
Chebyshev Interpolation
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• Wikipedia editors

‣ https://en.wikipedia.org/wiki/Chebyshev_nodes
‣ https://en.wikipedia.org/wiki/Chebyshev_polynomials

• Folklore

Assumed background knowledge:
• Familiarity with polynomial interpolation.
• A bit of real analysis. Good intuition will be more important than formal background.
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Main problem: estimating functions with low-degree polynomials

Consider the problem of estimating a function 𝑓 : [𝑥min, 𝑥max] → ℝ with a polynomial 𝑃𝑛 of degree
at most 𝑛 − 1. Say we want to minimize the “𝐿∞ error”, which is

max
𝑥∈[𝑥min,𝑥max]

|𝑓(𝑥) − 𝑃𝑛(𝑥)|.

In order for a good degree 𝑛 − 1 approximation to exist, it turns out that 𝑓 (𝑛)(⋅) (denoting the 𝑛-
th derivative of 𝑓 ) should be small. Why? Because your error term 𝑓𝑒 = 𝑓 − 𝑃𝑛 has the same 𝑛th
derivative as 𝑓 , and you want 𝑓𝑒 to be close to 0 on an interval. Hopefully this line of reasoning should
feel intuitive, but if it doesn’t, the rest of these notes should help you build this intuition a bit.

Interpolation

Theorem 1. Let 𝐼  be the interval [𝑥min, 𝑥max] and 𝑓 : 𝐼 → ℝ with continuous 𝑛-th derivative.
Furthermore, suppose |𝑓 (𝑛)(𝑥)| ≤ 𝑀  for all 𝑥 ∈ 𝐼 . Let 𝑥0,…, 𝑥𝑛−1 be 𝑛 distinct points on 𝐼 .
Choose 𝑃𝑛 to be the unique polynomial of degree at most 𝑛 − 1 such that 𝑃𝑛(𝑥𝑘) = 𝑓(𝑥𝑘) for 𝑘 =
0,…, 𝑛 − 1. Then for all 𝑥 ∈ 𝐼 , we have

|𝑓(𝑥) − 𝑃𝑛(𝑥)| ≤ |𝑀
𝑛!

(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)|.

Proof of Theorem 1. Let 𝑓𝑒 = 𝑓 − 𝑃𝑛 be the error term. Since 𝑃𝑛 is a polynomial of degree at most 𝑛 −
1, it follows that 𝑃 (𝑛)

𝑛 = 0, so 𝑓 (𝑛)
𝑒 = 𝑓 (𝑛). Furthermore, 𝑓 (𝑛) vanishes on 𝑥0,…, 𝑥𝑛−1 by definition.

We have reduced the problem to the following: Suppose |𝑓 (𝑛)
𝑒 | is bounded on 𝐼  by 𝑀  and 𝑓𝑒 vanishes

on 𝑥0,…, 𝑥𝑛−1. Then for all 𝑥 ∈ 𝐼 , we want to show

|𝑓𝑒(𝑥)| ≤ |𝑀
𝑛!

(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)|.

In particular, we’ve reduced the problem to something not involving the original function 𝑓 , only the
error term 𝑓𝑒.

Focus on arbitrary fixed 𝑥 ∈ 𝐼 . Let 𝑃𝑛+1 be a polynomial of degree at most 𝑛 that, like 𝑓𝑒, vanishes on
𝑥0,…, 𝑥𝑛−1, and furthermore satisfies 𝑃𝑛+1(𝑥) = 𝑓𝑒(𝑥) = 𝑦. In particular, 𝑃𝑛+1 agrees with 𝑓𝑒 on at
least 𝑛 + 1 points.

We can compute the polynomial 𝑃𝑛+1 by Lagrange interpolation; it is given by

𝑃𝑛+1(𝑢) = 𝑦 ⋅ (𝑢 − 𝑥0)⋯(𝑢 − 𝑥𝑛−1)
(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)

.

Since 𝑃𝑛+1 has degree at most 𝑛, the 𝑛-th derivative of 𝑃𝑛+1 is constant, and we can see it is given by

𝑃 (𝑛)
𝑛+1(𝑢) =

𝑦 ⋅ 𝑛!
(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)

.

