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Abstract

The Orthogonal Vectors problem (OV) asks: given n vectors in {0, 1}O(logn), are two of them
orthogonal? OV is easily solved inO(n2 log n) time, and it is a central problem in fine-grained complexity:
dozens of conditional lower bounds are based on the popular hypothesis that OV cannot be solved in
(say) n1.99 time. However, unlike the APSP problem, few other problems are known to be non-trivially
equivalent to OV.

We show OV is truly-subquadratic equivalent to several fundamental problems, all of which (a priori)
look harder than OV. A partial list is given below:

1. (Min-IP/Max-IP) Find a red-blue pair of vectors with minimum (respectively, maximum) inner
product, among n vectors in {0, 1}O(logn).

2. (Exact-IP) Find a red-blue pair of vectors with inner product equal to a given target integer, among
n vectors in {0, 1}O(logn).

3. (Apx-Min-IP/Apx-Max-IP) Find a red-blue pair of vectors that is a 100-approximation to the
minimum (resp. maximum) inner product, among n vectors in {0, 1}O(logn).

4. (Approximate Bichrom.-`p-Closest-Pair) Compute a (1 + Ω(1))-approximation to the `p-closest
red-blue pair (for a constant p ∈ [1, 2]), among n points in Rd, d ≤ no(1).

5. (Approximate `p-Furthest-Pair) Compute a (1 + Ω(1))-approximation to the `p-furthest pair (for
a constant p ∈ [1, 2]), among n points in Rd, d ≤ no(1).

Therefore, quick constant-factor approximations to maximum inner product imply quick exact solutions
to maximum inner product, in the O(log n)-dimensional setting. Another consequence is that the ability
to find vectors with zero inner product suffices for finding vectors with maximum inner product.

Our equivalence results are robust enough that they continue to hold in the data structure setting. In
particular, we show that there is a poly(n) space, n1−ε query time data structure for Partial Match with
vectors from {0, 1}O(logn) if and only if such a data structure exists for 1 + Ω(1) Approximate Nearest
Neighbor Search in Euclidean space.

To establish the equivalences, we introduce two general frameworks for reductions to OV: one based
on Σ2 communication protocols, and another based on locality-sensitive hashing families.

In addition, we obtain an n2−1/O(log c) time algorithm for Apx-Min-IP with n vectors from {0, 1}c logn,
matching state-of-the-art algorithms for OV and Apx-Max-IP. As an application, we obtain a faster
algorithm for approximating “almost solvable” MAX-SAT instances.

1 Introduction

Fine-grained complexity asks: what is the “correct” exponent in the running time of a given problem? For a
problem known to be solvable in time t(n), can it be solved in time t(n)1−ε, for a constant ε > 0? If not, can
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we give evidence that such an improvement is impossible? In recent years, based on several conjectures such
as the Orthogonal Vectors Conjecture (OVC) (implied by the Strong Exponential Time Hypothesis, a.k.a.
SETH1), the APSP Conjecture and the k-Sum Conjecture, tight conditional polynomial-time lower bounds
have been established for problems in P from many areas of computer science.

In a nutshell, results in the Fine-Grained Complexity program begin with the conjecture that it is hard to
improve the runtime exponent of some problem Πhard, and show it is also hard to improve the exponent of
another problem Π, by constructing a “fine-grained” reduction from Πhard to Π. This is similar to the situation
with NP-completeness, where one shows a problem Π is “hard” by giving a polynomial-time reduction from
another NP-complete problem to Π.

A crucial conceptual difference between the Fine-Grained Complexity program and NP-hardness is that all
of the thousands of known NP-complete problems form an equivalence class: there is either a polynomial-time
algorithm for all of them, or no polynomial-time algorithm for any of them. In contrast, with Fine-Grained
Complexity, few equivalence classes are known, especially for those numerous problems whose hardnesses
are based on the SETH/OVC (a notable exception is the equivalence class for APSP [VW10, Vas18]; see the
related works section for more details).

To give three (out of many examples), it is known that Edit Distance [BI15], Frechet Distance [Bri14],
and computing the diameter of a sparse graph [RW13] cannot be done in n2−δ time for any δ > 0, assuming
the following problem is not in n2−ε time for a universal ε > 0:

Orthogonal Vectors (OV): Given n vectors in {0, 1}d where d = O(log n), are there two vectors
with inner product zero?

However, it is not known if Edit Distance, Frechet Distance, or Diameter are equivalent to OV, in any
interesting sense.

Prior work has established an equivalence class for “moderate-dimensional OV”, where the vector
dimension d = nδ for a constant δ > 0 [GIKW17]. In particular, this version of OV is equivalent to various
sparse graph and hypergraph problems. It seems likely that “moderate-dimensional OV” is much more
difficult to solve than the “low-dimensional” setting of d = O(log n) as defined above, and the SETH already
implies that the low-dimensional case is difficult [Wil05, WY14]. Thus the problem of establishing an
equivalence class for “low-dimensional” OV is an interesting one.

1.1 An Equivalence Class for Sparse Orthogonal Vectors

Our first result is an interesting equivalence class for Orthogonal Vectors in the O(log n)-dimensional setting.
To formally state our results, we begin with some notation.

• For a problem Π on Boolean vectors, we say Π is in truly subquadratic time if there is an ε > 0 such
that for all constant c, Π is solvable in O(n2−ε) time on n vectors in c log n dimensions. Note the
Orthogonal Vectors Conjecture (OVC) is equivalent to saying “OV is not in truly subquadratic time.”

• For a problem Π on real-valued points, we say Π can be approximated in truly subquadratic time, if
there is a δ > 0 such that for all ε > 0, a (1 + ε) approximation to Π is computable in O(n2−δ) time.

• For a problem Π with output in [0, L] (for a parameter L), we say Π can be additively approximated in
truly subquadratic time, if there is a δ > 0 such that for all ε > 0, an ε · L additive approximation to Π
is computable in O(n2−δ) time.

1The Strong Exponential Time Hypothesis (SETH) states that for every ε > 0 there is a k such that k-SAT cannot be solved in
O((2− ε)n) time [IP01].

2



Theorem 1.1. The following problems are either all in (or can be approximated in) truly subquadratic time,
or none of them are:2

1. (OV) Finding an orthogonal pair among n vectors.

2. (Min-IP/Max-IP) Finding a red-blue pair of vectors with minimum (respectively, maximum) inner
product, among n vectors.

3. (Exact-IP) Finding a red-blue pair of vectors with inner product exactly equal to a given integer,
among n vectors.

4. (Apx-Min-IP/Apx-Max-IP) Finding a red-blue pair of vectors that is a 100-approximation to the
minimum (resp. maximum) inner product, among n vectors.3

5. (Approximate Bichrom. `p-Closest Pair) Approximating the `p-closest red-blue pair (for a constant
p ∈ [1, 2]), among n points.

6. (Approximate `p-Furthest Pair) Approximating the `p-furthest pair (for a constant p ∈ [1, 2]), among
n points.

7. (Approximate Additive Max-IP) Additively approximating the maximum inner product of all red-blue
pairs, among n vectors.

8. (Approximate Jaccard-Index-Pair) Additively approximating the maximum Jaccard index4 between
a ∈ A and b ∈ B, where A and B are two collections of n sets.

For approximate additive Max-IP, L (the additive approximation parameter) is simply the dimensions of
the vectors, while for approximate Jaccard-Index-Pair, L is 1. For Π among the first four problems listed
above, we use the notation Πn,d to denote Π with n vectors from {0, 1}d. 5 For the last four problems, we
assume the dimensions (or the size of the sets) and the bit complexity of the points are no(1) throughout the
paper.

Prior work showed OV is equivalent to Dominating Pair6 [Cha17] and other simple set problems [BCH16];
our results add several interesting new members into the equivalence class. All problems listed above were
already known to be OV-hard [Wil05, AW15, Rub18]. Our main contribution here is to show that they
can all be reduced back to OV. For example, detecting an orthogonal Boolean pair (OV) is equivalent to
approximating the distance between two sets of points in Rno(1) (Bichrom.-Closest-Pair)!

In previous works [GIKW17, ABDN18], several general techniques are given for constructing reductions
to OV. These papers focus on the “moderate-dimensional” setting, and their reductions can not be used
directly in the “sparse” O(log n) dimensional setting here.

Our Techniques: Two Reduction Frameworks for OV. In order to construct reductions to O(log n)
dimensional OV, we propose the following two general frameworks.

2A list of formal definitions of the these problems can be found in Definition 2.1.
3The constant 100 can be replaced by any fixed constant κ > 1.
4see Theorem 2.3 for a formal definition
5In the paper we will consider red-blue version for all the above problems, and Πn,d denotes Π with two sets of n vectors from

{0, 1}d.
6Given two sets A,B of vectors from RO(logn), find (a, b) ∈ A×B such that b dominates a (that is, bi > ai for all i).
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• Σcc
2 Protocols. Inspired by previous works on the connections between communication complexity

and fine-grained complexity [ARW17, Rub18, KLM18, AR18, Che18, CGL+18], we draw another
connection along this line, showing that an efficient Σcc

2 protocol7 for a function F implies a reduction
from a related problem to OV. We use this technique to establish the equivalences among the first four
problems in Theorem 1.1.

• Locality-sensitive Hashing Families (LSH). To show equivalences between OV and the last four
approximation problems, we apply known tools from locality-sensitive hashing. In particular, we
show that for any metric admitting an efficient LSH family, finding the closest bichromatic pair or the
furthest pair w.r.t. this metric can be reduced to Apx-Max-IP, which can in turn be reduced to OV.

We remark that there are no non-trivial lower bounds known against Σcc
2 protocols [GPW18], which

suggests that Σcc
2 protocols could be very powerful, and the first approach (Theorem 1.14) may be applicable

to many other problems. This is not the case for MAcc protocols which were used in several previous
works [ARW17, Rub18, KLM18, Che18]: for example, there is an essentially tight Ω(

√
n) MAcc lower

bound for Set-Disjointness [Kla03, AW09, Che18]. These two frameworks are discussed in Section 1.3 in
detail.

