
Tree Evaluation in 𝑂(log 𝑛 log log 𝑛) Space
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• The original paper by James Cook and Ian Mertz

‣ https://dl.acm.org/doi/10.1145/3618260.3649664
• A version by Oded Goldreich I found easier to understand

‣ https://www.wisdom.weizmann.ac.il/~oded/VO/tree-eval.pdf
• A stunning result by Ryan Williams that uses space-efficient tree evaluation

‣ https://arxiv.org/pdf/2502.17779

Problem
You have a complete binary tree of height ℎ. Each leaf carries a 𝑏-bit string. Each internal node
represents a gate, which is an aribtrary function {0, 1}𝑏 × {0, 1}𝑏→ {0, 1}𝑏.

To give things names, the internal nodes are indexed by 𝑈 = ⋃ℎ−1𝑖=0 {0, 1}
𝑖, and for 𝑢 ∈ 𝑈 the children

of 𝑢 are 𝑢0 and 𝑢1. Each leaf 𝑢 ∈ {0, 1}ℎ is assigned a 𝑏-bit value 𝑣𝑢.

The desired output is 𝑣𝜆 such that for ever 𝑢 ∈ 𝑈 we have 𝑣𝑢 = 𝑓𝑢(𝑣𝑢0, 𝑣𝑢1). We want an algorithm
that produces this output using a minimal amount of space.

Note: everything here works just as wb for complete 𝑚-ary trees of height ℎ, for constants 𝑚 ≥ 2.

History
Note that the size of an instance is 𝑛 = Θ(𝑏 ⋅ 2ℎ+2𝑏).

The solution by the natural “DFS”-like algorithm uses Θ(ℎ𝑏) = 𝑂(log2 𝑛) space, and was long believed
to be optimal. To the surprise of many complexity theorists, Cook and Mertz in 2024 reduced this to

Θ((ℎ + 𝑏) log 𝑏) = 𝑂(log 𝑛 log log 𝑛).

Solution

Framework
Consider a global memory that stores 3 values, or registers, (𝑥, 𝑦, 𝑧) ∈ {0, 1}𝑏 × {0, 1}𝑏 × {0, 1}𝑏.

Goal: Design a (recursive) procedure that, when invoked with argument 𝑢, modifies global memory
according to (𝑥, 𝑦, 𝑧) → (𝑥, 𝑦, 𝑧 ⊕ 𝑣𝑢).

Clearly, if we have such a procedure, we initialize the global memory to zeros and invoke the procedure
with argument 𝑢 = 𝜆 to get the correct output in the third register.

The base case is when 𝑢 is a leaf, and you simply XOR the desired register with 𝑣𝑢, which is specified
in the instance.

The general plan for the recursive procedure (when 𝑢 is not a leaf) is to update the memory in 5 steps
as follows:

(𝑥, 𝑦, 𝑧) → (𝑥 ⊕ 𝑣𝑢0, 𝑦, 𝑧)
→ (𝑥 ⊕ 𝑣𝑢0, 𝑦 ⊕ 𝑣𝑢1, 𝑧)
→ (𝑥 ⊕ 𝑣𝑢0, 𝑦 ⊕ 𝑣𝑢1, 𝑧 ⊕ 𝑣𝑢)
→ (𝑥 ⊕ 𝑣𝑢0, 𝑦, 𝑧 ⊕ 𝑣𝑢)
→ (𝑥, 𝑦, 𝑧 ⊕ 𝑣𝑢).

1

https://dl.acm.org/doi/10.1145/3618260.3649664
https://www.wisdom.weizmann.ac.il/~oded/VO/tree-eval.pdf
https://arxiv.org/pdf/2502.17779

Steps 1, 2, 4, and 5 are recursive calls to the procedure, except modifying the first and second registers
instead of the third (which we can do by symmetry).

Step 3 is the miraculous step, and we show how to do it below.

