
CKKS Homomorphic Encryption Part 3 -
Improved Bootstrapping

Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Thanks to Brian Lawrence, Noah Walsh, and Colin Tang for working with me to better understand
Chebyshev interpolants!

Sources:
• [CHKKS’18a] The first bootstrapping for the CKKS scheme

‣ Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song
‣ https://eprint.iacr.org/2018/153.pdf

• [CHKKS’18b] A Full RNS Variant of Approximate Homomorphic Encryption
‣ Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, Yongsoo Song
‣ https://eprint.iacr.org/2018/931.pdf

• [CCS’18] Improvements on the bootstrapping
‣ Hao Chen, Ilaria Chillotti, and Yongsoo Song
‣ https://eprint.iacr.org/2018/1043.pdf

• [CHH’18] More improvements on the bootstrapping, and homomorphic DFT
‣ Jung Hee Cheon, Kyoohyung Han, and Minki Hhan
‣ https://eprint.iacr.org/2018/1073.pdf

• [HK’19] Better Bootstrapping for Approximate Homomorphic Encryption
‣ Kyoohyung Han, Dohyeong Ki
‣ https://eprint.iacr.org/2019/688.pdf

• [BMTH’19] Efficient Bootstrapping for Approximate Homomorphic Encryption with Non-Sparse
Keys
‣ Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Pierre Hubaux
‣ https://eprint.iacr.org/2020/1203.pdf

Assumed background knowledge:
• Read and understand CKKS, from Parts 1 & 2 of my notes or from the papers they were based on.

‣ www.mit.edu/ linust/files/CKKS_Homomorphic_Encryption_Part_1.pdf
‣ www.mit.edu/ linust/files/CKKS_Homomorphic_Encryption_Part_2.pdf
‣ https://eprint.iacr.org/2016/421.pdf
‣ https://eprint.iacr.org/2018/153.pdf

What these notes cover:

Part 1: Covers the original scheme which achieves leveled homomorphic encryption. There are a lot
of overlapping ideas with BFV.

Part 2: Covers the bootstrapping procedure of to achieve fully homomorphic encryption. There are
many really nice ideas in the bootstrapping!

Part 3: Covers some optimizations to the bootstrapping procedure.

If there is a Part 4, it will likely cover techniques that focus on improving the precision of the scheme.

1

https://eprint.iacr.org/2018/153.pdf
https://eprint.iacr.org/2018/931.pdf
https://eprint.iacr.org/2018/1043.pdf
https://eprint.iacr.org/2018/1073.pdf
https://eprint.iacr.org/2019/688.pdf
https://eprint.iacr.org/2020/1203.pdf
https://eprint.iacr.org/2016/421.pdf
https://eprint.iacr.org/2018/153.pdf

Contents
Part 3: Improvements on Bootstrapping . 3

9. Paterson-Stockmeyer and Chebyshev interpolants . 3
Horner evaluation . 3
Folding evaluation . 4
Paterson-Stockmeyer evaluation . 4
Stockmeyer-Paterson, modified using Chebyshev polynomials . 4

10. Interpolation for estimation . 5
Chebyshev interpolation . 5
Better interpolation points . 7

11. Bootstrapping sparse ciphertexts . 8
12. Fourier transform for moving between coefficients and slots . 8
13. Residue number systems . 8
14. Improved key switching . 8
15. Improved matrix multiplication . 8

In case you want to read the papers as well:
• Paterson-Stockmeyer and Chebyshev interpolants are introduced in [CCS’18] section 4 and refined

by [HK’19].
• Bootstrapping of sparse ciphertexts is covered by [CHKKS’18a] section 4.4.
• Fourier transforms are covered by [CCS’18] section 3 and [CHH’18] section 3.
• The residue number system is introduced in [CHKKS’18b].
• Improved key switching is in [BMTH’19] section 4.1.
• Improved matrix multiplication is in [BMTH’19] sections 4.2 and 4.3.