Equivalence Between Partial Match and Approximate Nearest Neighbor Search. Our reductions are
robust enough that they also hold in the data structure setting. In particular, consider the following two
fundamental data structure problems:

• Partial Match: Preprocess a database D of n points in {0, 1}d such that, for all query of the form
q ∈ {0, 1, ?}d, either report a point x ∈ D matching all non-? characters in q or report that no x exists.

• Approximate Nearest Neighbor Search (NNS) in `p space: Preprocess a database D of n points
from Rm such that, for all query point x ∈ Rm, one can find a point y ∈ D such that ‖x − y‖p ≤
(1 + ε) ·minz∈D ‖x− z‖p.

Remark 1.2. We remark that Partial Match is known to be equivalent to an online version of OV [AWY15]
(see also Section 7), and NNS in `p space is simply the online version of Bichrom.-`p-Closest-Pair.

Partial Match has been studied extensively for decades (see e.g. Rivest’s PhD thesis [Riv74]). However,
the algorithmic progress beyond trivial solutions (building a look-up table of size 2Ω(d), or trying all n points
on each single query) have been quite limited. It is generally believed that it is intractable when d is large
enough. Many unconditional lower bounds are known in the cell-probe model [MNSW98, BOR99, JKKR04,
PTW08, PT09], but the gap between the best data structures [CIP02, CGL04] and known lower bounds
remains very large.

Approximate Nearest Neighbor Search has a wide range of applications in computing, including machine
learning, computer vision, databases and others (see [AI08, Mor08] for an overview). Tremendous research
effort has been devoted to this problem (see e.g. the recent survey of [AIR18] and Razenshteyn’s PhD
thesis [Raz17]). Yet all known algorithms exhibit a query time of at least n1−O(ε) when the approximation
ratio is 1 + ε, approaching the brute-force query time n when ε goes to 0.

In general, whether there is a polynomial space, n1−δ query time data structure for Partial Match for all
d = O(log n), or Approximate NNS for all constant approximation ratio > 1 are two long-standing open
questions.8 We show these two questions are equivalent.

7see Definition 1.13 for a formal definition
8Under SETH, it is shown that there is no such data structure with polynomial pre-processing time [APRS16, Wil05, Rub18].
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Theorem 1.3. The following are equivalent:

• There is a δ > 0 such that for all constant c, there is a data structure for Partial Match with string
length d = c log n that uses poly(n) space and allows n1−δ query time.

• There is a δ > 0 such that for all ε > 0, there is an data structure for Approximate NNS in `p with
approximation ratio (1 + ε) that uses poly(n) space and allows n1−δ query time, for some constant
p ∈ [1, 2].

Tighter Connection Between Max-IP, Bichrom. `p-Closest Pair and `p-Furthest Pair. For a subset of
problems in Theorem 1.1, we can establish even tighter reductions.

The state-of-the-art algorithm for (1+ε) approximation to Bichrom.-`p-Closest-Pair runs in n2−Õ(ε1/3)

time, and for Max-IPn,c logn, the best running time n2−Õ(1/
√
c). Both algorithms are presented in [ACW16],

and relied on probabilistic threshold functions.
Comparing to the n2−1/O(log c) time algorithm for OVn,c logn [AWY15, CW16], the dependence on c

or ε in these two algorithms are much worse, rendering them useless when ε−1 or c are logω(1) n. So it is
natural to ask whether the dependence can be improved to at least sub-polynomial in ε and c, i.e. n2−1/co(1)

or n2−εo(1) .
We show that a modest improvement on the running time dependence on ε or c for any of the following

problems directly implies similar improvements for other problems as well.

Theorem 1.4. The following are equivalent:

• An ε · d additive approximation to Max-IPn,d is computable in n2−εo(1) time.

• Max-IPn,c logn is solvable in n2−1/co(1) time.

• Exact-IPn,c logn is solvable in n2−1/co(1) time.

• A (1 + ε) approximation to Bichrom.-`p-Closest-Pair is computable in n2−εo(1) time (for a constant
p ∈ [1, 2]).

• A (1 + ε) approximation to `p-Furthest-Pair is computable in n2−εo(1) time (for a constant p ∈ [1, 2]).

In [Rub18] (Theorem 4.1), it is implicitly shown that Exact-IPn,c logn can be reduced to (1 + 1/ exp(c))
approximating Bichrom.-`p-Closest-Pair. This suffices for the case when c is a constant (which is needed
for Theorem 1.1), but falls short of proving the above tighter connections.

In a nutshell, [Rub18]’s reduction applies a very efficient MA protocol for Set-Disjointness using
AG-codes, and it uses “brute-force” gadgets to simulate an inner product between two short vectors in
Fq2 . We improve [Rub18]’s reduction by carefully modifying its MA protocol, and replacing its brute-
force gadgets by a more efficient one. Informally, our theorem shows Exact-IPn,c logn can be reduced
to (1 + 1/ poly(c)) approximating Bichrom.-Closest-Pair (see Lemma 6.4 and Lemma 6.7), which is an
exponential improvement over the old reduction.

Equivalence Results in the Moderate Dimensional Setting. Theorem 1.1 establishes an equivalence
class for the sparse O(log n) dimensional setting. It is natural to ask whether the equivalence continues to
hold in the moderate dimensional case as well.

Unfortunately, an unusual (and interesting) property of our reduction used in Theorem 1.1 is that it blows
up c (the constant before log n) exponentially, and creates multiple instances. That is, an Exact-IP instance
with c log n dimensions is reduced to many OV instances with exp(c) log n dimensions (see the proof of
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Lemma 4.2). This renders the reduction useless in the moderate-dimensional setting, where c could be as
large as nδ.

Still, using different techniques, we obtain some additional equivalence results in the moderate di-
mensional setting. For a problem Π on Boolean vectors, we say that moderate dimensional Π is in truly
subquadratic time, if there are two constants ε, δ > 0 such that Π is solvable in n2−ε time on n vectors with
nδ dimensions.

Theorem 1.5. Moderate dimensional OV is in truly subquadratic time if and only if moderate dimensional
Apx-Min-IP is.

Theorem 1.6. For moderate dimensional Max-IP, Min-IP, and Exact-IP, either all of them are in truly
subquadratic time, or none of them are.

To show moderate dimensional OV and Apx-Min-IP are equivalent, we use a sophisticated reduction
which is partially inspired by the classical Goldwasser-Sipser AM protocol for approximate counting [GS89]
(see the proof of Lemma 5.1 for details). For Max-IP, Min-IP and Exact-IP, we apply some folklore
encoding tricks.

It is an interesting open question that whether these two separate equivalence classes can be merged into
one. In particular, is moderate dimensional OV equivalent to moderate dimensional Max-IP?

An immediate corollary of Theorem 1.5 is that it adds Apx-Min-IP as a new member to the equivalence
class of moderate dimensional OV established in [GIKW17].

1.2 New Algorithms for Apx-Min-IP and Apx-Max-IP

It was recently shown in [Che18] that Apx-Max-IP can be solved in n2−1/O(log c) time, while the best known
algorithm for solving Apx-Min-IP just applies the n2−1/Õ(

√
c) time algorithm for Min-IP [ACW16]. We

show that in fact we can derive an algorithm with similar running time for Apx-Min-IP as well.

Theorem 1.7. There are n2−1/O(log c) time randomized algorithms for Apx-Min-IPn,c logn and Apx-Max-IPn,c logn.

Remark 1.8. Our new algorithm works equally well for Apx-Max-IP. Hence, we provide a different
n2−1/O(log c) time algorithm for Apx-Max-IP than [Che18]. One caveat here is that our algorithms are
randomized, while the algorithms in [Che18] are deterministic.

The algorithms are based on the polynomial method: we construct a low-degree probabilistic polyno-
mial over F2 for functions closely related to Apx-Min-IP and Apx-Max-IP, and the rest follows from the
framework of [AWY15].

Application: A Fast Algorithm for Approximating “Almost Solvable” MAX-SAT Instances. Here we
give an application of our Apx-Min-IP algorithm. For a MAX-SAT instance ϕ with m clauses, we denote
OPT(ϕ) to be the maximum number of the clauses that can be satisfied, and sat(ϕ) := OPT(ϕ)/m.

Theorem 1.9. Let ϕ be a MAX-SAT instance on n variables with m clauses, and ε = 1− sat(ϕ). There is
a 2n(1−1/O(log ε−1)) time algorithm to find an assignment x satisfying at least (1− 2ε) ·m clauses9.

That is, when ϕ is “almost solvable” (sat(ϕ) is very close to 1), we have a fast algorithm to compute an
approximate solution x, which is only a “little” worse than the optimal solution. The following corollary is
immediate.

Corollary 1.10. Let ϕ be a MAX-SAT instance on n variables and ε ∈ (0, 1/10). Given the promise that
either sat(ϕ) ≥ 1− ε or sat(ϕ) < 1− 2ε, there is a 2n(1−1/O(log ε−1)) time algorithm for deciding which is
the case.

9(1− 2ε) can be replaced by (1− κε) for any constant κ > 1.
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The best known previous algorithm for the above problem requires at least 2n(1−ε1/3) time [ACW16], in
which case the dependence on ε is exponentially worse than our new algorithm. In particular, it fails to give
any improvement when ε < 1/n3, while our algorithm is faster than brute-force even if ε = 1/2n

0.99
.

1.3 Techniques: Two General Frameworks for Establishing OV Equivalence

In the following we discuss two general frameworks for reductions to OV. To state our results formally, we
first define the F -Satisfying-Pair problem for a problem F .10

Definition 1.11 ([AHWW16]). Let F : {0, 1}d × {0, 1}d → {0, 1}, F -Satisfying-Pairn is the problem:
given two sets A and B of n vectors from {0, 1}d, determine whether there is a pair (a, b) ∈ A × B such
that F (a, b) = 1.