Now it suffices to show that 𝑀 ≥ |𝑓 (𝑛)
𝑒 (𝑢)| ≥ |𝑃 (𝑛)

𝑛+1(𝑢)| for some 𝑢.

We can reduce this to a problem about 𝑓𝑒 − 𝑃𝑛+1. In particular, we finish by applying the following
proposition to 𝑓𝑒 − 𝑃𝑛+1:
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Proposition. Let 𝑔 : 𝐼 → ℝ have continuous 𝑛-th derivative and vanish at 𝑛 + 1 distinct points. Then
𝑔(𝑛)(𝑢+) ≥ 0 for some 𝑢 ∈ 𝐼  and 𝑔(𝑛)(𝑢−) ≤ 0 for some 𝑢− ∈ 𝐼 .

The proof of this proposition is by induction on 𝑛, using the fact that if a (continuously 𝑛-th differen-
tiable) vanishes at ≥ 𝑛 + 1 points, then its first derivative vanishes at ≥ 𝑛 points.

To wrap up, for all 𝑥 ∈ 𝐼 , if 𝑥 ≠ 𝑥0,…, 𝑥𝑛−1, then 𝑓𝑒 − 𝑃𝑛+1 vanishes at 𝑛 + 1 distinct points
𝑥, 𝑥0,…, 𝑥𝑛−1. then applying the above proposition tells us that there exists 𝑢 such that

𝑀 ≥ |𝑓 (𝑛)
𝑒 (𝑢)| ≥ |𝑃 (𝑛)

𝑛+1(𝑢)| = | 𝑦 ⋅ 𝑛!
(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)

|,

and it follows that

|𝑓𝑒(𝑥)| = |𝑦| ≤ |𝑀
𝑛!

(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1)|,

proving the theorem. □

Aside: repeated 𝑥𝑘 and Talor series
It turns out that Taylor series are a specific case of the above idea. Suppose we don’t require 𝑥0,…, 𝑥𝑛−1
to be distinct. Instead, if 𝑥𝑘 appears ℓ times in 𝑥0,…, 𝑥𝑛−1, then we require 𝑓  and its first ℓ − 1
derivatives to agree with 𝑃𝑛 and its first ℓ − 1 derivatives at 𝑥𝑘. Formally,

𝑓 (𝑗)(𝑥𝑘) = 𝑃 (𝑗)
𝑛 (𝑥𝑘)

for all 𝑗 < ℓ. The polynomial 𝑃𝑛 of degree at most 𝑛 − 1 which satisfies these constraints is still existent
and unique. With some care, we can show that Theorem 1 generalizes accordingly. (Replacing equality
constraints with derivative equality constraints to deal with multiplicity is a common theme in real
analysis.)

Now, the degree 𝑛 − 1 Taylor series of 𝑓  at 𝑡 just comes from setting 𝑥0 = ⋯ = 𝑥𝑛−1 = 𝑡, and taking
the polynomial 𝑃𝑛.

Chebyshev Interpolation
If we want to use Theorem 1 to get an approximation with a guaranteed low 𝐿∞ error, naturally we
want to interpolate at points 𝑥0,…, 𝑥𝑛−1 that minimize

max
𝑥∈𝐼

(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1).

(So, we can see that while setting 𝑥0 = ⋯ = 𝑥𝑛−1 = 𝑡 as in the case of Taylor series is a good choice
in the setting 𝑥 ≈ 𝑡, it is bad at minimizing the worst-case error over a large interval, since (𝑥 − 𝑡)𝑛
can be large).

It turns out that when 𝐼 = [−1, 1], the best choice of 𝑥0,…, 𝑥𝑛−1 is given by what are called Chebyshev
nodes of the first kind,

𝑥𝑘 = cos(
(𝑘 + 1

2)𝜋
𝑛

).

Formally,

Theorem 2. Let 𝑛 be a positive integer and 𝐼 = [−1, 1]. Then
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min
(𝑥∗

0,…,𝑥∗
𝑛−1)∈ℝ𝑛

max
𝑥∈𝐼

(𝑥 − 𝑥∗
0)⋯(𝑥 − 𝑥∗

𝑛−1) = 21−𝑛

with the minimum achieved by 𝑥∗
𝑘 = cos( (𝑘+1

2)𝜋
𝑛 ).

