
BFV Homomorphic Encryption Part 1 - The Original Scheme
Notes by Linus Tang.

These notes have not been thoroughly reviewed. Any errors below are my own responsibility.

Sources:
• The original scheme by (Zvika Brakerski), Junfeng Fan, Frederik Vercauteren:

‣ https://eprint.iacr.org/2012/144.pdf
• An improvement by Hao Chen and Kyoohyung Han:

‣ https://eprint.iacr.org/2018/067.pdf

Assumed background knowledge:
• Know what (fully) homomorphic encryption is

‣ https://en.wikipedia.org/wiki/Homomorphic_encryption
‣ Familiarity with at least one FHE scheme may help but is not required
‣ Then again, I think BFV is a reasonable first FHE scheme to learn.

• Some familiarity with polynomial rings

What these notes cover:

This is meant to be an intuitive and explanation of the BFV homomorphic encryption scheme as
described in the original 2012 paper. We show how to encrypt and decrypt ciphertexts and perform
operations homomorphically, and go into detail about bootstrapping, the method of noise reduction.
We hint at a faster method of bootstrapping proposed in 2018.

Details about choosing parameters are outside the scope of these notes. We also don’t always give
specific details about the noise analysis, and merely point out when coefficients are “small” compared
to the noise tolerance.

Contents
BFV Homomorphic Encryption Part 1 - The Original Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Key Generation, Encryption, and Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. Evaluation and Decryption for Leveled FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Adding two ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Multiplying two ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Adding and multiplying by constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Recap + correctness guarantees and noise bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4. Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Refined framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Discussion of multiplicative depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Designing the decryption circuit, part 1: analyzing rounding and noise . . . . . . . . . . . . . . . . . . . . . . . . . 7
Designing the decryption circuit, part 2: binary addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5. Hint at Better Bootstrapping [CH’18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1. Notation
• The user generates keys and ciphertexts of private inputs and the server computes on the ciphertexts.
• We will use sans letters to denote keys, ciphertexts, and their components, which are polynomials.

We use bold letters to denote polynomials that are not components of keys or ciphertexts.
• Important: We will use ℤ𝑎 to denote the set of 𝑎 integers lying in (−𝑎

2 , 𝑎
2 ], not the ring ℤ/𝑎ℤ.
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‣ For any integer 𝑟, we let [𝑟]𝑎 denote the residue of 𝑟 belonging to ℤ𝑎. For a polynomial 𝒓, we let
[𝒓]𝑎 denote the same operation applied coefficient-wise.

‣ We will see later that arithmetic on messages is in (ℤ/𝑡ℤ)[𝑥]/(𝑥𝑁 + 1) but analyzing the correct-
ness of arithmetic on ciphertexts cannot be done entirely in (ℤ/𝑞ℤ)[𝑥]/(𝑥𝑁 + 1).

‣ For real 𝑟 we will let ⌊𝑟⌉ denote 𝑟 rounded to the nearest integer (this operation will typically
be applied to a quotient in order to denote more general rounding). Similarly, this operation also
applies coefficient-wise to polynomials.

• Let 𝑁  be a power of 2 and 𝑅 denote the ring ℤ[𝑥]/(𝑥𝑁 + 1) and 𝑅𝑎 denote the set of polynomials
in 𝑅 whose coefficients lie in ℤ𝑎 (when written with degree < 𝑁 ).
‣ We will use “=” to denote equality in 𝑅 and “≡” to denote equality in (ℤ/𝑞ℤ)[𝑥]/(𝑥𝑁 + 1).

2. Key Generation, Encryption, and Decryption
• Let 𝑡, 𝑞 be powers of 2 and Δ = 𝑞/𝑡 so that 𝑡 ≪ Δ. We will see later than Δ is, in a sense, a level of

noise tolerance.¹
• Messages 𝑴  lie in 𝑅𝑡 but are multiplied by scaling factor Δ to raise them to 𝑅𝑞 .
• The secret key 𝖲𝖪 = 𝑠0𝑥𝑁−1 + ⋯ + 𝑠𝑁−2𝑥 + 𝑠𝑁−1 is a random element of 𝑅2, i.e. a polynomial

whose coefficients are chosen from {0, 1}.
• The public key is

(𝖯𝖪1, 𝖯𝖪2) = ([−𝒂 ⋅ 𝖲𝖪 + 𝒆]𝑞, [𝒂]𝑞),

where 𝒂 is a random polynomial in 𝑅𝑞 and 𝒆 is a polynomial in 𝑅 whose coefficients are chosen iid
from some distribution of 𝜒 over small integers (such as a bounded Gaussian over integers).
‣ The Ring Learning With Errors (RLWE) assumption states that efficient adversaries (without

knowledge of 𝖲𝖪) cannot distinguish (𝖯𝖪1, 𝖯𝖪2) as defined above from a two independent
uniform random draws from 𝑅𝑞 . The security of the BFV scheme relies on the RLWE assumption.

