
STARK
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources
• Vitalik Buterin’s blog:

‣ https://vitalik.eth.limo/general/2017/11/09/starks_part_1.html
‣ https://vitalik.eth.limo/general/2017/11/22/starks_part_2.html

• aszepieniec’s blog:
‣ https://aszepieniec.github.io/stark-anatomy/stark

• Tiago Martins, João Farinha
‣ https://eprint.iacr.org/2023/661.pdf

• Bobbin Threadbare
‣ https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-airAssembly.pdf

Each of the two blogs has more parts than are listed above!

Prerequisite knowledge
Some necessary background knowledge:
• Interactive proofs
• Merkle trees

‣ https://en.wikipedia.org/wiki/Merkle_tree
• Polynomial interpolation and some properties of polynomials in one variable

‣ https://en.wikipedia.org/wiki/Polynomial_interpolation
• Modular arithmetic and Fermat’s little theorem

‣ https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem

Contents
STARK . 1

Sources . 1
Prerequisite knowledge . 1

1. What is a STARK? . 2
2. Outline . 2

Arithmetization: . 2
Interpolation . 2
Compilation . 3
Roadmap . 3

3. A Motivating Subproblem (Vitalik Part 1) . 3
The Problem . 4
The Solution: Interpolation! . 4

4. Degree-check, or FRI (Vitalik Part 2) . 5
Attempt 1 . 5
Improvement 1 . 7
Improvement 2 . 8

5. Arithmetization (Aszepieniec Part 4) . 10
6. Putting it together . 11

Making the interactive proof non-interactive . 12

1

https://vitalik.eth.limo/general/2017/11/09/starks_part_1.html
https://vitalik.eth.limo/general/2017/11/22/starks_part_2.html
https://aszepieniec.github.io/stark-anatomy/stark
https://eprint.iacr.org/2023/661.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-airAssembly.pdf
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Polynomial_interpolation
https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem

1. What is a STARK?
(zk)STARK: like (zk)SNARK, except
• it doesn’t need a trusted setup
• the only security assumption is a secure hash is used
• the proof is not quite as succinct (short and fast to verify)

The T stands for “transparent” and means that no trusted setup is required.

Situation: the prover is about to perform a computation 𝑓 on input 𝑥 (where 𝑓 is publicly known).
When the prover finishes the computation and finds 𝑓(𝑥) = 𝑦, the prover will want to convince the
verifier that 𝑓(𝑥) = 𝑦 (or in the zero knowledge setting, that the prover knows a secret 𝑥 such that
𝑓(𝑥) = 𝑦).

Below, all arithmetic is done over a finite field. It is convenient if the computation 𝑓 is natively
expressed in terms of operations over the same finite field. We use a prime field 𝔽𝑝 for simplicity. (I
have read that there are some advantages to working over a field 𝔽2𝑘 of characteristic 2 but not learned
the details of this.)

2. Outline

Computation ⟶
arithmetization

Arithmetic
Constraint

System
⟶

interpolation Polynomial
IOP

⟶
compilation Cryptographic

Proof System

The protocol can be broken down into three parts as in the diagram above. Here’s a brief informal
description of each:

Arithmetization:
• Think of the computation as being performed on a set of 𝑤 registers, over 𝑇 time steps. (Here, 𝑤

and 𝑇 will depend on the function 𝑓 and on the details of its implementation as a circuit. Assume 𝑤
is small.)

• Thus, the computation has a trace, which is a 𝑤 × 𝑇 array 𝑊 consisting of the values of all registers
over all time steps.

• Each time step, the registers should update in a simple way.
• The goal of arithmetization is to capture this simple update by some polynomial relations that should

hold over register values over every pair of consecutive time steps (consecutive columns of 𝑊).
• These polynomial relations depend only on the publicly known function 𝑓 being computed.

Interpolation
• The prover can perform a computation and obtain its trace 𝑊 by recording the value of every register

at every time step.
• The prover wants to be able to prove that 𝑊 satisfies the polynomial constraints (which implies that

the computation was done correctly), then reveal the particular index of the trace which holds the
output 𝑦.

• For each register, if its value over the time steps are 𝑎0, …, 𝑎𝑇−1, it turns out to be helpful for the
prover to do the following:¹
‣ Find the unique polynomial 𝑝 of degree at most 𝑇 − 1 such that 𝑃(𝑖) = 𝑎𝑖 for 𝑖 = 0, …, 𝑇 − 1.
‣ Extend the sequence 𝑤 according to this polynomial. That is, choose some 𝑁 ≫ 𝑇 and define

𝑎𝑖 = 𝑃(𝑖) for 𝑖 = 𝑇 , …, 𝑁 − 1.
• (The reason why this is helpful might not be obvious now but will become clear later!)

