
Shamir’s proof of 𝖯𝖲𝖯𝖠𝖢𝖤 ⊆ 𝖨𝖯 from sumcheck
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• The original paper by Adi Shamir

‣ https://dl.acm.org/doi/pdf/10.1145/146585.146609
• BU CS 535 lecture notes by Mark Bun

‣ https://cs-people.bu.edu/mbun/courses/535_F23/lectures/lec22.pdf

Background knowledge: Some familiarity with complexity theory is expected.

Read my notes on the sumcheck protocol first if you haven’t learned about it already!
• https://www.mit.edu/~linust/files/Sumcheck.pdf

Complexity classes 𝖨𝖯 and 𝖯𝖲𝖯𝖠𝖢𝖤
If necessary, see the following for definitions of the two complexity classes:
• https://en.wikipedia.org/wiki/IP_(complexity)
• https://en.wikipedia.org/wiki/PSPACE

Proof of 𝖯𝖲𝖯𝖠𝖢𝖤 ⊆ 𝖨𝖯 using sumcheck

TQBF, a 𝖯𝖲𝖯𝖠𝖢𝖤-complete problem
We use without proof the fact that True Quantized Boolean Formula (TQBF) is 𝖯𝖲𝖯𝖠𝖢𝖤 complete.

Specifically, a quantized boolean formula (QBF) is of the form

∃𝑥1∀𝑥2∃𝑥3∀𝑥4⋯𝜙(𝑥1, …, 𝑥𝑛)

where all variables are quantified and 𝜙 is a boolean formula over 𝑛 boolean variables.

TQBF is the language consisting of all true QBFs.

(Actually, the definition of QBF allows existential and universal quantifiers to appear in any order, but
this distinction doesn’t matter because we can just insert dummy variables to make the quantifiers
alternate as above.)

Multilinear extensions and multilinearizations

Let 𝑐 be an arbitrary {0, 1}𝑛 → {0, 1} function and 𝔽 be a field. Then the multilinear extension of
𝑐 to 𝔽𝑛 is the function 𝑐′ : 𝔽𝑛 → 𝔽 given by

𝑐′(𝑥1, …, 𝑥𝑛) = ∑
(𝑏1,…,𝑏𝑛)∈{0,1}𝑛

𝑐(𝑏1, …, 𝑏𝑛) ∏
𝑛

𝑖=1
{𝑥𝑖 if 𝑏𝑖 = 1

1 − 𝑥𝑖 if 𝑏𝑖 = 0.

It is the unique 𝔽𝑛 → 𝔽 function satisfying two properties:
• 𝑐′ is multilinear (i.e. it is a polynomial with degree ≤ 1 in each input).
• 𝑐′ extends 𝑐. That is, 𝑐′(𝑥1, …, 𝑥𝑛) = 𝑐(𝑥1, …, 𝑥𝑛) for all (𝑥1, …, 𝑥𝑛) ∈ {0, 1}𝑛.

We also introduce a very similar concept called the multilinearization.

Let 𝔽 be a field and 𝑑 be an arbitrary 𝔽𝑛 → 𝔽 function. Then the multilinearization of 𝑑 is the
function 𝑑′ given by

1

https://dl.acm.org/doi/pdf/10.1145/146585.146609
https://cs-people.bu.edu/mbun/courses/535_F23/lectures/lec22.pdf
https://www.mit.edu/~linust/files/Sumcheck.pdf
https://en.wikipedia.org/wiki/IP_(complexity)
https://en.wikipedia.org/wiki/PSPACE

𝑑′(𝑥1, …, 𝑥𝑛) = ∑
(𝑏1,…,𝑏𝑛)∈{0,1}𝑛

𝑑(𝑏1, …, 𝑏𝑛) ∏
𝑛

𝑖=1
{𝑥𝑖 if 𝑏𝑖 = 1

1 − 𝑥𝑖 if 𝑏𝑖 = 0.

It is the unique 𝔽𝑛 → 𝔽 function satisfying two properties:
• 𝑑′ is multilinear
• 𝑑′(𝑥1, …, 𝑥𝑛) = 𝑑(𝑥1, …, 𝑥𝑛) for all (𝑥1, …, 𝑥𝑛) ∈ {0, 1}𝑛.