‣ Formal security proofs are outside the scope of these notes, but a helpful intuition is that if
(𝖯𝖪1, 𝖯𝖪2) looks indistinguishable from uniform randomness to the server, then the public key
gives the server no information about the underlying secret key 𝖲𝖪.

• A ciphertext of a message 𝑴  is

(𝖢1, 𝖢2) = ([𝖯𝖪1 ⋅ 𝒖 + 𝒆1 + Δ𝑴]𝑞, [𝖯𝖪2 ⋅ 𝒖 + 𝒆𝟐]𝑞),

where 𝒖, 𝒆1, 𝒆2 are random polynomials in 𝑅2 with coefficients drawn from 𝜒.
• The key property that will be used for decryption is that over (ℤ/𝑞ℤ)[𝑥]/(𝑥𝑁 + 1),

𝖢+ = 𝖢1 + 𝖢2 ⋅ 𝖲𝖪
≡ Δ𝑴 + 𝒆 ⋅ 𝒖 + 𝒆1 + 𝒆2 ⋅ 𝖲𝖪
= Δ𝑴 + 𝒗,

for some polynomial 𝒗 with small coefficients. In fact, a more careful analysis shows that

𝖢+ = Δ𝑴 + 𝒗 + 𝑞𝒓

where the coefficients of 𝒓 are also small.

Thus, so long as we can control the noise 𝑣 to have coefficients < Δ/2 in magnitude, a holder of the
secret key can recover the message 𝑴 = [⌊𝖢1+𝖢2⋅ 𝖲𝖪

Δ ⌉]
𝑡
.

¹There is a more general version of the scheme in which 𝑞 and 𝑡 need not be powers of 2, and 𝑡 need not even divide
𝑞. See the original paper for details. In these notes we cover the specific case where 𝑡 and 𝑞 are powers of 2 because it is
easiest to understand and has the most efficient implementation.
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• There is also a public evaluation key 𝖤𝖪 and a public bootstrapping key 𝖡𝖲𝖪, each of which will be
discussed later when it can be better motivated.

3. Evaluation and Decryption for Leveled FHE
Recall that messages 𝑴  lie in the message space 𝑅𝑡. The operations over ciphertexts described below
correspond to operations on messages over (ℤ/𝑡ℤ)[𝑥]/(𝑥𝑁 + 1).

Adding two ciphertexts
Suppose ciphertexts (𝖢(1)

1 , 𝖢(1)
2 ) and (𝖢(2)

1 , 𝖢(2)
2 ) encoding 𝑴 (1) and 𝑴 (2). If we want a ciphertext

that encodes [𝑴 (1) + 𝑴 (2)]
𝑡
, we add the ciphertexts component-wise, i.e. we compute

(𝖢(1)
1 + 𝖢(2)

1 , 𝖢(1)
2 + 𝖢(2)

2 ),

which encrypts [𝑴 (1) + 𝑴 (2)]
𝑡
 with slightly increased noise.

Multiplying two ciphertexts
Say we have two messages 𝑴 (1) and 𝑴 (2) with ciphertexts (𝖢(1)

1 , 𝖢(1)
2 ) and (𝖢(2)

1 , 𝖢(2)
2 ).

Define 𝖢(1)
+ = 𝖢(1)

1 + 𝖢(1)
2 ⋅ 𝖲𝖪 = Δ𝑴 (1) + 𝒗(1) + 𝑞𝒓 and define 𝖢(2)

+ , 𝒗(2), and 𝒓(2) similarly, so that
the 𝒗(𝑖) and 𝒓(𝑖) are small.

Then over (ℤ/𝑞ℤ)[𝑥]/(𝑥𝑁 + 1) we have

(𝖢(1)
1 + 𝖢(1)

2 ⋅ 𝖲𝖪)(𝖢(2)
1 + 𝖢(2)

2 ⋅ 𝖲𝖪) = 𝖢(1)
+ 𝖢(2)

+

= Δ𝑴 (1) + 𝒗(1) + 𝑞𝒓

= Δ2𝑴1𝑴2 + Δ(𝑴1𝒗(2) + 𝑴2𝒗(1)) + 𝒗(1)𝒗(2) + 𝑞(𝒗(1)𝒓(2) + 𝒗(2)𝒓(1) + Δ(𝒓)).

for some polynomial 𝒓.

