
Shamir Secret Sharing and Reed-Solomon Codes
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• MIT 6.5610 lecture notes by Yael Kalai

‣ https://65610.csail.mit.edu/2025/lec/l11-ss.pdf
• UWash Coding Theory lecture notes on Reed-Solomon codes by Anup Rao

‣ https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

Secret sharing definition
Secret sharing schemes are good for distributing shares of an important secret to a group of people
such that no individual person gains information about the secret, but sufficiently many people can
communicate their shares to reveal the secret.

Formally, a 𝑡-out-of-𝑛 secret sharing scheme over finite message space ℳ consists of two efficient
algorithms:
• 𝖲𝗁𝖺𝗋𝖾 is a randomized algorithm that inputs a message 𝑚 ∈ ℳ and outputs 𝑛 shares (𝑠1, …, 𝑠𝑛).
• 𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍 is deterministic. It inputs 𝑡 shares {(𝑖, 𝑠𝑖)}𝑖∈𝐼 for |𝐼| = 𝑡 and outputs a message

𝑚 ∈ ℳ.

They should satisfy the following properties:
• Correctness: reconstruction recovers the original message with probability 1, i.e.

Pr
(𝑠1,…,𝑠𝑛)←𝖲𝗁𝖺𝗋𝖾(𝑚)

[𝖱𝖾𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍({𝑖, 𝑠𝑖}𝑖∈𝐼) = 𝑚] = 1

for all 𝐼 ⊆ [𝑛] with |𝐼| = 𝑡.
• Security: any collection of fewer than 𝑡 shares reveals no information about the message,

i.e. for all 𝑚, 𝑚′ ∈ ℳ and 𝐼 ⊆ [𝑛] with |𝐼| < 𝑡,

(𝑠𝑖)𝑖∈𝐼≡ (𝑠′
𝑖)𝑖∈𝐼

where (𝑠𝑖)𝑖∈[𝑛] ← 𝖲𝗁𝖺𝗋𝖾(𝑚) and (𝑠′
𝑖)𝑖∈[𝑛] ← 𝖲𝗁𝖺𝗋𝖾(𝑚′).

Construction by Shamir
We will reference many times the following important fact, which can be explained through Lagrange
interpolation or the Vandermonde matrix/determinant:

Key fact.

Let 𝑑 be a positive integer and points (𝑥1, 𝑦1), …, (𝑥𝑑+1, 𝑦𝑑+1) be 𝑑 + 1 pairs of elements of 𝔽𝑝 with
𝑥1, …, 𝑥𝑑+1 distinct. Then there is a unique polynomial 𝑃 of degree at most 𝑑 such that 𝑃(𝑥𝑖) =
𝑦𝑖 for 𝑖 = 1, …, 𝑑 + 1.

A polynomial 𝑃 of degree 𝑡 − 1 over a finite field is uniquely determined by 𝑡 points (𝑥, 𝑃 (𝑥)) with
distinct 𝑥.

Let 𝑝 > 𝑛 be a prime and work over 𝔽𝑝. (Actually, you can work over any finite field.)

We can write our message 𝑚 in a fixed number of bits, so we can assume that ℳ = {0, 1} and perform
secret sharing on every bit of the message. (Alternatively we can encode 𝑚 as a fixed-length sequence

1

https://65610.csail.mit.edu/2025/lec/l11-ss.pdf
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

of elements of 𝔽𝑝 and perform secret sharing on every entry of the sequence, allowing us to assume
ℳ = 𝔽𝑝.)

Choose a random degree 𝑡 − 1 polynomial 𝑓 : 𝔽𝑝 → 𝔽𝑝 such that 𝑓(0) = 𝑚. This can be done by
setting the constant coefficient to 𝑚 and choosing all coefficients independently and uniformly over
𝔽𝑝.

The secret shares are given by 𝑠𝑖 = 𝑓(𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

Reconstruction: Given any 𝑡 shares {(𝑖, 𝑠𝑖)}𝑖∈𝐼 with |𝐼| = 𝑡, we can recover the unique possible
polynomial 𝑓 of degree 𝑑 − 1 which satisfies 𝑓(𝑖) = 𝑠𝑖 for all 𝑖 ∈ 𝐼 , by Lagrange interpolation. Then
we can compute 𝑓(0) = 𝑚.