Remark 1.12. For example, let FOV be the function checking whether two vectors from {0, 1}d are orthogonal.
Then, FOV-Satisfying-Pairn is simply OVn,d.

1.3.1 Σ2 Communication Protocols and Reductions to Orthogonal Vectors

Our first framework is based on Σ2 communication protocols (Σcc
2 protocols). We begin with a formal

definition of such protocols.

Definition 1.13 (Σcc
2 Protocol [BFS86]). Let F : X × Y → {0, 1} be a function. A Σcc

2 protocol Π for F is
specified as follows:

• There are two players, Alice holds input x ∈ X and Bob holds input y ∈ Y .

• There are two provers Merlin and Megan.

• Merlin sends a string a ∈ {0, 1}m1 and Megan sends a string b ∈ {0, 1}m2 (which are functions of
both x and y) to both Alice and Bob. Then Alice and Bob communicate ` bits with each other, and
Alice decides whether to accept or reject the pair (a, b).

• F (x, y) = 1 if and only if there exists a string a from Merlin, such that for all strings b from Megan,
Alice accepts (a, b) after communications with Bob.

We say the protocol Π is computationally-efficient, if both Alice and Bob’s response functions can be
computed in polynomial time with respect to their input length.

We show that for any function F , if F admits a certain efficient Σcc
2 protocol, then F -Satisfying-Pair

can be efficiently reduced to OV. Formally, we have:

Theorem 1.14. Let F : {0, 1}d×{0, 1}d → {0, 1} and n ∈ N, suppose F has a computationally-efficient Σcc
2

protocol, in which Merlin sends m1 bits, Megan sends m2 bits, and Alice and Bob communicate ` bits. Then
there is a reduction from every F -Satisfying-Pairn instance I to OVn,2(m2+`) instances J1, J2, . . . , J2m1 ,
such that I is a yes instance if and only if there is a j such that Jj is a yes instance. The reduction takes
n · 2O(m1+m2+`) · poly(d) time.

Applications. We use Theorem 1.14 to establish the equivalence between OV, Min-IP / Max-IP, Apx-Max-IP
/ Apx-Min-IP and Exact-IP. Previous works have established that OV can be reduced to all these problems,
and that these problems can be reduced to Exact-IP. So it suffices for us to construct a reduction from
Exact-IP to OV. Let the IPd,m : {0, 1}d×{0, 1}d → {0, 1} be the function that checks whether 〈x, y〉 = m,
Exact-IP is IPd,m-Satisfying-Pair, so we can apply Theorem 1.14 with an efficient Σcc

2 protocol for IPd,m.
More applications can be found in the full version of the paper.

10This notation is borrowed from [AHWW16], which studied the Satisfying Pair problem for Branching Programs.
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1.3.2 Locality-sensitive Hashing (LSH) Families and Reductions to Additive Approximation to Max-IP

To establish equivalence between OV and other approximation problems, we make use of a connection
with LSH families. We begin with a generalized definition of an LSH family for a partial function. In the
following, let X be an arbitrary set.

Definition 1.15. Let f : X ×X → {0, 1,⊥}11. We say f admits a (p1, p2)-sensitive LSH family, if there is a
family F of functions h : X → S, such that for any x, y ∈ X , a uniformly random function h ∈ F satisfies:

• If f(x, y) = 1, then h(x) = h(y) with probability at least p1.

• If f(x, y) = 0, then h(x) = h(y) with probability at most p2.

In addition, we require that h can be efficiently drawn from F , and h(p) can be efficiently computed.12

The usual LSH families for a metric space are special cases of the above generalized definition.

Definition 1.16. For a function dist : X ×X → R≥0, we say dist admits an LSH family, if for all ε > 0 and
real R > 0, there are two reals p1 = p1(ε) and p2 = p2(ε) such that the function fdist

R,(1+ε)R : X × X →
{0, 1,⊥} defined as

fdist
R,(1+ε)R(x, y) =


1 dist(x, y) ≤ R,
0 dist(x, y) ≥ (1 + ε) ·R,
⊥ otherwise,

admits a (p1, p2)-sensitive LSH family and p1 > p2.

In particular, we show that an LSH family for a function implies a reduction to additively approxi-
mating Max-IP, which can in turn be reduced to OV. To formally state our reduction, we need to define
F-Satisfying-Pair for a partial function F .

Definition 1.17. For a partial function F : X × X → {0, 1,⊥}, F-Satisfying-Pairn is the problem: given
two sets A,B ⊆ X of size n, distinguish between the two cases:

• There is an (x, y) ∈ A×B such that F(x, y) = 1.

• For all (x, y) ∈ A×B, F(x, y) = 0.

Remark 1.18. Let X beRd, and set F(x, y) = 1 for ‖x− y‖ ≤ R, F(x, y) = 0 for ‖x− y‖ ≥ (1 + ε) ·R
and undefined otherwise. Then F-Satisfying-Pair distinguishes between the cases that the minimum distance
between A and B is ≤ R and ≥ (1 + ε) · R, which is the decision version of (1 + ε)-approximation to
Bichrom.-Closest-Pair.

Now we are ready to state our general reduction.

Theorem 1.19. Suppose f : X × X → {0, 1,⊥} admits a (p1, p2)-sensitive LSH family. Let ε = p1 − p2.
Then there is a randomized reduction from f -Satisfying-Pairn to computing an ε/8 · d additive approxi-

mation to Max-IPn,d with d = O(ε−2 log n), which succeeds with probability at least 1− 1/n.

From Theorem 1.19, reductions from Bichrom.-`2-Closest-Pair and Furthest-Pair to OV follows:

Corollary 1.20. For a distance function dist : X×X → R≥0 which admits an LSH family, Bichrom.-Closest-Pairn,dist
and Furthest-Pairn,dist can be approximated in truly subquadratic time if OV is in truly subquadratic time.

11f(x, y) = ⊥ means f is “undefined” on (x, y).
12Being efficient here means the running time is polynomial in the bit complexity of the input.
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Applications. We use Theorem 1.19 and Corollary 1.20 to establish the equivalence between OV and all
approximation problems listed in Theorem 1.1. In particular, the `p metric and Jaccard Index admit efficient
LSH families via p-stable distributions and the minHash method, which implies that they can be reduced to
OV by Theorem 1.19.

1.4 Related Works

Equivalence Classes in Fine-Grained Complexity. It is known that the All-Pairs Shortest Paths problem
is sub-cubic time equivalent to many other problems [VW10, BDT16, AGW15, LWW18]. A partial list
includes: Negative Triangle, Triangle Listing, Shortest Cycle, 2nd Shortest Path, Max Subarray, Graph
Median, Graph Radius and Wiener Index (see [Vas18] for more details on the APSP equivalence class).

In [GIKW17], it is shown that “moderate-dimensional” OV (i.e., OV with nδ dimensions for some
δ > 0) is equivalent to High-dimension Sparse OV, High-dimension 2-Set Cover, and High-dimension
Sperner Family. It is also shown that for every (k + 1)-quantifier first-order property, its model-checking
problem can be reduced to Sparse k-OV. In [CGL+18], an equivalence class for Closest-LCS-Pair13 is
established, in particular, it shows Closest-LCS-Pair and its (constant factor) approximate version are
equivalent. In [CMWW17], the authors present an equivalence class for (min,+)-convolution, including
some variants of the classical knapsack problem and problems related to subadditive sequences.

Faster-Than-Brute-Force Algorithms for Problems in the Equivalence Class. Most of the problems
listed in Theorem 1.1 have algorithms with some non-trivial speed-up depending on c (when the dimension is
c log n) or ε (when the approximation ratio is 1 + ε). Table 1 gives the state-of-the-art runtime bounds for
these problems.

Problem n2−δ time, δ = f(c) or f(ε)

OV 1/O(log c) [AWY15, CW16]
Min-IP & Max-IP 1/Õ(

√
c) [ACW16]

Exact-IP 1/Õ(c) [AW15]
Apx-Max-IP 1/O(log c) [Che18] [This paper]
Apx-Min-IP 1/O(log c) [This paper]

B.-`2-Closest-Pair Õ(ε1/3) [ACW16]
`p-Furthest-Pair Õ(ε1/3) [ACW16]14

Table 1: The best known running-time exponents for the problems shown (in this paper) to be equivalent to
OV.

Fine-Grained Complexity and Communication Complexity. The connection between communication
complexity and Fine-Grained Complexity dates back at least to [PW10], in which it is shown that a sub-linear,
computational efficient protocol for 3-party Number-On-Forehead Set-Disjointness problem would refute
SETH. The work of [ARW17] shows hardness for approximate version for a host of important problems in P,
using the Õ(

√
n) MA communication protocol for Set-Disjointness [AW09].

Using Algebraic Geometry codes, [Rub18] obtains a better MA protocol, which in turn improves the
efficiency of the previous “distributed PCP” construction of [ARW17]. He then shows n2−o(1)-time hardness

13Closest-LCS-Pair is: given two sets A,B of strings, compute max(a,b)∈A×B LCS(a, b).
14[ACW16] only discussed Bichrom.-`p-Closest-Pair when p ∈ {1, 2}, but one can observe that their algorithm in fact works

equally well with Bichrom.-`p-Closest-Pair and `p-Furthest-Pair for p ∈ [1, 2].
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for 1 + o(1)-approximations to Bichromatic Closest Pair and o(d)-additive approximations to Max-IPn,d
with this new technique. [KLM18] use the Distributed PCP framework to derive inapproximability results
for k-Dominating Set under various assumptions. In particular, building on the techniques of [Rub18], it is
shown that under SETH, k-Dominating Set has no (log n)1/poly(k,e(ε)) approximation in nk−ε time15.