We expand the left side of the above, divide by Δ, and round, getting

⌊𝖢(1)
1 𝖢(2)

1
Δ

⌉ + ⌊𝖢(1)
1 𝖢(2)

2 + 𝖢(1)
2 𝖢(2)

1
Δ

⌉ ⋅ 𝖲𝖪 + ⌊𝖢(1)
2 𝖢(2)

2
Δ

⌉ ⋅ 𝖲𝖪2 ≡ Δ𝑴1𝑴2 + 𝒗(3)

where the error 𝒗(3) is larger than 𝒗(1) and 𝒗(2), but “not by too much” (for an explicit bound,
see the recap below or Lemma 2 in the original paper). The division by Δ cannot be done over
(ℤ/𝑞ℤ)[𝑥]/(𝑥𝑁 + 1), which is why we had to keep track of the terms that are divisible by 𝑞 but not
by 𝑞Δ.

We can imagine passing

(𝖢′
1, 𝖢′

2, 𝖢′
3) =

(
((
([⌊𝖢(1)

1 𝖢(2)
1

Δ
⌉]

𝑞

, [⌊𝖢(1)
1 𝖢(2)

2 + 𝖢(1)
2 𝖢(2)

1
Δ

⌉]
𝑞

, [⌊𝖢(1)
2 𝖢(2)

2
Δ

⌉]
𝑞)
))
)

to back to the user, who can compute [𝖢′
1 + 𝖢′

2 ⋅ 𝖲𝖪 + 𝖢′
3 ⋅ 𝖲𝖪2]

𝑞
 to get a noisy version of [Δ𝑴1𝑴2]𝑞 .

Provided the noise is less than Δ/2 the user could divide by Δ and round to get the product [𝑴1𝑴2]𝑡.

However, our ciphertext format has changed, and we now have 3 polynomials instead of 2. If we want
to compose multiplications, we must get the ciphertext format back to the original (or generalize the
multiplication protocol and allow the ciphertext size to grow, but this is impractical for deep circuits).
This is called relinearization, and the main idea is for the user to provide an approximate quadratic
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equation in 𝖲𝖪 (encrypted so that the server can’t learn 𝖲𝖪), which the server can then use to convert
the third component into the first two.

In particular, the user provides the server with an evaluation key

(𝖤𝖪1, 𝖤𝖪2) = ([−(𝒂 ⋅ 𝖲𝖪 + 𝒆) + 𝑝 ⋅ 𝖲𝖪2]
𝑝⋅𝑞

, 𝒂)

for some parameter 𝑝, with 𝒂 sampled from 𝑅𝑝⋅𝑞 and the noise 𝒆 sampled from 𝜒.

You can think of the evaluation key as an encryption of 𝖲𝖪2 (with scaling factor 𝑝 instead of Δ), in
the sense that 𝖤𝖪1 + 𝖤𝖪2 ⋅ 𝖲𝖪 is close to 𝑝𝖲𝖪2.

Given this encryption of 𝖲𝖪2, the server can compute

([𝖢′
1 + ⌊𝖢′

3𝖤𝖪𝟣
𝑝

⌉]
𝑞
, [𝖢′

1 + ⌊𝖢′
3𝖤𝖪𝟤
𝑝

⌉]
𝑞
),

which decrypts to 𝑴1𝑴2 with slightly more noise than (𝖢′
1, 𝖢′

2, 𝖢′
3). So, we’ve successfully reduced

the ciphertext back to the original two-polynomial format.

Adding and multiplying by constants
If instead of having ciphertexts for both 𝑴 (1) and 𝑴 (2) we have a ciphertext 𝖢(1) for 𝑴 (1) and direct
access to 𝑴 (2) (e.g. if 𝑴 (2) is a public input), then we can compute a ciphertext for 𝑴 (1) + 𝑴 (2) by
first generating a ciphertext 𝖢(2) for 𝑴 (2), then performing addition of two ciphertexts 𝖢(1) and 𝖢(2).

Our ciphertext 𝖢(2) for 𝑴 (2) need not have noise because 𝑴 (2) is public; in particular, we can simply
set 𝖢(2) = (Δ𝑴 (2), 0).

The same applies to multiplying a ciphertext by a public input.