¹For simplicity, we lie here about what inputs you interpolate over and will correct this lie later.

2

• In this way, the 𝑤 × 𝑇 array 𝑊 of register values extends to a 𝑤 × 𝑁 array 𝑊 ′ in which each row
consists of the evaluations of a polynomial of degree at most 𝑇 − 1.

Compilation
• The prover can commit to every value in 𝑊 ′ by sending the verifier the root of a Merkle tree.

‣ You can learn about Merkle trees here (https://en.wikipedia.org/wiki/Merkle_tree).
‣ Alternatively, you can leave this as a black box, and assume the following:

– The size of the commitment is constant
– The verifier can query any index of the array, and the prover can send a log(𝑁)-size proof of

the value at that index, which can be verified in log(𝑁) hash evaluations.
• The prover wants to prove, by answering the verifier’s queries, that the values in 𝑊 ′ satisfy two

properties:
‣ Recall that consecutive columns of 𝑊 satisfy certain polynomial constraints. These constraints

translate to a property that 𝑊 ′ must satisfy. Details of this are delayed until later.
‣ The second property is that the 𝑁 elements of each row of 𝑊 ′ are the evaluations of some

polynomial of degree at most 𝑇 − 1 (as they should if interpolation was done correctly).
• In fact, we want the verifier to be able to do this with much fewer than 𝑇 queries. After all, if the

verifier had the bandwidth to send 𝑇 queries, the verifier could probably just compute 𝑓(𝑥) directly
(at least in the non-zk setting where 𝑥 is public), since by definition that can be done in 𝑇 time steps.

• It should be surprising that the verifier can be convinced of the second property in much fewer than
𝑇 queries, because any 𝑇 evaluations are consistent with some polynomial of degree ≤ 𝑇 − 1.

Roadmap
• In section 3, we look at a toy subproblem of compilation that motivates interpolation.
• In section 4, we learn how the prover can efficiently prove a degree bound (the “second property”

mentioned in Compilation).
• In section 5, we discuss some aspects of arithmetization and establish what the outputs (polynomial

constraints) of arithmetization look like.
• In section 6, we generalize the toy subproblem to accommodate said polynomial constraints.

3. A Motivating Subproblem (Vitalik Part 1)
Recall that in compilation, the prover sends a commitment encompassing every value in 𝑊 ′. The
verifier can query for ≪ 𝑇 entries of 𝑊 ′ and should end up convinced of properties (1) and (2) of 𝑊 ′:
• Property (1) depends on the polynomial constraints determined in arithmetization
• Property (2) is that the degree of each row is at most 𝑇 − 1.

We neglect property (2) until the next section. For now, it may be helpful for us to pretend that the
prover can efficiently prove a degree-check. That is, after the prover has committed to a sequence of
numbers 𝑎0, …, 𝑎𝑁−1, if these numbers agree with some degree ≤ 𝑑 polynomial, then the prover can
efficiently convince the verifier that it is so.

(The degree-check proof as just described is not actually possible, but we will see that a weaker version
suffices for our purposes, and we will demonstrate how to achieve this weaker degree-check in the
next section.)

Consider the following toy problem which is used to motivate interpolation and show how constraints
on 𝑊 translate to constraints on 𝑊 ′. In this toy problem, 𝑊 is a one-dimensional array instead of
two-dimensional.

3

https://en.wikipedia.org/wiki/Merkle_tree

The Problem
Suppose that a prover has sent a Merkle root for numbers 𝑊 = (𝑊1, …, 𝑊106) and wants to prove that
it satisfies 𝑊𝑥 ∈ {0, 1, …, 9} for all 𝑥 = 1, 2, …, 106. One way to do this is by letting the verifier query
all 106 values 𝑊𝑥. How can we decrease the verifier complexity way below 106?

The Solution: Interpolation!
• Compute the degree ≤ 106 − 1 polynomial 𝑃 which agrees with 𝑊 in the sense that 𝑃(𝑥) = 𝑊𝑥

for 𝑥 = 1, …, 106. (We will ignore the “−1” in future degree analyses for simplicity.)
• Use 𝑃 to extend 𝑊 to 𝑊 ′ = (𝑊1, …, 𝑊109) = (𝑃(1), …, 𝑃(109)) and send a commitment to the

new values of 𝑊 ′.
• Let

𝐶(𝑧) = 𝑧(𝑧 − 1)⋯(𝑧 − 9),

which encodes the condition 𝑧 ∈ {0, …, 9} to 𝐶(𝑧) = 0. The prover now wants to show that
𝐶(𝑊𝑥) = 𝐶(𝑃(𝑥)) = 0 for 𝑥 = 1, …, 106.