In our case, if we let “False = 0” and “True = 1”, then 𝜙 is a {0, 1}𝑛 → {0, 1} function, so we can take
multilinear extensions.

Let 𝑓ℝ denote the multilinear extension of 𝜙 to ℝ𝑛. The following correspondence can be proven by
inducting from the inside out:

𝛽ℝ = ∑
𝑥1∈{0,1}

∏
𝑥2∈{0,1}

∑
𝑥3∈{0,1}

∏
𝑥4∈{0,1}

⋯ 𝑓ℝ(𝑥1, …, 𝑥𝑛)

is nonzero if and only if the original QBF

∃𝑥1∀𝑥2∃𝑥3∀𝑥4⋯𝜙(𝑥1, …, 𝑥𝑛)

is true.

Comparison to sumcheck
The above is very similar to the sumcheck problem, except:
• We are working over ℝ instead of a finite field 𝔽𝑝
• Half of our quantifiers are products instead of sums.

Briefly speaking:
• The point can be handled by choosing a large prime 𝑝 and working in 𝔽𝑝 instead of ℝ.
• The second point can be handled by having the verifier check 𝘨𝑖(0)𝘨𝑖(1) = 𝘨𝑖−1(𝑡𝑖−1) with a product

instead of a sum of the left side.
‣ This would cause the polynomials 𝑔𝑖 to grow exponentially in degree. It turns out that multilin-

earization is exactly what we need to keep the degree in check.

Modifying the sumcheck protocol to work for TQBF.
We have a prover trying to convince the verifier that a given QBF is true.

A word on notation: We use default typesetting (e.g. 𝑔 and 𝛽) to denote the correct values that should
be output by an honest prover and sans letters (e.g. 𝘨 and 𝞫) to denote what the prover actually outputs.

We describe the protocol in terms of an honest prover below, so 𝘨 = 𝑔 and 𝞫 = 𝛽, but we choose to use
default typesetting for prover operations and sans letters when the verifier is performing computations
over untrusted values sent by the prover. This notational distinction is mainly meant to improve the
clarity of the soundness analysis later.

Let 𝑓 be the multilinear extension of 𝜑 to 𝔽𝑛
𝑝 , for some prime 𝑝 ≫ 𝑛. We will see later that we want 𝑝

to be chosen by the prover.

Define

2

𝛽0 = ∑
𝑥1∈{0,1}

∏
𝑥2∈{0,1}

∑
𝑥3∈{0,1}

∏
𝑥4∈{0,1}

⋯ 𝑓(𝑥1, …, 𝑥𝑛)

𝛽1(𝑥1) = ∏
𝑥2∈{0,1}

∑
𝑥3∈{0,1}

∏
𝑥4∈{0,1}

⋯ 𝑓(𝑥1, …, 𝑥𝑛)

𝛽2(𝑥1, 𝑥2) = ∑
𝑥3∈{0,1}

∏
𝑥4∈{0,1}

⋯ 𝑓(𝑥1, …, 𝑥𝑛)

⋮
𝛽𝑛(𝑥1, …, 𝑥𝑛) = 𝑓(𝑥1, …, 𝑥𝑛).

The protocol is as follows:

• The prover evaluates 𝛽0 and sends it to the verifier.
• The prover computes evaluates the multilinearization 𝑔1(⋅) of 𝛽1(⋅) and sends its two coefficients

to the verifier.
• The verifier uses the coefficients to check that 𝘨1(0) + 𝘨1(0) = 𝞫.
• For 𝑖 = 2, …, 𝑛:

‣ The verifier sends uniformly sampled 𝑡𝑖−1 from 𝔽𝑝.
‣ The prover computes the multilinearization 𝑔𝑖(⋅) of 𝛽𝑖(𝑡1, …, 𝑡𝑖−1, ⋅), and again sends its two

coefficients as a degree ≤ 𝑑 polynomial in 𝑥.
‣ If 𝑖 is odd, the verifier checks 𝘨𝑖(0) + 𝘨𝑖(1) = 𝘨𝑖−1(𝑡𝑖−1).
‣ If 𝑖 is even, the verifier checks 𝘨𝑖(0)𝘨𝑖(1) = 𝘨𝑖−1(𝑡𝑖−1).