2

Part 3: Improvements on Bootstrapping
9. Paterson-Stockmeyer and Chebyshev interpolants
Recall that one of the steps in bootstrapping was to find a polynomial which serves as a good approx-
imation to a certain sine wave (which we transformed to sin(𝑥) for simplicity). The approximation
needs to be accurate for all 𝑥 in some interval [−2𝜋𝐾, 2𝜋𝐾]. We reduced the problem to estimating
the complex exponential 𝑒𝑖𝑥, which we did by taking a degree-𝑑 Taylor series for 𝑒𝑖𝑥/2𝑘 and squaring
it 𝑘 times. Specifically,

𝑒𝑖𝑥 = (𝑒𝑖𝑥/2𝑘)
2𝑘

= (…((𝑒𝑖𝑥/2𝑘)
2
)
2
…)

2

≈

(
((
((⋯
(
((
(

(
((1 + 𝑖𝑥/2

𝑘

1!
+
(𝑖𝑥/2𝑘)2

2!
+ ⋯ +

(𝑖𝑥/2𝑘)𝑑

𝑑!)
))
2

)
))
)
2

⋯

)
))
))
2

.

Our goal is to be able to compute this approximation with very low complexity (few multiplications)
and low depth. Furthermore, the intermediate steps in the computation should not be too large, because
the noise growth of a homomorphic multiplication depends on the size of the plaintext. We call this
last property numerical stability.

As a subtle note, multiplications by public values (e.g. coefficients of our approximation polynomial) do
not contribute to the complexity analysis, because the corresponding multiplications on the ciphertexts
can be done very efficiently.

In this section we present four methods of evaluating a polynomial 𝑃 of degree 𝑑 on an input 𝑥 (or
equivalently, writing 𝑃 as a circuit with input 𝑥). We analyze the complexity, depth, and numerical
stability of these circuits. In the analysis, we omit (1 + 𝑜(1)) factors.

Keep in the back of your mind that for the purposes of bootstrapping we want to approximate sin(𝑥)
accurately on [−2𝜋𝐾, 2𝜋𝐾]. In particular,
• Choose 𝑃(𝑥) to be some degree-𝑑 polynomial approximation of 𝑒𝑖𝑥, say for now the Taylor series.
• Divide the input by 2𝑘 and evaluate 𝑃 homomorphically (to approximate 𝑒𝑖𝑥/2𝑘).
• Square the result 𝑘 times (to approximate 𝑒𝑖𝑥).
• Take the imaginary component (to approximate sin(𝑥)).

The optimal choice of 𝑘 and 𝑑 depend on 𝐾 and on the required precision of the bootstrapping. Details
of choosing 𝑘 and 𝑑 are outside the scope of these notes.

There is a table at the end of this section which summarizes the analysis of the various circuits, which
may be helpful to refer to while reading this section.

Horner evaluation

First, consider a the following way of evaluating a polynomial 𝑃(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+
𝑎𝑑𝑥𝑑.

We can compute this polynomial as

𝑃(𝑥) = (⋯((𝑎𝑑𝑥 + 𝑎𝑑−1)𝑥 + 𝑎𝑑−2)𝑥 + ⋯ + 𝑎1)𝑥 + 𝑎0.

3

This is called Horner evaluation. It achieves good numerical stability but takes about 𝑑 depth and 𝑑
multiplications, which can be improved.

Folding evaluation

We can decrease the depth by recursively “folding” the polynomial in half:
1. Let 𝑑1 be the greatest power of 2 less than 𝑑.
2. By repeated squaring, compute 𝑥, 𝑥2, 𝑥4,…, 𝑥𝑑1 .
3. Write 𝑃(𝑥) = 𝑥𝑑1𝑃low(𝑥) + 𝑃high(𝑥), where 𝑃low and 𝑃high have degree at most 𝑑1.
4. Recursively compute 𝑃low(𝑥), 𝑃high(𝑥) (skipping step 2 since these powers have already been

computed).
5. Compute 𝑃(𝑥) = 𝑥𝑑1𝑃low(𝑥) + 𝑃high(𝑥).