• Note that 𝐶(𝑃(𝑥)) = 0 is a polynomial constraint on 𝑥 with degree ≤ 107. We know that 𝑥 =
1, …, 106 are roots, so we let

𝑍(𝑥) = (𝑥 − 1)(𝑥 − 2)⋯(𝑥 − 106)

and have that 𝐶(𝑊𝑥) = 𝐶(𝑃(𝑥)) = 𝐷(𝑥)𝑍(𝑥) for some degree ≤ 9 ⋅ 106 polynomial 𝐷.
• Conversely, the existence of such a polynomial 𝐷 convinces the verifier that the values 𝑊𝑖 really do

lie in {0, …, 9}.
• The prover commits (via Merkle tree) to the evaluations of 𝐷(𝑥) on all inputs 𝑥 = 1, 2, …, 109.
• The verifier makes 20 random queries 𝑞, and for each, asks the prover to reveal the committed values

𝑊𝑞 and 𝐷(𝑞). The verifier confirms that

𝐶(𝑊𝑞) = 𝑍(𝑞)𝐷(𝑞).

‣ Objection: Since we want low verifier complexity, is it bad that the verifier needs the evaluations
of 𝑍(𝑞), where 𝑍 is defined as a product of 106 numbers?

‣ Response: We assume that the verifier knows the evaluations of 𝑍 , which is a sort of “public
verification key” for this scheme. The verifier either stores all evaluations of 𝑍 or stores the root
of a Merkle tree and queries for the evaluations of 𝑍 at proof time.

• An honest prover will always pass every query (completeness). But why is the scheme sound?
‣ Recall that we’re assuming that the prover can quickly prove degree-checks. In this case, the prover

can convince the verifier that the values 𝑊𝑥 and 𝐷(𝑥) that were committed to in fact to belong to
polynomials of degree ≤ 106 and 9 ⋅ 106, respectively.

‣ Thus, the verifier can trust that 𝐶(𝑊𝑥) − 𝑍(𝑥)𝐷(𝑥) is a polynomial of degree ≤ 107 over 𝑥. In
particular, either this polynomial is uniformly 0 (and the prover is honest) or the polynomial has
at most 107 roots (and the prover gets caught whenever 𝑞 is chosen to be any non-root). So, the
probability of a dishonest prover surviving 20 rounds is a negligible (107

109)
20

= 10−40.

As mentioned earlier, a weaker degree-check is sufficient for our purposes. The specification of this
weakening is as follows.

Proximity degree-check:

Let 𝑁 ≫ 𝑑.

4

• Completeness: If the prover commits to 𝑁 values which are all consistent with some degree ≤
𝑑 polynomial, then the proof always verifies.

• Soundness: If the prover commits to 𝑁 values such that no degree ≤ 𝑑 polynomial is consistent
with > 90% of them, then the proof verifies with negligible probability.

Why is this enough? Consider a dishonest prover who got away with committing to 𝔚𝑥 and 𝔇(𝑥)
which differ from 𝑊𝑥 and 𝐷(𝑥) (of appropriate degree) on up to 10% of inputs 𝑥. Then the prover
survives query 𝑞 if 𝑞 is among those ≤ 10% of disagreements between 𝔚 and 𝑊 or between 𝔇 and
𝐷, or if 𝑞 is one of the 107 aforementioned roots. We can get that the probability of a dishonest prover
surviving 20 queries is at most (10% + 10% + 107

109)
−20

, still small.

4. Degree-check, or FRI (Vitalik Part 2)
Here, we describe exactly how to perform the above degree-check proof efficiently, using the FRI
algorithm.
• FRI: Fast Reed-Solomon IOP of Proximity
• IOP: Interactive Oracle Proof.
• “Oracle”: just means we assume that the verifier can access any of the 𝑁 values that have been

chosen by the prover. The Merkle tree mentioned earlier is one way to achieve such an oracle, though
with a logarithmic overhead on each oracle access.

• “Proximity”: refers to the fact that the verifier is only convinced that the 𝑁 chosen values mostly
agree with the evaluations of some low-degree polynomial.

