
BFV Homomorphic Encryption Part 2 - Rounding Polynomials
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• The original scheme by (Zvika Brakerski), Junfeng Fan, Frederik Vercauteren:

‣ https://eprint.iacr.org/2012/144.pdf
• An improvement by Hao Chen and Kyoohyung Han:

‣ https://eprint.iacr.org/2018/067.pdf

These notes are almost entirely based on the paper by Chen and Han. In section 2, we generalize some
of the propositions from Chen and Han, and present substantially different proofs.

Assumed background knowledge:
• Comfortability with modular arithmetic and polynomials in one variable

‣ If you’re just here for the math, that’s all you need; go ahead and read section 2, and perhaps try
to prove the propositions yourself before reading the solutions.

‣ If you want the cryptographic context, read Part 1 first!
– https://www.mit.edu/~linust/files/BFV_Homomorphic_Encryption_Part_1.pdf

Contents
BFV Homomorphic Encryption Part 2 - Rounding Polynomials . 1

1. Recap on BFV Bootstrapping . 1
2. Digit Removal Polynomials . 1
3. Bootstrapping and Analysis . 4

1. Recap on BFV Bootstrapping
Bootstrapping is the most expensive operation in any FHE scheme. In 2012, Junfeng Fan and Frederik
Vercauteren showed how to bootstrap a ciphertext to lower noise by computing the decryption
function

(𝖢1, 𝖢2, 𝖲𝖪)↦ [⌊𝖢1 + 𝖢2 ⋅ 𝖲𝖪
Δ

⌉]
𝑡

homomorphically, in a circuit with multiplicative depth 𝑂(log 𝑡 + log 𝑁). The difficulty of writing this
circuit came from the division and rounding. They prepared for this step by performing the addition
in binary with a ciphertext for each binary digit. Then dividing and rounding became a simple matter
of truncating some binary digits.

In 2018, Hao Chen and Kyoohyung Han found an alternate method of handling the rounding operation
homomorphically. Their solution allows 𝑡 and 𝑞 to be powers of any prime 𝑝 and involves finding a
low-degree polynomial that removes the last base-𝑝 digit from a number.

2. Digit Removal Polynomials
In this section we present the relevant mathematical tools in a mostly self-contained manner.

Let 𝑝 be a prime and 𝑍𝑝 be a set of representatives of ℤ/𝑝ℤ, that is, a set of 𝑝 integers that leave distinct
remainders upon division by 𝑝.

For an integer 𝑥, let [𝑥]𝑝 denote the element of 𝑍𝑝 that is congruent to 𝑥 mod 𝑝.

More generally, for a positive integer 𝑣, let [𝑥]𝑝𝑣 be the unique integer 𝑥0 + 𝑝𝑥1 + ⋯ + 𝑝𝑣−1𝑥𝑣−1 that
is congruent to 𝑥 mod 𝑝, where 𝑥0, …, 𝑥𝑣−1 ∈ 𝑍𝑝.

1

https://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2018/067.pdf
https://www.mit.edu/~linust/files/BFV_Homomorphic_Encryption_Part_1.pdf

Proposition 0.1 : There exists a degree-𝑝 polynomial 𝐹 with the following property: For all
positive integers 𝑘 and all 𝑧0 ∈ 𝑍𝑝, and all integers 𝑧,

𝑧 ≡ 𝑧0(mod 𝑝𝑘) ⇒ 𝐹𝑒(𝑧) ≡ 𝑧0 (mod 𝑝𝑘+1).

For example, if 𝑝 = 2 and 𝑍𝑝 = {0, 1}, then 𝐹𝑒(𝑥) = 𝑥2 works for all 𝑒.

We present two proofs below.

Proof 1. Use Lagrange interpolation to find a polynomial 𝑓 of degree at most 𝑝 − 1 such that

𝑓(𝑧0) = 𝑧𝑝
0 − 𝑧0

𝑝

for all 𝑧0 ∈ 𝑍𝑝. This is possible because the elements of 𝑍𝑝 are distinct mod 𝑝.

We show that 𝐹(𝑧) = 𝑧𝑝 − 𝑝𝑓(𝑧) works.