Recap + correctness guarantees and noise bounds

Here we recap our scheme so far and write the correctness guarantees and noise bounds of our
homomorphic operations:
• The user generates a secret key 𝖲𝖪 which is a random polynomial in 𝑅2.
• The user generates a public key (𝖯𝖪1, 𝖯𝖪2) = ([−𝒂 ⋅ 𝖲𝖪 + 𝒆]𝑞, [𝒂]𝑞) where 𝒂 is a random

polynomial in 𝑅𝑞 and 𝒆 is small noise.
• The user chooses parameter 𝑝 not too far from 𝑞 and generates an evaluation key

(𝖤𝖪1, 𝖤𝖪2) = ([−(𝒂1 ⋅ 𝖲𝖪 + 𝒆) + 𝑝 ⋅ 𝖲𝖪2]
𝑝⋅𝑞

, 𝒂1)

where 𝒂1 is sampled uniformly from 𝑅𝑝𝑞 and 𝒆 is small noise.
• The user sends the public key and evaluation key to the server.
• To encrypt a message 𝑴 ∈ 𝑅𝑡, the user generates a polynomial 𝒖 ∈ 𝑅 with small coefficients

and two small noise polynomials 𝒆1 and 𝒆2. The ciphertext is

(𝖢1, 𝖢2) = ([𝖯𝖪1 ⋅ 𝒖 + 𝒆1 + Δ𝑴]𝑞, [𝖯𝖪2 ⋅ 𝒖 + 𝒆𝟐]𝑞).

‣ The random 𝒖, 𝒆1, 𝒆2 are for security purposes only, so if the server is creating a ciphertext
for a public message 𝑴  (which is done before adding or multiplying a ciphertext to a public
input 𝑴 ), the server can simply set all of them to 0 to get the noiseless ciphertext (Δ𝑴, 0).

• To decrypt a ciphertext (𝖢1, 𝖢2), compute
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𝑴 = [⌊𝖢1 + 𝖢2 ⋅ 𝖲𝖪
Δ

⌉]
𝑡
.

• We say that (𝖢1, 𝖢2) encodes 𝑴  with noise at most 𝐸 if

𝖢1 + 𝖢2 ⋅ 𝖲𝖪 ≡ Δ𝑴 + 𝒗

for some 𝒗 whose coefficients are all at most 𝐸. Roughly speaking, decryption yields [𝑴]𝑡 if
noise is at most Δ/2.

• Adding two ciphertexts:
‣ If (𝖢(1)

1 , 𝖢(1)
2 ) and (𝖢(2)

1 , 𝖢(2)
2 ) are ciphertexts encoding 𝑴 (1) and 𝑴 (2) with noise at most

𝐸(1) and 𝐸(2), the server computes

(𝖢(1)
1 + 𝖢(2)

1 , 𝖢(1)
2 + 𝖢(2)

2 ),

which encrypts [𝑴 (1) + 𝑴 (2)]
𝑡
 with noise at most 𝐸(1) + 𝐸(2) + 𝑡.

• Multiplying two ciphertexts:
‣ If (𝖢(1)

1 , 𝖢(1)
2 ) and (𝖢(2)

1 , 𝖢(2)
2 ) are ciphertexts encoding 𝑴 (1) and 𝑴 (2) with noise at most

𝐸(1) and 𝐸(2), the server computes

(𝖢′
1, 𝖢′

2, 𝖢′
3) =

(
((
([⌊𝖢(1)

1 𝖢(2)
1

Δ
⌉]

𝑞

, [⌊𝖢(1)
1 𝖢(2)

2 + 𝖢(1)
2 𝖢(2)

1
Δ

⌉]
𝑞

, [⌊𝖢(1)
2 𝖢(2)

2
Δ

⌉]
𝑞)
))
)

and relinearize to

([𝖢′
1 + ⌊𝖢′

3𝖤𝖪𝟣
𝑝

⌉]
𝑞
, [𝖢′

1 + ⌊𝖢′
3𝖤𝖪𝟤
𝑝

⌉]
𝑞
).

This new ciphertext encrypts [𝑴1 + 𝑴2]
𝑡
 with noise 𝑂(𝑁2𝑡(𝐸(1) + 𝐸(2))).

(As we can see by this bound, Δ needs to be huge compared to 𝑁  and 𝑡 in order to tolerate the
noise of stringing together several multiplications.)

4. Bootstrapping
All logarithms below are base 2. Recall that 𝑞, 𝑡, 𝑁  are powers of 2 and Δ = 𝑞/𝑡.

Above, we have achieved levelled homomorphic encryption: we can homomorphically evaluate
circuits of bounded depth before the worst-case noise exceeds Δ/2 and risks corrupting the message.
In order to achieve fully homomorphic encryption, we need a way to take a ciphertext and reduce its
noise to a constant level.