This has a complexity of about 𝑑 but the depth has decreased to log 𝑑. However, this is not numerically
stable because we have large powers of 𝑥 as intermediate calculations.

So, folding evaluation offers a way to reduce the depth, but it loses numerical stability.

Note. The name “folding evaluation” is made-up and you probably won’t find relevant results online
by searching for it.

Paterson-Stockmeyer evaluation

The Paterson-Stockmeyer algorithm gives us a way to reduce the complexity to 2
√
𝑑 while keeping

roughly the same depth.
1. Assume (by padding the tuple of coefficients with zeros) that 𝑑 can be written as 𝑑 = 𝑢𝑣 − 1

with 𝑢 ≈ 𝑣.
2. Compute 1, 𝑥, 𝑥2,…, 𝑥𝑢, by using the formula 𝑥𝑗 = 𝑥⌈𝑗/2⌉ ⋅ 𝑥⌊𝑗/2⌋.
3. Write

𝑃(𝑥) = 𝑄0(𝑥) + 𝑥𝑢𝑄1(𝑥) + 𝑥2𝑢𝑄2(𝑥) + ⋯ + 𝑥(𝑣−1)𝑢𝑄𝑢−1(𝑥),

where each 𝑃𝑖 has degree at most 𝑢 − 1.
4. Use the powers 1, 𝑥, 𝑥2,…, 𝑥𝑢−1 computed earlier to calculate all of the 𝑄𝑖. Note that all

multiplications involved are by constants and are therefore cheap to run homomorphically.
5. The above expression for 𝑃(𝑥) can be thought of as a degree 𝑣 polynomial applied to 𝑥𝑢 whose

coefficients are 𝑄𝑖. We can apply the folding evaluation to this polynomial!

Step 2 incurs 𝑢 complexity and log 𝑢 depth, and step 5 incurs 𝑣 complexity and log 𝑣 depth. So we have
that the overall complexity and depth are 2

√
𝑑 and log 𝑑, respectively.

However, we still suffer from numerical instability because step 5 requires us to compute a large power
of 𝑥 as an intermediate step.

Stockmeyer-Paterson, modified using Chebyshev polynomials
There is a sequence 𝑇0, 𝑇1,… of polynomials, called Chebyshev polynomials, satisfying the following:
1. 𝑇𝑛(cos(𝜃)) = 𝑇 (cos(𝑛𝜃)) for all nonnegative integers 𝑛 and all 𝜃.
2. Consequently, 𝑇𝑛1𝑛2 = 𝑇𝑛1 ∘ 𝑇𝑛2 for all nonnegative integers 𝑛1, 𝑛2.
3. 𝑇𝑛 has degree 𝑛 for all nonnegative integers 𝑛.
4. Recursive formula: 𝑇0(𝑥) = 0, 𝑇1(𝑥) = 𝑥, and 𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥) for 𝑛 ≥ 2.

For a proof of the above, see https://www.mit.edu/~linust/files/Chebyshev_Interpolant.pdf.

4

https://www.mit.edu/~linust/files/Chebyshev_Interpolant.pdf

We can modify Paterson-Stockmeyer evaluation to evaluate a polynomial 𝑃 of degree 𝑑 with similar
multiplicative depth and complexity, while achieving numerical stability for 𝑥 on the interval [−1, 1]
(or in fact any small interval, by applying the appropriate scaling before and after).

1. Assume (by padding the tuple of coefficients with zeros) that 𝑑 can be written as 𝑑 = 𝑢𝑣 − 1
with 𝑢 ≈ 𝑣 and 𝑢 a power of 2.

