
My favorite linear time algorithms
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• Bowdoin CS231 lecture notes by Laura Toma

‣ https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall16/Lectures/07-selection/selection.pdf
• Codeforces user Olympia

‣ https://codeforces.com/blog/entry/101010
• The Institute of Mathematical Sciences, Discrete Maths notes by Vikram Sharma

‣ https://www.imsc.res.in/~vikram/DiscreteMaths/2011/tree.pdf

Problems
All problems below are to be solved using deterministic algorithms that run in 𝑂(𝑛) time. Assume
that arithmetic operations on real numbers are 𝑂(1) each.

1. Tree isomorphism: Given the edge sets of two trees 𝑇1 and 𝑇2 on vertex set 𝑉 = {1, 2,…, 𝑛},
determine whether 𝑇1 and 𝑇2 are isomorphic.

2. Rank select: Given integers 1 ≤ 𝑘 ≤ 𝑛 and a list of 𝑛 distinct real numbers 𝑎1,…, 𝑎𝑛 in arbitrary
order, compute the 𝑘-th smallest number among the 𝑛.

3. Largest gap: Let 𝑡1 < 𝑡2 < … < 𝑡𝑛 be real numbers. Given an arbitrary permutation 𝑎1,…, 𝑎𝑛 of
them, compute max1≤𝑖<𝑛(𝑡𝑖+1 − 𝑡𝑖).

Solutions begin on the next page.

1

https://tildesites.bowdoin.edu/~ltoma/teaching/cs231/fall16/Lectures/07-selection/selection.pdf
https://codeforces.com/blog/entry/101010
https://www.imsc.res.in/~vikram/DiscreteMaths/2011/tree.pdf

Solutions
Tree isomorphism
First solve the easier problem of rooted tree isomorphism. Given two rooted trees, determine in linear
time whether they are isomorphic.

This comes down to finding, for each non-leaf vertex, a canonical order of its children. The details of
how to do this in linear time are nontrivial.

𝑇1, 𝑇2: trees with 𝑛 vertices.

𝑣1, 𝑣2: vertices of 𝑇1 and 𝑇2, respectively.

Output: True if tree 𝑇1 rooted at 𝑣1 is isomorphic to tree 𝑇2 rooted at 𝑣2; False otherwise.

𝖱𝗈𝗈𝗍𝖾𝖽𝖳𝗋𝖾𝖾𝖨𝗌𝗈𝗆𝗈𝗋𝗉𝗁𝗂𝗌𝗆(𝑇1, 𝑣1, 𝑇2, 𝑣2):
• Label every leaf of with the number 1.
• Whenever all vertices at depth 𝑖 + 1 of both trees have integer labels, give all vertices at depth 𝑖

of both trees integer labels as follows:
‣ For every non-leaf vertex 𝑣 at depth 𝑖, assign the vertex a tuple consisting of the labels of its

children in ascending order.
‣ In each tree, order the vertices at depth 𝑖 in lexicographically increasing order by their tuples,

saying that leaves are the least, and shorter tuples are less than longer tuples.
‣ Now you can directly compare the sorted lists of tuples of depth-𝑖 vertices in 𝑇1 and 𝑇2. If they

don’t match, return False. Otherwise, proceed.
‣ Replace all instances of the least tuple at depth 𝑖 with 1, all instances of the next least tuple at

depth 𝑖 with 2, and so on. (Here, the label of a leaf counts as the least tuple if there are any.)
‣ Now all vertices at depth 𝑖 have integer labels, so decrement 𝑖 and repeat until the root has a

label.
• If the algorithm gets to this point without returning False (and in particular the root labels of the

trees are equal), return True.

When sorting numbers, instead of using 𝑂(𝑛 log 𝑛) comparison sort, use a sorting algorithm which
sorts tuples of length ℓ1,…, ℓ𝑘 and entries in {1,…,𝑚} in 𝑂(𝑚+∑𝑘

𝑖=1 ℓ𝑖) time.

The runtime analysis is tricky, but it can be proven that the above algorithm runs in 𝑂(𝑛) time.

The algorithm presented above is named AHU after Aho, Hopcroft, and Ullman.

Now that we’ve solved the problem of rooted tree isomorphism, we want to do the following: Find a
“canonical” vertex from each tree to serve as its root, then apply rooted tree isomorphism.
• One such choice is called the centroid of the tree.
• A vertex 𝑣 in a tree 𝑇 with 𝑛 vertices is called a centroid if removing 𝑣 results in a forest, each of

whose components has at most 𝑛2 vertices.
• Every tree has either one or two centroids.

‣ Existence: See the algorithm below which finds a centroid.
‣ Proof that there are at most two: Suppose that there exists a pair of centroids which are not

adjacent, and derive a contradiction.

𝑇 : a tree with 𝑛 vertices.

Output: a centroid of 𝑇 .

