Tonelli-Shanks Algorithm and Berlekamp’s Algorithm
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:

« Folklore / Wikipedia editors
» https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
» https://en.wikipedia.org/wiki/Berlekamp%27s_algorithm

Problem
Find an efficient (polylog(p)) algorithm that, given integer n and prime p, determines whether n is a
quadratic residue in I, and if so, finds a squareroot.

Trivial progress
—1
Euler’s criterion: n is a quadratic residue if and only if n"z = 1.

2

If p = 3(mod 4), we can simply take r = +n"" and have r> = n"s" = n. But the case p = 1(mod 4)

is nontrivial.

Solution (Tonelli-Shanks algorithm)

Assume x # 0, since that case is trivial.

We use the fact that F ) is cyclic. We can writep —1 = Q - 25 for odd Q and a positive integer S. One
intuition is that I is isomorphic to Z X Zys, and as we’ll see later, it’s easy to find an element in the
correct Zys-coset, but after that locating the exact correct element within the coset takes a little care.

Algorithm, informal description

+ Verify that n'T =1,as per Euler’s criterion.
« Writep — 1 = Q - 2° with Q odd.

« Set R =n"%" sothat R = n(n®) = nt.

Notice that t2° = 1 because the left side is n@2° " = p’= = 1. However, we would like to have

t2° =1 (i.e. t = 1), which would let us have R? = nt = n.

This is what was meant earlier by “finding an element in the correct Z,s-coset”. We will proceed to
find the exact correct element by adjusting R and ¢.

We adjust R and ¢, keeping the invariant that R? = nt, and that ord,(t) is a power of 2 (we stay in
the correct Z,:-coset). We do this in such a way that decreases ord,,(t) until it becomes 1. To keep the
first invariant, our updates should be of the form

e 74 br

o b+ b2

To keep the second invariant, we should have that ord,, (b) is a power of 2.

Recall that we have ord,(t) = 2™ for some m < S — 1. It turns out that if we choose b such that
ord, (b%) = 2™, then ord,, (tb*) = 2™’ for some m’ < m. (This is similar to the fact that if v (z) =
vy(y) = —m, then vy(z + y) = —m’ for some m’ < m.)

How do we find such b? We can take any quadratic non-residue z (since about half of all elements are
non-residues, this can be done efficiently by searching randomly), and notice that ordp(zQ) =25 50
taking b = 292" works.

Thus, our algorithm is as follows.


https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
https://en.wikipedia.org/wiki/Berlekamp%27s_algorithm

Algorithm, formal description

+ Verify that n's = 1, as per Euler’s criterion.

+ Find a quadratic nonresidue z € F,.

« Writep — 1 = Q - 2° with Q odd.

. Set R =n"" sothat R = n(nQ) = nt.

While t #+ 1:

» Compute ord, (t), which is a power of 2; let it be 2™.
» Leth = 292",
» Update r < br.

» Update t < b?t.

As explained above, m decreases with each loop, so t eventually equals 1. Since the invariant R? = nt
is preserved, we will have R? = n, so the square roots of n are +R.

Generalization to higher order roots
We can easily generalize Tonelli-Shanks to find the k-th root of a given k-th power residue n € F,, for
small £.

Factoring squarefree polynomials over finite fields (Berlekamp’s algorithm)
Indeed, it is possible to efficiently find the factorization any polynomial f(z) over any finite field F,
(with ¢ = p").

We first solve the squarefree case. Consider squarefree f(z) € F,[z], which factorizes into irreudcible
polynomials as f(z) = f(x)-fi(z).

Since f is squarefree, f, ..., f, are nonassociate, so there is an isomorphism

k
o F,[2]/(f(z)) = ]j[qu[w]/(fi(w))

given by Chinese remainder theorem. Consider the map h(x) > h(zP) = h(x)P, which trivially
commutes with o.

Then o restricts to an isomorphism
k
o : Fix, (F,[2]/(f(2))) = || Fix, (E,[2]/(fi(2)))
i=1
between the fixed fields. Here, Fix,(R) denotes the fixed field of R under h(z) = h(z)?, i.e.
Fix,(R) = {h(z) € R: h(x) = h(z)P}.
Note that for all 1 <4 <k, since f; is irreducible, F,[z]/(f;(x)) is a field of characteristic p. By a

classic result in finite field theory, the fixed field of h(z) consists of the constant polynomials and is
isomorphic to F,.

Therefore, if we can determine A = Fix,(F,[z]/(f (z))), we immediately know whether f is irre-
ducible. In particular, A is isomorphic to Hiz ) IFp.

Furthermore, note that for any g(x) € A, working in F,[z]/(f(z)), we have
0 ¢g=0

g(x)z =<1 g is anonzero square
—1 g is not a square



which means that a random g € A will satisfy f;| gp%1 — 1 with probability about % (independently
over i by Chinese remainder theorem).

Therefore, once we compute A, if its dimension is £ > 1 as a F,-vector space, we can repeatedly
p-1

sample a random g(x) € A and compute gcd( f(z),g(x)" ) which will be a nontrivial factor of f
with probability about 1 — 2,%1

Computing A is a matter of writing a matrix representing the linear relations in the coefficients of
h(z) which are necessary and sufficient for h(x) = h(zP), then putting it in reduced row echelon form
to read off the nullspace.

So, we have an efficient algorithm, which given a squarefree polynomial f(z) over F,, either deter-
mines that it is irreducible or finds a nontrivial factor. We can repeatedly apply this algorithm to each
factor until f is completely reduced.

In order to handle the general case (f(x) not necessarily squarefree), note that the factors that divide
f(z) with multiplicity exactly ¢ divide the first £ — 1 derivatives of f (but not the ¢-th derivative).
Thus, we can decompose f into

f eed(f ) eed(fFL )
ged(f, /) ged(f, 1/, 1) sed(f, 1,77, 17

each of which is squarefree, and reduce each factor above into irreducibles.
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