B_i|}{n}$, then $\sum_i \rho_i (1 + \beta)^{i-1} = \sum_i \frac{|B_i|}{n} \cdot \deg_{B_i} \leq \bar{d}$

 ➢ For large buckets, $\rho_i \leq \frac{|B_i|}{n} (1 + \gamma)$, thus $\sum_i \rho_i (1 + \beta)^{i-1} \leq \bar{d} (1 + \gamma)$

➢ what about underestimating?
Under estimation

- if there were no small bucket:
 - For large buckets, $\rho_i \geq \frac{|B_i|}{n} (1 - \gamma)$, thus $\sum_i \rho_i (1 + \beta)^{i-1} \geq \sum_i \frac{|B_i|}{n} (1 - \gamma)(1 + \beta)^{i-1} \geq \frac{1-\gamma}{1+\beta} \sum_i \frac{|B_i|}{n} \cdot (1 + \beta)^i \geq (1 - \gamma)(1 - \beta) \cdot \bar{d}$

- Three types of edges:
 - Large-large (both endpoints in large buckets), counted twice
 - Large-small (one endpoint in a large bucket, one in small), counted once
 - Small-small (both endpoints in small buckets), never counted

- How many small-small edges?
 - By Chernoff, for a small bucket i, $\frac{|B_i|}{n} \approx \frac{|S_i|}{n}$ thus $|B_i| \leq \frac{\epsilon}{n} \cdot \frac{2n}{ct} = \frac{2\sqrt{\epsilon n}}{ct}$
Under estimation

- if there were no small bucket:
 - For large buckets, $\rho_i \geq \frac{|B_i|}{n} (1 - \gamma)$, thus $\sum_i \rho_i (1 + \beta)^{i-1} \geq \sum_i \frac{|B_i|}{n} (1 - \gamma) (1 + \beta)^{i-1} \geq \frac{1 - \gamma}{1 + \beta} \sum_i \frac{|B_i|}{n} \cdot (1 + \beta)^i \geq (1 - \gamma)(1 - \beta) \cdot \bar{d}$

- Three types of edges:
 - Large-large (both endpoints in large buckets), counted twice
 - Large-small (one endpoint in a large bucket, one in small), counted once
 - Small-small (both endpoints in small buckets), never counted

- How many small-small edges?
 - By Chernoff, for a small bucket i, $|B_i| \leq \frac{\varepsilon}{n} \cdot \frac{2n}{ct} = \frac{2\sqrt{\varepsilon n}}{ct}$
 - Thus the total number of such edges is at most $\left(\frac{t \cdot 2\sqrt{\varepsilon n}}{ct} \right)^2 \leq O \left(\frac{\varepsilon n}{c^2} \right) = O(\varepsilon n)$
 - We can ignore them as long as the graph has total degree $\Omega(n)$, i.e., gives $(1 + \varepsilon)$ multiplicative approximation

- Overall approximation: $2 + \varepsilon$
Further improvement

• Need to estimate the fraction of large-small edges and account for them
• How? Randomly sample few edges and check if it is large-small
• How to implement such an oracle? Approximate it
 • Pick a random node \(v \) in a bucket \(B_i \)
 • Pick a random neighbor of \(v \)
 • Works if all vertices have the same degree!
 • Approximately works inside the buckets!
• \(\alpha_i \) := fraction of large-small edges
 • Repeat the above to get good probability
• Output of the algorithm \(\sum_i \rho_i (1 + \alpha_i)(1 + \beta)^{i-1} \)
Final Algorithm

Algorithm
- Sample a set of vertices S
- Let $S_i = B_i \cap S$ be the samples from the ith bucket
- If $|S_i| \geq \sqrt{\frac{\epsilon}{n}} \cdot \frac{|S|}{c \cdot t}$
 - $\rho_i = \frac{|S_i|}{|S|}$
 - For all $v \in S_i$,
 - Pick a random neighbor u of v
 - $X_v = \begin{cases} 1, & u \text{ is small} \\ 0, & \text{otherwise} \end{cases}$
 - $\alpha_i = \frac{\sum_v X_v}{|S_i|}$
- Output $\sum_i \rho_i (1 + \alpha_i) (1 + \beta)^{i-1}$