Indeed, for 𝑧0 ∈ 𝑍𝑝 and 𝑧 = 𝑧0 + 𝑝𝑘𝑧1, we have

𝐹(𝑧) = (𝑧0 + 𝑝𝑘)𝑝 − 𝑝𝑓(𝑧0 + 𝑝𝑘𝑧1)

≡ (𝑧𝑝
0 + 𝑝 ⋅ 𝑧𝑝−1

0 𝑝𝑘 + ⋯) − 𝑝𝑓(𝑧0)

≡ 𝑧𝑝
0 − 𝑝(𝑧𝑝

0 − 𝑧0
𝑝

)

= 𝑧0,

as desired.

Proof 2. The polynoial 𝐹(𝑧) = 𝑧 + ∏𝑗∈𝑍𝑝
(𝑧 − 𝑗) works.

Indeed, for 𝑧0 ∈ 𝑍𝑝 and 𝑧 = 𝑧0 + 𝑝𝑘𝑧1, we have

∏
𝑗∈𝑍𝑝,
𝑗≠𝑧0

(𝑧 − 𝑗) ≡ −1 (mod 𝑝)

by Wilson’s Theorem, so

𝐹(𝑧) = (𝑧0 + 𝑝𝑘𝑧1) + ∏
𝑗∈𝑍𝑝

(𝑧 − 𝑗)

= (𝑧0 + 𝑝𝑘𝑧1) + 𝑝𝑘𝑧1 ∏
𝑗∈𝑍𝑝,
𝑗≠𝑧0

(𝑧 − 𝑗)

= 𝑧0 + 𝑝𝑘𝑧1

(
((
((
((

1 + ∏
𝑗∈𝑍𝑝,
𝑗≠𝑧0

(𝑧 − 𝑗)

)
))
))
))

≡ 𝑧0 (mod 𝑝𝑒+1).

We are also interested in constructing a family of low-degree polynomials 𝐺𝑒 which computes a
specific function mod 𝑝𝑒.

2

We first present a simple proof that a degree ≤ 𝑒𝑝 − 1 is achievable, then a more involved proof that
achieves degree ≤ (𝑒 − 1)(𝑝 − 1) + 1.

Proposition 0.2 : For all positive integers 𝑒, there exists a degree ≤ 𝑒𝑝 − 1 polynomial 𝐺𝑒 such
that for all integers 𝑧,

𝐺𝑒(𝑧)≡ [𝑧]𝑝(mod 𝑝𝑒).

Proof. Note that 𝐹 𝑒−1(𝑧) (meaning 𝐹 composed with itself 𝑒 − 1 times) is a high-degree polynomial
which satisfies

𝐹 𝑒−1(𝑧)≡ [𝑧]𝑝(mod 𝑝𝑒)

for all 𝑧.

By polynomial long division, we can write 𝐹 𝑒−1(𝑧) = 𝑧(𝑧 − 1)…(𝑧 − 𝑒𝑝 + 1)𝑄(𝑧) + 𝐺𝑒(𝑧) for some
polynomial 𝐺𝑒 of degree at most 𝑒𝑝 − 1. Furthermore, we have

𝐺𝑒(𝑧) ≡ 𝐹 𝑒−1(𝑧)≡ [𝑧]𝑝(mod 𝑝𝑒)

because 𝑧(𝑧 − 1)⋯(𝑧 − 𝑒𝑝 + 1) ≡ 0 (mod 𝑝𝑒) for all integers 𝑧.

Proposition 0.3 : For all positive integers 𝑒, there exists a degree ≤ (𝑒 − 1)(𝑝 − 1) + 1 polynomial
𝐺𝑒 such that for all integers 𝑧,

𝐺𝑒(𝑧)≡ [𝑧]𝑝(mod 𝑝𝑒).

Proof. Let Δ𝑘 denote the 𝑘th finite difference operator. [TODO: Spell out definition]

The main claim is as follows:

Suppose function ℎ : ℤ → ℤ and integers 𝑘 ≥ 0 and 𝑒 ≥ 1 satisfy both of the following:
• There exists an integer polynomial 𝑔1 such that 𝑔1(𝑧) ≡ ℎ(𝑧) (mod 𝑝𝑒) for all 𝑧.
• Δ𝑑ℎ vanishes mod 𝑝𝑒 (i.e. (Δ𝑑ℎ)(𝑧) ≡ 0 (mod 𝑝𝑒) for all 𝑧).