[AR18] make use of the Õ(log n) IP communication protocol for Set-Disjointness in [AW09], and shows
a fast deterministic approximation algorithm to Longest Common Subsequence has interesting circuit lower
bound consequences. Making use of the IP communication protocol for low-space computation, [CGL+18]
establish an equivalence class for Closest-LCS-Pair.

[Che18] establishes a connection between hardness of the furthest pair problem in low dimensional
Euclidean space and NP · UPP communication protocols for Set-Disjointness. He also shows the BQP
communication protocol for Set-Disjointness [BCW98] can be used to derive an inapproximability result for
{−1, 1}-Max-IP.16

2 Preliminaries

In this paper, we use R+ to denote the set of all positive reals. For notational convenience, we first give the
formal definitions of the problem we study in this paper.

2.1 Problem List

Definition 2.1 (Boolean Vector Problem List). For n, d ∈ N, we define several problems. For all of them, the
input is the same: we are given sets A and B of n vectors from {0, 1}d.

1. OVn,d17: Given A,B ⊆ {0, 1}d with |A| = |B| = n, determine whether there exists (a, b) ∈ A×B
such that a · b = 0.

2. Exact-IPn,d: Given A,B as before, and an integer 0 ≤ m ≤ d, determine whether there exists
(a, b) ∈ A×B such that a · b = m.

3. Max-IPn,d: Given A,B as before, compute

Max(A,B) := max
a∈A,b∈B

a · b.

4. Min-IPn,d: Given A,B as before, compute

Min(A,B) := min
a∈A,b∈B

a · b.

5. Apx-Max-IPn,d: Given A,B as before, output a number M̃ax(A,B) ∈ [Max(A,B)/2,Max(A,B)].

6. Apx-Min-IPn,d: Given A,B as before, output a number M̃in(A,B) ∈ [Min(A,B), 2 ·Min(A,B)].

Remark 2.2. The constant factor 2 in the definitions of Apx-Min-IP and Apx-Max-IP is only chosen for
convenience, it can be replaced by any constant κ > 1 (such as 1.001, or 100).

Definition 2.3 (Other Problems). We define the following problems.
15where e is a certain function from R+ → N
16the variant of Max-IP with vectors from {−1, 1}d instead of {0, 1}d
17Note that we consider the red-blue version of OV in this paper for convenience, and it is equivalent to the original monochromatic

version.
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1. Bichrom.-`p-Closest-Pairn: For a fixed real p ∈ [1, 2], given two sets A,B of n points in Rd where
d = no(1), compute min(a,b)∈A×B ‖a− b‖p.

2. `p-Furthest-Pairn: For a fixed real p ∈ [1, 2], given a set A of n points in Rd where d = no(1),
compute max(a,b)∈A×A ‖a− b‖p.

3. Jaccard-Index-Pairn: GivenA,B as two collections of n sets of size no(1), compute max(S,T )∈A×B J(S, T ),

where J(S, T ) := |S∩T |
|S∪T | .

2.2 Locality-sensitive Hashing

In this paper we apply some well-known results from the theory of locality-sensitive hashing (LSH)
(See [WSSJ14, AIR18] for excellent recent references on LSH families and their applications).

`p Norm. From the theory of p-stable distributions, LSH families for `p norm when p ∈ [1, 2] have been
constructed.

Lemma 2.4 ([DIIM04]). For a constant p ∈ [1, 2], the `p distance distp(x, y) := ‖x − y‖p admits a LSH
family. Moreover, for all real ε ∈ (0, 0.1) and real R > 0, fdistp

R,(1+ε)R admits a (p1, p2)-sensitive LSH family,
such that p1 − p2 ≥ Ω(ε).

Jaccard Index. For two sets A,B, recall that their Jaccard index is defined as J(A,B) := |A∩B|
|A∪B| . It is

well-known that this measure admits a LSH family by the MinHash method.

Lemma 2.5 ([Bro97]). Let 0 ≤ p2 < p1 ≤ 1 be two reals, and f be the function on two sets such that
f(A,B) = 1 when J(A,B) ≥ p1, f(A,B) = 0 when J(A,B) ≤ p2 and undefined otherwise. f admits a
(p1, p2)-sensitive LSH family.

3 General Reduction Frameworks with Σ2 Communication Protocols and
LSH Families

In this section we present two general reduction frameworks for showing equivalence to OV.

3.1 Σ2 Communication Protocols and Reductions to OV

We first show that an efficient Σcc
2 protocol for a function f implies a reduction from f -Satisfying-Pair to

OV.

Reminder of Theorem 1.14 LetF : {0, 1}d×{0, 1}d → {0, 1} and n ∈ N, supposeF has a computationally-
efficient Σcc

2 protocol, in which Merlin sends m1 bits, Megan sends m2 bits, and Alice and Bob communi-
cate ` bits. Then there is a reduction from every F -Satisfying-Pairn instance I to OVn,2(m2+`) instances
J1, J2, . . . , J2m1 , such that I is a yes instance if and only if there is a j such that Jj is a yes instance. The
reduction takes n · 2O(m1+m2+`) · poly(d) time.

Proof of Theorem 1.14. Let F and Π be the given function and Π be its Σ2 protocol. Fix a ∈ {0, 1}m1 and
b ∈ {0, 1}m2 as the proofs from Merlin and Megan. Let w1, w2, . . . , w2` be an enumeration of all possible
communication transcripts between Alice and Bob (note they communicate ` bits). We define two binary
vectors Rx(a, b), Ry(a, b) ∈ {0, 1}2

`
as follows: for all a, b, Rx(a, b)i = 1 (Ry(a, b)i = 1) if and only if the
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transcript wi is consistent with Alice’s input x (Bob’s input y), and wi makes Alice reject. Note that since the
transcript is uniquely determined by x, y, a and b, only one wi is consistent with both x and y given the pair
(a, b). It follows that 〈Rx(a, b), Ry(a, b)〉 = 0 if and only if Alice accepts the pair (a, b).

Now, suppose we are given an F -Satisfying-Pairn instance I with sets A and B of n vectors from
{0, 1}d. We first enumerate Merlin’s possible string a ∈ {0, 1}m1 , and use Rx(a, ·) to denote the string
obtained by concatenating all Rx(a, b)’s for b ∈ {0, 1}m2 . Ry(a, ·) is defined similarly. For each a, let Aa be
the set of Rx(a, ·) ∈ {0, 1}m2+` for all x ∈ A, and Ba be the set of Ry(a, ·) ∈ {0, 1}m2+` for all y ∈ B.

We claim I is a yes instance if and only if some pair (Aa, Ba) is a yes instance for OV.

• Suppose I is a yes instance. Then there is an (x, y) ∈ A×B such that F (x, y) = 1. By the definition
of Σcc

2 protocols and our constructions, there is an a ∈ {0, 1}m1 such that for all b ∈ {0, 1}m2 we have
〈Rx(a, b), Ry(a, b)〉 = 0. Hence, for such an a, 〈Rx(a, ·), Ry(a, ·)〉 = 0, and therefore (Aa, Ba) is a
yes instance for OV.

• Suppose I is a no instance. Then for all (x, y) ∈ A×B, F (x, y) = 0. Hence, for all a ∈ {0, 1}m1 and
all (x, y) ∈ A×B, we have 〈Rx(a, ·), Ry(a, ·)〉 6= 0, which means all (Aa, Ba)’s are no instances for
OV.

Finally, since Π is computationally-efficient, the above reduction takes O(n · 2O(m1+m2+`) · poly(d))
time, which completes the proof.

3.2 LSH Families and Reductions to Additive Approximate Max-IP

Next, we show that an efficient LSH family implies a reduction to additively approximating Max-IP.

Reminder of Theorem 1.19 Suppose f : X × X → {0, 1,⊥} admits a (p1, p2)-sensitive LSH family. Let
ε = p1 − p2.

Then there is a randomized reduction from f -Satisfying-Pairn to computing an ε/8 · d additive approxi-
mation to Max-IPn,d with d = O(ε−2 log n), which succeeds with probability at least 1− 1/n.

Proof. Let F be the corresponding (p1, p2)-sensitive LSH family, and S be the co-domain for hash functions
from F . Consider the following process: draw h from F uniformly at random, then map each item in S
independently to the string (0, 1) or (1, 0), each with probability 0.5. Let this map be ϕ. Composing h and ϕ,
we obtain a function g(x) = ϕ(h(x)) such that:

• If f(x, y) = 1, then 〈g(x), g(y)〉 = 1 with probability at least p1 + (1− p1)/2 ≥ 1
2 + 1

2 · p1.

• If f(x, y) = 0, then 〈g(x), g(y)〉 = 1 with probability at most p2 + (1− p2)/2 ≤ 1
2 + 1

2 · p2.

Repeat the above process for N = c log n times, independently drawing functions g1, g2, . . . , gN , where
c is a parameter to be specified later. We set our reduction w(x) to be the concatenation of all gi(x)’s. Let
τ1 = 1

2 + 1
2 · (p1− ε/4) and τ2 = 1

2 + 1
2 · (p2 + ε/4). By a simple Chernoff bound, there is a real c1 = Θ(ε2)

such that

• If f(x, y) = 1, then 〈w(x), w(y)〉 > τ1 ·N with probability at least 1− 2c1·N .

• If f(x, y) = 0, then 〈w(x), w(y)〉 < τ2 ·N with probability at least 1− 2c1·N .

Set c := 3/c1, and let Anew (respectively, Bnew) be the set of w(a)’s for all a ∈ A (the set of w(b)’s for
all b ∈ B). It follows that with probability at least 1− 1/n, if there is an (x, y) ∈ A×B with f(x, y) = 1
then Max(Anew, Bnew) > τ1 ·N , and if f(x, y) = 0 for all (x, y) ∈ A×B, then Max(Anew, Bnew) < τ2 ·N .
Observe this reduction satisfies the desired approximation property.
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4 An Equivalence Class for Orthogonal Vectors

In this section we apply our two general frameworks to prove Theorem 1.1.