In order to prove this, we first establish the existence of a series of polynomials called the Chebyshev
polynomials of the first kind. The relevant properties are summarized by the following theorem.

Theorem 3. (Chebyshev polynomials of the first kind) For any nonnegative integer 𝑛, there exists
a degree 𝑛 polynomial 𝑇𝑛 such that

𝑇𝑛(cos 𝜃) = cos(𝑛𝜃)

for all 𝜃. Furthermore, when 𝑛 is positive, the 𝑥𝑛 coefficient is 2𝑛−1.

Proof of Theorem 3. We can write the condition as 𝑇𝑛(𝑒𝑖𝜃+𝑒−𝑖𝜃

2 ) = 𝑇𝑛(𝑒𝑖𝑛𝜃+𝑒−𝑖𝑛𝜃

2 ), so it suffices to have

𝑇𝑛(
𝑠 + 1

𝑠
2

) = (
𝑠𝑛 + 1

𝑠𝑛

2
).

Now 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 satisfy the above, and the polynomials given by the recursion

𝑇𝑗 = 2𝑥𝑇𝑗−1(𝑥) − 𝑇𝑗−2(𝑥)

work due to the identity

𝑠𝑗 + 1
𝑠𝑗

= (𝑠 + 1
𝑠
)(𝑠𝑗−1 + 1

𝑠𝑗+1) − (𝑠𝑗−2 + 1
𝑠𝑗−2).

The claim about the leading coefficent follows from the recursion. □

Proof of Theorem 2. Define polynomial 𝑇𝑛 as in Theorem 3, so 𝑇𝑛 has a root at 𝑥𝑘 = cos( (𝑘+1
2)𝜋
𝑛 ) for

𝑘 = 0,…, 𝑛 − 1. Since 𝑇𝑛 has a leading coefficient of 2𝑛−1, we have

(𝑥 − 𝑥0)⋯(𝑥 − 𝑥𝑛−1) = 21−𝑛 ⋅ 𝑇𝑛(𝑥).

Then we have

max
𝑥∈𝐼

(𝑥 − 𝑥∗
0)⋯(𝑥 − 𝑥∗

𝑛−1) = 21−𝑛 ⋅ max
𝑥∈𝐼

𝑇𝑛(𝑥) = 21−𝑛,

proving the upper bound.

Furthermore, (𝑇𝑛(cos 0), 𝑇𝑛(cos 𝜋
𝑛), 𝑇𝑛(cos

2𝜋
𝑛 ),…, 𝑇𝑛(cos 𝜋)) = (1,−1, 1,…, (−1)𝑛).

Let (𝑥∗
0,…, 𝑥∗

𝑛−1) ∈ ℝ𝑛 and 𝑃(𝑥) = (𝑥 − 𝑥∗
0)⋯(𝑥 − 𝑥∗

𝑛−1).

If we have max𝑥∈𝐼 𝑃(𝑥) < 21−𝑛, then we consider 𝑄(𝑥) = 𝑃(𝑥) − 21−𝑛 ⋅ 𝑇𝑛(𝑥).

In particular, since 𝑄 is a difference of monic degree 𝑛 polynomials, it has degree at most 𝑛 − 1.
However, we have that (𝑄(cos 0),𝑄(cos 𝜋

𝑛),𝑄(cos 2𝜋
𝑛 ),…,𝑄(cos 𝜋)) alternates between positive and

negative, implying that 𝑄 has at least 𝑛 roots, contradiction.

Therefore, max𝑥∈𝐼 𝑃(𝑥) ≥ 21−𝑛 for all (𝑥∗
0,…, 𝑥∗

𝑛−1) ∈ ℝ𝑛, where 𝑃(𝑥) = (𝑥 − 𝑥∗
0)⋯(𝑥 − 𝑥∗

𝑛−1),
proving the lower bound. □

For completeness, we substitute these “optimal” values of 𝑥0,…, 𝑥𝑘−1 into Theorem 1.
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Theorem 4. (Chebyshev interpolant) Let 𝐼  be the interval [𝑥min, 𝑥max] and 𝑓 : 𝐼 → ℝ with contin-
uous 𝑛-th derivative. Furthermore, suppose |𝑓 (𝑛)(𝑥)| ≤ 𝑀  for all 𝑥 ∈ 𝐼 .

