
CKKS Homomorphic Encryption Part 2 - Bootstrapping

Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• [CHKKS’18] The first bootstrapping for the CKKS scheme, by Jung Hee Cheon, Kyoohyung Han,

Andrey Kim, Miran Kim, and Yongsoo Song
‣ https://eprint.iacr.org/2018/153.pdf

Assumed background knowledge:
• Read and understand CKKS, either from Part 1 or from the original paper

‣ https://docs.google.com/viewerng/viewer?url=https://www.mit.edu/~linust/files/CKKS_
Homomorphic_Encryption_Part_1.pdf

‣ https://eprint.iacr.org/2016/421.pdf

What these notes cover:

Part 1: Covers the original scheme which achieves leveled homomorphic encryption. There are a lot
of overlapping ideas with BFV.

Part 2: Covers the bootstrapping procedure of to achieve fully homomorphic encryption.
There are many really nice ideas in the bootstrapping!

Part 3: Covers some optimizations to the bootstrapping procedure.

Details about choosing parameters and analyzing security are outside the scope of these notes. We will
go into some detail about the noise analysis but not prove everything rigorously.
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Part 2: Bootstrapping to Achieve Fully Homomorphic Encryption
6. Big Picture and Review of Part 1
CKKS is a fully homomorphic scheme which performs approximate arithmeic.
• Encoding a message involves multiplying by Δ and rounding to the nearest integer. So, plaintexts

have a small error before they are even encrypted. (In practice, if you want plaintexts encrypted
with 𝑏 bits of precision, choose Δ slightly larger than 2𝑏.)

• Each homomorphic operation incurs an increase in noise, and there is no mechanism for noise
reduction. Parameters can be chosen to control this noise and achieve a desired level of precision in
the output. (Although we did not spell this out explicitly in Part 1, messages should have absolute
value 𝑂(1) in order to keep noise in control. This fact is connected to the noise bound on ciphertext
multiplication.)

Each ciphertext has a level indicating the size of its modulus. Multiplication decreases levels.
• In particular, when we multiply two ciphertexts, we divide the polynomials and modulus by Δ; this

is called rescaling.
• For ease of reference, we let the possible moduli be 𝑞0, 𝑞0 ⋅ Δ, 𝑞0 ⋅ Δ2, …, 𝑞0 ⋅ Δ𝐿 = 𝑞. Then a

ciphertext with modulus 𝑞0 ⋅ Δℓ is said to have level ℓ.
• When we multiply two ciphertexts with levels ℓ1 and ℓ2, we first bring both down to level

min(ℓ1, ℓ2), and after rescaling, the product has level min(ℓ1, ℓ2) − 1.
• This means that we have achieved levelled homomorphic encryption, where we can evaluate circuits

of multiplicative depth at most 𝐿. (The cost of making 𝐿 large is that 𝑞 becomes very large and basic
multiplications mod 𝑞 become very expensive.)

The bootstrapping operation has the effect of increasing the level of a ciphertext.
• If we have a magic box that allows us to put in a ciphertext with low level and get out a ciphertext

(of the same message, with only slightly increased noise) with high level, then we are no longer
constrained to evaluating low-depth circuits.

• This magic box is precisely what we will construct in these notes (Part 2).

7. Tools for Bootstrapping

Key switching
Suppose we have a ciphertext 𝖢 = (𝖢1, 𝖢2) encrypting plaintext 𝑚 under secret key 𝖲𝖪 = (1, 𝑠). In
particular,

[⟨𝖢, 𝖲𝖪⟩]𝑞ℓ
≈ 𝑚.

We want to obtain a ciphertext 𝖢′ encrypting the same plaintext 𝑚 under a new key 𝖲𝖪′ = (1, 𝑠′).
In order to perform this operation, we clearly need some additional information that relates 𝑠 and 𝑠′,
without revealing either key to us. It turns out that it suffices to have an encryption of 𝑠 under 𝖲𝖪′. Let

𝖪𝖲𝖪𝖲𝖪′(𝑠) = ([−(𝑎 ⋅ 𝑠′ + 𝑒) + 𝑃 ⋅ 𝑠]𝑃⋅𝑞, 𝑎),

where 𝑎 is a random polynomial in ℛ𝑃⋅𝑞 , and 𝑒 is a random small polynomial. We call this the key-
switching key. In particular, we have