• “Fast”: The verifier complexity is polylogarithmic in 𝑑.

We again assign specific numbers to gain intuition more easily. Consider 𝑑 = 106 − 1 and 𝑁 = 109.

Suppose the prover has commited to 109 evaluations (𝑎) = (𝑎1, …, 𝑎109) of a degree ≤ 106 − 1 poly-
nomial 𝑃 , and wants to convince the verifier that there exists a degree ≤ 106 − 1 polynomial which
agrees with (𝑎) at ≥ 90% of the values in {1, …, 109}.

Attempt 1
Since 𝑃 has degree at most 106 − 1, we can write 𝑃(𝑥) as 𝑔(𝑥, 𝑥1000), where 𝑔 has degree at most 999
in each argument. Now, the prover hashes all 1018 evaluations of 𝑔(𝑥, 𝑦) for 𝑥 ∈ {1, …, 109} and 𝑦 ∈
{11000, …, (109)1000} in a Merkle tree. We think of this as a square table of evaluations:

𝑔(1, 11000) 𝑔(2, 11000) 𝑔(3, 11000) … 𝑔(109, 11000)

𝑔(1, 21000) 𝑔(2, 21000) 𝑔(3, 21000) … 𝑔(109, 21000)

𝑔(1, 31000) 𝑔(2, 31000) 𝑔(3, 31000) … 𝑔(109, 31000)

⋮ ⋮ ⋮ ⋱ ⋮

𝑔(1, (109)1000) 𝑔(2, (109)1000) 𝑔(3, (109)1000) … 𝑔(109, (109)1000)

Note that the entries along the diagonal are 𝑔(𝑥, 𝑥1000) = 𝑃(𝑥), i.e. the original values which the the
prover is performing the degree-check on.

The verifier can check that a row 𝑔(⋅, 𝑗1000) is likely almost-entirely degree ≤ 999 by querying for
1001 entries from that row and checking that they lie on a polynomial of degree ≤ 999. Similarly for
a column 𝑔(𝑖, (⋅)1000).

5

So, the verifier picks 30 random rows 𝑔(⋅, 𝑗1000
1), …, 𝑔(⋅, 𝑗1000

30) and queries for 1001 entries from each,
making sure that points in the same row lie on a degree ≤ 999 polynomial. The verifier also needs
to check that the diagonal entries 𝑔(𝑗1, 𝑗1000

1), …, 𝑔(𝑗30, 𝑗1000
30) lie on the respective polynomials, since

the diagonal entries are the ones that the prover is trying demonstrate a degree-bound on.

The verifier then does the same for 30 random columns.

Above is a diagram of this protocol (except with smaller numbers, of course). The red cells hold the
values 𝑎1, …, 𝑎109 , which the prover wants to show mostly lie on a degree ≤ 106 − 1 polynomial. The
gray cells are the other values which the prover commits to. The blue cells are the ones which the
verifier queries for while performing 30 row checks. Column checks are not shown here for readability.

Informal soundness analysis: So far, we’ve described the scenario in terms of an honest prover, i.e.
the values committed to are indeed evaluations (𝑔(𝑖, 𝑗1000))

1≤𝑖,𝑗≤109 of a polynomial 𝑔 with degree ≤
999 in each variable. We consider a dishonest prover who instead commits to 1018 arbitrary values
(𝑎𝑖,𝑗1000)

1≤𝑖,𝑗≤109
 such that 𝑎1,11000 , 𝑎2,21000…, 𝑎109,109000 are not a ≥ 90% match with the evaluations of

any degree ≤ 106 − 1 polynomial on 1, …, 109. Can such a dishonest prover trick the verifier with
nonnegligible probability?
• For almost all rows 𝑎⋅,𝑗1000 , there should be a polynomial row𝑗 of degree ≤ 999 such that for almost all

1 ≤ 𝑖 ≤ 109, row𝑗(𝑖) = 𝑎𝑖,𝑗1000 , otherwise the prover will very likely fail the row check. Furthermore,
𝑖 = 𝑗 must be among these “almost all”, since the verifier checks that the diagonal entries lie on their
respective row polynomials.

• Similarly, for almost all columns 𝑎𝑖,(⋅)1000 , there should be a polynomial col𝑖 of degree ≤ 999 such
that for almost all 1 ≤ 𝑗 ≤ 109, necessarily including 𝑗 = 𝑖, we have col𝑖(𝑗1000) = 𝑎𝑖,𝑗1000 .

