
Lecture 1
TTIC 41000: Algorithms for Massive Data
Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi



Welcome to Algorithms for Massive Data!

• Lectures: Monday and Wednesday - 4:10-5:30pm 
• Office Hours: Monday 6-7pm
• Zoom link (for both): Here

Make sure to check
• Course page
• Canvas page

https://uchicago.zoom.us/j/95410940706?pwd=NmRKd0pIOVZyWlNjbUp1V2xzREwyZz09
https://www.mit.edu/%7Emahabadi/courses/Algorithms_for_Massive_Data_SP21/


Grading

• Two PSets (Each 25%) 
• Final Project (40%)
• Class Participation (10%)



Problem Sets

• Free to discuss the problems
• Each person should completely understand and write their own 

solutions
• Write the name of the collaborators



Projects

• Can be done individually or in groups of size two
• Goal: Motivate you to write a paper in this area
• Each project includes a 10-20 minutes presentation in class, and a 5-10 

pages report
• Two types of projects:

• Summary paper
• Research Project

• Important dates
• April 30th: proposal
• May 30th: first draft
• June 10th: final draft



Introduction



 Cannot even read the 
whole data
 Sub-linear Time Algorithms

 Cannot afford storing 
all the data
Streaming Algorithms

 Single Processor does not 
suffice
E.g. Map-Reduce algorithms

…

Large Data Restrictions and Models



Large Data Tasks
 Searching through the data
 (Approximate Nearest Neighbor)

 Extracting the most relevant 
data (efficient summary)
 (Sketching, Composable Core-

sets)

…



Large Data Techniques

 Sampling, Importance Sampling

 Dimensionality Reduction

…



This Course

Models

 Tasks

 Techniques

…



Streaming Model of Computation
Problems: 
• Distinct Elements
• Morris Counter



Streaming Model

• Huge data set (does not fit into the main memory)
• Only sequential access to the data 

• One pass
• Few passes (the data is stored somewhere else)

• Use little memory
• Sublinear in input parameters
• Sublinear in the input size 

• Solve the problem (approximately)

…
𝒏𝒏



Streaming Model

• Huge data set (does not fit into the main memory)
• Only sequential access to the data 

• One pass
• Few passes (the data is stored somewhere else)

• Use little memory
• Sublinear in input parameters
• Sublinear in the input size 

• Solve the problem (approximately)

…
𝒏𝒏

Parameters of Interest:

1. Memory usage

2. Number of passes

3. Approximation Factor

4. (Sometimes) query/update time 



Restrictions

 Approximation
 Randomization

• Analyze expectation
• Concentration: But also this happens with a good probability

Prob[ being approximately correct ] is high

Homework: take a look at the inequalities.
• Markov
• Chebychev
• Chernoff/Hoeffding



Probability Recap



Markov’s Inequality 

• Argue about concentration using the expected value
• Applies to positive random variables

• If X is a non-negative random variable, then

∀𝜆𝜆 > 0, Pr X > 𝜆𝜆 ⋅ 𝔼𝔼[𝑋𝑋] ≤
1
𝜆𝜆

The probability of exceeding expectation by more than a factor of 𝜆𝜆 is at most 1
𝜆𝜆



Chebyshev’s Inequality
• Argue about concentration using the variance
• Applies to r.v. with finite expected value and non-zero variance

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ⋅ 𝜎𝜎 ≤
1
𝜆𝜆2

The probability of deviating from expectation by more than 𝜆𝜆 ⋅ 𝜎𝜎 is at most 1
𝜆𝜆2

Or,

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝜎𝜎2

𝜆𝜆2



Chebyshev’s Inequality
• Argue about concentration using the variance
• Applies to r.v. with finite expected value and non-zero variance

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ⋅ 𝜎𝜎 ≤
1
𝜆𝜆2

The probability of deviating from expectation by more than 𝜆𝜆 ⋅ 𝜎𝜎 is at most 1
𝜆𝜆2

Or,

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼[𝑋𝑋] 2]

𝜆𝜆2
More generally,

∀𝑝𝑝 ≥ 1,∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼[𝑋𝑋] 𝑝𝑝]

𝜆𝜆𝑝𝑝



Chernoff Bound

• Suppose 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 are independent r.v. with 𝑋𝑋𝑖𝑖 ∈ [0, 1]. 
Let 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖 and 𝜇𝜇 = 𝔼𝔼[𝑋𝑋]. Then

∀𝜆𝜆 > 0, Pr 𝑋𝑋 > 1 + 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
3 (upper tail)

and,

∀𝜆𝜆 > 0, Pr 𝑋𝑋 < 1 − 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
2 (lower tail)

• Strong guarantee but requires the independence of r.v.



