
Sumcheck
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• MIT 6.5610 lecture notes by Yael Kalai

‣ https://65610.csail.mit.edu/2025/lec/l17-sumcheck.pdf

Sumcheck problem
Consider a finite field 𝔽𝑝 where 𝑝 is a large prime. Given a polynomial 𝑓 : 𝔽𝑚𝑝 → 𝔽𝑝 of small degree ≤
𝑑 in each variable and a small fixed set 𝐻 ⊆ 𝔽𝑝, compute

𝛽 = ∑
ℎ1,…,ℎ𝑚∈𝐻

𝑓(ℎ1,…, ℎ𝑚).

In particular, we are interested in an interactive proof for the sumcheck problem:

A verifier has oracle access to 𝑓 . Can a prover with unlimited computation efficiently convince a
verifier of the value of 𝛽?

The simple protocol of having the verifier query for every element of the sum has complexity
exponential in 𝑚. Using interactive proofs, we can do much better.

Although the problem may seem rather specific, it is an important building block in the GKR protocol
and in a proof of 𝖨𝖯 = 𝖯𝖲𝖠𝖯𝖢𝖤.

Sumcheck protocol
A word on notation: We use default typesetting (e.g. 𝑔 and 𝛽) to denote the correct values that should
be output by an honest prover and sans letters (e.g. 𝘨 and 𝞫) to denote what the prover actually outputs.

We describe the protocol in terms of an honest prover below, so 𝘨 = 𝑔 and 𝞫 = 𝛽, but we choose to use
default typesetting for prover operations and sans letters when the verifier is performing computations
over untrusted values sent by the prover. This notational distinction is mainly meant to improve the
clarity of the soundness analysis later.

The protocol is as follows:
• The prover evaluates the sum of interest and sends the result 𝛽 to the verifier.
• The prover computes 𝑔1(𝑥) = ∑ℎ2,…,ℎ𝑚∈𝐻

𝑓(𝑥, ℎ2,…, ℎ𝑚), which is a polynomial of degree ≤
𝑑, and sends its coefficients.

• The verifier uses the coefficients to check that ∑𝑥∈𝐻 𝘨1(𝑥) = 𝞫.
• For 𝑖 = 2,…,𝑚:

‣ The verifier sends uniformly sampled 𝑡𝑖−1 from 𝔽𝑝.
‣ The prover computes 𝑔𝑖(𝑥) = ∑ℎ𝑖+1,…,ℎ𝑚∈𝐻

𝑓(𝑡1,…, 𝑡𝑖−1, 𝑥, ℎ𝑖+1,…, ℎ𝑚), and again sends
its coefficients as a degree ≤ 𝑑 polynomial in 𝑥.

‣ The verifier checks that ∑ℎ𝑖∈𝐻
𝘨𝑖(ℎ𝑖) = 𝘨𝑖−1(𝑡𝑖−1).

• Finally, the verifier uniformly samples 𝑡𝑚 from 𝔽𝑝 and checks that 𝘨𝑚(𝑡𝑚) = 𝑓(𝑡1,…, 𝑡𝑚) using
its oracle access to 𝑓 . The verifier accepts if and only if all checks have passed.

Soundness analysis
The protocol already describes how an honest prover can pass all checks, so completeness of the
protocol follows. We focus on proving soundness.

1

https://65610.csail.mit.edu/2025/lec/l17-sumcheck.pdf

An important fact is that two distinct polynomials ℎ1 ≠ ℎ2 over 𝔽𝑝 of degree at most 𝑑 coincide on
at most 𝑑 inputs. Specifically, there exist at most 𝑑 values 𝑥 ∈ 𝔽𝑝 such that ℎ1(𝑥) = ℎ2(𝑥), and this
follows from the fact that ℎ1 − ℎ2 is a nonzero polynomial over 𝔽𝑝 of degree at most 𝑑.

Consider a dishonest prover who lied about 𝛽, i.e. 𝞫 ≠ 𝛽.

Since the verifier checks that ∑𝑥∈𝐻 𝘨1(𝑥) = 𝞫, the verifier must lie about 𝑔1 as well, so 𝘨1 ≠ 𝑔1.

At the end, the verifier checks that 𝘨𝑚(𝑡𝑚) = 𝑓(𝑡1,…, 𝑡𝑚) for some uniformly random 𝑡𝑚 ∈ 𝔽𝑝. If
𝘨𝑚 ≠ 𝑔𝑚, then the probability that 𝘨𝑚(𝑡𝑚) = 𝑓(𝑡1,…, 𝑡𝑚) = 𝑔𝑚(𝑡𝑚) is at most 𝑑𝑝 because 𝘨𝘮 and 𝑔𝑚
coincide on at most 𝑑 inputs. In this case, the prover succeeds with probability ≤ 𝑑

𝑝 .

Since the prover must give a wrong value 𝘨1 ≠ 𝑔1 and the correct value of 𝘨𝘮 = 𝑔𝑚, the prover must
find an opportunity to switch from giving wrong values 𝘨𝑖−1 ≠ 𝑔𝑖−1 to giving correct values 𝘨𝑖 = 𝑔𝑖.
These opportunities are difficult to come by, as shown here:

The verifier will check that ∑ℎ𝑖∈𝐻
𝘨𝑖(ℎ𝑖) = 𝘨𝑖−1(𝑡𝑖−1).

So in order to give the correct value of 𝑔𝑖 while still passing the check, the prover will need to have

𝑔𝑖−1(𝑡𝑖−1) = ∑
ℎ𝑖∈𝐻

𝑔𝑖(ℎ𝑖) = ∑
ℎ𝑖∈𝐻

𝘨𝑖(ℎ𝑖) = 𝘨𝑖−1(𝑡𝑖−1).

This is possible only if the verifier’s randomly sampled 𝑡𝑖−1 is one of at most 𝑑 inputs on which 𝑔𝑖−1
and 𝘨𝑖−1 coincide, which happens with probability at most 𝑑/𝑝.

To summarize, we’ve shown that
• A dishonest prover who passes the first check must lie about 𝑔1.
• In each round 2 ≤ 𝑖 ≤ 𝑚, a prover who has lied about 𝑔𝑖−1 must lie about 𝑔𝑖 in order to pass a check,

except in an event with probability at most 𝑑/𝑝.
• A prover who lies about 𝑔𝑚 passes the final check with probability at most 𝑑/𝑝.

Thus, a dishonest prover gets caught with probability at least (1 − 𝑑
𝑝)

𝑚
≥ 1 − 𝑑𝑚

𝑝 .

If 𝑑𝑚 is not sufficiently small compared to 𝑝 to achieve the desired soundness/security level, then we
run the protocol several times. In the analysis below, we assume that 𝑑𝑚 ≪ 𝑝 and the protocol is only
run once.

Efficiency analysis
We leave to the reader to verify that:
• The communication complexity in bits is 𝑂(𝑑𝑚 log 𝑝).
• The verifier runtime is 𝑂(𝑚 ⋅ |𝐻| ⋅ 𝑑 ⋅ polylog 𝑝).
• The prover runtime is 𝑂(𝑚 ⋅ |𝐻|𝑚 ⋅ 𝑇𝑓), where 𝑇𝑓 denotes the time to compute 𝑓 .

2

	Sumcheck
	Sumcheck problem
	Sumcheck protocol
	Soundness analysis
	Efficiency analysis