General framework
A general approach for bootstrapping in FHE is to run the decryption circuit homomorphically. To
spell it out, we have a ciphertext (𝘊𝟣, 𝘊𝟤) encrypting 𝑴  with high noise (but still considerably less
than Δ/2). We want to refresh the noise, i.e. obtain a ciphertext 𝖢′ = (𝖢′

1, 𝖢′
2) of 𝑴  with a constant

amount of noise. To do this, we write the decryption function

(𝖢1, 𝖢2, 𝖲𝖪)↦ [⌊𝖢1 + 𝖢2 ⋅ 𝖲𝖪
Δ

⌉]
𝑡
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as a circuit 𝒞 whose gates are additions and multiplications. Then if we have ciphertexts of 𝖢1, 𝖢2, and
𝖲𝖪 (yes, ciphertexts for ciphertexts and a ciphertext of the secret key), we can evaluate the circuit 𝒞
homomorphically to get a ciphertext 𝖢′ for 𝑴 = [⌊𝖢1+𝖢2⋅ 𝖲𝖪

Δ ⌉]
𝑡
. Furthermore, the noise in this new

ciphertext will only come from the computations that are part of the circuit 𝒞.

Preprocessing
A ciphertext of 𝖲𝖪 will be provided to the server, and we call it the bootstrapping key 𝖡𝖲𝖪.

Actually, we will want to preprocess the ingredients 𝖢1, 𝖢2, and 𝖲𝖪 before we obtain ciphertexts for
them, for two reasons:
• Since 𝖢1 and 𝖢2 are members of 𝑅𝑞 whereas the message space is 𝑅𝑡, we can’t encrypt each of

𝖢1, 𝖢2 in one piece.
• It turns out to be difficult to write a circuit 𝒞 whose inputs are 𝖢1, 𝖢2, and 𝖲𝖪 and whose gates

are addition and multiplication that computes the decryption function (we run into trouble with the
“divide by Δ and round” step). Instead, we preprocess these ingredients before encrypting them so
that the circuit 𝒞 can take the processed versions as inputs instead.

In the case of the original BFV scheme, this preprocessing consists of breaking 𝖲 into its coefficients,
rounding the coefficients of 𝖢1 and 𝖢2 to an appropriate amount of precision, and encrypting indi-
vidual bits of coefficients instead of entire coefficients or entire polynomials.

Specifically:
• Let 𝐾𝑖 be the 𝑋𝑖 coefficient 𝖲𝖪. Recall that 𝖲𝖪 ∈ 𝑅2, so the coefficients are binary; 𝐾𝑖 ∈ {0, 1}.
• We round each coefficient of 𝖢1 and of 𝖢2 to the nearest multiple of Δ

2𝑁 . We will see later why this
rounding still offers enough precision to carry out the computation, assuming that 𝖢 = (𝖢1, 𝖢2)
encrypts 𝑴  with not too much noise.
‣ Let 𝐶1,𝑖 be the 𝑋𝑖 coefficient of 𝖢1.
‣ Let 𝐶1,𝑖 = ⌊2𝑁𝖢1,𝑖

Δ ⌉.
‣ Define 𝐶2,𝑖 and 𝐶2,𝑖 similarly.

• Note that we only care about 𝖢1 and 𝖢2 mod 𝑞. Consequently, after dividing and rounding, we only
care about 𝐶1,𝑖 and 𝐶2,𝑖 mod 2𝑁𝑞

Δ = 2𝑁𝑡. So, each can be represented by a 𝑘-bit integer with 𝑘 =
log(2𝑁𝑡). In particular, write

[𝐶1,𝑖]2𝑁𝑡
= [∑

𝑘−1

𝑗=0
𝑐1,𝑖,𝑗2𝑗]

2𝑁𝑡

where 𝑐1,𝑖,𝑗 ∈ {0, 1} are bits. Define 𝑐2,𝑖,𝑗 similarly.

Refined framework

Now we want to design a circuit 𝒞 with addition and multiplication gates whose inputs are all of
the 𝑐1,𝑖,𝑗, 𝑐2,𝑖,𝑗, and 𝐾𝑖 and whose output is ⌊𝖢1+𝖢2⋅ 𝖲𝖪

Δ ⌉.

Assuming we have designed this circuit, the bootstrapping goes as follows:
• At the beginning of the protocol, the user sends the server a bootstrapping key

𝖡𝖲𝖪 = (𝖡𝖲𝖪0, …, 𝖡𝖲𝖪𝑁−1)

where 𝖡𝖲𝖪𝑖 is a ciphertext for 𝐾𝑖.
• Whenever the server has a ciphertext (𝘊𝟣, 𝘊𝟤) encrypting message 𝑴  with high noise 𝐸 < Δ

8
and wants to reduce the noise, the server extracts bits 𝑐1,𝑖,𝑗 and 𝑐2,𝑖,𝑗 for 0 ≤ 𝑖 < 𝑁  and 0 ≤ 𝑗 <
𝑘. Then the server computes 𝖢𝖢⋅,𝑖,𝑗 = (Δ𝑐⋅,𝑖,𝑗, 0), which is a ciphertext for 𝑐⋅,𝑖,𝑗 with zero noise.
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‣ The reason we require 𝐸 < Δ
8  is so that we still have some room for error beneath the actual

noise threshold of Δ2 , which allows for the rounding of 𝐶⋅,𝑖 to 𝐶⋅,𝑖 mentioned earlier. The reason
why this works will be explained in more detail soon.