Distinct Elements



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

…
𝒏𝒏



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …

𝑚𝑚 = 10



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

𝒏𝒏𝑚𝑚 = 10 Sol = 5

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …
{3,6,9,4,5}



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

• Trivial solution : min(𝑚𝑚,𝑛𝑛 log𝑚𝑚 )
• Keep a counter for each of the 𝑚𝑚 elements, space: 𝑚𝑚 bits.
• Keep everyone in the stream, space: 𝑛𝑛 log𝑚𝑚

• We want to do much better

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

• Approximate (up to a factor of 1 + 𝜖𝜖)
• Randomized (with probability 1 − 𝛿𝛿)

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …



Vector Notation

• Receive updates to coordinates of a vector 𝑥𝑥 ∈ ℝ𝑚𝑚

• Coordinate 𝑖𝑖 is denoted as 𝑥𝑥𝑖𝑖
• Upon receiving 𝑖𝑖, we increment 𝑥𝑥𝑖𝑖 by one

• Estimate the number of non-zero coordinates.
• 𝐿𝐿0-norm estimation
• 𝐿𝐿𝑝𝑝-norm estimation: Next Lecture!

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …𝑥𝑥 = [0, 0, 2, 4, 2, 1, 0, 0, 2, 0]

𝑚𝑚 = 10

1 2 3 4 5 6 7 8 9 10



Distinct Element Problem

• Relax the conditions: allow approximation and randomization:
• Find an estimate �DE of #distinct elements DE, such that 

Pr �DE − DE > 𝜖𝜖DE < 𝛿𝛿

• Simpler version: Decision problem where given 𝐷𝐷, identify
• YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
• NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Solve threshold variant, and run for 𝐷𝐷 = {1,1 + 𝜖𝜖, … 1 + 𝜖𝜖 𝑖𝑖 , … ,𝑛𝑛}

 Total space will be multiplied by log1+𝜖𝜖 𝑛𝑛 ≈
log 𝑛𝑛
𝜖𝜖

 Probability of failure multiplied by the same factor



Distinct Element Problem

• Relax the conditions: allow approximation and randomization:
• Find an estimate �DE of #distinct elements DE, such that 

Pr �DE − DE > 𝜖𝜖DE < 𝛿𝛿

• Simpler version: Decision problem where given 𝐷𝐷, identify
• YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
• NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Solve threshold variant, and run for 𝐷𝐷 = {1,1 + 𝜖𝜖, … 1 + 𝜖𝜖 𝑖𝑖 , … ,𝑛𝑛}

 Total space will be multiplied by log1+𝜖𝜖 𝑛𝑛 ≈
log 𝑛𝑛
𝜖𝜖

 Probability of failure multiplied by the same factor



Basic Algorithm
YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷



Basic Algorithm
YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …

Example. 

• 𝐷𝐷 = 10
• 𝑆𝑆 = {8 , 10}
• zero

• 𝐷𝐷 = 3
• 𝑆𝑆 = {1, 7, 9, 10}
• non-zero (𝑥𝑥9 = 2)



Basic Algorithm

S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?

YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES



Basic Algorithm

S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?

YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3



Basic Algorithm

S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?

YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3

Space usage: a single number 
in [n]



• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3

Decision Variant

• Repeat 𝑘𝑘 = 𝑂𝑂(
log1𝛿𝛿
𝜖𝜖2

) times
• 𝑆𝑆1,⋯ , 𝑆𝑆𝑘𝑘

• Define 𝐶𝐶 ≜ 𝑆𝑆𝑗𝑗 ∑𝑖𝑖∈𝑆𝑆𝑗𝑗 𝑥𝑥𝑖𝑖 = 0

• Compare 𝐶𝐶 with 𝑘𝑘/𝑒𝑒



Decision Variant

Boost the success probability using repetition and Chernoff

• Repeat 𝑘𝑘 = 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

times and let 𝐶𝐶 be #times we get 0

• Using Chernoff bound, with probability at least 1 − 𝛿𝛿
1. If DE > 1 + 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 < 𝑘𝑘

𝑒𝑒

2. If DE < 1 − 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

Case 1. 

