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Toyota Technological Institute at Chicago

Spring 2021

Instructor: Sepideh Mahabadi



Welcome to Algorithms for Massive Data!

• Lectures: Monday and Wednesday - 4:10-5:30pm 
• Office Hours: Monday 6-7pm
• Zoom link (for both): Here

Make sure to check
• Course page
• Canvas page

https://uchicago.zoom.us/j/95410940706?pwd=NmRKd0pIOVZyWlNjbUp1V2xzREwyZz09
https://www.mit.edu/%7Emahabadi/courses/Algorithms_for_Massive_Data_SP21/


Grading

• Two PSets (Each 25%) 
• Final Project (40%)
• Class Participation (10%)



Problem Sets

• Free to discuss the problems
• Each person should completely understand and write their own 

solutions
• Write the name of the collaborators



Projects

• Can be done individually or in groups of size two
• Goal: Motivate you to write a paper in this area
• Each project includes a 10-20 minutes presentation in class, and a 5-10 

pages report
• Two types of projects:

• Summary paper
• Research Project

• Important dates
• April 30th: proposal
• May 30th: first draft
• June 10th: final draft



Introduction



 Cannot even read the 
whole data
 Sub-linear Time Algorithms

 Cannot afford storing 
all the data
Streaming Algorithms

 Single Processor does not 
suffice
E.g. Map-Reduce algorithms

…

Large Data Restrictions and Models



Large Data Tasks
 Searching through the data
 (Approximate Nearest Neighbor)

 Extracting the most relevant 
data (efficient summary)
 (Sketching, Composable Core-

sets)

…



Large Data Techniques

 Sampling, Importance Sampling

 Dimensionality Reduction

…



This Course

Models

 Tasks

 Techniques

…



Streaming Model of Computation
Problems: 
• Distinct Elements
• Morris Counter



Streaming Model

• Huge data set (does not fit into the main memory)
• Only sequential access to the data 

• One pass
• Few passes (the data is stored somewhere else)

• Use little memory
• Sublinear in input parameters
• Sublinear in the input size 

• Solve the problem (approximately)

…
𝒏𝒏
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• One pass
• Few passes (the data is stored somewhere else)
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• Sublinear in the input size 
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…
𝒏𝒏

Parameters of Interest:

1. Memory usage

2. Number of passes

3. Approximation Factor

4. (Sometimes) query/update time 



Restrictions

 Approximation
 Randomization

• Analyze expectation
• Concentration: But also this happens with a good probability

Prob[ being approximately correct ] is high

Homework: take a look at the inequalities.
• Markov
• Chebychev
• Chernoff/Hoeffding



Probability Recap



Markov’s Inequality 

• Argue about concentration using the expected value
• Applies to positive random variables

• If X is a non-negative random variable, then

∀𝜆𝜆 > 0, Pr X > 𝜆𝜆 ⋅ 𝔼𝔼[𝑋𝑋] ≤
1
𝜆𝜆

The probability of exceeding expectation by more than a factor of 𝜆𝜆 is at most 1
𝜆𝜆



Chebyshev’s Inequality
• Argue about concentration using the variance
• Applies to r.v. with finite expected value and non-zero variance

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ⋅ 𝜎𝜎 ≤
1
𝜆𝜆2

The probability of deviating from expectation by more than 𝜆𝜆 ⋅ 𝜎𝜎 is at most 1
𝜆𝜆2

Or,

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝜎𝜎2

𝜆𝜆2



Chebyshev’s Inequality
• Argue about concentration using the variance
• Applies to r.v. with finite expected value and non-zero variance

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ⋅ 𝜎𝜎 ≤
1
𝜆𝜆2

The probability of deviating from expectation by more than 𝜆𝜆 ⋅ 𝜎𝜎 is at most 1
𝜆𝜆2

Or,

∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼[𝑋𝑋] 2]

𝜆𝜆2
More generally,

∀𝑝𝑝 ≥ 1,∀𝜆𝜆 > 0, Pr X − 𝔼𝔼[𝑋𝑋] > 𝜆𝜆 ≤
𝔼𝔼[ 𝑋𝑋 − 𝔼𝔼[𝑋𝑋] 𝑝𝑝]

𝜆𝜆𝑝𝑝



Chernoff Bound

• Suppose 𝑋𝑋1,⋯ ,𝑋𝑋𝑛𝑛 are independent r.v. with 𝑋𝑋𝑖𝑖 ∈ [0, 1]. 
Let 𝑋𝑋 = ∑𝑖𝑖 𝑋𝑋𝑖𝑖 and 𝜇𝜇 = 𝔼𝔼[𝑋𝑋]. Then

∀𝜆𝜆 > 0, Pr 𝑋𝑋 > 1 + 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
3 (upper tail)

and,

∀𝜆𝜆 > 0, Pr 𝑋𝑋 < 1 − 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
2 (lower tail)

• Strong guarantee but requires the independence of r.v.