Security: Given 𝑡′ < 𝑡 shares {(𝑖, 𝑠𝑖)}𝑖∈𝐼 with |𝐼| = 𝑡′, there are 𝑝𝑡−𝑡′ polynomials which satisfy
𝑓(𝑖) = 𝑠𝑖 for all 𝑖 ∈ 𝐼 . Furthermore, exactly 𝑝𝑡−𝑡′−1 of these polynomials achieve each possible evalu-
ation at 0. (Exercise: use the key fact above to prove this!) Therefore, the distributions in the security
definition are identical (because they are both uniform over |𝐼|).

Shamir secret sharing is quite closely related to Reed-Solomon error correction codes.

Quick review on error correction codes
For a set 𝑆, an error correction code of length 𝑛 over 𝑆 with distance 𝑑 is a subset 𝐶 of 𝑆𝑛 such that
the Hamming distance between any two distinct elements of 𝐶 (the number of coordinates at which
they differ) is at least 𝑑.

If 𝑆 is a finite field 𝔽𝑞 and 𝐶 is a subspace of 𝔽𝑛
𝑞 , then 𝐶 is called a linear error correction code.

One motivation for studying error correction codes: Alice can send a message 𝑚 ∈ 𝐶 to Bob. The
message is robust to up to 𝑑 − 1 erasures and ⌊𝑑−1

2 ⌋ errors. That is,
• If 𝑚 gets corrupted to 𝑚′ by hiding up to 𝑑 − 1 coordinates of 𝑚, then Bob, receiving 𝑚′, can still

uniquely determine the original message 𝑚 ∈ 𝐶 .
• If 𝑚 gets corrupted to 𝑚′ by changing up to 𝑑 − 1 coordinates of 𝑚 to different values, then Bob,

receiving 𝑚′, can still uniquely determine the original message 𝑚 ∈ 𝐶 .

Reed-Solomon error correction codes
The Reed-Solomon error correction code has a very simple definition. Let 𝔽𝑞 be a finite field. Consider
the set 𝑃𝑘 of polynomials 𝑓 : 𝔽𝑞 → 𝔽𝑞 of degree at most 𝑘 − 1, which is a 𝑘-dimensional vector space
over 𝔽𝑞 .

Let 𝛾 be a generator of 𝔽×
𝑞 so that the elements of 𝔽𝑞 are {0, 𝛾0, 𝛾1, …, 𝛾𝑞−2}.

The map 𝖤𝗏𝖺𝗅 : 𝑃𝑘 → 𝔽𝑞
𝑞 given by 𝑓 ↦ (𝑓(0), 𝑓(𝛾0), 𝑓(𝛾1), …, 𝑓(𝛾𝑞−2)) is injective and we let its

image be 𝐶𝑘, which is the Reed-Solomon code. By the key fact, 𝐶𝑘 has distance 𝑞 − 𝑘 + 1, which is
the maximum possible distance of a 𝑘-dimensional code in a 𝑞-dimensional space.

Encoding efficiently
If we let 𝑓(𝑋) = 𝑓0 + 𝑓1𝑋 + ⋯ + 𝑓𝑘−1𝑋𝑘−1 and consider 𝖤𝗏𝖺𝗅 as a linear transformation

(𝑓0, …, 𝑓𝑘−1) ↦ (𝑓(0), 𝑓(𝛾0), 𝑓(𝛾1), …, 𝑓(𝛾𝑞−2)),

then the transformation has matrix

2

𝐺 =

(
((
((
((
((
((
((

1
1
1
1
⋮
1

0
𝛾0

𝛾1

𝛾2

⋮
𝛾𝑞−1

0
𝛾0

𝛾2

𝛾4

⋮
𝛾2(𝑞−2)

…
…
…
…
⋱
…

0
𝛾0

𝛾𝑘−1

𝛾2(𝑘−1)

⋮
𝛾(𝑘−1)(𝑞−2)

)
))
))
))
))
))
))

.

The encoding becomes computing the matrix-vector multiplication

𝐺 ⋅

(
((
((
((

𝑓0
𝑓1
⋮

𝑓𝑘−1)
))
))
))

,

which can be done in 𝑂(𝑞 log 𝑘) field operations using FFT.

