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This Lecture

 Approximate Nearest Neighbor



Nearest Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑

A query point 𝑞𝑞 comes online

Goal: 
• Find the nearest data point 𝑝𝑝∗

• Do it in sub-linear time and small space

All existing algorithms for this problem
• Either space or query time depending exponentially on 𝑑𝑑
• Or assume certain properties about the data, e.g., bounded intrinsic dimension

𝑞𝑞
𝑝𝑝∗



Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑

A query point 𝑞𝑞 comes online

Goal: 
• Find the nearest data point 𝑝𝑝∗

• Do it in sub-linear time and small space
• Approximate Nearest Neighbor

─ If optimal distance is 𝑟𝑟, report a point in distance c𝑟𝑟 for c =
1 + 𝜖𝜖

─ For Hamming (and Manhattan) query time is 𝑛𝑛1/𝑂𝑂(𝑐𝑐) [IM98] 

─ and for Euclidean it is 𝑛𝑛
1

𝑂𝑂(𝑐𝑐2) [AI08]

𝑞𝑞
𝑝𝑝∗

𝑝𝑝

Approximate Nearest Neighbor



Applications of NN

Searching for the closest object



Objects 
(documents, images, etc)

Feature 
Vectors

Modeling the Search Problem

Points in a high dimensional 
space



Approximate Near Neighbor

Dataset of 𝑛𝑛 points 𝑃𝑃 in a metric space, e.g. ℝ𝑑𝑑, and a parameter 𝑟𝑟
A query point 𝑞𝑞 comes online

Goal: 
• If there exists a point within distance 𝑟𝑟
• Find one point within distance 𝑐𝑐𝑟𝑟

• Approximate Nearest Neighbor can be reduced to polylog instances of 
Approximate Near Neighbor

𝑞𝑞

𝑝𝑝



Locality Sensitive Hashing (LSH)
One of the main approaches to solve the Nearest Neighbor problems



Hashing scheme s.t. close points have higher probability of collision than far points
Hash functions: 𝑔𝑔1 , … ,𝑔𝑔𝐿𝐿

• 𝑔𝑔𝑖𝑖 is an independently chosen hash function
• Concatenation of several randomly chosen

hash functions from ℋ

If 𝑝𝑝 − 𝑝𝑝𝑝 ≤ 𝑟𝑟 , they collide w.p.  ≥ 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ
If 𝑝𝑝 − 𝑝𝑝𝑝 ≥ 𝑐𝑐𝑟𝑟 , they collide w.p. ≤ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙
For 𝑃𝑃ℎ𝑖𝑖𝑖𝑖ℎ ≥ 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙

 ℋ is a 𝑟𝑟, 𝑐𝑐𝑟𝑟,𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ,𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 −sensitive family of Hash Functions

Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿



𝑞𝑞

𝑔𝑔1

𝑔𝑔2

𝑔𝑔3

𝑔𝑔𝐿𝐿

Locality Sensitive Hashing (LSH) [Indyk, Motwani’98]

Retrieval:
• The union of the query buckets is roughly the 

neighborhood of 𝑞𝑞

• 𝑇𝑇 = ⋃𝑖𝑖 𝐵𝐵𝑖𝑖 𝑔𝑔𝑖𝑖 𝑞𝑞 is roughly the neighborhood
i.e., with a constant prob
• 𝑁𝑁 𝑞𝑞, 𝑟𝑟 ⊆ 𝑇𝑇
• 𝑇𝑇 ∖ 𝑁𝑁 𝑞𝑞, 𝑐𝑐𝑟𝑟 ≤ 𝑂𝑂(𝐿𝐿)



Details

• Assume we have access to ℋ which is is a 𝑟𝑟, 𝑐𝑐𝑟𝑟, 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ, 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 −sensitive family of Hash Functions

• 𝑳𝑳 is the number of hash functions: 𝑔𝑔1,⋯ ,𝑔𝑔𝐿𝐿
• Each 𝑔𝑔𝑖𝑖 is a concatenation of 𝒌𝒌 randomly chosen functions from ℋ, e.g. ℎ𝑖𝑖,1,⋯ , ℎ𝑖𝑖,𝑘𝑘 and 𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖(𝑏𝑏) iff
∀𝑗𝑗:ℎ𝑖𝑖,𝑗𝑗 𝑎𝑎 = ℎ𝑖𝑖,𝑗𝑗(𝑏𝑏)

• If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎, 𝑏𝑏 ≤ 𝑟𝑟: Pr[𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖 𝑏𝑏 ] ≥ 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
𝑘𝑘

