Lecture 10

TTIC 41000: Algorithms for Massive Data Toyota Technological Institute at Chicago Spring 2021

Instructor: Sepideh Mahabadi

This Lecture

□ Approximate Nearest Neighbor

Nearest Neighbor

Dataset of n points P in a metric space, e.g. \mathbb{R}^d A query point q comes online

Goal:

- Find the nearest data point p^*
- Do it in sub-linear time and small space

All existing algorithms for this problem

- Either space or query time depending exponentially on *d*
- Or assume certain properties about the data, e.g., bounded intrinsic dimension

Approximate Nearest Neighbor

Dataset of n points P in a metric space, e.g. \mathbb{R}^d A query point q comes online

Goal:

- Find the nearest data point p^{st}
- Do it in sub-linear time and small space
- Approximate Nearest Neighbor
 - If optimal distance is r, report a point in distance cr for $c = (1 + \epsilon)$
 - For Hamming (and Manhattan) query time is $n^{1/O(c)}$ [IM98]
 - and for Euclidean it is $n^{\overline{O(c^2)}}$ [AI08]

Applications of NN

Searching for the closest object

Modeling the Search Problem

Approximate Near Neighbor

Dataset of n points P in a metric space, e.g. \mathbb{R}^d , and a parameter rA query point q comes online

Goal:

- Find one point within distance *cr*
- Approximate Nearest Neighbor can be reduced to polylog instances of Approximate Near Neighbor

Locality Sensitive Hashing (LSH)

One of the main approaches to solve the Nearest Neighbor problems

Locality Sensitive Hashing (LSH) [Indyk, Motwani'98]

Hashing scheme s.t. close points have higher probability of collision than far points

Hash functions: g_1 , ... , g_L

- g_i is an independently chosen hash function
- Concatenation of several randomly chosen hash functions from ${\cal H}$

If
$$||p - p'|| \le r$$
, they collide w.p. $\ge P_{high}$
If $||p - p'|| \ge cr$, they collide w.p. $\le P_{low}$
For $P_{high} \ge P_{low}$

 $\succ \mathcal{H}$ is a $(r, cr, p_{high}, p_{low})$ —sensitive family of Hash Functions

Locality Sensitive Hashing (LSH) [Indyk, Motwani'98]

Retrieval:

- The union of the query buckets is roughly the neighborhood of *q*
- $T = \bigcup_i B_i(g_{i(q)})$ is roughly the neighborhood i.e., with a constant prob
 - $N(q,r) \subseteq T$
 - $|T \setminus N(q, cr)| \le O(L)$

Details

• $k = \left[\log_{1/p_{low}} n \right]$

•
$$L = n^{\rho}/p_{high}$$

• Let
$$\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}}$$

- Assume we have access to \mathcal{H} which is is a $(r, cr, p_{high}, p_{low})$ –sensitive family of Hash Functions
- **L** is the number of hash functions: g_1, \cdots, g_L
- Each g_i is a concatenation of k randomly chosen functions from H, e.g. h_{i,1}, …, h_{i,k} and g_i(a) = g_i(b) iff ∀j: h_{i,j}(a) = h_{i,j}(b)
- If $dist(a,b) \le r$: $\Pr[g_i(a) = g_i(b)] \ge (p_{high})^k$
 - $\Pr[g_i(a) = g_i(b)] = (p_{high})^k \ge (p_{high})^{k+1} = p_{high} \cdot n^{-\rho}$
 - $\Pr[\exists i: g_i(a) = g_i(b)] \ge 1 (1 (p_{high})^k)^L \ge 1 (1 p_{high} \cdot n^{-\rho})^L \ge 1 1/e$
- If dist(a, b) > cr: $\Pr[g_i(a) = g_i(b)] < (p_{low})^k$
 - $\mathbb{E}[|\{a \in P, i \le L: dist(a,q) > cr, g_i(a) = g_i(q)\}|] \le L \cdot n \cdot (p_{low})^k \le L \cdot n \cdot (p_{low})^{\log_1/p_{low}} n \le L$
 - By Markov: Pr[# outliers > 3L] < 1/3

With constant probability $(1 - \frac{1}{e} - \frac{1}{3})$, all is good! (captured at least one close point, and not too many outliers)
Again with logarithmic repetition, the probability of success can be boosted to high probability, i.e., 1 - 1/n

Retrieval Algorithm

- Given a query q,
- For i = 1 to L
 - Inspect the points in $g_i(q)$ one by one
 - If one of them has distance closer than cr to the query, report it
 - If more than 3L points are inspected, abort (try with the next data structure).
- ► Query time: $O(kL) \approx n^{\rho}$
- Space Usage: $O(nd + nL) \approx n^{1+\rho}$