4.1 Equivalence Between Boolean Vectors Problem

We first show that all Boolean vectors problems listed in Theorem 1.1 can be trivially reduced to Exact-IP,
and OV can be reduced to all of them.

Lemma 4.1. The following holds:

• If Exact-IP is in truly subquadratic time, then so are OV, Apx-Min-IP (Apx-Max-IP) and Max-IP
(Min-IP).

• If any of Apx-Min-IP (Apx-Max-IP), Max-IP (Min-IP) and Exact-IP is in truly subquadratic time,
then so is OV.

Proof. For the first item, Apx-Min-IP (Apx-Max-IP) and Max-IP (Min-IP) can all be trivially reduced to
Exact-IP, and OV can be reduced to Max-IP by [Wil05].

For the second item, the case of Apx-Max-IP follows from Theorem 4.1 in [Rub18], and it is easy to see
that OV can be trivially reduced to Min-IP or Apx-Min-IP (OV is equivalent to asking whether the minimum
inner product is zero).

Therefore, all we need is a reduction from Exact-IP to OV. We provide it by constructing a good Σ2

communication protocol, and applying Theorem 1.14.

Lemma 4.2. If OV is in truly subquadratic time, then so is Exact-IP.

Proposition 4.3. Let IPn,k : {0, 1}n × {0, 1}n → {0, 1} be the function that checks whether 〈x, y〉 = k.
For all n, k ∈ Z+, and a parameter 1 ≤ ` ≤ n, there is a Σcc

2 computationally-efficient protocol for IPn,k
in which Merlin sends ` · dlog(dn/`e+ 1)e bits, Megan sends dlog `e bits and Alice and Bob communicate
dn/`e bits.

Proof. We assume ` divides n for simplicity. Let x, y be the inputs of Alice and Bob, respectively. We
partition x into ` equally-sized groups of length n/`, let them be x1, x2, . . . , x`. Similarly, we partition y
into groups y1, y2, . . . , y`. Clearly, 〈x, y〉 =

∑`
i=1〈xi, yi〉.

Merlin’s message is a vector ψ ∈ {0, 1, . . . , n/`}`, where ψi is intended to be 〈xi, yi〉.
Alice rejects immediately if

∑`
i=1 ψi 6= k, regardless of Megan’s message. Otherwise, Megan’s message

is an index i in [`]. Bob sends yi to Alice, and Alice accepts if and only if 〈xi, yi〉 = ψi.
We argue the protocol correctly decides IPn,k. If 〈x, y〉 = k, it is easy to see that for the correct ψ, Alice

accepts all messages from Megan (and Bob). When 〈x, y〉 6= k, for all ψ such that
∑`

i=1 ψi = k (otherwise
Alice always rejects), there must be an i such that 〈xi, yi〉 6= ψi, which means Alice rejects on the pair ψ
and i. Finally, it is easy to see that the protocol satisfies the requirements of computational efficiency, which
completes the proof.

Now we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. Suppose there is a universal constant δ > 0 such that for all constants c′, OVn,c′ logn

can be solved in n2−δ time. Let c be an arbitrary constant.
Observe that an Exact-IPn,c logn instance with target integer m, is simply a IPc logn,m-Satisfying-Pairn

instance. Set ` := ε · log n for an ε > 0 to be specified later. By Proposition 4.3, there is a Σcc
2 protocol for
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IPc logn,m such that Merlin sends ε · log(c/ε) · log n bits, Megan sends log(ε log n) bits and Alice and Bob
communicate c/ε bits.

By Theorem 1.14, there is a reduction from an Exact-IPn,c logn instance to 2ε log(c/ε) logn = nε log(c/ε)

many OVn,O(2c/ε logn) instances. We can set ε so that ε log(c/ε) < δ/2. Note that ε only depends on c and δ,
so it is still a fixed constant, which means (by assumption) that OVn,O(2c/ε logn) can be solved in n2−δ time.
Applying the algorithm for OV, we get an n2−δ/2 time algorithm for Exact-IPn,c logn, which completes the
proof.

4.2 Equivalences Between OV and Approximation Problems

Now we deal with approximation problems in Theorem 1.1.

Bichrom.-`p-Closest-Pair and `p-Furthest-Pair

We first show OV is equivalent to approximate Bichrom.-`p-Closest-Pair, `p-Furthest-Pair and additive
approximate Max-IP. One direction is already established in [Rub18].

Lemma 4.4 (Theorem 4.1 of [Rub18]). If Bichrom.-`p-Closest-Pair or `p-Furthest-Pair can be approx-
imated in truly subquadratic time for any p ∈ [1, 2] or Max-IP can be additively approximated in truly
subquadratic time, then OV is in truly subquadratic time.18

In the following we show the reverse also holds.

Lemma 4.5. If OV is in truly-subquadratic time, then for all p ∈ [1, 2], Bichrom.-`p-Closest-Pair and
`p-Furthest-Pair can be approximated in truly subquadratic time, and Max-IP can be additively approxi-
mated in truly subquadratic time.

We are going to apply Theorem 1.19 and will actually prove a much stronger result. We show that for
any metric dist : X × X → R≥0 which admits a Locality-sensitive hashing (LSH) family, approximate
Bichrom.-Closest-Pair and Furthest-Pair with respect to dist can be efficiently reduced to OV.

In the following, we use Bichrom.-Closest-Pairn,dist and Furthest-Pairn,dist to denote the correspond-
ing problems with respect to the metric dist. Now we are ready to give the reduction.

Reminder of Corollary 1.20 For a distance function dist : X × X → R≥0 which admits an LSH family,
Bichrom.-Closest-Pairn,dist and Furthest-Pairn,dist can be approximated in truly subquadratic time if OV
is in truly subquadratic time.

Proof. Suppose OV is in truly subquadratic time. By Lemma 4.1 and Lemma 4.2, Max-IP and Min-IP are
also in truly-subquadratic time. In the following we only discuss Bichrom.-Closest-Pairn,dist; the reduction
for Furthest-Pairn,dist is analogous (with Min-IP in place of Max-IP).

Let ε > 0 be an arbitrary constant. We want to approximate the minimum distance between two sets
A and B of n elements from X within a (1 + ε) multiplicative factor. By a standard (simple) search to
decision reduction that incurs only a negligible factor in the running time, we only have to consider the
decision version, in which you are given a real R, and want to distinguish the following two cases: (1)
min(a,b)∈A×B d(a, b) ≤ R; (2) min(a,b)∈A×B d(a, b) ≥ (1 + ε) ·R.

By Theorem 1.19, this decision problem can be reduced to additive approximation to Max-IPn,O(logn),
which is in truly-subquadratic time by Lemma 4.2. This completes the proof.

18[Rub18] only discussed Bichrom.-`p-Closest-Pair and additive approximation to Max-IP, but it is easy to see that the proof
also works for `p-Furthest-Pair.
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Now, from the LSH families for `p-metric, Lemma 4.5 follows directly.

Proof of Lemma 4.5. Assume OV is in truly-subquadratic time. It follows directly from Corollary 1.20 and
Lemma 2.4 that for all p ∈ [1, 2], Bichrom.-`p-Closest-Pair and `p-Furthest-Pair can be approximated in
truly subquadratic time.

Also, by a simple random sampling method and a Chernoff bound (see e.g. Lemma 3.6 of [Che18]),
computing an ε · d additive approximation to Max-IPn,d can be reduced to Max-IPn,O(ε−2 logn), which can
be solved in truly-subquadratic time by Lemma 4.2 and Lemma 4.1.

Jaccard-Index-Pair

Finally, we show the equivalence between OV and approximate Jaccard-Index-Pair.

Lemma 4.6. OV is in truly-subquadratic time if and only if Jaccard-Index-Pair can be additively approxi-
mated in truly-subquadratic time.

Proof. For one direction, suppose OV is in truly subquadratic time. Using a similar argument as in Corol-
lary 1.20, from Lemma 2.5 and Theorem 1.19 it follows that Jaccard-Index-Pair can be additively approxi-
mated in truly-subquadratic time.

For the other direction, suppose Jaccard-Index-Pair can be additively approximated in truly subquadratic
time. By Lemma 4.4, it suffices to show that Max-IP can be additively approximated in truly-subquadratic
time. Given a Max-IPn,d instance with sets A,B consisting of n vectors from {0, 1}d, suppose we want to
compute an ε · d approximation to it. In the following we show how to reduce it to a Jaccard-Index-Pair
instance.

We begin by setting up some notation. For t ∈ [d], we use e[t] to denote the Boolean vector 1t0d−t from
{0, 1}d (that is, the first t coordinates are 1, and the rest are 0). For two vectors a, b, we use a ◦ b to denote
their concatenation.

For each x ∈ A ⊆ {0, 1}d and y ∈ B ⊆ {0, 1}d, we create two vectors x̂, ŷ ∈ {0, 1}3d, as follows:

x̂ = x ◦ e[d−‖x‖1] ◦ e[0], ŷ = y ◦ e[0] ◦ e[d−‖y‖1].

Interpreting x̂ and ŷ as indicator vectors, we create their corresponding sets Sx, Ty ⊆ [3d]. That is, for
i ∈ [3d], x̂i = 1 if and only if i ∈ Sx (the same holds for ŷ and Ty). Observe that

J(Sx, Ty) =
|Sx ∩ Ty|
|Sx ∪ Ty|

=
〈x, y〉

2d− 〈x, y〉
. (1)

Now we create Â and B̂ as the sets of all Sx for x ∈ A and Ty for y ∈ B. Let t = max
(S,T )∈Â×B̂ J(S, T )

and w = max(a,b)∈A×B〈a, b〉. From Equation (1), we can see t = w
2d−w and w = d · 2 · t

t+1 . Therefore, an
ε/3 approximation to t is enough to obtain an ε · d approximation to w, which completes the reduction.