• 𝔼𝔼 𝐶𝐶 < 𝑘𝑘
𝑒𝑒

(1 − 𝜖𝜖𝜖𝜖
3

) and set 𝜆𝜆 = 𝜖𝜖𝜖𝜖
3

• Pr 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

< Pr 𝐶𝐶 > 𝔼𝔼[𝐶𝐶](1 + 𝜖𝜖𝜖𝜖
3

) < 𝑒𝑒−
⁄𝜖𝜖𝜖𝜖 3 2⋅𝑂𝑂( �(log1𝛿𝛿) 𝜖𝜖2)

3 = 𝛿𝛿

∀𝜆𝜆 > 0, Pr 𝑋𝑋 > 1 + 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
3



Decision Variant

Boost the success probability using repetition and Chernoff

• Repeat 𝑘𝑘 = 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

times and let 𝐶𝐶 be #times we get 0

• Using Chernoff bound, with probability at least 1 − 𝛿𝛿
1. If DE > 1 + 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 < 𝑘𝑘

𝑒𝑒

2. If DE < 1 − 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

• Space usage of the algorithm: 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛

• Probability of error 𝛿𝛿



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

# thresholds
# sample set 
(per threshold)



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

• Probability of error 𝛿𝛿 ⋅ log 𝑛𝑛
𝜖𝜖

• Number of passes: 1
• Approximation (1 + 𝜖𝜖)

𝑖𝑖 = 0 𝑖𝑖 = 1 … 𝑖𝑖 = 𝑗𝑗 − 1 𝑖𝑖 = 𝑗𝑗 𝑖𝑖 = 𝑗𝑗 + 1 … 𝑖𝑖 = log𝑛𝑛
YES YES YES NO NO NO

By 1, DE > 1 + 𝜖𝜖 𝑗𝑗−1 ⋅ (1 − 𝜖𝜖)
By 2, DE < 1 + 𝜖𝜖 𝑗𝑗 ⋅ (1 + 𝜖𝜖)

2

1



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

• Probability of error 𝛿𝛿 ⋅ log 𝑛𝑛
𝜖𝜖

• Number of passes: 1
• Approximation (1 + 𝜖𝜖)

𝑖𝑖 = 0 𝑖𝑖 = 1 … 𝑖𝑖 = 𝑗𝑗 − 1 𝑖𝑖 = 𝑗𝑗 𝑖𝑖 = 𝑗𝑗 + 1 … 𝑖𝑖 = log𝑛𝑛
YES YES YES NO NO NO

Return 1 + 𝜖𝜖 𝑗𝑗



Some Comments

1. Deletions
• The algorithm can handle deletion as long as values of coordinates remain 

non-negative
• Dynamic or turnstile streaming

2. Implementing the sample set S
• Pick a hash function ℎ: 𝑚𝑚 → [𝐷𝐷] and 𝑆𝑆 = 𝑖𝑖 ℎ 𝑖𝑖 = 1}
• ℎ can be implemented using pseudo-random generators



State of the art

Uses space: Θ(𝜖𝜖−2 log 1
𝛿𝛿

+ log𝑛𝑛)

• Upper bound: 
• [Jaroslaw Blasiok’20]. Optimal streaming and tracking distinct elements with 

high probability

• Lower bound: 
• [Noga Alon, Yossi Matias, and Mario Szegedy’99]. The space complexity of 

approximating the frequency moments
• [T. S. Jayram and David P. Woodruff’13]. Optimal bounds for Johnson-

Lindenstrauss transforms and streaming problems with subconstant error



Morris Counter



Counting Problem

• Space efficient algorithm that monitors a sequence of events, then at 
any given query time 𝑡𝑡, returns an estimate of the number of events
seen so far (i.e. up to time 𝑡𝑡)

update(): increment the number of events by 1
query(): output (an estimate of) the number of events

• Trivial Bound? 
• If #events is 𝑛𝑛, log𝑛𝑛 bits suffice to maintain #events exactly
• Impossible to solve this problem exactly using 𝑜𝑜 log𝑛𝑛



Approximately Counting

• In most practical cases, it suffices to provide an estimate of #events

• Goal: Given error parameters (𝜖𝜖, 𝛿𝛿), return an estimate �𝑛𝑛 of #events 
𝑛𝑛, s.t.

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 < 𝛿𝛿



Morris Algorithm

1. Initialize 𝑋𝑋 ← 0

2. Per each update(), increment 𝑋𝑋 with probability 1
2𝑋𝑋

 For query(), output �𝑛𝑛 = 2𝑋𝑋 − 1

Intuition: 𝑋𝑋 is attempting to store a value that is roughly ≈ log 𝑛𝑛
The amount of space required to store 𝑋𝑋 is 𝑂𝑂(log log𝑛𝑛)



Analysis of Morris’s Algorithm

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]



Analysis of Morris’s Algorithm

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ (2𝑗𝑗 ⋅ 1 − 1
2𝑗𝑗

+ 2𝑗𝑗+1 ⋅ 1
2𝑗𝑗

) Probability of 
incrementing 𝑋𝑋



Analysis of Morris’s Algorithm

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ (2𝑗𝑗 ⋅ 1 − 1
2𝑗𝑗

+ 2𝑗𝑗+1 ⋅ 1
2𝑗𝑗

)

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 2𝑗𝑗 + ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗
= 𝔼𝔼[2𝑋𝑋𝑛𝑛] + 1
= 𝑛𝑛 + 1



Analysis of Morris’s Algorithm (ctd.)