•
$$k = \left[\log_{1/p_{low}} n \right]$$

•
$$L = n^{\rho}/p_{high}$$

• Let $\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}}$

How to get a $(r, cr, p_{high}, p_{low})$ –sensitive family of Hash Functions

Hamming Metric

- $P \subseteq \{0,1\}^d$, dist is the hamming distance between the points
- \mathcal{H} is the family of projections onto a single coordinate, i.e., $h_i(p) = p_i$
- Claim: \mathcal{H} is $\left(r, cr, 1 \frac{r}{d}, 1 \frac{cr}{d}\right)$ -sensitive
 - If $dist(p_1, p_2) \le r$, then the probability of sampling from those different bits is at most $\frac{r}{d}$
 - If $dist(p_1, p_2) \ge cr$, then the probability of sampling from those different bits is at least cr/d
- Need to compute $\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}}$

Hamming Metric

- $P \subseteq \{0,1\}^d$, dist is the hamming distance between the points
- \mathcal{H} is the family of projections onto a single coordinate, i.e., $h_i(p) = p_i$

• Claim:
$$\mathcal{H}$$
 is $\left(r, cr, 1 - \frac{r}{d}, 1 - \frac{cr}{d}\right)$ -sensitive, $p_{high} = 1 - \frac{r}{d}, p_{low} = 1 - \frac{cr}{d}$

• Need to compute
$$\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}} = \frac{\log p_{high}}{\log p_{low}} = \frac{\log(1-x)}{\log(1-tx)} \le \frac{1}{t} = \frac{1-p_{high}}{1-p_{low}} = \frac{1}{t}$$

•
$$t = \frac{1 - p_{low}}{1 - p_{high}}, x = 1 - p_{high}$$

- For $x \in [0,1)$ and $t \ge 1$ such that 1 tx > 0, we have $\frac{\log(1-x)}{\log(1-tx)} \le \frac{1}{t}$
 - Since $\log(1 tx) \le 0$, we need to show $t \log(1 x) \ge \log(1 tx)$
 - Equivalent to show that $f(x) = (1 tx) (1 x)^t \le 0$ which is true for x = 0
 - Take derivative: $f'(x) = -t + t(1-x)^{t-1}$ which is non-positive for $x \in [0,1)$ and $t \ge 1$
 - Equivalent to show $-1 + (1 x)^{t-1} \le 0$ or $(1 x)^{t-1} > 1$

•
$$k = \left[\log_{1/p_{low}} n \right]$$

•
$$L = n^{\rho}/p_{high}$$

• Let
$$\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}}$$

Other distances

 \Box L₁-distance:

- Impose a randomly shifted grid of side length proportional to r
- Discretize the grid -> the points will be in $\{0, ..., M\}^d$
- Map them using a unary mapping to $\{0,1\}^{dM}$
 - $unary((x_1, ..., x_d)) = unary(x_1) ... unary(x_d)$
 - unary(x) = 111100000 (there are x 1's followed by M x 0's)
- The distance is now changed to Hamming distance
- Get $\rho \approx 1/c$
- \Box L_2 (Euclidean) distance
- Project points on a random line, divide the line randomly randomly shifted into segments of size w, the segments will be the buckets
- Get $\rho \approx 1/c^2$

 $\Box L_p$ distances, Jaccard Similarity: $\frac{|A \cap B|}{|A \cup B|}$

$$k = \left[\log_{1/p_{low}} n\right]$$

•
$$L = n^{\rho}/p_{high}$$

Let
$$\rho = \frac{\log 1/p_{high}}{\log 1/p_{low}}$$

Variants of NN

Report diverse results for a search query

Report diverse results for a search query

Be fair among all qualified candidates

Applications:

- □ Removing noise, k-NN classification
- Anonymizing the data
- Counting the neighborhood size

Laughing

Some part of the data is noisy, incomplete or irrelevant

The data points are:

- corrupted, noisy
 - Image denoising

Incomplete

- Recommendation: Sparse matrix
- Irrelevant
 - Occluded image

Multiple Related Queries

Dataset contains more complex objects

E.g. Affine subspaces are used to model data under linear variations.

Other directions

Data Dependent LSH

- Standard LSH is oblivious to the data (many advantages)
- Constants in the exponents can be improved using existing structures in the data
 - If some parts of the data is more dense, a ball can be carved
 - Otherwise the data looks random -> improved LSH bounds

Lower Dimensional Case

• Many work on the lower dimensional case, i.e., using kd-trees