• Finally, the verifier uniformly samples 𝑡𝑚 from 𝔽𝑝 and checks that 𝘨𝑚(𝑡𝑚) = 𝑓(𝑡1, …, 𝑡𝑚) using
its oracle access to 𝑓 . The verifier accepts if and only if all checks have passed and 𝞫𝟢 ≠ 0.

Soundness analysis
The soundness analysis is essentially the same as that for the original sumcheck. In this case, the degree
of 𝑓 in each variable is at most 1, a dishonest verifier passes with probability at most 𝑛

𝑝 . Hence we
require that 𝑝 ≫ 𝑛.

Completeness analysis
By following the above protocol honestly, the prover is guaranteed to pass all checks other than the
𝛽0 ≠ 0. To pass this check, the prover needs to choose 𝑝 carefully.

• Recall the previous claim that

𝛽ℝ = ∑
𝑥1∈{0,1}

∏
𝑥2∈{0,1}

∑
𝑥3∈{0,1}

∏
𝑥4∈{0,1}

⋯ 𝑓ℝ(𝑥1, …, 𝑥𝑛) ≠ 0

⇔
∃𝑥1∀𝑥2∃𝑥3∀𝑥4⋯𝜙(𝑥1, …, 𝑥𝑛) is a true QBF.

• Consider the case where the prover is honest, and the QBF is true, so 𝛽ℝ ≠ 0. Note that 𝛽ℝ is an
integer and that 𝛽0 ∈ 𝔽𝑝 is the residue class of 𝛽ℝ mod 𝑝.

• Therefore, the prover sets 𝑝 to be a large prime number at the begnning of the protocol, such that 𝑝
does not divide 𝛽ℝ. (Thus we avoid the situation where 𝛽0 = 0 even though the QBF is true).

Note that 𝑝 cannot be too large; it has to be ≤ 2poly(𝑛). We now want to show that some large prime
𝑝 ≤ 2poly(𝑛) does not divide 𝛽ℝ. While we don’t give a full proof of this, here’s a sketch:
• 𝛽ℝ can’t be too large. Specifically, 𝛽ℝ = 22𝑂(𝑛) .
• We now want to show that 𝛽ℝ cannot be divisible be divisible by every prime 𝑛 ≪ 𝑝 ≤ 2poly(𝑛).

3

• If 𝛽ℝ were divisible by all of these primes, then it would be divisible by their product, which we can
estimate using the Prime Number Theorem. Said product is not 22𝑂(𝑛) , so we can conclude that there
is a prime 𝑝 the prover can choose that does not divide 𝛽ℝ.

So, 𝛽0 ≠ 0 and the honest prover passes this check as well.

We have constructed an interactive proof for a 𝖯𝖲𝖯𝖠𝖢𝖤-complete problem TQBF, proving that
𝖯𝖲𝖯𝖠𝖢𝖤 ⊆ 𝖨𝖯!

Remark
It is not too difficult to show the other direction 𝖨𝖯 ⊆ 𝖯𝖲𝖯𝖠𝖢𝖤. We don’t cover the proof in these
notes but direct the reader to section 1 of https://cs-people.bu.edu/mbun/courses/535_F23/lectures/lec
22.pdf.

Thus, putting these results together we get that 𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤. Nice!

4

https://cs-people.bu.edu/mbun/courses/535_F23/lectures/lec22.pdf
https://cs-people.bu.edu/mbun/courses/535_F23/lectures/lec22.pdf

	Shamir's proof of PSPACE⊆ IP from sumcheck
	Complexity classes IP and PSPACE
	Proof of PSPACE ⊆ IP using sumcheck
	TQBF, a PSPACE-complete problem
	Multilinear extensions and multilinearizations
	Comparison to sumcheck
	Modifying the sumcheck protocol to work for TQBF.
	Soundness analysis
	Completeness analysis

	Remark