2. Compute 𝑇0(𝑥),…, 𝑇𝑢(𝑥), using 𝑇2𝑗(𝑥) = 𝑇2(𝑇𝑗(𝑥)) and 𝑇2𝑗+1(𝑥) = 2𝑥𝑇2𝑗(𝑥) − 𝑇2𝑗−1(𝑥).
3. At the corresponding step in the original Paterson-Stockmeyer algorithm, we wrote

𝑃(𝑥) = 𝑄0(𝑥) + 𝑥𝑢𝑄1(𝑥) + 𝑥2𝑢𝑄2(𝑥) + ⋯ + 𝑥(𝑣−1)𝑢𝑄𝑢−1(𝑥),

using 1, 𝑥𝑢, 𝑥2𝑢,…, 𝑥(𝑣−1)𝑢 as a “sparse basis.” It maybe tempting to replace the sparse basis with
𝑇0(𝑥), 𝑇𝑢(𝑥), 𝑇2𝑢(𝑥),…, 𝑇(𝑣−1)𝑢(𝑥). However, this basis does not work will with the folding in
step 5. Instead, we want to work with the basis 𝒯(𝑗,𝑢)0≤𝑗<𝑣 where

(𝒯𝑗,𝑢) = ∏
𝑘∈ Bin(𝑗)

𝑇𝑘(𝑥).

Here, Bin(𝑗) is unique set of powers of 2 whose sum is 𝑗. Specifically, we write

𝑃(𝑥) = 𝒯0,𝑢𝑄0(𝑥) + 𝒯1,𝑢𝑄1(𝑥) + 𝒯2,𝑢𝑄2(𝑥) + ⋯ +𝒯𝑣−1,𝑢𝑄𝑢−1(𝑥),

where the 𝑄𝑗 have degree at most 𝑢 − 1.
4. Write each 𝑄𝑗 in the Chebyshev basis, and compute 𝑄𝑗(𝑥) using scalar multiplications with
𝑇0(𝑥),…, 𝑇𝑢−1(𝑥).

5. Finally, use folding evaluation to evaluate 𝑃(𝑥). This involves computing
𝑇𝑢(𝑥), 𝑇2𝑢(𝑥), 𝑇4𝑢(𝑥),…, by repeatedly applying the identity 𝑇2𝑗(𝑥) = 𝑇2(𝑇𝑗(𝑥)).

We claimed earlier that this modified version of Paterson-Stockmeyer achieves numerical stability
while the original version does not. The reason for this is that we no longer have large powers 𝑥𝑗 as
intermediate computations, but rather Chebyshev polynomials 𝑇𝑗 evaluated at 𝑥. Recalling the identity
𝑇𝑛(cos(𝜃)) = 𝑇 (cos(𝑛𝜃)), it follows that 𝑇𝑗 is small (in particular, 𝑥 ∈ [−1, 1] implies 𝑇𝑗(𝑥) ∈ [−1, 1]),
so our computations are numerically stable, provided that the coefficients of the 𝑄𝑖 in the Chebyshev
basis are reasonably sized. It turns out that they are, for the exponential function 𝑒𝑖𝑥/2𝑘 that we’re
trying to approximate, but we don’t prove this.

Here’s a table comparing the complexity, depth, and numerical stability of the evaluations above. We
add the term 𝑘 to the complexity and depth to account for the fact that we approximate 𝑒𝑖𝑥/2𝑘 and
square the result 𝑘 times.

Evaluation method Complexity Depth Numerical stability
Horner evaluation 𝑑 + 𝑘 𝑑 + 𝑘 Good
Folding evaluation 𝑑 + 𝑘 log 𝑑 + 𝑘 Bad

Paterson-Stockmeyer 2
√
𝑑 + 𝑘 log 𝑑 + 𝑘 Bad

Paterson-Stockmeyer on Chebyshev 2
√
𝑑 + 𝑘 log 𝑑 + 𝑘 Good

10. Interpolation for estimation

Chebyshev interpolation
There is a polynomial, called the Chebyshev interpolant, which often approximates functions better
than the Taylor series.