• Recall that the circuit 𝒞 of additions and multiplications on 𝑐1,𝑖,𝑗, 𝑐2,𝑖,𝑗, and 𝐾𝑖 produces output
𝑴 = ⌊𝖢1+𝖢2⋅ 𝖲𝖪

Δ ⌉. So, the server can run the same circuit on the respective ciphertexts 𝖢𝖢1,𝑖,𝑗,
𝖢𝖢2,𝑖,𝑗, and 𝖡𝖲𝖪𝑖, and the output is a ciphertext 𝖢′ = (𝖢′

1, 𝖢′
2) of 𝑴 . Furthermore, the noise

with which (𝖢′
1, 𝖢′

2) encrypts 𝑴  will come only from the operations in 𝒞; the noise from the
original ciphertext (𝖢1, 𝖢2) does not carry over.

Discussion of multiplicative depth
We want the circuit 𝒞 to be small because it means we can perform fewer operations each time we
want to bootstrap a ciphertext. But there is another property we care about, called multiplicative depth.

As a simple example, consider two ways of multiplying eight polynomials 𝒑1, …, 𝒑8 belonging to the
plaintext space.
• Method 1: We can compute ((((((𝒑1𝒑2)𝒑3)𝒑4)𝒑5)𝒑6)𝒑7)𝒑8.
• Method 2: We can compute ((𝒑1𝒑2)(𝒑3𝒑4))((𝒑5𝒑6)(𝒑7𝒑8)).

These both involve seven multiplications and will lead to the same answer. However, if we want to
multiply these polynomials homomorphically (i.e. multiply their corresponding ciphertexts), assuming
the level of noise in the eight ciphertexts is roughly the same, method 1 will result in a product
ciphertext with greater noise levels than method 2.

To see why, recall the noise bound for multiplication (which we did not prove):

• If (𝖢(1)
1 , 𝖢(1)

2 ) and (𝖢(2)
1 , 𝖢(2)

2 ) encode 𝑴 (1) and 𝑴 (2) with noise upper bounded by 𝐸(1) and
𝐸(2), respectively, then the result of ciphertext multiplication encodes 𝑴 (1)𝑴 (2) with noise upper
bounded by 𝑂(𝑁2𝑡(𝐸(1) + 𝐸(2))). Abbreviate 𝑁2𝑡 by 𝑦, our “noise multiplier”.

Then we can see that if the ciphertexts for 𝒑𝑖 all have noise 𝐸, then multiplying them as in method
1 results in noise 𝑂(𝑦7𝐸), whereas multiplying them as in method 2 results in noise 𝑂(𝑦3𝐸) (with a
larger constant term, but in practice not nearly enough to offset the extra factor of 𝑦4).

We call this phenomenon the multiplicative depth of a circuit, formally defined as the greatest number
of multiplications along a directed path through the circuit. We can check that methods 1 and 2
represent circuits of multiplicative depths 7 and 3, respectively. (Although our circuit 𝒞 may have both
additions and multiplications, we only consider multiplications since they amplify noise a lot more.)

The key takeaway is that circuits with lower multiplicative depth are better for keeping noise
relatively low. In particular, we want to design 𝒞 to have low multiplicative depth.

Designing the decryption circuit, part 1: analyzing rounding and noise
We now design the decryption circuit 𝒞.

We want to extract the coefficients 𝑀0, …, 𝑀𝑁−1 of

𝑴 = [⌊𝖢1 + 𝖢2 ⋅ 𝖲𝖪
Δ

⌉]
𝑡
= 𝑀𝑁−1𝑥𝑁−1 + ⋯ + 𝑀1𝑥 + 𝑀0

individually. As an example, we will focus on the extraction of 𝑀𝑁−1, which is given by
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𝑀𝑁−1 = [⌊
𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)

Δ
⌉]

𝑡

.

There are similar equations for the other coefficients 𝑀𝑖. These equations are given by expanding
𝖢1 + 𝖢2 ⋅ 𝖲𝖪 (mod 𝑥𝑁 + 1) in terms of the coefficients of 𝖢1, 𝖢2, and 𝖲𝖪. We also note that if we
assume that 𝑴  is a constant polynomial (an assumption which holds if the overall computation being
run homomorphically has inputs which are constant polynomials), then the only coefficient we need
to compute is 𝑀0.

Returning to the formula for coefficient 𝑀𝑁−1, we are about to replace the terms 𝐶⋅,⋅
Δ  with 𝐶⋅,⋅

2𝑁 , recalling
that 𝐶⋅,⋅ = ⌊2𝑁𝖢⋅,⋅

Δ ⌉.