Distinct Elements



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

…
𝒏𝒏
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Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

𝒏𝒏𝑚𝑚 = 10 Sol = 5

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …
{3,6,9,4,5}



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

• Trivial solution : min(𝑚𝑚,𝑛𝑛 log𝑚𝑚 )
• Keep a counter for each of the 𝑚𝑚 elements, space: 𝑚𝑚 bits.
• Keep everyone in the stream, space: 𝑛𝑛 log𝑚𝑚

• We want to do much better

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …



Distinct Element Problem

• Input: a stream of 𝑛𝑛 numbers from [𝑚𝑚]
• Goal: estimate the number of distinct elements in the stream

• Approximate (up to a factor of 1 + 𝜖𝜖)
• Randomized (with probability 1 − 𝛿𝛿)

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …



Vector Notation

• Receive updates to coordinates of a vector 𝑥𝑥 ∈ ℝ𝑚𝑚

• Coordinate 𝑖𝑖 is denoted as 𝑥𝑥𝑖𝑖
• Upon receiving 𝑖𝑖, we increment 𝑥𝑥𝑖𝑖 by one

• Estimate the number of non-zero coordinates.
• 𝐿𝐿0-norm estimation
• 𝐿𝐿𝑝𝑝-norm estimation: Next Lecture!

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …𝑥𝑥 = [0, 0, 2, 4, 2, 1, 0, 0, 2, 0]

𝑚𝑚 = 10

1 2 3 4 5 6 7 8 9 10



Distinct Element Problem

• Relax the conditions: allow approximation and randomization:
• Find an estimate �DE of #distinct elements DE, such that 

Pr �DE − DE > 𝜖𝜖DE < 𝛿𝛿

• Simpler version: Decision problem where given 𝐷𝐷, identify
• YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
• NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Solve threshold variant, and run for 𝐷𝐷 = {1,1 + 𝜖𝜖, … 1 + 𝜖𝜖 𝑖𝑖 , … ,𝑛𝑛}

 Total space will be multiplied by log1+𝜖𝜖 𝑛𝑛 ≈
log 𝑛𝑛
𝜖𝜖

 Probability of failure multiplied by the same factor
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Basic Algorithm
YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷



Basic Algorithm
YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

𝒏𝒏

3, 6, 9, 9, 3, 4, 5, 4, 4, 5, 4, …

Example. 

• 𝐷𝐷 = 10
• 𝑆𝑆 = {8 , 10}
• zero

• 𝐷𝐷 = 3
• 𝑆𝑆 = {1, 7, 9, 10}
• non-zero (𝑥𝑥9 = 2)



Basic Algorithm

S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?

YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES
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S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?
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• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3



Basic Algorithm

S: set of sampled coordinates
Whether ∑𝑖𝑖∈𝑆𝑆 𝑥𝑥𝑖𝑖 = 0 ?

YES case: DE ≥ 𝐷𝐷(1 + 𝜖𝜖)
NO case: DE < 𝐷𝐷(1 − 𝜖𝜖)

• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3

Space usage: a single number 
in [n]



• Sample each of 𝑚𝑚 coordinate w.p. 1
𝐷𝐷

• If all sampled coordinates are 0, return NO
• Otherwise, return YES

• Pr[NO] = 1 − 1
𝐷𝐷

𝐷𝐷𝐷𝐷
≈ 𝑒𝑒−

𝐷𝐷𝐷𝐷
𝐷𝐷

• For small enough 𝜖𝜖

• If DE > 1 + 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1+𝜖𝜖) < 1
e
− 𝜖𝜖

3

• If DE < 1 − 𝜖𝜖 𝐷𝐷, then 𝑒𝑒−(1−𝜖𝜖 ) > 1
e

+ 𝜖𝜖
3

Decision Variant

• Repeat 𝑘𝑘 = 𝑂𝑂(
log1𝛿𝛿
𝜖𝜖2

) times
• 𝑆𝑆1,⋯ , 𝑆𝑆𝑘𝑘

• Define 𝐶𝐶 ≜ 𝑆𝑆𝑗𝑗 ∑𝑖𝑖∈𝑆𝑆𝑗𝑗 𝑥𝑥𝑖𝑖 = 0

• Compare 𝐶𝐶 with 𝑘𝑘/𝑒𝑒



Decision Variant

Boost the success probability using repetition and Chernoff

• Repeat 𝑘𝑘 = 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

times and let 𝐶𝐶 be #times we get 0

• Using Chernoff bound, with probability at least 1 − 𝛿𝛿
1. If DE > 1 + 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 < 𝑘𝑘

𝑒𝑒

2. If DE < 1 − 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

Case 1. 