• Pr[𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖 𝑏𝑏 ] = 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
𝑘𝑘 ≥ 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

𝑘𝑘+1 = 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑛𝑛−𝜌𝜌

• Pr[∃𝑑𝑑: 𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖 𝑏𝑏 ] ≥ 1 − 1 − 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
𝑘𝑘 𝐿𝐿

≥ 1 − 1 − 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ ⋅ 𝑛𝑛−𝜌𝜌
𝐿𝐿 ≥ 1 − 1/𝑒𝑒

• If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎, 𝑏𝑏 > 𝑐𝑐𝑟𝑟: Pr[𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖 𝑏𝑏 ] < 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘

• 𝔼𝔼 𝑎𝑎 ∈ 𝑃𝑃, 𝑑𝑑 ≤ 𝐿𝐿:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎, 𝑞𝑞 > 𝑐𝑐𝑟𝑟,𝑔𝑔𝑖𝑖 𝑎𝑎 = 𝑔𝑔𝑖𝑖 𝑞𝑞 ≤ 𝐿𝐿 ⋅ 𝑛𝑛 ⋅ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 ≤ 𝐿𝐿 ⋅ 𝑛𝑛 ⋅ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙
log1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 ≤ 𝐿𝐿

• By Markov: Pr[# 𝑜𝑜𝑜𝑜𝑑𝑑𝑜𝑜𝑑𝑑𝑒𝑒𝑟𝑟𝑑𝑑 > 3𝐿𝐿] < 1/3

 With constant probability (1 − 1
𝑒𝑒
− 1

3
), all is good! (captured at least one close point, and not too many outliers)

 Again with logarithmic repetition, the probability of success can be boosted to high probability, i.e., 1 − 1/𝑛𝑛

• 𝑘𝑘 = log1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛

• 𝐿𝐿 = 𝑛𝑛𝜌𝜌/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

• Let 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙



Retrieval Algorithm

• Given a query 𝑞𝑞,
• For 𝑑𝑑 = 1 to 𝐿𝐿

• Inspect the points in 𝑔𝑔𝑖𝑖(𝑞𝑞) one by one
• If one of them has distance closer than 𝑐𝑐𝑟𝑟 to the query, report it
• If more than 3𝐿𝐿 points are inspected, abort (try with the next data structure).

 Query time: 𝑂𝑂 𝑘𝑘𝐿𝐿 ≈ 𝑛𝑛𝜌𝜌

 Space Usage: 𝑂𝑂 𝑛𝑛𝑑𝑑 + 𝑛𝑛𝐿𝐿 ≈ 𝑛𝑛1+𝜌𝜌

• 𝑘𝑘 = log1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛

• 𝐿𝐿 = 𝑛𝑛𝜌𝜌/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

• Let 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙



How to get a 𝑟𝑟, 𝑐𝑐𝑟𝑟,𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ , 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 −sensitive family of 
Hash Functions



Hamming Metric

• 𝑃𝑃 ⊆ 0,1 𝑑𝑑 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the hamming distance between the points
• ℋ is the family of projections onto a single coordinate, i.e., ℎ𝑖𝑖 𝑝𝑝 = 𝑝𝑝𝑖𝑖
• Claim: ℋ is 𝑟𝑟, 𝑐𝑐𝑟𝑟, 1 − 𝑟𝑟

𝑑𝑑
, 1 − 𝑐𝑐𝑟𝑟

𝑑𝑑
−sensitive

• If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝1,𝑝𝑝2 ≤ 𝑟𝑟, then the probability of sampling from those different bits is at 
most 𝑟𝑟

𝑑𝑑
• If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝1,𝑝𝑝2 ≥ 𝑐𝑐𝑟𝑟, then the probability of sampling from those different bits is 

at least 𝑐𝑐𝑟𝑟/𝑑𝑑

• Need to compute 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙



Hamming Metric

• 𝑃𝑃 ⊆ 0,1 𝑑𝑑 , 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the hamming distance between the points
• ℋ is the family of projections onto a single coordinate, i.e., ℎ𝑖𝑖 𝑝𝑝 = 𝑝𝑝𝑖𝑖

• Claim: ℋ is 𝑟𝑟, 𝑐𝑐𝑟𝑟, 1 − 𝑟𝑟
𝑑𝑑

, 1 − 𝑐𝑐𝑟𝑟
𝑑𝑑

−sensitive, 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ = 1 − 𝑟𝑟
𝑑𝑑

, 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝑐𝑐𝑟𝑟
𝑑𝑑

• Need to compute 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙

=
log 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙

= log(1−𝑥𝑥)
log(1−𝑡𝑡𝑥𝑥)