[⟨𝖪𝖲𝖪𝖲𝖪′(𝑠), 𝖲𝖪′⟩]𝑃⋅𝑞 ≈ 𝑠

[⟨⌊𝖪𝖲𝖪𝖲𝖪′(𝑠) ⋅ 𝑞ℓ
𝑃 ⋅ 𝑞

⌉, 𝖲𝖪′⟩]
𝑞ℓ

≈ 𝑠.
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It follows that

𝑚 ≈ [⟨𝖢, 𝖲𝖪⟩]𝑞ℓ

= [⟨𝖢, (1, 𝑠)⟩]𝑞ℓ

≈ [⟨(𝖢1, 0) + ⌊𝖪𝖲𝖪𝖲𝖪′(𝑠) ⋅ 𝑞ℓ
𝑃 ⋅ 𝑞

⋅ 𝖢2⌉, (1, 𝑠′)⟩]
𝑞ℓ

= [⟨(𝖢1, 0) + ⌊𝖪𝖲𝖪𝖲𝖪′(𝑠) ⋅ 𝑞ℓ
𝑃 ⋅ 𝑞

⋅ 𝖢2⌉, 𝖲𝖪′⟩]
𝑞ℓ

.

Thus, (𝖢1, 0) + ⌊𝖪𝖲𝖪𝖲𝖪′(𝑠)⋅𝑞ℓ
𝑃⋅𝑞 ⋅ 𝖢2⌉ is an encryption of 𝑚 under the new secret key 𝖲𝖪′ with a slightly

increased noise bound. The increase in the noise bound comes from the randomness and rounding of
the key-switching key.

To summarize: Key switching is an operation whose inputs are
• ciphertext 𝖢 encrypting plaintext 𝑚 under secret key 𝖲𝖪 = (1, 𝑠)
• an encryption 𝖪𝖲𝖪𝖲𝖪′(𝑠) of 𝑠 under a new secret key 𝖲𝖪′ = (1, 𝑠′)

and whose output is a ciphertext 𝖢′ encrypting the same plaintext 𝑚 under the new key 𝖲𝖪′.

Rotation and conjugation
We will see here that key switching directly gives us a way to perform certain cyclic permutations
(rotations) on the plaintext slots.

For 𝖢 = (𝖢1, 𝖢2) = (𝖢1(𝑋), 𝖢2(𝑋)), let 𝖢(𝑋𝑘) denote (𝖢1(𝑋𝑘), 𝖢2(𝑋𝑘)). Define the notation
𝖲𝖪(𝑋𝑘) similarly.

Recall that 𝑁  is a power of 2 and assume 𝑁 ≥ 4. The plaintext slots essentially correspond to the
evaluations of 𝑚 on roots 𝜁, 𝜁3, 𝜁5…, 𝜁2𝑁−1 of the polynomial modulus 𝑋𝑁 + 1. Actually, we only
care about half of the evaluations, because 𝑚 has real coefficients and thus commutes with conjugation
(in particular, 𝑚(𝜁𝑖) = 𝑚(𝜁2𝑁−𝑖)).

In Part 1, we naively chose the representatives 𝜁, 𝜁3, 𝜁5…, 𝜁𝑁−1 of the 𝑁
2  pairs of conjugates to be

evaluated/interpolated. It turns out that a more convenient choice is 𝜁, 𝜁5, 𝜁9, …, 𝜁2𝑁−3, i.e. the 1 mod 4
exponents of 𝜁. This is because {1, 5, 9, …, 2𝑁 − 3} is a cyclic multiplicative group (mod 2𝑁 ) gener-
ated by the element 5. (Mathematical exercise: the generators are precisely the 5 mod 8 elements.) This
requires a (conceptually inconsequential) change to our encoding and decoding method. In particular,
we will now say that we decode plaintexts by

𝒛 ≈ 1
Δ

(𝑚Δ𝒛(𝜁), 𝑚Δ𝒛(𝜁5), 𝑚Δ𝒛(𝜁9), …, 𝑚Δ𝒛(𝜁2𝑁−3))

and modify our encoding method accordingly.