And Theorem 1.1 follows from Lemma 4.1, Lemma 4.2, Lemma 4.4, Lemma 4.5 and Lemma 4.6.

5 Equivalences for Moderate Dimensional Problems

In this section we prove our equivalence theorems for moderate dimensional Boolean vectors problems.
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5.1 OV and Apx-Min-IP

We first show moderate dimensional OV and Apx-Min-IP are equivalent.

Reminder of Theorem 1.5 Moderate dimensional OV is in truly subquadratic time if and only if moderate
dimensional Apx-Min-IP is.

To prove Theorem 1.5, we construct the following reduction.

Lemma 5.1. For all integers n, d and a parameter ε > 0, an Apx-Min-IPn,d instance can be reduced to
nO(ε) OVn,dO(1/ε) logn instances. The reduction is randomized and succeeds with probability at least 2/3,
and it takes n1+O(ε) · dO(1/ε) time.

Before proving Lemma 5.1, we show it implies Theorem 1.5.

Proof of Theorem 1.5. Recall that Min(A,B) := min(a,b)∈A×B〈a, b〉. For the first direction, note that OV
with two sets A and B essentially asks whether Min(A,B) = 0, and a 2-approximation to Min(A,B)
is already enough to answer that question. Therefore, if moderate dimensional Apx-Min-IP is in truly
subquadratic time, then so is OV.

For the second direction, suppose there are constants ε1, δ1 > 0 such that OVn,nδ1 can be solved in
n2−ε1 time. Let ε be a parameter to be set later, by Lemma 5.1, there are constants c1, c2 such that all
Apx-Min-IPn,nδ instance can be efficiently reduced to nc1ε OVn,nδc2/ε instances.

We set ε such that c1ε = ε1/2, and δ such that δ · c2/ε < δ1. Then applying the algorithm for OV,
Apx-Min-IPn,nδ can be solved in n2−ε1/2 time, which completes the proof.

The following probability inequality will be useful in the proof of Lemma 5.1.

Lemma 5.2. Letting ε ∈ (0, 0.1), and D be a distribution on {0, 1} such that EX∼D[X] = ε, there is a
universal constant c such that for any integerm and any cm independent random variablesX1, X2, . . . , Xcm

from D, we have

Pr

[
cm∑
i=1

Xi ≥
1

2
· cm

]
≤ ε−m.

The proof of Lemma 5.2 can be found in the appendix.
Finally, we prove Lemma 5.1.

Proof of Lemma 5.1. Before presenting the reduction, we first introduce some notation. For a vector x ∈
{0, 1}d, and a subset S ⊂ [d], x|S ∈ {0, 1}|S| denotes the projection of x onto the coordinates of S.
Similarly, for a sequence T of integers from [d], let x|T ∈ {0, 1}|T | denote the projection of x on T , such that(
x|T
)
i

:= xTi for each i ∈ [|T |]. We also use the Iverson bracket notation: for a predicate P , [P ] takes value
1 when P is true, and 0 otherwise.

Reduction to a Decision Problem. Our reduction will focus on a corresponding decision problem: given
two sets A,B of n vectors from {0, 1}d and an integer τ ≤ d/2, we want to distinguish the following two
cases: Min(A,B) ≥ 2τ or Min(A,B) ≤ τ (the algorithm can output anything when τ < Min(A,B) < 2τ ).
It is easy to see that via a binary search, log d calls to this decision problem can be used to solve the original
Apx-Min-IP problem, and a factor of log d ≤ log n can be ignored here.
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One Step Reduction with DT . Now, suppose we pick a sequence of d/τ uniform random numbers from
[d] and let DT be its distribution. Then for x, y ∈ {0, 1}d, we have:

• If 〈x, y〉 ≤ τ :

Pr
T←DT

[〈x|T , y|T 〉 = 0] ≥ (1− τ/d)d/τ ≥
(

1− 1

2

)2

> 0.25.

• If 〈x, y〉 ≥ 2τ :
Pr

T←DT
[〈x|T , y|T 〉 = 0] ≤ (1− 2τ/d)d/τ ≤ e−2 < 0.14.

The important observation is that there is a constant probability gap between the above two cases.

A Micro Reduction to OV. Now, let N be an integer and D⊗NT be the joint distribution of N independent
samples from DT . We write {Ti} ← D⊗NT to denote that (T1, T2, . . . , TN ) is a random sample from D⊗NT .
By a standard Chernoff bound, when {Ti} ← D⊗NT , there is a constant c1 such that:

• If 〈x, y〉 ≤ τ :

Pr

[
N∑
i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N

]
≥ 1− 2−c1N .

• If 〈x, y〉 ≥ 2τ :

Pr

[
N∑
i=1

[
〈x|Ti , y|Ti〉 = 0

]
< 0.2N

]
≥ 1− 2−c1N .

Now, for a fixed {Ti}, we can distinguish the above two cases via a reduction to a “micro” OV instance.
Note that

∑N
i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N is equivalent to the condition that there is are t = 0.8N pairs

(i1, j1), (i2, j2), . . . , (it, jt) ∈ [N ] × [d/τ ] such that all ik’s are distinct, and for all k ∈ [t],
(
x|Tik

)
jk
·(

y|Tik

)
jk

= 1.

With this observation, we can construct our reduction. There are

L =

(
N

t

)
· (d/τ)t = (d/τ)O(N)

possible t-tuples of pairs. We sort them in an arbitrary but consistent order. Now we construct a mapping
φ{Ti} : {0, 1}d → {0, 1}L as follows:

For each ` ∈ [L], let (i1, j1), (i2, j2), . . . , (it, jt) be the `-th t-tuple of pairs. For a vector z ∈ {0, 1}d, we
set φ{Ti}(z)` = 1, iff

(
z|Tik

)
jk

= 1 for all k ∈ [t].

Then for all x, y ∈ {0, 1}d, we have
∑N

i=1

[
〈x|Ti , y|Ti〉 = 0

]
> 0.2N is further equivalent to 〈φ{Ti}(x), φ{Ti}(y)〉 =

0. For convenience, we let Dφ denote the distribution of φ{Ti} when {Ti} is drawn from D⊗NT and we set
N = ε−1/c1.

To summarize, we have:

• If 〈x, y〉 ≤ τ :
Pr

φ←Dφ
[〈φ(x), φ(y)〉 = 0] ≥ 1− 2−ε

−1
.

• If 〈x, y〉 ≥ 2τ :
Pr

φ←Dφ
[〈φ(x), φ(y)〉 > 0] ≥ 1− 2−ε

−1
.
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The Final Reduction. Finally, letting c2 be the universal constant in Lemma 5.2, we pick m = 3c2 · ε log n
i.i.d. mappings φ1, φ2, . . . , φm from Dφ. Applying Lemma 5.2, we have:

• If 〈x, y〉 ≤ τ :

Pr
{φi}←D⊗mφ

[
m∑
i=1

[〈φi(x), φi(y)〉 = 0] >
1

2
·m

]
≥ 1− n−3.

• If 〈x, y〉 ≥ 2τ :

Pr
{φi}←D⊗mφ

[
m∑
i=1

[〈φi(x), φi(y)〉 = 0] <
1

2
·m

]
≥ 1− n−3.

Now, we use our final reduction to distinguish the above two cases. Note that
∑m

i=1 [〈φi(x), φi(y)〉 = 0] >
1
2 ·m is equivalent to the condition that there is a subset S ⊆ [m] with |S| > 1

2 ·m such that 〈φi(x), φi(y)〉 = 0
for all i ∈ S.

We enumerate all possible such subsets S. For a vector z ∈ {0, 1}d, we define φS(z) to be the
concatenation of φi(z)’s for all i ∈ S. We set AS as the set of all φS(x)’s for x ∈ A, and BS as the set of all
φS(y)’s for y ∈ B.

Then we can see that
∑m

i=1 [〈φi(x), φi(y)〉 = 0] > 1
2 ·m is further equivalent to whether there is a subset

S with |S| > 1
2 ·m and (AS , BS) is a yes instance for OV.

Summary. Putting everything together, we have a randomized reduction to T = 2O(ε logn) = nO(ε)

OVn,(d/τ)O(1/ε) logn instances with set-pairs (A1, B1), (A2, B2), . . . , (AT , BT ) such that, with probability at
least 1− 1/n:

• If Min(A,B) ≤ τ , then one of the (Ai, Bi) is a yes instance for OV.

• If Min(A,B) ≥ 2τ , all (Ai, Bi)’s are no instance for OV.

The above completes the proof.

5.2 Exact-IP, Max-IP and Min-IP

Now we proceed to show moderate dimensional Exact-IP, Max-IP and Min-IP are equivalent.

Reminder of Theorem 1.6 For moderate dimensional Max-IP, Min-IP and Exact-IP, either all of them are
in truly subquadratic time, or none of them are.

To prove the above theorem, we need the following two simple reductions, whose proofs can be found in
the appendix.

Lemma 5.3. There are functions ψxrev, ψ
y
rev : {0, 1}∗ → {0, 1}∗ such that for all integer d and x, y ∈ {0, 1}d,

we have ψxrev(x), ψyrev(y) ∈ {0, 1}2d and 〈ψxrev(x), ψyrev(y)〉 = d− 〈x, y〉.

Lemma 5.4. For all integers d and 0 ≤ m ≤ d, there are mappings ϕxd,m, ϕ
y
d,m : {0, 1}d → {0, 1}O(d2) and

an integer Md, such that for all x, y ∈ {0, 1}d:

• If 〈x, y〉 = m, then 〈ϕxd,m(x), ϕyd,m(y)〉 = Md.