• It turns out (mathematical exercise!) that the existence of almost-correct row and column polyno-
mials row𝑗 and col𝑖 of degree ≤ 999 implies the existence of a almost-correct table polynomial, i.e. a

6

two-variable polynomial 𝑡 of degree ≤ 999 in each variable such that 𝑡(𝑖, 𝑗1000) = 𝑎𝑖,𝑗1000 for almost
all 𝑖, 𝑗. Furthermore, these include almost all 𝑖, 𝑗 with 𝑖 = 𝑗 since the almost all row and column
polynomials are correct on their diagonal elements.

• Thus, 𝑎𝑖,𝑖1000 = 𝑡(𝑖, 𝑖1000) is close to a polynomial in 𝑖 of degree ≤ 106 − 1.
• We conclude that any prover who can pass verification with nontrivial probability must have

committed to diagonal elements that are close to a degree ≤ 106 − 1 polynomial, as desired.

Efficiency analysis This strategy achieves a sublinear number 𝑂(
√

𝑑) of queries from the verifier
(about 60000 in this case), but has huge overhead for the prover (hashing 𝑁2 = 1018 polynomial
evaluations). We show two tricks that reduce the verifier complexity to polylogarithmic in 𝑑 and the
prover overhead to linear in 𝑁 . The first trick is a carefully-chosen field, and the second is recursion.

Improvement 1
Continue working with 𝑑 = 106 − 1 and 𝑁 ≈ 109. Work in the prime field 𝔽𝑝, where 𝑝 = 109 + 5001
is prime, and for convenient let 𝑁 = 𝑝 − 1. The key fact is that 𝑥1000 takes only 106 + 5 distinct values
over nonzero 𝑥 ∈ 𝔽𝑝, and each is achieved by exactly 1000 values of 𝑥, by Fermat’s little theorem.

As a result, while the table of values the prover needs to commit is a 𝑝 − 1 by 𝑝 − 1 table (𝑝 close to
109), it only has 106 + 5 distinct rows.

We reorder the rows and columns to be indexed by 𝑠0, 𝑠1, …, 𝑠𝑝−2 instead of 1, 2, …, 𝑝 − 1, where 𝑠 is
a generator of 𝔽×

𝑝 :

𝑔(𝑠0, (𝑠0)1000) 𝑔(𝑠1, (𝑠0)1000) 𝑔(3, (𝑠0)1000) … 𝑔(𝑠𝑝−2, (𝑠0)1000)

𝑔(𝑠0, (𝑠1)1000) 𝑔(𝑠1, (𝑠1)1000) 𝑔(𝑠2, (𝑠1)1000) … 𝑔(𝑠𝑝−2, (𝑠1)1000)

𝑔(𝑠0, (𝑠2)1000) 𝑔(𝑠1, (𝑠2)1000) 𝑔(𝑠2, (𝑠2)1000) … 𝑔(𝑠𝑝−2, (𝑠2)1000)

⋮ ⋮ ⋮ ⋱ ⋮

𝑔(𝑠0, (𝑠𝑝−2)1000) 𝑔(𝑠1, (𝑠𝑝−2)1000) 𝑔(𝑠2, (𝑠𝑝−2)1000) … 𝑔(𝑠𝑝−2, (𝑠𝑝−2)1000)

This is good for geometric intuition, because we can check that the reordered table repeats itself every
106 + 5 rows (since (𝑠106+5)

1000
= 1 in 𝔽𝑝). In particular, the prover only needs to commit to the first

106 + 5 rows of the table. The new diagram (before the verifier sends queries) looks like this:

If we do everything the same as before, we achieve similar verifier complexity but the prover only
has to hash 1015 polynomial evaluations instead of 1018. But we can reduce verifier complexity even
further.

7

Note that each row in the table of committed values intersects the red “diagonal” 1000 times. Therefore,
when performing a row check, the verifier can query for the values at these 1000 intersections, plus
one more. In fact, this means that the prover only needs to commit to the diagonal and one additional
column of the table! The protocol is as follows:
• The prover commits to polynomial evaluations on the diagonal and one column
• The verifier chooses a few random rows. For each:

‣ The verifier queries the evaluations of the 1000 intersections of the row and diagonal and computes
the unique degree ≤ 999 polynomial with these evaluations.

‣ The verifier queries for the intersection of the row and column and verifies that
• The verifier makes 1001 random queries on the column to check that the column has degree 999.

We gloss over the soundness analysis here but claim that any prover that passes these tests with non-
negligible probability must have assigned diagonal values that are almost all in alignment with some
degree 106 − 1 polynomial.