Why is this useful? Observe that if 𝑚(𝑋) decodes to 𝒛, then 𝑚(𝑋5) decodes to 𝜋(𝒛), where 𝜋 is some
cyclic permutation on the slots (components) of 𝑧. More generally, 𝑚(𝑋5𝑗) decodes to 𝜋𝑗(𝒛).

Now, if you have a ciphertext 𝖢 encrypting message 𝑚 under secret key 𝖲𝖪 = (1, 𝑠), then

𝑚(𝑋) ≈ [⟨𝖢(𝑋), 𝖲𝖪(𝑋)⟩]𝑞ℓ

≈ [⟨𝖢′(𝑋), 𝖲𝖪(𝑋5−𝑗)⟩]
𝑞ℓ

,
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where 𝖢′ can be obtained by a key switch using the key-switching key 𝖪𝖲𝖪𝖲𝖪(𝑋5−𝑗)(𝑠). Plugging in
𝑋 ↦ 𝑋5𝑗  tells us that

𝑚(𝑋5𝑗) ≈ [⟨𝖢′(𝑋5𝑗), 𝖲𝖪(𝑋)⟩]
𝑞ℓ

.

So, we have a way to take an encryption of 𝑚(𝑋) = 𝑚Δ𝒛(𝑋) and produce an encryption 𝖢′(𝑋5𝑗)
of 𝑚(𝑋5𝑗) ≈ 𝑚Δ𝜋𝑗(𝒛)(𝑋) (under the same key).

Conjugation is essentially the same process as rotation, except with an exponent of −1 instead of 5𝑗,
so we discuss it briefly. Given 𝖢 encrypting 𝑚 and the appropriate key-switching key, we can find 𝖢′

such that

𝑚(𝑋) ≈ [⟨𝖢(𝑋), 𝖲𝖪(𝑋)⟩]𝑞ℓ

≈ [⟨𝖢′(𝑋), 𝖲𝖪(𝑋−1)⟩]
𝑞ℓ

,

and consequently,

𝑚(𝑋−1) ≈ [⟨𝖢′(𝑋−1), 𝖲𝖪(𝑋)⟩]
𝑞ℓ

.

So we have taken an encryption of 𝑚(𝑋) = 𝑚Δ𝒛(𝑋) and produced an encryption 𝖢′(𝑋−1) of
𝑚(𝑋−1) ≈ 𝑚Δ𝒛.

To summarize: Given certain key-switching keys, we are able to perform a rotation operation,
which applies a certain cyclic permutation to the message 𝒛. We can also perform the conjugation
operation, which transforms 𝑚(𝑋) to 𝑚(𝑋−1) and thus transforms 𝒛 to 𝒛. (Like all other homo-
morphic operations, these are approximate and add to any previous error.)

Linear transformations
Note that every ℝ-linear transformation ℂ𝑁/2 → ℂ𝑁/2 (i.e. from the message space to itself) can be
represented as 𝒛 ↦ 𝐴 ⋅ 𝒛 + 𝐵 ⋅ 𝒛, where 𝐴 and 𝐵 are 𝑁/2 × 𝑁/2 matrices.

Suppose that we have a ciphertext for 𝑚Δ𝒛 and public matrices 𝐴 and 𝐵, and we would like to obtain
a ciphertext for 𝑚Δ(𝐴⋅𝒛+𝐵⋅𝒛).

We have constructed homomorphic operations which do the following (in the message space).
• Addition:

‣ 𝒛(1), 𝒛(2) ↦ 𝒛(1) + 𝒛(2).
• Componentwise multiplication:

‣ 𝒛(1), 𝒛(2) ↦ 𝒛(1) ⊙ 𝒛(2).
• Rotation:

‣ 𝒛 ↦ 𝜋𝑗(𝒛)
• Conjugation:

‣ 𝒛 ↦ 𝒛

We encourage the reader to find a simple way to chain together these operations to achieve arbitrary
linear transformations 𝒛 ↦ 𝐴 ⋅ 𝒛 + 𝐵 ⋅ 𝒛, before reading on.

It suffices to demonstrate how to multiply 𝒛 by an arbitrary matrix 𝐴, since the overall transformation
consists of a conjugation, two matrix multiplications, and an addition.

Note that componentwise multiplication is multiplication by a diagonal matrix. What we mean is that
if 𝒂 = (𝑎1, 𝑎2, …, 𝑎𝑁/2), then
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𝒂 ⊙ 𝒛 =

(
((
((
((

𝑎1
𝑎2

⋱
𝑎𝑁/2)

))
))
))

⋅ 𝒛.