• Otherwise, 〈ϕxd,m(x), ϕyd,m(y)〉 > Md.
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Proof of Theorem 1.6. By Lemma 5.3, one can easily reduce a Max-IPn,d instance to a Min-IPn,2d and vice
versa. Therefore, moderate dimensional Max-IP and Min-IP are truly-subquadratic equivalent. We only need
to show that moderate dimensional Min-IP and Exact-IP are equivalent.

Assuming moderate dimensional Exact-IP is in truly subquadratic time, so there are two constants ε and
δ such that Exact-IPn,nδ can be solved in n2−ε time. Let δ′ = min(ε, δ)/2. Given a Min-IPn,nδ′ instance,
by enumerating all possible inner products between 0 and nδ

′
, we can reduce the instance to nδ

′
instances of

Exact-IPn,nδ′ . Applying the algorithm for Exact-IP, we then have an n2−ε+δ′ ≤ n2−δ′ time algorithm for
Min-IPn,nδ′ . Hence, moderate dimensional Min-IP is also in truly-subquadratic time.

Finally, assume moderate dimensional Min-IP is in truly subquadratic time. Note that by Lemma 5.4, an
Exact-IPn,d instance can be reduced to a Min-IPn,O(d2) instance, which immediately implies that moderate
dimensional Exact-IP is also in truly subquadratic time.

6 Tighter Connection Between Max-IP, Bichrom.-`p-Closest-Pair and `p-
Furthest-Pair

In this section we establish the tighter connections between Max-IP, Bichrom.-`p-Closest-Pair and `p-Furthest-Pair.
In Section 6.1, we show tighter connections for Max-IP, Exact-IP and additive approximation to Max-IP.

And in Section 6.2, we show similar connections for additive approximation to Max-IP, Bichrom.-`p-Closest-Pair
and `p-Furthest-Pair.

6.1 Tighter Connection between Exact-IP, Max-IP and Additive Approximation to Max-IP

The following lemma is implicit in [Rub18], which is used to show Bichrom.-`p-Closest-Pair can not be
approximated in truly-subquadratic time under SETH. [Rub18] only states a reduction from OV. However,
the MA protocol in [Rub18] works equally well for the Inner Product problem, so it actually gives a reduction
from Exact-IP.

Lemma 6.1 (Implicit in Theorem 4.1 of [Rub18]). For all sufficiently large integers n, c and a parameter ε >
0, an Exact-IPn,c logn instance can be reduced to nO(ε log(c/ε)) instances of computing Ω(1/ exp{Õ(c/ε)})·d
additive approximation to Max-IPn,d for d = no(1).

In order to prove our tighter connection, our goal here is to improve the additive approximation ratio from
Ω(1/ exp{Õ(c/ε)}) to Ω(1/ poly(c/ε)).

6.1.1 A New MA Protocol for Inner Product

For that purpose, we need to modify the MA protocol from [Rub18]. In the following, we first describe
the MA protocol for Inner Product in [Rub18] based on AG codes. Below we only summarize the relevant
properties we need; readers can refer to [Rub18] for the details of the protocol.

Lemma 6.2 (Theorem 3.1 [Rub18]). For every T ∈ [2, N ], there is a computationally-efficient MA protocol
for Inner Product such that

1. Alice and Bob hold input x, y ∈ {0, 1}N respectively, and want to decide whether 〈x, y〉 = m for a
target integer m.

2. Set q to be the first prime larger than T and a universal constant c1, and set R = log(N/T ) +O(1).

3. Merlin sends Alice a vector z ∈ F2R

q2 , Alice rejects z immediately if it doesn’t satisfy some conditions.
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4. Alice and Bob then toss R coins to get r ∈ [2R]. Based on x (or y) and r, Alice and Bob generate two
vectors in FTq2 , ~a(x, r) and~b(y, r) respectively,

5. Bob sends Alice~b(y, r), and Alice calculates u(x, y, r) = 〈~a(x, r),~b(y, r)〉. Alice accepts if and only
if u(x, y, r) = zr.

The protocol satisfies the following conditions:

• If 〈x, y〉 = m, then there is a proof (the vector z) from Merlin such that Alice always accepts.

• If 〈x, y〉 6= m, then for all proofs from Merlin, Alice accepts with probability at most 1/2.

Our Modified Protocol. We make some minor modifications to the above protocol. First, note that an
element from Fq2 can be treated as an element in Fq[x]/(Pirred(x)), where Pirred(x) ∈ Fq[x] is an irreducible
polynomial of degree 2. In this way, we can interpret all elements in ~a(x, r) and ~b(y, r) as degree 1
polynomials in Fq[x], which can in turn be interpreted as degree 1 polynomials in Z[x]. We denote these
vectors of polynomials by ~U(x, r), ~V (y, r) ∈ Z[x]T , with coefficients from {0, 1, . . . , q − 1}.

Next, we set W (x, y, r) = 〈~U(x, r), ~V (y, r)〉, which is a degree 2 polynomial in Z[x]. Note that the
coefficients of W (x, y, r) are between 0 and O(q2 · T ) = O(T 3).

Now, in the message from Merlin, for all possible r ∈ [2R], we also add a claimed description of
W (x, y, r). This takes O

(
N log T
T

)
bits, so it doesn’t affect the message complexity from Merlin. Then, after

Alice receives~b(y, r) from Bob (from which she can obtain ~V (y, r)), Alice computes W (x, y, r) instead of
u(x, y, r), and rejects immediately if this W (x, y, r) does not match the one given by Merlin. After that, she
knows that u(x, y, r) = W (x, y, r)/(Pirred(x)), and proceeds as in the original protocol.

It is easy to see that, when 〈x, y〉 = m, if Merlin provides the correct W (x, y, r)’s, then Alice still always
accepts (regardless of r). And when 〈x, y〉 6= m, since these W (x, y, r)’s only provide additional checks,
Alice still accepts with probability at most 1/2 for all proofs.

We use Πorig to denote the protocol from [Rub18] (Lemma 6.2), and Πnew to denote our new protocol.
In the following we utilize Πnew to give an improved reduction from Exact-IP to additive approximation to
Max-IP.

Before that, we need the following encoding trick, whose proof can be found in the appendix.

Lemma 6.3. For all integers d, r and 0 ≤ m ≤ dr2, there are mappings ϕx, ϕy : {0, 1, . . . , r}d →
{0, 1}O(dr2)2 and an integer 0 ≤M ≤ O(dr2)2, such that for all x, y ∈ {0, 1, . . . , r}d:

• If 〈x, y〉 = m, then 〈ϕx(x), ϕy(y)〉 = M .

• Otherwise, 〈ϕx(x), ϕy(y)〉 < M .

• Moreover, M only depends on d and r.

Lemma 6.4. For all sufficiently large integers n, c and a parameter ε > 0, every Exact-IPn,c logn instance
can be reduced to nO(ε log(c/ε)) instances of computing an Ω((ε/c)6) ·d additive approximation to Max-IPn,d
for d = no(1).

Proof. Consider an Exact-IPn,c logn instance with sets A and B, and integer m. Using our protocol Πnew

for checking whether 〈x, y〉 = m, we only need to figure out whether there is a pair (x, y) ∈ A×B and a
proof from Merlin such that Alice always accepts.

Let N = c log n, and set T = c/ε. Then the message complexity from Merlin is O(ε log n log(c/ε)) and
the total number of random bits is R = log(N/T ) +O(1) ≤ log(ε log n) +O(1).
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We first enumerate all valid proofs ψ, which is a pair of z ∈ F2R

q2 and W ∈ Z[x]2
R

such that for all
r ∈ [2R], we have zr = Wr/Pirred(x).

Next, we want to determine whether there is a pair (x, y) ∈ A×B, such that this proof ψ makes Alice
always accepts. Note we only need to distinguish the following two cases:

• For all r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr.

• For at most half of r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr.

Recall that ~U(x, r) and ~V (y, r) are vectors of T degree 1 polynomials from Z[x], with coefficients in
{0, 1, . . . , q − 1}, and Wr is a degree 2 polynomial in Z[x], with coefficients in {0, 1, . . . , O(q3)}. For a
polynomial P (x) in Z[x] and an integer t, let [t]P (x) denote the coefficient of xt in P (x). Then we can see
〈~U(x, r), ~V (y, r)〉 = Wr is equivalent to the condition: for all 0 ≤ t ≤ 2,

t∑
i=0

T∑
k=1

[i]~U(x, r)k · [t− i]~V (y, r)k = [t]Wr. (2)

Note that the left side of Equation (2) is an inner product between two vectors from {0, 1, . . . , q − 1}3T .
By Lemma 6.3, we can construct three Boolean vectors u0, u1, u2 ∈ {0, 1}O(q6) from ~U(x, r) and also
v0, v1, v2 ∈ {0, 1}O(q6) from ~V (y, r) and an integer M (which only depends on T ), such that:

• If Equation (2) holds for all t, then
∑2

i=0〈ui, vi〉 = M .

• Otherwise,
∑2

i=0〈ui, vi〉 < M .

Now, we concatenate all these u0, u1, u2 for all possibles r’s to form a single vector ux, and construct vy
similarly. We have:

• If for all r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr, then 〈ux, vy〉 ≥ 2R ·M .

• If for at most half of r ∈ [2R], 〈~U(x, r), ~V (y, r)〉 = Wr, then 〈ux, vy〉 ≤ 2R · (M − 1/2).

Now, let Aψ and Bψ be the collections of ux and vy with the proof ψ respectively. Then we want to
distinguish between the following two cases:

• There is a ψ such that Max(Aψ, Bψ) ≥ 2R ·M .

• For all ψ, Max(Aψ, Bψ) ≤ 2R · (M − 1/2).

