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1. Introduction

Often we observe data drawn from a distribution parameterized by some unknowns and want to estimate
the unknown parameters. The Expectation Maximization (EM) algorithm is useful for situations in which
the observed data is incomplete. The missing data is called latent information. The latent information can
be used to assist in finding the maximum likelihood estimator of the parameters given the observed data.

While finding a closed form answer is often impossible or intractable, the EM algorithm approximates the
answer numerically through the following process:

(1) Start with an initial guess for x̂0 the parameters.
(2) Compute the distribution ps|y(· | y; x̂0) of the latent information based on the (the observed data +

that guess). Here, the latent information is denoted by s and the observed data is denoted by y.
(3) Temporarily taking this distribution as ground truth, compute the expected value over of the log-

arithmic likelihood of an estimator x̂ = a of the parameter, in terms of a. (expectation step, or
E-step)

(4) Take x̂1 to be the estimator that maximizes this expected value. (maximization step, or M-step)
(5) Now, x̂1 is a refined version of x̂0. Apply steps 2 through 4 repeatedly to get a sequence of refine-

ments, x̂0, x̂1, x̂2, . . . , of estimates of the parameters. Stop when the refinements become negligible.

Under certain conditions which will be described later, we can prove that this sequence of estimators
converges to the maximum likelihood estimator of the parameters!

2. The Algorithm

We describe the EM Algorithm more formally here.
We observe data y drawn from a distribution py(·;x) from a family parameterized by x ∈ X . The EM

algorithm aims to numerically approximate the maximum likelihood estimator

x̂ML = argmax
x∈X

py(y;x).

The EM algorithm is applicable when there is a variable s (the latent information) such that the joint
distribution of (y, s) (the complete information) has a “nicer structure” than the distribution of y itself. We
will see examples of this later.

The algorithm now follows the following steps.

• Choose an arbitrary estimate x̂0 of the parameter. Recursively compute the sequence x̂0, x̂1, x̂2, . . .

of estimators as follows.
• (E-step) Compute the expectation

U(a; x̂ℓ) = Eps|y(·|y;x̂ℓ)[log(py,s(y, s;a))].
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• (M-step) Compute the estimator which maximizes the above expectation, namely

x̂ℓ+1 = argmax
a∈X

U(a; x̂ℓ).

• Under conditions which will be described later, the sequence x̂0, x̂1, x̂2, . . . of estimators generated
by repeated applications of the E-step and M-step will converge to x̂ML.

3. Example and Analysis

Let x = (x1, x2, x3) ∈ X = R3 and consider the Gaussian mixture consisting of three normal distributions
with variance 1 and means x1, x2, x3 with respective weights 1 : 2 : 3. In particular, this defines a family of
probability distributions parameterized by x, given by the probability density function

py(y;x) =
1

6

(
3∑

i=1

i√
2π

e(y−xi)
2/2

)
.

Suppose that we observe the data y = (y1, . . . , yn) which consists of n independent samples yi from
py(·;x). We want to estimate

x̂ML = argmax
x∈X

py(y;x).

While we can write the likelihood function py(y;x) as a product of n probability densities, maximizing
this product over n directly, such as by solving for critical points, is intractable for large n. We turn to the
EM algorithm to get a numerical approximation of this estimator.

Since each yi is drawn from a Gaussian mixture, we can model it by first choosing one of the constituent
Gaussian distributions to draw it from. In this case, we can write

(yi | si) ∼ N (xsi , 1),

where
P(si = 1) =

1

6
,P(si = 2) =

2

6
,P(si = 3) =

3

6
,

and the si are independent.
Loosely speaking, this latent information s = (s1, . . . , sn) is useful to work with because the probability

distributions py|s and ps are both nice.
We now perform the E-step. We have

pyi,si(yi, si;x) = pyi|si(yi | si;x)psi(si;x)

=
1√
2π

e(yi−xsi
)2/2 · si

6

and

(1) psi|y(si | y;x) =
py,si(y, si;x)

py(y;x)
=

1√
2π

e(yi−xsi
)2/2 · si

6∑3
s=1

(
1√
2π

e(yi−xs)2/2 · s
6

) .
We now perform the M-step. We want to choose a to maximize the expected value of log(py,s(y, s);a)

when s is distributed according to equation 1.
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We have

x̂ℓ+1 = argmax
a

Eps|y(·|y;x̂ℓ)[log(py,s(y, s);a)]

= argmax
a

Eps|y(·|y;x̂ℓ)

[
log

n∏
i=1

e(asi
−yi)

2

]

= argmax
a

n∑
i=1

Eps|y(·|y;x̂ℓ)[(asi − yi)
2]

= argmax
a

3∑
s=1

n∑
i=1

psi|y(s | y; x̂ℓ)E[(as − yi)
2].