Furthermore, 𝒂 ⊙ 𝜋𝑗(𝒛) is equivalent to multiplication by another sparse matrix, with entries in
locations given by 𝜋𝑗, say

𝒂 ⊙ 𝜋𝑗(𝒛) =

(
((
((
((

𝑎𝑁/2

𝑎1

⋮
𝑎2

)
))
))
))

⋅ 𝒛.

Because the permutation 𝜋 is a cycle of order 𝑁/2, it follows that the nonzero positions of the sparse
matrices corresponding to 𝜋0, 𝜋1, …, 𝜋𝑁/2−1 cover all 𝑁/2 × 𝑁/2 positions.

In particular, we can construct vectors 𝒂0, 𝒂1, …, 𝒂𝑁/2−1 such that

𝒂0 ⊙ 𝜋0(𝒛) + 𝒂1 ⊙ 𝜋1(𝒛) + ⋯ + 𝒂𝑁/2−1 ⊙ 𝜋𝑁/2−1(𝒛) = 𝐴 ⋅ 𝒛.

Specifically, the 𝑖-th entry of 𝒂𝑗 is the 𝜋𝑗(𝑖)-th entry of the 𝑖-th row of 𝐴. This solves the problem of
multiplying a message by an arbitrary public matrix 𝐴.

To spell things out completely:

Suppose that we have a ciphertext 𝖢 for 𝑚Δ𝒛 and public matrices 𝐴 and 𝐵, and we would like to
obtain a ciphertext 𝖢′ for 𝑚Δ(𝐴⋅𝒛+𝐵⋅𝒛).

We construct vectors 𝒂0, …, 𝒂𝑁/2−1 from the entries of 𝐴, and similarly construct 𝒃0, …, 𝒃𝑁/2−1
from the entries of 𝐵. It holds that

(
(( ∑

𝑁/2−1

𝑗=0
𝒂𝑗 ⊙ 𝜋𝑗(𝒛)

)
)) +

(
(( ∑

𝑁/2−1

𝑗=0
𝒂𝑗 ⊙ 𝜋𝑗(𝒛)

)
)) = 𝐴 ⋅ 𝒛 + 𝐵 ⋅ 𝒛.

In order to perform the computation on the left side homomorphically (over ciphertexts), we need:
• A ciphertext 𝖢 for 𝑚Δ𝒛
• An ciphertext 𝖢𝒂𝑗

 for an encoding of each 𝒂𝑗 (which can be a noiseless encryption (𝑚Δ𝒂𝑗
, 0)

since 𝒂𝑗 is public)
• Ditto for 𝒃𝑗
• Key-switching keys 𝖪𝖲𝖪𝖲𝖪(𝑋5−𝑗)(𝑠) and 𝖪𝖲𝖪𝖲𝖪(𝑋−1)(𝑠) for rotation and conjugation.

8. Bootstrapping Procedure

Modulus switching
If we have a ciphertext 𝖢 for message 𝑚 at level 0 (i.e. modulus 𝑞0), it cannot participate in any further
multiplications, so we need to bootstrap it. The output of bootstrapping is a ciphertext 𝖢boot which
encrypts the same message 𝑚 but at a higher level 𝐿 − ℓboot (i.e. modulus 𝑞𝐿−ℓboot

= 𝑞0 ⋅ Δ𝐿−ℓboot ).

The first step is to raise (𝖢, 0, 𝜈, 𝐵) to a ciphertext (𝖢raise, 𝐿, 𝜈raise, 𝐵) of level 𝐿.

The new ciphertext 𝖢raise will have the same polynomial components (𝖢1, 𝖢2) as 𝖢. However, note
that the new ciphertext no longer encrypts the same message, because decryption is mod 𝑞𝐿 instead
of 𝑞0. Specifically, if 𝖢 encrypts 𝑚 ≈ [⟨𝖢, 𝖲𝖪⟩]𝑞0

, then 𝖢raise encrypts
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𝑚 + 𝑞0𝑡 ≈ [⟨𝖢, 𝖲𝖪⟩]𝑞𝐿

for some polynomial 𝑡. Since 𝖲𝖪 = (1, 𝑠) where 𝑠 is small, 𝑡 must also be small.