2

𝖥𝗂𝗇𝖽𝖢𝖾𝗇𝗍𝗋𝗈𝗂𝖽(𝑇):
• Root 𝑇 at an arbitrary vertex 𝑟.
• Recursively compute the number of descendants of every vertex.
• Initialize 𝑣 ← 𝑢.
• While 𝑣 has a child 𝑣′ such that 𝑣′ has at least 𝑛2 descendants:

‣ Set 𝑣 ← 𝑣′.
• Return 𝑣.

It is not too hard to prove that this algorithm always returns a centroid of 𝑇 .

Now if 𝑇1 and 𝑇2 are isomorphic as unrooted trees, they should still be so if we root them at their
centroids. In particular, we can solve the problem as follows:

𝑇1, 𝑇2: trees with 𝑛 vertices.

Output: True if tree 𝑇1 rooted at 𝑣1 is isomorphic to tree 𝑇2 rooted at 𝑣2; False otherwise.

𝖳𝗋𝖾𝖾𝖨𝗌𝗈𝗆𝗈𝗋𝗉𝗁𝗂𝗌𝗆(𝑇1, 𝑇2):
• We have trees 𝑇1 and 𝑇2 and want to determine whether they are isomorphic.
• Find a centroid 𝑣1 ← 𝖥𝗂𝗇𝖽𝖢𝖾𝗇𝗍𝗋𝗈𝗂𝖽(𝑇1).
• Find the set 𝐶 of centroids of 𝑇2.

‣ In particular, let 𝑣 ← 𝖥𝗂𝗇𝖽𝖢𝖾𝗇𝗍𝗋𝗈𝗂𝖽(𝑇2). If 𝑣 has exactly 𝑛2 descendants and only one child 𝑣′,
then 𝐶 = {𝑣, 𝑣′}. Otherwise, 𝐶 = {𝑣}.

• If there exists 𝑣2 ∈ 𝐶 such that 𝖱𝗈𝗈𝗍𝖾𝖽𝖳𝗋𝖾𝖾𝖨𝗌𝗈𝗆𝗈𝗋𝗉𝗁𝗂𝗌𝗆(𝑇1, 𝑣1, 𝑇2, 𝑣2) returns True, then 𝑇1
and 𝑇2 are isomorphic, so return True.

• Otherwise, 𝑇1 and 𝑇2 are not isomorphic, so return False.

3

Rank select
Let rank(𝑎𝑖) = 𝑟 if 𝑎𝑖 is the 𝑟-th smallest among {𝑎1,…, 𝑎𝑛}. So, we want to find 𝑎𝑖 such that
rank(𝑎𝑖) = 𝑘.

Note that the following can be done in linear time:
• Given an 𝑎𝑖, compute rank(𝑎𝑖).
• Given an 𝑎𝑖, determine the set of elements of {𝑎1,…, 𝑎𝑛} greater than 𝑎𝑖 and the set of elements

less than 𝑎𝑖.

Consider the following framework for a recursive algorithm.

[𝑎1,…, 𝑎𝑛]: A list of 𝑛 real numbers in arbitrary order.

𝑘: A positive integer at most 𝑛.

Output: the 𝑘-th smallest element of the list.

𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑎1,…, 𝑎𝑛], 𝑘) :
• Choose some 𝑎𝑖 ← 𝖲𝖾𝗅𝖾𝖼𝗍𝖤𝗅𝖾𝗆𝖾𝗇𝗍([𝑎1,…, 𝑎𝑛]) by a method to be specified later.
• Compute 𝑟 ← rank(𝑎𝑖) and partition the other elements of {𝑎1,…, 𝑎𝑛} into those less than 𝑎𝑖

and those greater than 𝑎𝑖, call these [𝑙1,…, 𝑙𝑟−1] and [𝑢1,…, 𝑢𝑛−𝑟].
• If 𝑟 = 𝑘, return 𝑎𝑖.
• If 𝑟 > 𝑘, return 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑙1,…, 𝑙𝑟−1], 𝑘).
• If 𝑟 < 𝑘, return 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑢1,…, 𝑢𝑛−𝑟], 𝑘 − 𝑟).

A worst-case scenario is if 𝑘 is large and you always choose 𝑎𝑖 to be the smallest remaining element, or
if 𝑘 is small and you always choose 𝑎𝑖 to be the greatest remaining element. In these cases, 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍
runs in time quadratic in 𝑛.

Thus, a desirable property of 𝑎𝑖 is for its rank to not be close to 1 nor 𝑛. In particular, if we make the
size of the set partition in the recursive call decay exponentially, then the overall runtime will be linear
in 𝑛.

It turns out that the solution involves using another recursive call to 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍 to choose 𝑎𝑖.
Paramaters need to be chosen to balance the cost of this additional recursive call with the rate of
aforementioned exponential decay.

[𝑎1,…, 𝑎𝑛]: A list of 𝑛 real numbers in arbitrary order.

Output: an element of [𝑎1,…, 𝑎𝑛] with a desirable property to be specified later.