Efficiency analysis: Since the prover only commited to ≈ 109 + 106 values, the overhead is linear in
𝑁 ≈ 109 and pretty much as small is it can be. The verifier complxity is lower than before but still
𝑂(

√
𝑑). We can make verifier complexity logarithmic by making the algorithm recursive.

Improvement 2
Continue working with 𝑑 = 106 − 1 and 𝑁 = 𝑝 − 1 ≈ 109.

Instead of writing 𝑝(𝑥) = 𝑔(𝑥, 𝑥1000) with degree 999 in each argument, write 𝑝(𝑥) = 𝑔(𝑥, 𝑥2) linear
in the first argument and degree 𝑑−1

2 = 499999 in the second argument.

As before, the prover sends commitments to the diagonal and one column 𝑔(1, (⋅)2) of the table.

Since each row should be linear, the verifier only needs to check 3 points from each of several randomly
chosen rows. Two of these three points will come from the diagonal, and the third will come from a
column randomly chosen by the verifier. The tradeoff is that the degree-check for the column now has
degree 106

2 − 1 instead of 999.

This is where recursion comes in: The prover now wants to show that 𝑔(1, 𝑥2) has degree ≤ 𝑑−1
2 over

its second input, which is restricted to the quadratic residues in 𝔽𝑝. This is simply another instance of
the degree-check, so in a similar manner, the prover determines a polynomial ℎ of degree ≤ 𝑑−3

4 such
that 𝑔(1, 𝑥2) = ℎ(𝑥2, 𝑥4), and uses it to construct a smaller table, where the column of the original
table becomes the diagonal of the smaller table. And so on!

To clarify, the protocol goes like this:
• The prover commits to the diagonal entries 𝑔(𝑠𝑖, (𝑠𝑖)2).
• The verifier picks a random column indexed by 𝑐, and the prover commits to the entries 𝑔(𝑠𝑐, (𝑠𝑖)2).

8

• The verifier picks a few random rows, indexed by 𝑟, and for each, ensures that the values
𝑔(𝑠𝑟, (𝑠𝑟)2), 𝑔(−𝑠𝑟, (−𝑠𝑟)2), and 𝑔(𝑠𝑐, (𝑠𝑟)2) are consistent with the claim that 𝑔 is linear in its
first argument.

• Recursively, the prover demonstrates that the column 𝑔(𝑠𝑐, (𝑠𝑖)2) is consistent with the claim that
𝑔 has degree < 𝑑−1

2 in its second argument.

The diagram below is slightly flawed in that it suggests that the first column of the table is always
the one audited. The truth is that the audited column is chosen randomly by the verifier after the red
values have been commited to.

Some details:
• We now want to choose a prime 𝑝 such that 𝑝 − 1 is divisible by a large power of 2 so that we can

do many layers of recursion.
• For similar reasons we also want 𝑑 + 1 to be divisible by a large power of 2. If it is not, the verifier can

just round the target degree 𝑑 up to the nearest number of the form 𝑑′ = 2𝑘 − 1 and has a strategy
to “pad” the degree from 𝑑 to 𝑑′ by multiplying entries by 𝑥𝑑′−𝑑 (further details left as an exercise).

One issue with the above protocol is that it forced us to choose 𝑁 = 𝑝 − 1. This means that if we want
to support native arithmetic over 𝔽𝑝 for a prime 𝑝 ≈ 264, for exmple, then we’d have 𝑁 ≈ 264, which
is unacceptably large. There is a simple modification to the above that helps us choose any 𝑁|𝑝 − 1 so
that we can support native arithmetic over large fields without having 𝑁 comparably large. Namely,
instead of making 𝑠 a generator of 𝔽𝑝, choose 𝑠 to be an element of order 𝑁 .

The prover overhead (measured by polynomial evaluations hashed) is still linear in 𝑁 , and verifier
complexity is now polylogarithmic! Yay!

9

5. Arithmetization (Aszepieniec Part 4)
We now discuss arithmetization. It may be helpful to reread the brief overview of arithmetization in
section 2.

Think of the computation of a function of execution of a program as the evolution of a state over 𝑇
time steps (cycles). The state consists of 𝑤 registers, each of which holds a number in 𝔽𝑝. The evolution
is dictated by the state transition function 𝑓 : 𝔽𝑤

𝑝 → 𝔽𝑤
𝑝 (i.e. if the state at one cycle is 𝑥, then the state

at the next cycle is 𝑓(𝑥)). A list of boundary conditions ℬ ∈ ℤ𝑇 × ℤ𝑊 × 𝔽𝑝 enforces correct values
of some registers of the program at some cycles, especially the first cycle.