Before we do this, we demonstrate why the result will still round to the same integer:

Since the noise 𝐸 of the original ciphertext is < Δ
8 , it follows that 𝐶1,𝑁−1+(𝐶2,0𝐾𝑁−1+⋯+𝐶2,𝑁−1𝐾0)

Δ  is
less than 18  away from an integer.

Now the discrepancy we are about to incur by replacing 𝐶s with 𝐶s is

  |
𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)

Δ
−

𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)
2𝑁

|

≤ |
𝐶1,𝑁−1

Δ
−

𝐶1,𝑁−1

2𝑁
| + ∑

𝑁−1

𝑖=0
𝐾𝑁−1−𝑖|

𝐶2,𝑖

Δ
−

𝐶2,𝑖

2𝑁
|

≤ 1
4𝑁

+ ∑
𝑁−1

𝑖=0

1
4𝑁

< 3
8

assuming 𝑁 > 2 (which it had better be, since the secret key has 𝑁  bits of information).

Recalling that

𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)
Δ

is less than 18  away from an integer, it now follows that

𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)
2𝑁

is less than 12  away from the same integer, and in particular

𝑀𝑁−1 = [⌊
𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)

Δ
⌉]

𝑡

=
[
[[

[
[
[𝐶1,𝑁−1 + (𝐶2,0𝐾𝑁−1 + ⋯ + 𝐶2,𝑁−1𝐾0)

2𝑁 ⌉
⌉
⌉

]
⌉⌉

𝑡

.

We can now write each 𝐶⋅,⋅ in binary with 𝑘 = log(2𝑁𝑡) digits. We have

𝐶1,𝑁−1 = ⟨𝑐1,𝑁−1,𝑘−1, …, 𝑐1,𝑁−1,0⟩2

8



where ⟨⋅⟩2 means “read in binary”. We also have

𝐶2,𝑖𝐾𝑁−1−𝑖 = ⟨𝑑2,𝑖,𝑘−1, …, 𝑑2,𝑖,0⟩2

where 𝑑2,𝑖,𝑘−1 = 𝑐2,𝑖,𝑘−1𝐾𝑁−1−𝑖 ∈ {0, 1}.

Designing the decryption circuit, part 2: binary addition
Now we have

𝑀𝑁−1 =
[
[[

[
[
[⟨𝑐1,𝑁−1,𝑘−1, …, 𝑐1,𝑁−1,0⟩2 + ∑𝑁−1

𝑖=0 ⟨𝑑2,𝑖,𝑘−1, …, 𝑑2,𝑖,0⟩2

2𝑁 ⌉
⌉
⌉

]
⌉⌉

𝑡

.

Conceptually, we’ve reduced the problem of computing 𝑀𝑁−1 to that of adding 𝑁 + 1 binary numbers
given their 𝑘 digits each, dividing the sum by 2𝑁 , and rounding it. The division and rounding will be
easy because our sum will be written in binary.

The binary addition circuit used in the original BFV scheme can be described as follows:

Repeatedly perform an operation which takes three binary numbers and returns two binary numbers
with the same sum. (This is called the carry-save adder.) In particular, replace the three binary numbers

⟨𝑎𝑘−1, …, 𝑎2, 𝑎1, 𝑎0⟩2 + ⟨𝑏𝑘−1, …, 𝑏2, 𝑏1, 𝑏0⟩2 + ⟨𝑐𝑘−1, …, 𝑐2, 𝑐1, 𝑐0⟩2

with ⟨𝑑𝑘−1, …, 𝑑2, 𝑑1, 𝑑0⟩2 + ⟨𝑒𝑘−1, …, 𝑒2, 𝑒1, 𝑒0⟩2, where the 𝑑𝑗 are “mod 2 sum bits” and the 𝑒𝑗 are
the “carry bits”. They are the bits such that ⟨𝑒𝑗+1, 𝑑𝑗⟩2 = 𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 where we define 𝑎−1 = 𝑏−1 =
𝑐−1 = 0.

Since our circuit should only have additions and multiplications, we check that 𝑑𝑗 and 𝑒𝑗+1 can
equivalently be computed by

𝑒𝑗+1 = 𝑎𝑗𝑏𝑗 + 𝑎𝑗𝑐𝑗 + 𝑏𝑗𝑐𝑗 − 2𝑎𝑗𝑏𝑗𝑐𝑗

and

𝑑𝑗 = 𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 − 2(𝑎𝑗𝑏𝑗 + 𝑎𝑗𝑐𝑗 + 𝑏𝑗𝑐𝑗) + 4𝑎𝑗𝑏𝑗𝑐𝑗.