The rest of the bootstrapping procedure consists of a circuit which recovers 𝑚 from 𝑚 + 𝑞0𝑡. Since
this circuit has some multiplicative depth ℓboot, the final ciphertext for 𝑚 will have level 𝐿 − ℓboot.

From here onwards, in our notation, we ignore the fact that homomorphic operations incur slowly
increasing amounts of error, and use “=” even where “≈” would be more appropriate. It should become
clear that because we are applying homomorphic operations that each only increase the noise by a
small amount, the overall result is also just small increase in noise.

Erasing the multiple of 𝑞0
Our goal is now to homomorphically evaluate a circuit that inputs 𝑚′ = 𝑚 + 𝑞0𝑡, (where 𝑚 and 𝑡 are
small polynomials) and outputs 𝑚. Since the circuit needs to be evaluated homomorphically, its gates
should be additions, multiplications, rotations, conjugations, and linear transformations (since these
are the operations that we know how to perform homomorphically).

If we let 𝑚′(𝑋) = 𝑚′
0 + 𝑚′

1𝑋 + ⋯ + 𝑚′
𝑁−1𝑋𝑁−1 and 𝑚(𝑋) = 𝑚0 + 𝑚1𝑋 + ⋯ + 𝑚𝑁−1𝑋𝑁−1,

then we see that 𝑚𝑖 = [𝑚′
𝑖]𝑞0

 for each 𝑖. In particular, the operation we are trying to compute consists
of performing the same operation over the 𝑁  coefficients. CKKS excels at parallel computation,
because each homomorphic operation as a parallel operation over 𝑁/2 message slots. Therefore, the
overall plan will be as follows:
1. Move coefficients to slots: Transform 𝑚′ into two polynomials 𝑝′

1 and 𝑝′
2, such that the 𝑁

coefficients of 𝑚′ get stored in the 𝑁/2 slots each of 𝑝′
1 and 𝑝′

2. Formally,

(𝑚′
0, …, 𝑚′

𝑁−1) = (𝑝′
1(𝜁), 𝑝′

1(𝜁5), …, 𝑝′
1(𝜁2𝑁−3), 𝑝′

2(𝜁), 𝑝′
2(𝜁5), …, 𝑝′

2(𝜁2𝑁−3)).
2. Erase the multiple of 𝑞0: Suppose that we have a circuit whose gates are multiplications and

additions (i.e. a polynomial circuit) such that when its input can be written as 𝑚𝑖 + 𝑞0𝑡𝑖 for small
𝑚𝑖 and small 𝑡𝑖, the output is approximately 𝑚𝑖. Then we run this circuit homomorphically on the
ciphertexts of 𝑝′

1 and 𝑝′
2, resulting in 𝑝1 and 𝑝2. Now,

([𝑚′
0]𝑞0

, …, [𝑚′
𝑁−1]𝑞0

) = (𝑝1(𝜁), 𝑝1(𝜁5), …, 𝑝1(𝜁2𝑁−3), 𝑝2(𝜁), 𝑝2(𝜁5), …, 𝑝2(𝜁2𝑁−3))

.
3. Move slots to coefficients: Finally, perform the inverse of the first step in order to put

([𝑚′
0]𝑞0

, …, [𝑚′
𝑁−1]𝑞0

) = (𝑚0, …, 𝑚𝑁−1) back in the coefficients of the polynomial.

If we can fill in the details of the three above steps, then we can turn our level 0 encryption of 𝑚 into
a level 𝐿 encryption of 𝑚′ = 𝑚 + 𝑞0𝑡 (modulus switching), and turn that into a level 𝐿 − ℓbootstrap
encryption of 𝑚 (erasing the multiple of 𝑞0).

This would achieve the goal of bootstrapping, which is to begin with a level 0 encryption of a plaintext
and end with a high level encryption of the same plaintext.

Steps 1 and 3, moving between coefficients and slots, is easy given our current technology. This is
because they are both linear transformations!

Let’s dive into the specifics of this transformation.

Say 𝑝′
1 encodes 𝒛′

1 = 1
Δ ⋅ (𝑚′

0, 𝑚′
1, …, 𝑚′

𝑁
2 −1) and 𝑝′

2 encodes 𝒛′
2 = 1

Δ ⋅ (𝑚′
𝑁
2
, 𝑚′

𝑁
2 +1, …, 𝑚′

𝑁−1).