We can choose a1, a2, a3 individually to minimize the contributions from s = 1, 2, 3, respectively. We get
that

x̂ℓ,s =

∑n
i=1 psi|y(s | y; x̂ℓ)yi∑n
i=1 psi|y(s | y; x̂ℓ)

.

And we can calculate psi|y(s | y; x̂ℓ) by equation 1.
Repeating the E-step and M-step gives a series of estimators that converges to the maximum likelihood

estimator.
Remark. With some work, the EM algorithm can also handle a much more general problem, in which

Gaussian distributions are instead multivariate normal distributions, and their mean vectors, covariance
matrices, and weights in the mixture are all unknown parameters!

The graphs below show the convergence of estimators found by the EM algorithm run on this model, where
the observed data consists of n = 500 samples, and where the true means are (x1, x2, x3) = (4.2, 7.0, 10.0).
Within just 15 iterations, the EM algorithm is quite close to its stable configuration.
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The rate of convergence can depend on the true parameters, as shown by running the same algorithm
with means (x1, x2, x3) = (4.2, 9.0, 10.0), results graphed below. In each case, we have set the initial guess
x̂0 to have each mean approximately 2 less than the true mean, so that rates of convergence can be visually
compared more easily.

One thing to note is that the estimators are converging to the maximum likelihood estimator rather than
the true values of the parameters. (This is natural because the former is a feature of the observed data and
the latter is not.) In fact, we can see that the implied CDF of the EM estimate fits that of the observed
data better than the true CDF does.
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4. Intuition and conditions for Convergence

Here we give intuition for why we might expect the EM algorithm to converge to the maximum likelihood
estimator for well-behaved families of probability distributions. Among other things, we will show that the
likelihood increases at each step (unless a fixed point has been reached).

Proposition 1. The log likelihood of the estimator increases at each iteration (unless a fixed point has
been reached).

Proposition 2. The maximum likelihood estimator is a fixed point of the algorithm. Symbolically,

x̂ML = argmax
a∈X

U(a; x̂ML).

Proofs of these propositions are saved for the end of the section. These two properties of the EM algorithm
make it plausible that it converges to the maximum likelihood estimator for a broad class of models.

Note, however, that the algorithm may have multiple fixed points, in which case the EM algorithm is not
guaranteed to converge to the maximum likelihood estimator. Specifically, some but not necessarily all fixed
points of the algorithm are stationary points of the likelihood py(y; ·) (i.e. a point where all of its first-order
partial derivatives are 0), some but not necessarily all stationary points of the likelihood are local maxima,
and some but not necessarily all local maxima are global maxima.

Hence, the analysis of the EM algorithm can get messy. As a practical note, these “traps” often can be
avoided by running the EM algorithm with many different initial estimates, then choosing the result with
the greatest likelihood.

Here we summarize sufficient conditions for various properties of the limit of the EM algorithm, proven
by C.F. Jeff Wu.

(1) If the likelihood py(y; ·) is bounded above, then py(y; x̂ℓ) converges.
(2) If U(x̂′; x̂) is continuous in x̂′ and x̂, then py(y; x̂ℓ) converges to a stationary value.
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(3) Note that (1) and (2) are statements about convergence in likelihood, rather than about convergence
of the estimators themselves. If in addition to (2) we have limℓ→∞ ∥x̂ℓ+1 − x̂ℓ∥ = 0, then the
estimators converge to a stationary point.

(4) If there exists a function σ : R≥0 → R≥0 such that

(∀x̂′, x̂ ∈ X )(U(x̂′; x̂)− U(x̂; x̂) ≥ σ(∥x̂′ − x̂∥))

and (∀{tk} ∈ R≥0)(limk→∞ σ(tk) = 0 ⇒ limk→∞ tk = 0), then (3) is satisfied.
(5) If the likelihood has a unique maximum which is its only stationary point, and the partial derivatives

of U(x̂′; x̂) with respect to the components of x̂′ are continuous in x̂′ and x̂, then the EM algorithm
converges to the maximum likelihood estimator.

Proofs of Propositions 1 and 2.
By definition,

x̂ℓ+1 = argmax
α∈X

U(α; x̂ℓ),

so
U(x̂ℓ+1; x̂ℓ) ≥ U(x̂ℓ; x̂ℓ).