• 𝔼𝔼 𝐶𝐶 < 𝑘𝑘
𝑒𝑒

(1 − 𝜖𝜖𝑒𝑒
3

) and set 𝜆𝜆 = 𝜖𝜖𝑒𝑒
3

• Pr 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

< Pr 𝐶𝐶 > 𝔼𝔼[𝐶𝐶](1 + 𝜖𝜖𝑒𝑒
3

) < 𝑒𝑒−
⁄𝜖𝜖𝜖𝜖 3 2⋅𝑂𝑂( �(log1𝛿𝛿) 𝜖𝜖2)

3 = 𝛿𝛿

∀𝜆𝜆 > 0, Pr 𝑋𝑋 > 1 + 𝜆𝜆 𝜇𝜇 < 𝑒𝑒−
𝜆𝜆2𝜇𝜇
3



Decision Variant

Boost the success probability using repetition and Chernoff

• Repeat 𝑘𝑘 = 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

times and let 𝐶𝐶 be #times we get 0

• Using Chernoff bound, with probability at least 1 − 𝛿𝛿
1. If DE > 1 + 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 < 𝑘𝑘

𝑒𝑒

2. If DE < 1 − 𝜖𝜖 𝐷𝐷 then 𝐶𝐶 > 𝑘𝑘
𝑒𝑒

• Space usage of the algorithm: 𝑂𝑂
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛

• Probability of error 𝛿𝛿



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

# thresholds
# sample set 
(per threshold)



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

• Probability of error 𝛿𝛿 ⋅ log 𝑛𝑛
𝜖𝜖

• Number of passes: 1
• Approximation (1 + 𝜖𝜖)

𝑖𝑖 = 0 𝑖𝑖 = 1 … 𝑖𝑖 = 𝑗𝑗 − 1 𝑖𝑖 = 𝑗𝑗 𝑖𝑖 = 𝑗𝑗 + 1 … 𝑖𝑖 = log𝑛𝑛
YES YES YES NO NO NO

By 1, DE > 1 + 𝜖𝜖 𝑗𝑗−1 ⋅ (1 − 𝜖𝜖)
By 2, DE < 1 + 𝜖𝜖 𝑗𝑗 ⋅ (1 + 𝜖𝜖)

2

1



Distinct Elements

• Space usage of the algorithm: 𝑂𝑂 log 𝑛𝑛
𝜖𝜖

⋅
log 1

𝛿𝛿
𝜖𝜖2

numbers from 𝑛𝑛
(Can handle deletions too)

• Probability of error 𝛿𝛿 ⋅ log 𝑛𝑛
𝜖𝜖

• Number of passes: 1
• Approximation (1 + 𝜖𝜖)

𝑖𝑖 = 0 𝑖𝑖 = 1 … 𝑖𝑖 = 𝑗𝑗 − 1 𝑖𝑖 = 𝑗𝑗 𝑖𝑖 = 𝑗𝑗 + 1 … 𝑖𝑖 = log𝑛𝑛
YES YES YES NO NO NO

Return 1 + 𝜖𝜖 𝑗𝑗



Some Comments

1. Deletions
• The algorithm can handle deletion as long as values of coordinates remain 

non-negative
• Dynamic or turnstile streaming

2. Implementing the sample set S
• Pick a hash function ℎ: 𝑚𝑚 → [𝐷𝐷] and 𝑆𝑆 = 𝑖𝑖 ℎ 𝑖𝑖 = 1}
• ℎ can be implemented using pseudo-random generators



State of the art

Uses space: Θ(𝜖𝜖−2 log 1
𝛿𝛿

+ log𝑛𝑛)

• Upper bound: 
• [Jaroslaw Blasiok’20]. Optimal streaming and tracking distinct elements with 

high probability

• Lower bound: 
• [Noga Alon, Yossi Matias, and Mario Szegedy’99]. The space complexity of 

approximating the frequency moments
• [T. S. Jayram and David P. Woodruff’13]. Optimal bounds for Johnson-

Lindenstrauss transforms and streaming problems with subconstant error



Morris Counter



Counting Problem

• Space efficient algorithm that monitors a sequence of events, then at 
any given query time 𝑡𝑡, returns an estimate of the number of events
seen so far (i.e. up to time 𝑡𝑡)

update(): increment the number of events by 1
query(): output (an estimate of) the number of events

• Trivial Bound? 
• If #events is 𝑛𝑛, log𝑛𝑛 bits suffice to maintain #events exactly
• Impossible to solve this problem exactly using 𝑜𝑜 log𝑛𝑛



Approximately Counting

• In most practical cases, it suffices to provide an estimate of #events

• Goal: Given error parameters (𝜖𝜖, 𝛿𝛿), return an estimate �𝑛𝑛 of #events 
𝑛𝑛, s.t.