To summarize the plan so far: we make recursive calls to XOR 𝑥 and 𝑦 with the values of the children,
(somehow) XOR 𝑧 with the value of the parent while keeping the other registers intact, then repeat
the initial calls to restore 𝑥 and 𝑦.

Miraculous step
Let 𝒦 be a prime field and let 𝑓𝑢,𝑖(𝑥, 𝑦) denote the 𝑖-th bit of 𝑓𝑢(𝑥, 𝑦). Then the multilinear extension
of 𝑓𝑢,𝑖 is 𝑓𝑢,𝑖 : 𝒦𝑏 ×𝒦𝑏 →𝒦𝑏 given by

𝑓𝑢,𝑖(𝑝, 𝑞) = ∑
𝑥,𝑦∈{0,1}𝑏

∏
2𝑛

𝑖=1
{(𝑝‖𝑞)𝑖 if (𝑥‖𝑦)𝑖 = 1
1 − (𝑝‖𝑞)𝑖 if (𝑥‖𝑦)𝑖 = 0

,

where ‖ denotes concatenation and 𝑖 indexes the bits of (𝑥‖𝑦) or the digits of (𝑝‖𝑞).

In other words, 𝑓𝑢,𝑖 is the unique extension of 𝑓𝑢,𝑖 to 𝒦𝑏 ×𝒦𝑏 which agrees with 𝑓𝑢,𝑖 on {0, 1}𝑖 and
is multilinear (i.e. linear in each of the 2𝑏 input “digits”).

Choose 𝒦 such that 𝑚-th roots of unity 1, 𝜔,…, 𝜔𝑚−1 exist, for some 𝑚 > 2𝑏 and |𝒦| = 𝑂(𝑏).

Due to linearity and roots-of-unity filter, we have the crucial identity:

∑
𝑚−1

𝑗=0
𝐿(𝜔𝑗𝑠 + 𝑣) = 𝑚 ⋅ 𝐿(𝑣)

for all multilinear functions 𝐿 over 𝒦2𝑏, where 𝑠, 𝑣 ∈ 𝒦2𝑏 and scalar multiplication and addition of
arguments are done componentwise.

Remark. Using 1, 𝜔,…, 𝜔𝑚−1 instead of arbitrary distinct elements of 𝐾 is a choice made for conve-
nience. The equation above is a form of polynomial interpolation, and choosing roots of unity happens
to make the coefficients of the interpolation all equal 1.

Putting it together
Modify the earlier framework to work over 𝒦 instead of 𝔽2. Our global memory will have 3 registers,
each storing a value in 𝒦𝑏. When we call our procedure with arguments 𝑢 and 𝛿 ∈ {±1}, we want to
transform the registers according to (𝑝, 𝑞, 𝑟) → (𝑝, 𝑞, 𝑟 + 𝛿𝑣𝑢).
• There’s nothing deep going on with the additional parameter 𝛿, it’s just that we’re working over 𝒦

instead of 𝔽2, so instead of XORing, we have to know whether we’re adding or subtracing.

We iterate over 𝑗 = 0,…,𝑚 − 1. At each iteration, our goal is to add

𝛿𝑓𝑢,𝑖(𝜔𝑗𝑝 + 𝑣𝑢0, 𝜔𝑗𝑞 + 𝑣𝑢1)/𝑚

to the 𝑖-th digit of 𝑟, while keeping the other two registers intact. By the identity above, the net result
is adding

𝛿 ∑
𝑚−1

𝑗=0
𝛿𝑓𝑢,𝑖(𝜔𝑗𝑝 + 𝑣𝑢0, 𝜔𝑗𝑞 + 𝑣𝑢1)/𝑚 = 𝛿𝑓𝑢,𝑖(𝑣𝑢0, 𝑣𝑢1) = 𝛿𝑣𝑢,𝑖.