5

For a more detailed overview of the Chebyshev interpolant, with proofs, see the notes below.
• https://www.mit.edu/~linust/files/Chebyshev_Interpolant.pdf

Otherwise, we summarize the relevant results here:

• We are trying to approximate 𝑓 : [−1, 1] → ℝ on the interval and want a degree ≤ 𝑛 − 1
polynomial 𝑃𝑛 that is accurate in the worst case, i.e. we want

‖𝑓 − 𝑃𝑛‖𝐿∞ = max
𝑥∈[𝑥min,𝑥max]

|𝑓(𝑥) − 𝑃𝑛(𝑥)|

to be small.
• Suppose that the 𝑛-th derivate 𝑓 (𝑛) is continuous and |𝑓 (𝑛)| is bounded by 𝑀 .
• Consider 𝑥0,…, 𝑥𝑛−1 ∈ [−1, 1]. There is a unique polynomial 𝑃𝑛 of degree at most 𝑛 − 1 such

that 𝑃𝑛(𝑥𝑏) = 𝑓(𝑥𝑏) for all 𝑘 = 0,…, 𝑛 − 1, and it achieves the bound

|𝑓(𝑥) − 𝑃𝑛(𝑥)| ≤
𝑀
𝑛!
∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏).

• The Chebyshev interpolant 𝒫𝑛 uses the interpolation points

𝑥∗𝑏 = cos(
(𝑏 + 1

2)𝜋
𝑛

)

because these points minimize

max
𝑥∈[−1,1]

∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏)

at 21−𝑛. Thus, it achieves

‖𝑓 − 𝒫𝑛‖𝐿∞ ≤
𝑀
𝑛!
⋅ 21−𝑛.

• We say that the interpolation points 𝑥0,…, 𝑥𝑛−1 are 𝑛 Chebyshev nodes on [−1, 1].

You may have noticed that the above results are about approximating functions with codomain ℝ,
whereas we’re trying to approximate a complex exponential 𝑒𝑖𝑥/2𝑘 . We can easily deal with this by
generalizing the above results to functions with codomain ℂ, or alternatively by taking interpolants
of cos(2/2𝑘) and sin(𝑥/2𝑘).

It is important to note that while we use the interval [−1, 1] as the domain over which we need to
achieve accuracy, we can apply a linear function to our input 𝑥 (as well as the interpolation points
𝑥0,…, 𝑥𝑛−1) to achieve accuracy on any small interval. In particular, we want our approximation 𝑃𝑛
of 𝑒𝑖𝑥 to be accurate on 𝐼 = [−2𝜋𝐾2𝑘 ,

2𝜋𝐾
2𝑘] because we evaluate it on 𝑥2𝑘 for 𝑥 ∈ [−2𝜋𝐾, 2𝜋𝐾]. So, our

interpolation points will actually be

𝑥∗𝑏 =
2𝜋𝐾
2𝑘

⋅ cos(
(𝑏 + 1

2)𝜋
𝑛

) ∈ 𝐼.

Over any given interval, the degree-𝑑 Chebyshev interpolant gives a slightly better estimate of sin(𝑥)
than the degree-𝑑 Taylor series does. (The Chebyshev interpolant’s error bound is better by a factor
of 𝑂(2𝑑), which sounds like a lot, but it’s actually not that significant because each error bound has
an 𝑑! in the denominator.)

6

https://www.mit.edu/~linust/files/Chebyshev_Interpolant.pdf

Better interpolation points
Recall that the interpolation points 𝑥0,…, 𝑥𝑛−1 used by Chebyshev interpolants is given by

𝑥∗𝑏 =
2𝜋𝐾
2𝑘

⋅ cos(
(𝑏 + 1

2)𝜋
𝑛

) ∈ 𝐼

is the choice which minimizes the quantity

max
𝑥∈𝐼

∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏),

motivated by the error bound

|𝑓(𝑥) − 𝑃𝑛(𝑥)| ≤
𝑀
𝑛!
∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏).