A witness to the computation is a 𝑊 ∈ 𝔽𝑇×𝑤
𝑝 that is consistent with the state transition function and

boundary conditions, i.e.
• For all 𝑖 ∈ {0, 1, …, 𝑇 − 2} we have 𝑓(𝑊[𝑖,:]) = 𝑊[𝑖+1,:].
• For all (𝑖, 𝑣, 𝑒) ∈ ℬ we have 𝑊[𝑖,𝑣] = 𝑒.

The state function hides a lot of complexity. We would be satisfied if we could write it as a low
degree polynomial that does not depend on the cycle number. However, as a toy example, even an
unrealistically simple state transition rule 𝔽𝑝 → 𝔽𝑝 given by

𝑥 ↦ {
1
𝑥 if 𝑥 ≠ 0
0 if 𝑥 = 0

must be written as a degree 𝑝 − 2 polynomial 𝑥 ↦ 𝑥𝑝−2.

Instead of directly enforcing the transition rule 𝑓(𝑊[𝑖,:]) = 𝑊[𝑖+1,:], we can encode it using low degree
constraints. For example, the above inversion can be handled by enforcing that

𝒑(𝑥, 𝑦) = (𝑝1(𝑥, 𝑦), 𝑝2(𝑥, 𝑦)) = (𝑥(𝑥𝑦 − 1), 𝑦(𝑥𝑦 − 1)) = (0, 0),

where 𝑥 is the state before the transition and 𝑦 is the state after the transition.

Moving out of the toy example and back to the main problem, our goal is to find a state-transition
function 𝑓 : 𝔽𝑤

𝑝 → 𝔽𝑤
𝑝 that governs correct computation, and a not-too-large set of low-degree poly-

nomials 𝑝1, …, 𝑝𝑘 such that

𝑓(𝑥) = 𝑦 ⇔ 𝒑(𝑥, 𝑦) = 𝟎,

where we use 𝒑 as a shorthand for the collection of polynomials (𝑝1, …, 𝑝𝑘). Then we can check that
a witness satisfies 𝒑(𝑊[𝑖,:], 𝑊[𝑖+1,:]) = 𝟎 for each 𝑖.

For more details on arithmetization and on how to construct the polynomial constraints 𝒑 for a broad
class of computations:
• https://eprint.iacr.org/2023/661.pdf (mathematical details)

‣ Read section 3
• https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-airAssembly.pdf (low-level

language implementation details)
‣ Read sections 2 and 3

To summarize:

• The trace of a computation is the array 𝑊 ∈ 𝔽𝑇×𝑤
𝑝 consisting of the values of 𝑤 registers over

𝑇 time steps.
• Boundary constraints

10

https://eprint.iacr.org/2023/661.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-airAssembly.pdf

(∀(𝑖, 𝑣, 𝑒) ∈ ℬ)(𝑊[𝑖:𝑣] = 𝑒)

and low-degree polynomial constraints

𝒑(𝑊[𝑖,:], 𝑊[𝑖+1,:]) = 𝟎

enforce that the computation was done correctly (and that its trace was generated correctly).
‣ In particular, 𝒑 is a small collection of polynomials 𝑝1, …, 𝑝𝑠 in 2𝑤 variables. The trace is

correct if and only if it satisfies the boundary constraints and 𝑝1, …, 𝑝𝑠 all vanish when fed the
2𝑤 values of registers over every pair of consecutive time steps.

6. Putting it together
Through arithemization, we’ve reduced the problem of checking a computation 𝑓(𝑥) = 𝑦 to verifying
that a witness 𝑊 ∈ 𝔽𝑇×𝑤

𝑝 satisfies 𝒑(𝑊[𝑖,:], 𝑊[𝑖+1,:]) for each 𝑖 ∈ {0, 1, …, 𝑇 − 2}.
• The constraints that the input is 𝑥 and the output is 𝑦 can be encoded by boundary conditions

(∀(𝑖, 𝑣, 𝑒) ∈ ℬ)(𝑊[𝑖:𝑣] = 𝑒), and these boundary conditions are easy to prove as we will see later.
• If the prover wants to hide 𝑥 and maintain some zero-knowledge properties, they simply relax the

boundary conditions.