Meanwhile, 𝑚′ encodes 𝒛′ = 1
Δ ⋅ (𝑚′(𝜁), 𝑚′(𝜁5), …, 𝑚′(𝜁2𝑁−3)).
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Therefore, the two linear transformations that we want to evaluate when moving coefficients to slots
are the ones which compute these two maps:

(𝑚′(𝜁), 𝑚′(𝜁5), …, 𝑚′(𝜁2𝑁−3)) ↦ (𝑚′
0, 𝑚′

1, …, 𝑚′
𝑁
2 −1)

(𝑚′(𝜁), 𝑚′(𝜁5), …, 𝑚′(𝜁2𝑁−3)) ↦ (𝑚′
𝑁
2
, 𝑚′

𝑁
2 +1, …, 𝑚′

𝑁−1)

The components on the left are evaluations of the polynomial 𝑚′, and the components on the right
are coefficients. So, the relevant matrices are 𝐿−1

1  and 𝐿−1
2 , where

𝐿1 =

(
((
((
((
((
((
(1

1
1
⋮
1

𝜁
𝜁5

𝜁9

⋮
𝜁2𝑁−3

𝜁2

𝜁5⋅2

𝜁9⋅2

⋮
𝜁(2𝑁−3)⋅2

⋯
…
…
⋱
⋯

𝜁 𝑁
2 −1

𝜁5⋅(𝑁
2 −1)

𝜁9⋅(𝑁
2 −1)

⋮
𝜁(2𝑁−3)⋅(𝑁

2 −1)
)
))
))
))
))
))
)

and

𝐿2 =

(
((
((
((
((
((
(1

1
1
⋮
1

𝜁 𝑁
2

𝜁5⋅𝑁2

𝜁9⋅𝑁2

⋮
𝜁2𝑁−3

𝜁2

𝜁5⋅(𝑁
2 +1)

𝜁9⋅(𝑁
2 +1)

⋮
𝜁(2𝑁−3)⋅2

⋯
…
…
⋱
⋯

𝜁 𝑁
2 −1

𝜁5⋅(𝑁
2 −1)

𝜁9⋅(𝑁
2 −1)

⋮
𝜁(2𝑁−3)⋅(𝑁

2 −1)
)
))
))
))
))
))
)

.

To spell things out, we have

𝒛′
1 = 𝐿−1

1 ⋅ 𝒛′  and 𝒛′
2 = 𝐿−1

2 ⋅ 𝒛′.

We know how to compute on a ciphertext so as to multiply its message by a public matrix, so we can
complete step 1.

Naturally, step 3, moving slots back to coefficients, uses the inverse linear transformations 𝐿1 and 𝐿2.
Specifically, if [𝑚′]𝑞0

, 𝑝1, and 𝑝2 encode 𝒛, 𝒛1, and 𝒛2, then

𝒛 = 𝐿1 ⋅ 𝒛1 + 𝐿2 ⋅ 𝒛2.

So, all that’s left to do is to perform step 2. Recall that the goal is to write a polynomial 𝐹  such that
whenever 𝑚𝑖 and 𝑡𝑖 are small, 𝐹(𝑚𝑖 + 𝑞0𝑡𝑖) ≈ 𝑚𝑖. Then, we write the polynomial 𝐹  as a circuit with
addition and multiplication gates, and evaluate this circuit homomorphically on the ciphertexts of 𝑝′

1
and 𝑝′

2 to get 𝑝1 and 𝑝2. Desired properties of this circuit are that it has not too many multiplication
gates and that intermediate ciphertexts are not too large (because ciphertext size affects noise growth).

To give the size bound a name, we say that 𝑡𝑖 ∈ [−𝐾, 𝐾]. In practice, the bound 𝐾 that we can
guarantee will mainly depend on the degree 𝑁  of our polynomials and the size of the coefficients of
the secret key.

The first key idea is that it suffices to get a polynomial approximation of a sine wave (scaled horizon-
tally and vertically to fit our needs). Specifically, we want to approximate 𝑓(𝑥) = 𝑞0

2𝜋 ⋅ sin(2𝜋𝑥
𝑞0

) on
the interval 𝑥 ∈ [−𝐾𝑞0, 𝐾𝑞0].