Decoding efficiently
Decoding from up to 𝑞 − 𝑘 erasures is identical to reconstruction from Shamir secret sharing. Simply
choose 𝑘 non-erased points and interpolate to recover the original polynomial 𝑓 .

Figuring out how to efficiently decode from up to 𝑞−𝑘
2 errors is a challenging and fun puzzle!

Setup/problem: Let 𝛼1, …, 𝛼𝑞 be the elements of 𝔽𝑞 and (𝛽1, …, 𝛽𝑞) be a noised message. In
particular, we may assume that there exists a polynomial 𝑓 of degree ≤ 𝑘 − 1 such that 𝑓(𝛼𝑖) =
𝛽𝑖 holds for all but at most ⌊𝑞−𝑘

2 ⌋ values 𝑖. Because the code 𝐶𝑘 has distance 𝑞 − 𝑘 + 1, it follows
that 𝑓 is unique. How can we efficiently determine 𝑓?

Solution:

Consider the set 𝒳 of pairs of polynomials (𝑒, 𝑔) of degrees at most ⌊𝑞−𝑘
2 ⌋ and ⌊𝑞+𝑘

2 − 1⌋, respectively,
such that

ℎ(𝑋, 𝑌) = 𝑒(𝑋) ⋅ 𝑌 − 𝑔(𝑋)

vanishes on all (𝛼𝑖, 𝛽𝑖).

This is a vector space over 𝔽𝑞 because the vanishing constraints are linear constraints in the coefficients
of 𝑒 and 𝑔.

Note that 𝒳 has at least one element (𝑒, 𝑔) with 𝑒 nonzero, as shown by the example

𝑒(𝑋) = ∏
𝑖:𝑓(𝛼𝑖)≠𝛽𝑖

(𝑋 − 𝛼𝑖), 𝑔(𝑋) = 𝑒(𝑋)𝑓(𝑋).

We now prove that all (𝑒, 𝑔) ∈ 𝒳 must satisfy 𝑔 = 𝑒𝑓 .

Indeed, if we define 𝑢 = 𝑒𝑓 − 𝑔, then at least ⌈𝑞+𝑘
2 ⌉ field elements 𝛼𝑖 satisfy

𝑢(𝛼𝑖) = 𝑒∗(𝛼𝑖)𝑓(𝛼𝑖) − 𝑔∗(𝛼𝑖)
= 𝑒∗(𝛼𝑖)𝛽𝑖 − 𝑔∗(𝛼𝑖)
= ℎ(𝛼𝑖, 𝛽𝑖).

Now 𝑢 is a polynomial of degree at most ⌊𝑞+𝑘
2 − 1⌋ which vanishes on at least ⌈𝑞+𝑘

2 ⌉ points, which
implies that 𝑢 is the zero polynomial, so 𝑔 = 𝑒𝑓 as desired.

3

Thus, it suffices to find any element (𝑒, 𝑔) ∈ 𝒳 with 𝑒 nonzero. We efficiently (complexity quadratic in
𝑞 if I’m not mistaken) obtain a basis for 𝒳 by writing the linear constraints imposed by the vanishing
condition on the coefficients of 𝑔 and 𝑒 and performing Gaussian elimination. After finidng a basis,
choosing such (𝑒, 𝑔) is straightforward, and we can determine 𝑓 = 𝑔

𝑒 , as desired.

Remarks:
• The linked notes on Reed Solomon codes mention a “near linear” time solution by using polynomial

interpolation to find nontrivial (𝑒, 𝑔) ∈ 𝒳. I haven’t been able to figure out how this works.
• I’m not very sure how to motivate the above solution. I believe that a useful intuition is that

everything about the Reed Solomon code is very “linear” in a sense, so we want to solve for the
coefficients of 𝑓 by solving some linear system. The error pairs with 𝑓(𝛼𝑖) ≠ 𝛽𝑖 get in the way of
this, so we can “mask” over these pairs by introducing the error-locator polynomial

𝑒(𝑋) = ∏
𝑖:𝑓(𝛼𝑖)≠𝛽𝑖

(𝑋 − 𝛼𝑖).

4

	Shamir Secret Sharing and Reed-Solomon Codes
	Secret sharing definition
	Construction by Shamir
	Quick review on error correction codes
	Reed-Solomon error correction codes
	Encoding efficiently
	Decoding efficiently