𝖲𝖾𝗅𝖾𝖼𝗍𝖤𝗅𝖾𝗆𝖾𝗇𝗍([𝑎1,…, 𝑎𝑛]) :
• For convenience, pad [𝑎1,…, 𝑎𝑛] to [𝑎1,…, 𝑎𝑛′] for the minimal 𝑛′ ≥ 𝑛 with 𝑛′ ≡ 5mod 10.
• Arbitrarily partition [𝑎1,…, 𝑎𝑛′] into 2𝑠 − 1 groups of 5 elements. Let 𝑚1,…,𝑚2𝑠−1 be the the

medians of these groups of 5 elements.
• Find the median of these medians, given by 𝑚 ← 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑚1,…,𝑚2𝑠−1], 𝑠).
• Return 𝑚.

The output has the property that 3
10𝑛 ≤ rank(𝑚) ≤ 7

10𝑛.

Now we modify the main algorithm and analyze its runtime.

[𝑎1,…, 𝑎𝑛]: A list of 𝑛 real numbers in arbitrary order.

4

𝑘: A positive integer at most 𝑛.

Output: the 𝑘-th smallest element of the list.

𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑎1,…, 𝑎𝑛], 𝑘) :
• If 𝑛 ≤ 100, sort the list and return the 𝑘-th smallest element. Otherwise:
• Set 𝑎𝑖 ← 𝖲𝖾𝗅𝖾𝖼𝗍𝖤𝗅𝖾𝗆𝖾𝗇𝗍([𝑎1,…, 𝑎𝑛]).
• Compute 𝑟 ← rank(𝑎𝑖) and partition the other elements of {𝑎1,…, 𝑎𝑛} into those less than 𝑎𝑖

and those greater than 𝑎𝑖, call these [𝑙1,…, 𝑙𝑟−1] and [𝑢1,…, 𝑢𝑛−𝑟].
• If 𝑟 = 𝑘, return 𝑎𝑖.
• If 𝑟 > 𝑘, return 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑙1,…, 𝑙𝑟−1], 𝑘).
• If 𝑟 < 𝑘, return 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍([𝑢1,…, 𝑢𝑛−𝑟], 𝑘 − 𝑟).

The call to 𝖲𝖾𝗅𝖾𝖼𝗍𝖤𝗅𝖾𝗆𝖾𝗇𝗍 involves some linear time operations and a call back to 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍 of size
1
5𝑛 + 𝑂(1).

The call to 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍 at the end has size at most 710𝑛 because 3
10𝑛 ≤ 𝑟 ≤ 7

10𝑛.

Since the proportions ofthe recursive calls sum to 15 + 7
10 < 1, and since all other operations can be

done in linear time, it follows that the overall runtime of 𝖱𝖺𝗇𝗄𝖲𝖾𝗅𝖾𝖼𝗍 is linear in 𝑛.

5

Largest gap
Consider the minimum and maximum elements 𝑠 and 𝑡. We will divide the interval between them into
𝑛 + 1 equally-sized buckets. For convenience, first apply a linear function

𝑥 ↦ (𝑛 + 1)𝑥 − 𝑠
𝑡 − 𝑠

to each of the 𝑎𝑖 that maps 𝑠 to 0 and 𝑡 to 𝑛 + 1.

In particular, the buckets are now [0, 1], (1, 2], (2, 3],…, (𝑛, 𝑛 + 1].

The key observation is that there is an empty bucket, which means that the largest gap has size at least
1. In particular, the largest gap is between two elements in different buckets.

This leads to the following algorithm:

[𝑎1,…, 𝑎𝑛]: A list of 𝑛 real numbers in arbitrary order

Output: The smallest gap between two consecutive elements of the (unprovided) sorted list.

𝖫𝖺𝗋𝗀𝖾𝗌𝗍𝖦𝖺𝗉([𝑎1,…, 𝑎𝑛])
• Determine the maximum and minimum elements 𝑠 and 𝑡.
• For convenience, let 𝑏𝑖 = (𝑛 + 1)𝑎𝑖−𝑠

𝑡−𝑠 for each 𝑖 and work with [𝑏1,…, 𝑏𝑛] instead.
‣ Now the minimum and maximum elements are 0 and 𝑛 + 1.

• Consider buckets 𝐼1,…, 𝐼𝑛+1 = [0, 1], (1, 2],…,, (𝑛, 𝑛 + 1].
• Iterate over the 𝑏𝑖, and determine which bucket each belongs to. Keep track of the minimum

element 𝑚𝑗 and maximum element 𝑀𝑗 that belongs to each bucket.
• Find the candidates for the largest gaps:

‣ For each 𝑀𝑗 with 𝑗 < 𝑛 + 1, find the smallest 𝑗′ > 𝑗 such that there is a point in bucket 𝐼𝑗′ .
Compute the gap 𝑚𝑗′ −𝑀𝑗.

• Return the largest of these candidate gaps.

6

	My favorite linear time algorithms
	Problems
	Solutions
	Tree isomorphism
	Rank select
	Largest gap