When 𝑚𝑖 ≪ 𝑞0 (which we can easily guarantee by choosing 𝑞0 to be sufficiently large), we have that
𝑓(𝑚𝑖 + 𝑞0𝑡𝑖) is a very good approximation of 𝑚𝑖; in particular, we can show that it’s off by about 𝑚

3
𝑖

𝑞2
0

by considering the Taylor series of the sine function.
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For readability and intuition, we scale our variables so that we can pretend we are simply attempting
to find a polynomial approximation for sin(𝑥) which is accurate on the interval 𝑥 ∈ [−2𝐾𝜋, 2𝐾𝜋].

As a starting point, we can obtain a polynomial approximation of sin(𝑥) by its 𝑛-th degree Taylor
series for some odd 𝑛,

𝑆𝑛(𝑥) = 𝑥 − 𝑥3

3!
+ 𝑥5

5!
− ⋯ ± 𝑥𝑛

𝑛!
.

But in order for this approximation to be good on the interval [−2𝐾𝜋, 2𝐾𝜋] (i.e. for 2𝐾 oscillations),
we need 𝑛 = Θ(𝐾). An issue with this is that we run into problems of numerical stability. In particular,
if we aren’t careful about how we write 𝑆𝑛 as a circuit, we may have an intermediate computation
of 𝑥𝑛, which is too large (as evidenced the fact that we have to multiply it by 1

𝑛!  just to bring its size
“back down to Earth” in the Taylor series).

While there may be hacky ways to compute 𝑆𝑛 while mitigating the issue of numerical stability, there
is a much nicer and more practical solution we can employ instead.

We use the formula sin(𝑥) = 𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖 . In particular, we choose paradmeters 𝑑 and 𝑘, and first estimate
𝑒𝑖𝑥/2𝑘  with a degree-𝑑 Taylor series, then square it 𝑘 times, resulting in an approximation for 𝑒𝑖𝑥.
(Then we use a key switch to find the conjugate 𝑒−𝑖𝑥 and finally get 𝑒𝑖𝑥−𝑒−𝑖𝑥

2𝑖 .)

To write things out, we have

𝑒𝑖𝑥 = (𝑒𝑖𝑥/2𝑘)
2𝑘

= (…((𝑒𝑖𝑥/2𝑘)
2
)

2
…)

2

≈

(
((
((⋯

(
((
(

(
((1 + 𝑖𝑥/2𝑘

1!
+

(𝑖𝑥/2𝑘)2

2!
+ ⋯ +

(𝑖𝑥/2𝑘)𝑑

𝑑! )
))

2

)
))
)

2

⋯

)
))
))

2

.

Investigating the optimal choice of 𝑑 and 𝑘 is outside the scope of these notes, but we will note that
we can achieve lower approximation error with better numerical stability while having 𝑑, 𝑘 ≪ 𝐾
(allowing us to use fewer multiplications), compared to the attempt of approximating sin(𝑥) by 𝑆𝑛(𝑥).

As mentioned earlier, once we approximate 𝑒𝑖𝑥, we can use a key switch to find its conjugate 𝑒−𝑖𝑥 and
arrive at an approximation for sin(𝑥) = 𝑒𝑖𝑥−𝑒−𝑖𝑥

2 .

Summary

In order to bootstrap a ciphertext 𝖢 at level 0 encrypting message 𝑚:
• Write a level 𝐿 ciphertext 𝖢raise which is otherwise identical to 𝖢. Then 𝖢raise encrypts 𝑚 + 𝑞0𝑡

for some small polynomial 𝑡. We now want to get rid of the 𝑞0𝑡 term.
• We take two linear transformations which move the coefficients of 𝑚′ = 𝑚 + 𝑞0𝑡 to the message

slots of two polynomials 𝑝′
1 and 𝑝′

2, so that we can perform parallel computations on these
coefficients.

• We find a polynomial which approximates a certain sine wave, transforming the coefficients of
𝑚′ (now in message slots) to coefficients of 𝑚.

• We move the coefficients of 𝑚 back from the message slots to the coefficients of a plaintext.
• Our resulting ciphertext encrypts 𝑚 and has high level, achieving the goal of bootstrapping.
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