Now suppose that a prover has run a computation and honestly generated a witness 𝑊 . In order to
prove to the verifier that the computation has run correctly, the prover does the following:
• Choose some 𝑁 ≫ 𝑇 such that 𝑁|𝑝 − 1 and 𝑁 is divisible by a large power of 2.
• Let {𝑠0, …, 𝑠𝑁−1} be a subgroup of 𝔽×

𝑝 .
• Use polynomial interpolation to find degree ≤ 𝑇 − 1 polynomials 𝑃1, …, 𝑃𝑤 such that 𝑃𝑗(𝑠𝑖) = 𝑊𝑖,𝑗

for 𝑖 = 0, …, 𝑇 − 1.²
• Compute the 𝑤𝑁 evaluations 𝑊 ′

𝑖,𝑗 = 𝑃𝑗(𝑠𝑖) for 𝑖 = {0, …, 𝑁 − 1}.
• Hash the entries of 𝑊 ′ in a Merkle tree, and send the verifier the root.
• Since 𝑊 is a witness of the computation, it ought to satisfy the boundary constraints

𝒑(𝑷(𝑠𝑖), 𝑷 (𝑠𝑖+1)) = 𝒑(𝑊[𝑖,:], 𝑊[𝑖+1,:]) = 𝟎

for all 𝑖 ∈ {0, 1, …, 𝑇 − 2}. Letting 𝑡 = 𝑠𝑖, the left side is a collection polynomials in 𝑡, so of these
polynomials ought to be divisible by 𝑍(𝑡) = (𝑡 − 𝑠0)(𝑡 − 𝑠1)⋯(𝑡 − 𝑠𝑇−2).

• So, the prover hashes the evaluations (on 𝑡 ∈ {𝑠0, …, 𝑠𝑁−1}) of

𝑫(𝑡) = 𝒑(𝑷 (𝑡), 𝑷 (𝑠𝑡))
𝑍(𝑡)

in a Merkle tree and sends the root to the verifier. Now each 𝐷𝑗(𝑖) should be a polynomial of degree
≤ (deg(𝑝𝑗) − 1)(𝑇 − 1).

Remember that 𝒑 and 𝑍 are known to the verifier, and assume that the verifier has oracle access to
the evaluations of both.

Now, the verifier can do the following to be convinced of the correctness of the computation and trace:
• Ask the prover to open certain evaluations to verify the boundary constraints.
• Choose a few random 𝑡 ∈ {0, …, 𝑁 − 1}, and for each, ask the prover to open 𝑃𝑗(𝑡), 𝑃𝑗(𝑠𝑡), and

𝐷𝑗(𝑡) for each 𝑗.
‣ If the prover wants zk properties, they may forbid the verifier from choosing 𝑡 ∈ {𝑠0, …, 𝑠𝑇−1}.

²Finally correcting the earlier lie: We interpolate over inputs 𝑠0, …, 𝑠𝑇−1 instead of 0, …, 𝑇 − 1.

11

• For each, the verifier should check that

𝒑(𝑷 (𝑡), 𝑷 (𝑠𝑡)) = 𝑫(𝑡)𝑍(𝑡).
• Then the verifier should check that the supposed evaluations of 𝑷 and 𝑫 are indeed consistent with

polynomials of degree 𝑇 − 1 and (deg(𝑝𝑗) − 1)(𝑇 − 1), respectively, using the protocol developed
section 4.

Thus, the verifier can be convinced that 𝑊 is a correct receipt for the computation, in complexity
polylogarithmic in 𝑇 , the number of time steps that it took the prover to run the computation.

Making the interactive proof non-interactive
Instead of waiting for a verifier’s random challenges, the prover can use a hash of the most recent
commitments as a source of (pseudo)randomness. The prover can run the entire proof, then publish it
for verifiers to check at their leisure.

This is called the Fiat-Shamir heuristic and is a general tool for turning interactive proofs into non-
interactive proofs.

For a more detailed overview: https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic

Applying the Fiat-Shamir to the above interactive protocol, we have achieved (zk)STARK!

12

https://en.wikipedia.org/wiki/Fiat%E2%80%93Shamir_heuristic

	STARK
	Sources
	Prerequisite knowledge

	1. What is a STARK?
	2. Outline
	Arithmetization:
	Interpolation
	Compilation
	Roadmap

	3. A Motivating Subproblem (Vitalik Part 1)
	The Problem
	The Solution: Interpolation!

	4. Degree-check, or FRI (Vitalik Part 2)
	Attempt 1
	Improvement 1
	Improvement 2

	5. Arithmetization (Aszepieniec Part 4)
	6. Putting it together
	Making the interactive proof non-interactive