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝑛𝑛 < 𝛿𝛿



Morris Algorithm

1. Initialize 𝑋𝑋 ← 0

2. Per each update(), increment 𝑋𝑋 with probability 1
2𝑋𝑋

 For query(), output �𝑛𝑛 = 2𝑋𝑋 − 1

Intuition: 𝑋𝑋 is attempting to store a value that is roughly ≈ log 𝑛𝑛
The amount of space required to store 𝑋𝑋 is 𝑂𝑂(log log𝑛𝑛)



Analysis of Morris’s Algorithm

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]



Analysis of Morris’s Algorithm

Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ (2𝑗𝑗 ⋅ 1 − 1
2𝑗𝑗

+ 2𝑗𝑗+1 ⋅ 1
2𝑗𝑗

) Probability of 
incrementing 𝑋𝑋
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Claim 1. Let 𝑋𝑋𝑛𝑛 denote 𝑋𝑋 after 𝑛𝑛 updates. Then, 𝔼𝔼[2𝑋𝑋𝑛𝑛] = 𝑛𝑛 + 1.
Proof by induction on 𝑛𝑛. 
Base case 𝑛𝑛 = 0,𝑋𝑋 = 0 trivially holds. Consider the inductive step.

𝔼𝔼[2𝑋𝑋𝑛𝑛+1] = ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 𝔼𝔼[(2𝑋𝑋𝑛𝑛+1|𝑋𝑋𝑛𝑛 = 𝑗𝑗)]

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ (2𝑗𝑗 ⋅ 1 − 1
2𝑗𝑗

+ 2𝑗𝑗+1 ⋅ 1
2𝑗𝑗

)

= ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗 ⋅ 2𝑗𝑗 + ∑𝑗𝑗=0∞ Pr 𝑋𝑋𝑛𝑛 = 𝑗𝑗
= 𝔼𝔼[2𝑋𝑋𝑛𝑛] + 1
= 𝑛𝑛 + 1
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• i.e., �𝑛𝑛 ≝ 𝔼𝔼[2𝑋𝑋] = 𝑛𝑛 + 1

• By bounding the variance of �𝑛𝑛 and an application of Chebyshev’s, we 
can achieve the desired accuracy guarantee. 

• To recall, goal is to show Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝑛𝑛 < 𝛿𝛿

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝑛𝑛 <
1

𝜖𝜖2𝑛𝑛2
⋅ 𝔼𝔼[ �𝑛𝑛 − 𝑛𝑛 2] =

1
𝜖𝜖2𝑛𝑛2

⋅ 𝔼𝔼[ 2𝑋𝑋 − 1 − 𝑛𝑛 2]

Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1.

Proof. Similar to Claim 1 (exercise)
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Claim 2. 𝔼𝔼[22𝑋𝑋𝑛𝑛] = 3
2
𝑛𝑛2 + 3

2
𝑛𝑛 + 1.

Proof. Similar to Claim 1 (exercise)
Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝑛𝑛 <
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𝜖𝜖2𝑛𝑛2
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=

1
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• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which 
we can instead always return 0 !)
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• Not very meaningful! RHS is better than ½ only when 𝜖𝜖 > 1 (for which 
we can instead always return 0 !)

• How to decrease the failure probability?

Pr �𝑛𝑛 − 𝑛𝑛 > 𝜖𝜖𝑛𝑛 <
1

𝜖𝜖2𝑛𝑛2
⋅
𝑛𝑛2

2
=

1

2𝜖𝜖2
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• Morris+
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• Morris+
Average of 𝑠𝑠 Morris estimators. Variance is multiplied by (1

𝑠𝑠
). 

Setting 𝑠𝑠 = Θ( 1
𝜖𝜖2𝛿𝛿

) suffices to get failure probability 𝛿𝛿

• Morris++
Median of 𝑡𝑡 Morris+ estimators. 
Setting 𝑠𝑠 = 1

𝜖𝜖2
, each Morris+ estimator succeeds w.p. at least 2

3
. 

By Chernoff and setting 𝑡𝑡 = Θ(log 1
𝛿𝛿

), the failure probability becomes at most 𝛿𝛿

Total Space of Morris++: Θ( 1
𝜖𝜖2
⋅ log 1

𝛿𝛿
⋅ log log𝑛𝑛) w.p. at least 1 − 𝛿𝛿
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