• We just showed that �𝑛𝑛 is an unbiased estimator of 𝑛𝑛
• i.e., �𝑛𝑛 ≝ 𝔼𝔼[2𝑋𝑋] = 𝑛𝑛 + 1



Analysis of Morris’s Algorithm (ctd.)

• We just showed that �𝑛𝑛 is an unbiased estimator of 𝑛𝑛
• i.e., �𝑛𝑛 ≝ 𝔼𝔼[2𝑋𝑋] = 𝑛𝑛 + 1

• By bounding the variance of �𝑛𝑛 and an application of Chebyshev’s, we 
can achieve the desired accuracy guarantee. 



Analysis of Morris’s Algorithm (ctd.)

• We just showed that �𝑛𝑛 is an unbiased estimator of 𝑛𝑛
• i.e., �𝑛𝑛 ≝ 𝔼𝔼[2𝑋𝑋] = 𝑛𝑛 + 1

• By bounding the variance of �𝑛𝑛 and an application of Chebyshev’s, we 
can achieve the desired accuracy guarantee. 

• To recall, goal is to show Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 < 𝛿𝛿

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅ 𝔼𝔼[ �𝑛𝑛 − 𝑛𝑛 2] =

1
𝜖𝜖2𝑛𝑛2

⋅ 𝔼𝔼[ 2𝑋𝑋 − 1 − 𝑛𝑛 2]

Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1.

Proof. Similar to Claim 1 (exercise)



Analysis of Morris’s Algorithm (ctd.)

• We just showed that �𝑛𝑛 is an unbiased estimator of 𝑛𝑛
• i.e., �𝑛𝑛 ≝ 𝔼𝔼[2𝑋𝑋] = 𝑛𝑛 + 1

• By bounding the variance of �𝑛𝑛 and an application of Chebyshev’s, we 
can achieve the desired accuracy guarantee. 

• To recall, goal is to show Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 < 𝛿𝛿

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅ 𝔼𝔼[ �𝑛𝑛 − 𝑛𝑛 2] =

1
𝜖𝜖2𝑛𝑛2

⋅ 𝔼𝔼[ 2𝑋𝑋 − 1 − 𝑛𝑛 2]

Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1.

Proof. Similar to Claim 1 (exercise)
Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <

1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2



Analysis of Morris’s Algorithm (ctd.)

• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which 
we can instead always return 0 !)

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2



Analysis of Morris’s Algorithm (ctd.)

• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which 
we can instead always return 0 !)

• How to decrease the failure probability?

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝜖𝜖 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2



Analysis of Morris’s Algorithm (ctd.)

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿



Analysis of Morris’s Algorithm (ctd.)

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators. 
Setting 𝑠𝑠 = 1

𝜖𝜖2
, each Morris+ estimator succeeds w.p. at least 2

3
. 

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿



Analysis of Morris’s Algorithm (ctd.)

• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators. 
Setting 𝑠𝑠 = 1

𝜖𝜖2
, each Morris+ estimator succeeds w.p. at least 2

3
. 

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿

Total Space of Morris++: Θ( 1
𝜖𝜖2
⋅ log 1

𝛿𝛿
⋅ log log𝑛𝑛) w.p. at least 1 − 𝛿𝛿


	Lecture 1
	Welcome to Algorithms for Massive Data!
	Grading
	Problem Sets
	Projects
	Introduction
	Large Data Restrictions and Models
	Large Data Tasks
	Large Data Techniques
	This Course
	Streaming Model of Computation
	Streaming Model
	Streaming Model
	Restrictions
	Probability Recap
	Markov’s Inequality 
	Chebyshev’s Inequality
	Chebyshev’s Inequality
	Chernoff Bound
	Distinct Elements
	Distinct Element Problem
	Distinct Element Problem
	Distinct Element Problem
	Distinct Element Problem
	Distinct Element Problem
	Vector Notation
	Distinct Element Problem
	Distinct Element Problem
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Basic Algorithm
	Decision Variant
	Decision Variant
	Decision Variant
	Distinct Elements
	Distinct Elements
	Distinct Elements
	Some Comments
	State of the art
	Morris Counter
	Counting Problem
	Approximately Counting
	Morris Algorithm
	Analysis of Morris’s Algorithm
	Analysis of Morris’s Algorithm
	Analysis of Morris’s Algorithm
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)
	Analysis of Morris’s Algorithm (ctd.)

