Shamir Secret Sharing and Reed-Solomon Codes
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
« MIT 6.5610 lecture notes by Yael Kalai
» https://65610.csail. mit.edu/2025/1lec/111-ss.pdf
« UWash Coding Theory lecture notes on Reed-Solomon codes by Anup Rao
» https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

Secret sharing definition

Secret sharing schemes are good for distributing shares of an important secret to a group of people
such that no individual person gains information about the secret, but sufficiently many people can
communicate their shares to reveal the secret.

Formally, a t-out-of-n secret sharing scheme over finite message space M consists of two efficient
algorithms:
+ Share is a randomized algorithm that inputs a message m € M and outputs n shares (sq, ..., s,, ).

* Reconstruct is deterministic. It inputs ¢ shares {(i,s;)},_, for |[I| =t and outputs a message
m e M.

They should satisfy the following properties:
« Correctness: reconstruction recovers the original message with probability 1, i.e.

Pr [Reconstruct({i,si}id) = m] =1

(814---»8,,)¢Share(m)

for all I C [n] with |I| = t.
« Security: any collection of fewer than ¢ shares reveals no information about the message,
ie forallm,m’ € M and I C [n]| with |I| < t,

(Si)iel (Sg)iel

< Share(m’).

where (s;) < Share(m) and (s7), _

i€[n] i€[n]

Construction by Shamir
We will reference many times the following important fact, which can be explained through Lagrange
interpolation or the Vandermonde matrix/determinant:

Key fact.

Let d be a positive integer and points (1, Y1), -, (Zg41, Y1) be d + 1 pairs of elements of F, with
Zq,..., Ty distinct. Then there is a unique polynomial P of degree at most d such that P(z;) =
y;fori =1,...,d + 1.

A polynomial P of degree t — 1 over a finite field is uniquely determined by ¢ points (x, P(z)) with
distinct z.
Let p > n be a prime and work over F,,. (Actually, you can work over any finite field.)

We can write our message m in a fixed number of bits, so we can assume that M = {0, 1} and perform
secret sharing on every bit of the message. (Alternatively we can encode m as a fixed-length sequence


https://65610.csail.mit.edu/2025/lec/l11-ss.pdf
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

of elements of I, and perform secret sharing on every entry of the sequence, allowing us to assume
M =F,)

Choose a random degree ¢t — 1 polynomial f : F, — F, such that f(0) = m. This can be done by
setting the constant coefficient to m and choosing all coefficients independently and uniformly over

F,.

The secret shares are given by s, = f(i) forall 1 < i < n.

Reconstruction: Given any ¢ shares {(¢,s;)}, , with [I| =¢, we can recover the unique possible

el
polynomial f of degree d — 1 which satisfies f(i) = s, for all ¢ € I, by Lagrange interpolation. Then

we can compute f(0) = m.

Security: Given ¢’ <t shares {(i,s;)}, , with [I| =t', there are pt~*" polynomials which satisfy
f(i) = s, for all ¢ € I. Furthermore, exactly Pt 1 of these polynomials achieve each possible evalu-
ation at 0. (Exercise: use the key fact above to prove this!) Therefore, the distributions in the security
definition are identical (because they are both uniform over |I).

Shamir secret sharing is quite closely related to Reed-Solomon error correction codes.

Quick review on error correction codes

For a set S, an error correction code of length n over S with distance d is a subset C' of S™ such that
the Hamming distance between any two distinct elements of C' (the number of coordinates at which
they differ) is at least d.

If S is a finite field IFq and C is a subspace of IE'(?, then C is called a linear error correction code.

One motivation for studying error correction codes: Alice can send a message m € C to Bob. The

message is robust to up to d — 1 erasures and L%J errors. That is,

« If m gets corrupted to m’ by hiding up to d — 1 coordinates of m, then Bob, receiving m’, can still
uniquely determine the original message m € C.

« If m gets corrupted to m’ by changing up to d — 1 coordinates of m to different values, then Bob,
receiving m/, can still uniquely determine the original message m € C.

Reed-Solomon error correction codes

The Reed-Solomon error correction code has a very simple definition. Let I, be a finite field. Consider
the set B, of polynomials f : F, — F, of degree at most k¥ — 1, which is a k-dimensional vector space
over F,.

Let 7 be a generator of F* so that the elements of F, are {0,7°,~", ..., 74 2}.

The map Eval : B, — F? given by f — (f(0), f(7°), f(7'), .., f(77?)) is injective and we let its
image be C}, which is the Reed-Solomon code. By the key fact, C;, has distance ¢ — k 4 1, which is
the maximum possible distance of a k-dimensional code in a g-dimensional space.

Encoding efficiently
If we let f(X) = fo + f1X + -+ f_1 X" ! and consider Eval as a linear transformation

(va EAiS) flcfl) = (f(O), f(70)7 f(71)7 L) f(’yin))v

then the transformation has matrix
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The encoding becomes computing the matrix-vector multiplication

o
¢ |

fkfl
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which can be done in O(qlog k) field operations using FFT.

Decoding efficiently
Decoding from up to ¢ — k erasures is identical to reconstruction from Shamir secret sharing. Simply
choose k non-erased points and interpolate to recover the original polynomial f.

Figuring out how to efficiently decode from up to q;2k errors is a challenging and fun puzzle!

Setup/problem: Let ay, ..., o, be the elements of F, and (61, ...,ﬁq) be a noised message. In
particular, we may assume that there exists a polynomial f of degree < k — 1 such that f(«;) =
B; holds for all but at most L%J values 7. Because the code C), has distance ¢ — k + 1, it follows
that f is unique. How can we efficiently determine f?

Solution:
Consider the set I of pairs of polynomials (e, g) of degrees at most [%’“J and [# — 1J, respectively,
such that

hMX,Y) = e(X) Y —g(X)
vanishes on all (o, ;).

This is a vector space over I, because the vanishing constraints are linear constraints in the coefficients
of e and g.

Note that I has at least one element (e, g) with e nonzero, as shown by the example
e(X)= J] (X—a) g(X)=eX)f(X).
i f(o;)#B;
We now prove that all (e, g) € X must satisfy g = ef.

Indeed, if we define u = ef — g, then at least [%-‘ field elements «; satisfy

u(o,) = e*(a;) f(a;) — g% (a;)
=e"(y)B; — 9" (o)
= h(a;, B;)

Now w is a polynomial of degree at most Lq;—k — J which vanishes on at least {q;—ﬂ points, which
implies that w is the zero polynomial, so g = e f as desired.



Thus, it suffices to find any element (e, g) € X with e nonzero. We efficiently (complexity quadratic in
q if ’'m not mistaken) obtain a basis for ' by writing the linear constraints imposed by the vanishing
condition on the coefficients of g and e and performing Gaussian elimination. After finidng a basis,
choosing such (e, g) is straightforward, and we can determine f = £, as desired.

Remarks:

« The linked notes on Reed Solomon codes mention a “near linear” time solution by using polynomial
interpolation to find nontrivial (e, g) € X. I haven’t been able to figure out how this works.

« I'm not very sure how to motivate the above solution. I believe that a useful intuition is that
everything about the Reed Solomon code is very “linear” in a sense, so we want to solve for the
coefficients of f by solving some linear system. The error pairs with f(«;) # 5, get in the way of
this, so we can “mask” over these pairs by introducing the error-locator polynomial

eX)= ] X-a).

i f(e;)#8;
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