Then there exists an integer polynomial 𝑔2 with degree at most 𝑑 − 1 such that 𝑔2(𝑧) ≡
ℎ(𝑧) (mod 𝑝𝑒) for all 𝑧.

In other words, given an integer function ℎ, if ℎ agrees with some integer polynomial and vanishes
under a low-order finite difference, then ℎ agrees with some low-degree integer polynomial.

Proof. [TODO: Prove]

Now we can apply the claim to our target function ℎ(𝑧) = [𝑧]𝑝, by supplying the high-degree polyno-
mial representation 𝑔1 = 𝐹 𝑒−1.

It suffices now to show that Δ(𝑒−1)(𝑝−1)+2ℎ vanishes mod 𝑝𝑒.

We induct on 𝑒. The base case 𝑒 = 1 holds because Δ1ℎ is congruent to 1 mod 𝑝 everywhere, implying
that Δ2ℎ vanishes mod 𝑝.

We now assume that

ℎ𝑘 = Δ(𝑘−1)(𝑝−1)+2ℎ

3

vanishes mod 𝑝𝑘 and prove that

ℎ𝑘+1 = Δ𝑘(𝑝−1)+2ℎ = Δ𝑝−1ℎ𝑘

vanishes mod 𝑝𝑘+1.

Indeed, since ℎ𝑘 vanishes mod 𝑝𝑘 and satisfies ℎ𝑘(𝑧) = ℎ𝑘(𝑧 + 𝑝) for all 𝑧, we have that

(Δ𝑝ℎ𝑘)(𝑧) = ∑
𝑝

𝑖=0
(−1)𝑖(𝑝

𝑖
)ℎ𝑘(𝑧 + 𝑝 − 𝑖)

≡ ∑
𝑖∈{0,𝑝}

(−1)𝑖(𝑝
𝑖
)ℎ𝑘(𝑧 + 𝑝 − 𝑖)

= ℎ𝑘(𝑧 + 𝑝) + (−1)𝑝ℎ𝑘(𝑧)
= (1 + (−1)𝑝)ℎ𝑘(𝑧)

≡ 0 (mod 𝑝𝑘+1),

as desired.

This completes the induction. The hypothesis of the claim is satisfied with 𝑑 = (𝑝 − 1)(𝑒 − 1) + 2,
which proves the proposition.

Remark. Propositions 0.1 and 0.3 correspond to Lemmas 2 and 3 in [CH’18]. But I thought their proofs
were unnecessarily convoluted so I found more natural proofs.

3. Bootstrapping and Analysis
Recall that the multiplicative depth of a circuit is the maximum number of multiplication gates in any
path through the circuit.

In order to bootstrap to low noise, we want to design a circuit 𝒞 consisting of additions and multipli-
cations over (ℤ/𝑡ℤ)[𝑥]/(𝑥𝑁 + 1), which inputs 𝖯𝗋𝗈𝖼(𝖢1, 𝖢2, 𝖲𝖪) and outputs [⌊𝖢1+𝖢2⋅ 𝖲𝖪

Δ ⌉]
𝑡
, where

𝖯𝗋𝗈𝖼(𝖢1, 𝖢2, 𝖲𝖪) is a “preprocessing” function of 𝖢1, 𝖢2, 𝖲𝖪 of our choice that outputs a tuple of
elements of ℤ[𝑥]/(𝑥𝑁 + 1).

For example, in the original BFV scheme, the processing of (𝖢1, 𝖢2, 𝖲𝖪) results in the binary coeffi-
cients of 𝖲𝖪 and some binary digits of the coefficients of 𝖢1 and 𝖢2, which are then fed into the circuit
𝒞 whose main component is a binary addition.

[TODO: Finish describing CH bootstrapping]

4

	BFV Homomorphic Encryption Part 2 - Rounding Polynomials
	1. Recap on BFV Bootstrapping
	2. Digit Removal Polynomials
	3. Bootstrapping and Analysis