Iteration 𝑗 of the procedure now looks like

2

(𝑝, 𝑞, 𝑟) → (𝜔𝑗𝑝, 𝜔𝑗𝑞, 𝑟)

→ (𝜔𝑗𝑝 + 𝛿𝑣𝑢0, 𝜔𝑗𝑞, 𝑟)

→ (𝜔𝑗𝑝 + 𝛿𝑣𝑢0, 𝜔𝑗𝑞 + 𝛿𝑣𝑢1, 𝑟)

→ (𝜔𝑗𝑝 + 𝛿𝑣𝑢0, 𝜔𝑗𝑞 + 𝛿𝑣𝑢1, 𝑟 + 𝛿𝑅)

→ (𝜔𝑗𝑝 + 𝛿𝑣𝑢0, 𝜔𝑗𝑞, 𝑟 + 𝛿𝑅)

→ (𝜔𝑗𝑝, 𝜔𝑗𝑞, 𝑟 + 𝛿𝑅)
→ (𝑝, 𝑞, 𝑟 + 𝛿𝑅),

where 𝑅 is a shorthand for the concatenation of the field elements

𝑓𝑢,𝑖(𝜔𝑗𝑝 + 𝑣𝑢0, 𝜔𝑗𝑞 + 𝑣𝑢1)/𝑚,

recalling that this was our target expression to add to the third register in iteration 𝑗.

Now, we see how the miraculous step in the middle can actually be performed, because 𝑅 is a function
of the values stored in the first two registers.

This completes the definition of the key recursive procedure.

Finally, we can initialize the three registers to zeros and call the recursive procedure with arguments
𝑢 = 𝜆, 𝜎 = 1 to get 𝑣𝜆 in the third register, as desired.

Space analysis
The details of the space analysis are not as nice as the algorithm itself, so they are omitted from these
notes. It turns out that the algorithm uses 𝑂((ℎ + 𝑏) log 𝑏) = 𝑂(log 𝑛 log log 𝑛) memory.

An Implication
Ryan Williams showed, roughly speaking, that any program that runs in 𝑡(𝑛) time can be simulated
by another program that uses 𝑂(√𝑡(𝑛) log 𝑡(𝑛)) space, by showing a connection between the tree
evaluation problem and the problem of general space-efficient computation. This result can be abbre-
viated as

𝖳𝖨𝖬𝖤(𝑡(𝑛)) ⊆ 𝖲𝖯𝖠𝖢𝖤(√𝑡(𝑛) log 𝑡(𝑛))

This result was surprising to many complexity theorists including Williams himself. Before Williams’s
result, it was commonly believed that for all 𝜀 > 0,

𝖳𝖨𝖬𝖤(𝑡(𝑛)) ⊄ 𝖲𝖯𝖠𝖢𝖤(𝑡(𝑛)1−𝜀).

The recent results in space-efficient tree evaluation and space-efficient simulation of time-bound
programs are huge steps forward in complexity theory.

References
[1] Cook, J. & Mertz, I. “Tree evaluation is in space 𝑂(log 𝑛 · log log 𝑛)”. ACM Symposium on Theory
of Computing 56 (2024), pp. 1268–1278. DOI: https://doi.org/10.1145/3618260.3649664

[2] Goldreich, O. “On the Cook‑Mertz Tree Evaluation Procedure”. Department of Computer Science,
Weizmann Institute of Science (2024). URL: https://www.wisdom.weizmann.ac.il/~oded/VO/tree-eval.
pdf

[3] Williams, R. “Simulating Time With Square-Root Space”. arXiv (2025). DOI: https://doi.org/10.
48550/arXiv.2502.17779

3

https://doi.org/10.1145/3618260.3649664
https://www.wisdom.weizmann.ac.il/~oded/VO/tree-eval.pdf
https://www.wisdom.weizmann.ac.il/~oded/VO/tree-eval.pdf
https://doi.org/10.48550/arXiv.2502.17779
https://doi.org/10.48550/arXiv.2502.17779

	Tree Evaluation in O(log n log log n) Space
	Problem
	History
	Solution
	Framework
	Miraculous step
	Putting it together
	Space analysis

	An Implication
	References