(Note that we don’t have to worry about carrying beyond index 𝑘 − 1 because we end up taking mod
𝑡 when computing 𝑀𝑁−1.)

We apply this carry save adder, replacing three binary numbers with two, until there are only two
numbers left. We need to apply the carry save adder in a balanced way so that the computation tree is
wide instead of deep. Doing so, we get a depth of 𝑂(log 𝑁) so far.

We now need to add the last two (log 𝑘)-digit binary numbers. In the original scheme, the authors
suggest using schoolbook addition (also called a ripple-carry adder), which incurs 𝑂(log 𝑘) multiplica-
tive depth.

Actually, a carry-lookahead adder (https://en.wikipedia.org/wiki/Carry-lookahead_adder) can be used
to add the last two binary numbers instead, which would incur multiplicative depth of 𝑂(log log 𝑘)
instead of 𝑂(log 𝑘), appreciably decreasing the multiplicative depth of the overall circuit 𝒞. Thanks to
Brian Lawrence for this observation!

(For the rest of these notes, we analyze the original scheme which uses schoolbook addition to add the
last two numbers.)

After this final binary addition, we get the digits 𝑠𝑗 of the sum
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[⟨𝑠𝑘−1, …, 𝑠0⟩2]2𝑘 = [⟨𝑐1,𝑁−1,𝑘−1, …, 𝑐1,𝑁−1,0⟩2 + ∑
𝑁−1

𝑖=0
⟨𝑑2,𝑖,𝑘−1, …, 𝑑2,𝑖,0⟩2]

2𝑘

.

Now the coefficient we seek is simply

𝑀𝑁−1 = [⌊⟨𝑠𝑘−1, …, 𝑠0⟩2
2𝑁

⌉]
𝑡

= ⟨𝑠𝑘−1, …, 𝑠log(2𝑁)⟩2 + 𝑠log(2𝑁)−1

=
(
(( ∑

𝑘−1− log(2𝑁)

𝑗=0
2𝑗𝑠𝑗+ log(2𝑁)

)
)) + 𝑠log(2𝑁)−1.

Finally, after extracting all 𝑁  coefficients in a similar manner, our circuit 𝒞 can arrive at the output

𝑴 = 𝑀𝑁−1𝑥𝑁−1 + ⋯ + 𝑀1𝑥 + 𝑀0.

To recap, we have just designed a circuit that inputs bits 𝑐1,𝑖,𝑗, 𝑐2,𝑖,𝑗, and 𝑘𝑖 for 0 ≤ 𝑖 < 𝑁  and 0 ≤
𝑗 < 𝑘 and outputs 𝑴 . If we run this circuit homomorphically (i.e. on the ciphertexts 𝖢𝖢1,𝑖,𝑗, 𝖢𝖢2,𝑖,𝑗,
and 𝖡𝖲𝖪𝑖), we can get a ciphertext 𝖢′ for 𝑴 , as desired!

Recalling that 𝑘 = log(2𝑁𝑡) and retracing all of the steps of the circuit, we can see that this decryption
circuit has multiplicative depth 𝑂(log 𝑡 + log 𝑁). Thus, roughly speaking, our bound on the noise of
𝖢′ is equal to that on a ciphertext that has undergone 𝑂(log 𝑡 + log 𝑁) multiplications.

This means that our “noise capacity” Δ must be large enough to support that many multiplications
(plus some more, so that we can perform multiplications between bootstraps). The log 𝑡 term in the
depth can be rather large if we seek to perform arithmetic in large rings like ℤ264 , which makes this
version of the scheme at best feasible for small 𝑡.

5. Hint at Better Bootstrapping [CH’18]
Here we very briefly describe a major subsequent improvement to the bootstrapping.

Recall that when constructing the decryption circuit 𝒞, we split each 𝐶⋅,𝑖 into bits 𝑐⋅,𝑖,𝑗 and performed
bitwise addition. The purpose of this was to have a way of rounding off binary digits of the sum, thus
rounding off the noise bits attached to the coefficient of the message.

In 2018, Hao Chen and Kyoohyung Han found an alternate method of rounding off the noise bits for
the decryption circuit. Their bootstrapping does not require splitting coefficients into bits. They write
a decryption circuit with a multiplicative depth of 𝑂(log log 𝑡 + log 𝑁), by constructing a polynomial
that computes the “divide and round” step. Their method also uses far fewer total multiplications.
This is a significant improvement over the 𝑂(log 𝑡 + log 𝑁) achieved by the original BFV scheme and
makes BFV practical with large message spaces.

I’ll write notes soon that cover this improvement in more detail; there’s some really nice math in the
construction of this circuit. If you’re interested, keep an eye out for part 2 coming soon!
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