≤ 1
𝑡𝑡

=
1−𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
1−𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙

= 1
𝑐𝑐

• 𝑑𝑑 = 1−𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙
1−𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

, 𝑥𝑥 = 1 − 𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

• For 𝑥𝑥 ∈ [0,1) and 𝑑𝑑 ≥ 1 such that 1 − 𝑑𝑑𝑥𝑥 > 0, we have log(1−𝑥𝑥)
log(1−𝑡𝑡𝑥𝑥)

≤ 1
𝑡𝑡

• Since log(1 − 𝑑𝑑𝑥𝑥) ≤ 0, we need to show 𝑑𝑑 log(1 − 𝑥𝑥) ≥ log 1 − 𝑑𝑑𝑥𝑥
• Equivalent to show that 𝑓𝑓 𝑥𝑥 = 1 − 𝑑𝑑𝑥𝑥 − 1 − 𝑥𝑥 𝑡𝑡 ≤ 0 which is true for 𝑥𝑥 = 0
• Take derivative: 𝑓𝑓′ 𝑥𝑥 = −𝑑𝑑 + 𝑑𝑑 1 − 𝑥𝑥 𝑡𝑡−1 which is non-positive for 𝑥𝑥 ∈ [0,1) and 𝑑𝑑 ≥ 1

• Equivalent to show −1 + 1 − 𝑥𝑥 𝑡𝑡−1 ≤ 0 or 1 − 𝑥𝑥 𝑡𝑡−1 > 1

• 𝑘𝑘 = log1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛

• 𝐿𝐿 = 𝑛𝑛𝜌𝜌/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

• Let 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙



Other distances

 𝐿𝐿1-distance: 
• Impose a randomly shifted grid of side length proportional to 𝑟𝑟
• Discretize the grid -> the points will be in 0, … ,𝑀𝑀 𝑑𝑑

• Map them using a unary mapping to 0,1 𝑑𝑑𝑑𝑑

• 𝑜𝑜𝑛𝑛𝑎𝑎𝑟𝑟𝑢𝑢 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝑜𝑜𝑛𝑛𝑎𝑎𝑟𝑟𝑢𝑢 𝑥𝑥1 …𝑜𝑜𝑛𝑛𝑎𝑎𝑟𝑟𝑢𝑢 𝑥𝑥𝑑𝑑
• 𝑜𝑜𝑛𝑛𝑎𝑎𝑟𝑟𝑢𝑢 𝑥𝑥 = 111100000 (there are 𝑥𝑥 1’s followed by 𝑀𝑀 − 𝑥𝑥 0’s)

• The distance is now changed to Hamming distance

• Get 𝜌𝜌 ≈ 1/𝑐𝑐
 𝐿𝐿2- (Euclidean) distance
• Project points on a random line, divide the line randomly randomly shifted into segments of size 𝑤𝑤, the 

segments will be the buckets

• Get 𝜌𝜌 ≈ 1/𝑐𝑐2

 𝐿𝐿𝑝𝑝 distances,  Jaccard Similarity: |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

• 𝑘𝑘 = log1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛

• 𝐿𝐿 = 𝑛𝑛𝜌𝜌/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ

• Let 𝜌𝜌 =
log 1/𝑝𝑝ℎ𝑖𝑖𝑖𝑖ℎ
log 1/𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙



Variants of NN



Report diverse results for a search query



Report diverse results for a search query



𝟏𝟏
𝟐𝟐

𝟏𝟏
𝟐𝟐

Be fair among all qualified candidates

LaughingApplications:

 Removing noise, k-NN classification

 Anonymizing the data

 Counting the neighborhood size 



Some part of the data is noisy, incomplete or irrelevant

The data points are:
• corrupted, noisy

• Image denoising

• Incomplete
• Recommendation: Sparse 

matrix

• Irrelevant
• Occluded image

1   - 0   - - -
- 0   1   - 0   -
- - - 1   1    -

Movies

U
se

rs

 Need Robustness



Multiple Related Queries



Dataset contains more complex objects

E.g. Affine subspaces are used to model data under linear variations.



Other directions

Data Dependent LSH
• Standard LSH is oblivious to the data (many advantages)
• Constants in the exponents can be improved using existing structures 

in the data
• If some parts of the data is more dense, a ball can be carved
• Otherwise the data looks random -> improved LSH bounds

Lower Dimensional Case
• Many work on the lower dimensional case, i.e., using kd-trees
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