Define 𝑥𝑘 = 𝑥min+𝑥max
2 + 𝑥max−𝑥min

2 ⋅ cos( (𝑘+1
2)𝜋
𝑛 ).

Choose 𝑃𝑛 to be the unique polynomial of degree at most 𝑛 − 1 such that 𝑃𝑛(𝑥𝑘) = 𝑓(𝑥𝑘) for 𝑘 =
0,…, 𝑛 − 1. Then for all 𝑥 ∈ 𝐼 , we have

|𝑓(𝑥) − 𝑃𝑛(𝑥)| ≤ 2 ⋅ 𝑀
𝑛!

⋅ (𝑥max − 𝑥min
4

)
𝑛
.

Proof sketch of Theorem 4. Generalize the result of Theorem 2 by linearly transforming the interval
[−1, 1] to [𝑥min, 𝑥max]. Then substitute the resulting values of 𝑥0,…, 𝑥𝑛−1 into Theorem 1. □

In this case, we call 𝑃𝑛 the 𝑛-th Chebyshev interpolant of 𝑓 .

Here’s an example which shows the power of Chebyshev interpolants.

Example. Suppose you want a degree ≤ 15 polynomial which estimates sin(𝑥) over [−𝜋
2 ,

𝜋
2 ]. If you

use Chebyshev interpolation, your polynomial 𝑃16 satisfies

| sin(𝑥) − 𝑃16(𝑥)| ≤
2 ⋅ (𝜋4 )

16

16!
≈ 2 × 10−15

for all 𝑥 ∈ [−𝜋
2 ,

𝜋
2 ].

Aside: computing coefficients
One nice property of Chebyshev interpolation is that its coefficients in a certain basis can be computed
by a discrete Fourier transform. Specifically:

Since 𝑇0,…, 𝑇𝑛−1 is a sequence of polynomials with degrees 0,…, 𝑛 − 1, respectively, and 𝑃𝑛 is a
polynomial of degree 𝑛 − 1, we can write

𝑃𝑛(𝑥) = ∑
𝑛−1

𝑗=0
𝑐𝑗𝑇𝑗(𝑥)

for some coefficients 𝑐0,…, 𝑐𝑛−1.

Recalling that 𝑇𝑗(cos(𝜃)) = cos(𝑗𝜃) and 𝑥𝑘 = cos( (𝑘+1
2)𝜋
𝑛 ), it follows that

𝑀

(
((
((
((

𝑐0
𝑐1
⋮

𝑐𝑛−1)
))
))
))

=

(
((
((
((

𝑓(𝑥0)
𝑓(𝑥1)

⋮
𝑓(𝑥𝑛−1))

))
))
))
,

where 𝑀  is a matrix with entries 𝑀𝑗𝑘 = cos( 𝑗(𝑘+1
2)𝜋

𝑛 ).

Therefore, we can compute the coefficients 𝑐0,…, 𝑐𝑛−1 by multiplying the vector of evaluations of 𝑓
by 𝑀−1. This is a discrete Fourier transform!

Summary
• You can get a degree ≤ 𝑛 − 1 polynomial estimate 𝑃𝑛 of a function 𝑓 : 𝐼 → ℝ by interpolating 𝑓  at
𝑛 points.

• This idea generalizes the Taylor series, which takes all 𝑛 points to be the same point.
• The resulting bound on the worst-case error can be minimized by interpolating at the specific points

5



𝑥𝑘 = cos(
(𝑘 + 1

2)𝜋
𝑛

).

• These points are roots of the Chebyshev polynomials of the first kind.
• The Chebyshev polynomials are a basis over which the coefficients of 𝑃𝑛 are a discrete Fourier

transform of the relevant evaluations of 𝑓 .
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