Now we have

log py(y; x̂ℓ+1) = U(x̂ℓ+1; x̂ℓ) +DKL
(
ps|y(·|y; x̂ℓ) ∥ ps|y(·|y; x̂ℓ+1)

)
≥ U(x̂ℓ+1; x̂ℓ)

≥ U(x̂ℓ; x̂ℓ)

= log py(y; x̂ℓ),

so the likelihood of the estimator is nondecreasing, proving Proposition 1.
Proposition 2 follows quickly. If x̂ℓ = argmaxx log py(y;x), then from Proposition 1 we have

log py(y; x̂ℓ+1) ≥ log py(y; x̂ℓ) = max
x

log py(y;x)

so
x̂ℓ+1 = argmax

x
log py(y;x),

as desired.

5. Simplifications for Exponential Families

When py,s(·, ·; ·) is an exponential family, i.e.

py,s(y, s;x) = exp

(
K∑
i=1

xit(y, s)− α(x) + β(y, s)

)
,
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the expressions involved in the EM algorithm simplify nicely. (Here, we have written the exponential family
in terms of its natural parameter x.) The key property is that

(2)

∂

∂xk
α(x) =

∂

∂xk
log

(∫
exp

(
K∑
i=1

xit(y, s) + β(y, s)

)
dyds

)

=

∂
∂xk

∫
exp

(∑K
i=1 xit(y, s) + β(y, s)

)
dyds∫

exp
(∑K

i=1 xit(y, s) + β(y, s)
)
dyds

=

∫
∂

∂xk
exp

(∑K
i=1 xit(y, s) + β(y, s)

)
dyds∫

exp
(∑K

i=1 xit(y, s) + β(y, s)
)
dyds

=

∫
tk(y, s) exp

(∑K
i=1 xit(y, s) + β(y, s)

)
dyds∫

exp
(∑K

i=1 xit(y, s) + β(y, s)
)
dyds

= Eps,y(·,·;x)[tk(y, s)].

In particular,

U(x;x′) = Eps|y(·|y;x′)[log(py,s(y, s;x))]

=

(
K∑
i=1

xiEps|y(·|y;x′)[ti(y, s)]

)
− α(x) + Eps|y(·|y;x′)[β(y, s)],

so
∂

∂xk
U(x;x′) = Eps|y(·|y;x′)[tk(y, s)]−

∂

∂xk
α(x)

= Eps|y(·|y;x′)[tk(y, s)]− Eps,y(·,·;x)[tk(y, s)].

Since we defined
x̂ℓ+1 = argmax

x
U(x; x̂ℓ),

it follows that
∂

∂x̂ℓ+1,k
U(x̂ℓ+1; x̂) = 0,

so the EM algorithm updates its estimate according to

Eps,y(·,·;x̂ℓ+1)[tk(y, s)] = Eps|y(·|y;x̂ℓ)[tk(y, s)].

From this identity, we show as follows that every fixed point of the EM algorithm is a stationary point of
the likelihood py(y; ·).

Indeed, any fixed point x̂ of the EM algorithm must satisfy

Eps,y(·,·;x̂)[tk(y, s)] = Eps|y(·|y;x̂)[tk(y, s)]

for k = 1, . . . ,K.
Note that the conditional distribution of the complete data on the observed data is also exponential. In

particular,

ps|y(s|y;x) =
py,s(y, s;x)

py(y;x)
= exp{xT t(y, s)− (α(x) + log py(y;x)) + β(y, s)}.
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It now suffices to show that
∂

∂xk
log py(y;x) = 0

for k = 1, . . . ,K. Indeed,

∂

∂xk
log py(y;x)

∣∣∣∣
x=x̂

= − ∂

∂xk
log ps|y(s|y;x)

∣∣∣∣
x=x̂

+
∂

∂xk
log py,s(y, s;x)

∣∣∣∣
x=x̂

=
∂

∂xk
(α(x) + log py(y;x))

∣∣∣∣
x=x̂

− ∂

∂xk
α(x)

∣∣∣∣
x=x̂

= Eps|y(·|y;x̂)[tk(y, s)]− Epy,s(·,·;x̂)[tk(y, s)]

= 0,

where in the second-to-last line we apply the key property (2) to both exponential distributions.
So, every fixed point x̂ of the EM algorithm is a stationary point of the likelihood function (when the

distribution of the complete data lies in an exponential family parameterized by x).
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