We can choose better interpolation points by noticing that we don’t accuracy on the entire interval 𝐼 .

Taking a step back, recall that the goal of this step of bootstrapping is to approximately map 𝑚′𝑖 =
𝑚𝑖 + 𝑞0𝑡𝑖 to 𝑚, where we can assume that 𝑚𝑖 and 𝑡𝑖 are small, say |𝑚𝑖| ≤ 𝜈 and 𝑡𝑖 ≤ 𝐾 . We do this
by using

𝑚𝑖 ≈
𝑞0
2𝜋
sin(2𝜋𝑚

′
𝑖

𝑞0
),

so our approximation of sin(⋅) must be accurate on an interval approximately [−2𝜋𝐾, 2𝜋𝐾]. Noting
our “square 𝑘 times” trick, our approximation of the complex exponential must be accurate on interval
𝐼 = [−2𝜋𝐾2𝑘 ,

2𝜋𝐾
2𝑘].

However, since we are assuming that |𝑚𝑖| ≤ 𝜈, we actually only need accuracy on a union of small
intervals,

𝐽 = ⋃
𝐾

𝑎=−𝐾
𝐼𝑎 = ⋃

𝐾

𝑎=−𝐾[
[
[2𝜋(𝑎 −

𝜈
𝑞0
)

2𝑘
,
2𝜋(𝑎 + 𝜈

𝑞0
)

2𝑘
]
]
]
.

Let 𝜀 = 𝜈
𝑞0

 so we can write 𝐼𝑎 = [
2𝜋(𝑎−𝜀)
2𝑘 , 2𝜋(𝑎+𝜀)2𝑘].

We now seek to choose 𝑥0,…, 𝑥𝑛−1 to minimize

max
𝑥∈𝐽

∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏) = max

𝑎∈[−𝐾,𝐾]
max
𝑥∈𝐼𝑎

∏
𝑛−1

𝑏=0
(𝑥 − 𝑥𝑏).

Naturally, we want to pick points which lie in the intervals 𝐼𝑎 of interest. In particular, we choose some
𝑛−𝐾 , 𝑛−𝐾+1…,𝑛𝐾−1,𝑛𝐾 with 𝑛 = 𝑛−𝐾 +⋯+ 𝑛𝐾 , and put 𝑛𝑎 interpolation points 𝑥𝑎,0,…, 𝑥𝑎,𝑛𝑎−1
in interval 𝐼𝑎 according to

𝑥𝑎,𝑏 =
2𝜋(𝑎 + 𝜀 ⋅ cos((𝑏+

1
2)𝜋
𝑛𝑎

))

2𝑘
∈ 𝐼𝑎.

(These are 𝑛𝑎 Chebyshev nodes on 𝐼𝑎.)

The choice of 𝑛−𝐾 ,…, 𝑛𝐾 can be done by smoothing or greedy algorithm, but we won’t discuss the
details of this choice.

7

11. Bootstrapping sparse ciphertexts

12. Fourier transform for moving between coefficients and slots

13. Residue number systems

14. Improved key switching

15. Improved matrix multiplication

8

	Part 3: Improvements on Bootstrapping
	9. Paterson-Stockmeyer and Chebyshev interpolants
	Horner evaluation
	Folding evaluation
	Paterson-Stockmeyer evaluation
	Stockmeyer-Paterson, modified using Chebyshev polynomials

	10. Interpolation for estimation
	Chebyshev interpolation
	Better interpolation points

	11. Bootstrapping sparse ciphertexts
	12. Fourier transform for moving between coefficients and slots
	13. Residue number systems
	14. Improved key switching
	15. Improved matrix multiplication