Note that vectors in Aψ and Bψ are of dimension d = O(q6 · 2R), so the above can be solved by
2O(ε logn log(c/ε)) = nO(ε log(c/ε)) calls to Ω(1/q6) · d = Ω((ε/c)6) · d additive approximation to Max-IPn,d,
which completes the proof.

Now we are ready to prove Theorem 6.5.

Theorem 6.5. The following are equivalent:

1. An ε · d additive approximation to Max-IPn,d is computable in n2−εo(1) time.

2. Max-IPn,c logn is solvable in n2−1/co(1) time.

3. Exact-IPn,c logn is solvable in n2−1/co(1) time.
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Proof. We only need to show that Item (1) implies Item (3). By Lemma 6.4, there are constants c1, c2 such
that for any constant ε1 > 0, every Exact-IPn,c logn instance can be reduced to nc1ε1 log(c/ε1) instances of
c2 · (ε1/c)

6 · d additive approximations to Max-IPn,d for d = no(1).
Suppose Item (1) holds, we set ε1 = 1/c, then Exact-IPn,c logn can be solved in

nc1 log(c2)/c+2−(c2·c−12)o(1) = n2−1/co(1)

time, which completes the proof.

6.2 Tighter Connection Between Additive Approximation to Max-IP and Some Geometric
Problems

Now we are ready to establish a similar connection between additive approximation to Max-IP and some
geometric problems.

Theorem 6.6. The following are equivalent:

1. An ε · d additive approximation to Max-IPn,d is computable in n2−εo(1) time.

2. An ε · d additive approximation to Min-IPn,d is computable in n2−εo(1) time.

3. A (1 + ε) approximation to Bichrom.-`p-Closest-Pair is computable in n2−εo(1) time (for a constant
p ∈ [1, 2]).

4. A (1 + ε) approximation to `p-Furthest-Pair is computable in n2−εo(1) time (for a constant p ∈ [1, 2]).

One direction is simple, and already implicit in previous work.

Lemma 6.7 (Theorem 4.1 [Rub18]). For any p ∈ [1, 2], if Bichrom.-`p-Closest-Pair or `p-Furthest-Pair
can be approximated in n2−εo(1) time, then there is an algorithm computing ε · d additive approximation to
Max-IP in n2−εo(1) time.

So it suffices to prove the other direction, we are going to apply Theorem 1.19.

Proof of Theorem 6.6. The equivalence between Item (1) and (2) follows directly from Lemma 5.3. By
Lemma 6.7, Item (3) and (4) both imply Item (1). So it suffices to show Item (1) implies Item (3) and Item
(4).

We only consider Bichrom.-`p-Closest-Pair here; the case for `p-Furthest-Pair are symmetric. Note
that by a binary search (which incurs a negligible factor in the running time), we only need to consider the
decision version, in which we are given a realR, and want to distinguish the two cases: (1) min(a,b)∈A×B ‖a−
b‖p ≤ R; (2) min(a,b)∈A×B ‖a− b‖p ≥ (1 + ε) ·R.

By Theorem 1.19 and Lemma 2.4, this decision problem can be reduced to computing an Ω(ε · d)

approximation to Max-IPn,O(ε−2 logn), which by assumption can be solved in n2−εo(1) time.

Finally, Theorem 1.4 is a simple corollary of Theorem 6.5 and Theorem 6.6.
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7 Equivalence in the Data Structure Setting

In this section, we generalize our equivalence results to the data structure setting.
We first introduce the data structure versions of OV and Max-IP, which are used as intermediate problems

for the reductions.

• Online OV: Preprocess a database D of n points in {0, 1}d such that, for all query of the form
q ∈ {0, 1}d, either report a point x ∈ D which is orthogonal to q or report that no x exists.

• Online Max-IP: Preprocess a database D of n points in {0, 1}d such that, for all query of the form
q ∈ {0, 1}d, find a point x ∈ D maximizing 〈x, q〉.

Theorem 7.1. The following are equivalent:

• There is a δ > 0 such that for all constant c, there is a data structure for Online OV with d = c log n
uses poly(n) space and allows n1−δ query time.

• There is a δ > 0 such that for all constant c, there is a data structure for Online Max-IP with
d = c log n uses poly(n) space and allows n1−δ query time.

• There is a δ > 0 such that for all ε > 0, there is a data structure for approximate NNS in `p with
approximation ratio (1 + ε) uses poly(n) space and allows n1−δ query time for a constant p ∈ [1, 2].

Note that by [AWY15], Online OV is equivalent to Partial Match, so the above theorem implies Theo-
rem 1.3.

We also need the following two important observations from the proof of Lemma 4.2 and Lemma 6.4.

Lemma 7.2 (Implicit in Lemma 4.2). Let n be an integer, c be a constant, ε > 0 and 0 ≤ k ≤ c log n. There
are two families of functions f1, f2, . . . , fm and g1, g2, . . . , gm from {0, 1}c logn to {0, 1}2O(c/ε) logn where
m = nO(ε log(c/ε)), such that for all x, y ∈ {0, 1}c logn, 〈x, y〉 = k if and only if there is an i ∈ [m] such that
〈fi(x), gi(y)〉 = 0. Moreover, functions fi’s and gi’s can be evaluated in polylog(n) time.

Lemma 7.3 (Implicit in Lemma 6.4 and 6.7). Let p ∈ [1, 2], n be an integer, c be a constant, ε > 0 and
0 ≤ k ≤ c log n. There are two families of functions f1, f2, . . . , fm and g1, g2, . . . , gm from {0, 1}c logn to
Rno(1) where m = nO(ε log(c/ε)), such that for all x, y ∈ {0, 1}c logn,

• If 〈x, y〉 = k, then there is an i ∈ [m] such that ‖fi(x)− gi(y)‖p ≤ 1− Ω((ε/c)6).

• Otherwise, for all i ∈ [m], ‖fi(x)− gi(y)‖p ≥ 1.

Moreover, functions fi’s and gi’s can be evaluated in no(1) time.

Proof of Theorem 7.1. In the below we first show the equivalence between Online OV and Online Max-IP,
the equivalence between Online Max-IP and NNS is proved similarly, so we only sketch the main ideas.

Online OV⇔ Online Max-IP. The reduction from Online OV to Online Max-IP is trivial. For the other
direction, suppose there is a δ > 0 such that for all constant c, there is an algorithm for Online OV with
d = c log n such that it uses poly(n) space and allows n1−δ query time.

Let d = c log n for a constant c, and c1 be the constant hiding in the big-O of m = 2O(ε log(c/ε)) in
Lemma 7.2. Suppose we are given a set D of n points from {0, 1}d.

We set ε such that c1 · ε log(c/ε) = δ/2 and apply Lemma 7.2. Now, for each 0 ≤ k ≤ d, we build
nc1·ε log(c/ε) = nδ/2 data structures for Online OV, the i-th data structure consists of the fi(x)’s for all x ∈ D.
Note that the fi(x)’s have length 2O(c/ε) · log n, which is still O(log n) as ε is a constant.
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For each query q ∈ {0, 1}d, note that there is an x ∈ D such that 〈x, q〉 = k if and only if there is an i
such that the i-th Online OV structure contains an orthogonal point to gi(q). Therefore, by enumerating k
from d down to 0, i from

[
nδ/2

]
, and making corresponding queries to the Online OV data structures, one

can answer queries for Online Max-IP in n1−δ/2 · d time.

Online Max-IP⇔ Approximate NNS (Sketch). Using Lemma 7.3, the reduction from Online Max-IP to
Approximate NNS can be proved similarly as from Online Max-IP to Online OV.

For the direction from approximate NNS to Online Max-IP: suppose the approximation ratio is (1 + ε).
It suffices, for all R of the form (1 + ε/3)k for an integer k, to construct a data structure which finds a point
with distance smaller than R · (1 + ε/3) if the minimum distance is smaller than R, and reports a failure if
the minimum distance is greater than R · (1 + ε/3) (its behavior can be arbitrary if neither case holds). Using
the reduction implicit in proof of Theorem 1.19, this can be reduced to Online Max-IP with d = O(log n).

8 Algorithms for Apx-Min-IP and Apx-Max-IP

In this section we give fast algorithms for Apx-Min-IP and Apx-Max-IP. Our algorithms make use of the
polynomial method [AWY15]. For simplicity of exposition, we set the approximation factors in Apx-Min-IP
and Apx-Max-IP to be 2, but our algorithms can be extended to work for any constant approximation factor
κ > 1 easily.

8.1 Low Degree Probabilistic Polynomial Implies Fast Algorithms

Abboud, Williams, and Yu [AWY15], show that for a Boolean vector problem, a “sparse” probabilistic
polynomial for the problem implies a fast algorithm. To state their result formally, we first introduce some
notations.

For our purposes, we will think of a probabilistic polynomial P as a distribution over F2-polynomials
(polynomials over the field F2), and the degree of a probabilistic polynomial is the maximum degree of all
polynomials in its support. For a function f : D → {0, 1}, we say P is an ε-error probabilistic polynomial
for f , if for every x ∈ D, PrP∼P [P (x) 6= f(x)] ≤ ε.

Let us abstract out a key result from [AWY15], for our use here:

Theorem 8.1 ([AWY15]). Let c be an integer and d = c log n, let f : D → {0, 1}withD ⊆ {0, 1}d×{0, 1}d
be a function. Suppose that:

• For any ε > 0, there is an ε-error probabilistic polynomial P for f with degree t = O(log ε−1).

• A sample from P can be generated in poly(
(
d
≤t
)
) time.19

Then there is an algorithm A such that:

• Given two sets A and B of n vectors from {0, 1}d, A runs in n2−1/O(log c) time.

• If for every (a, b) ∈ A×B, f(a, b) = 0, then A outputs 0 with probability at least 1− 1/n.

• If there is an (a, b) ∈ A×B, f(a, b) = 1, then A outputs 1 with probability at least 1− 1/n.20

19( n
≤m

)
denotes

∑m
i=0

(
n
i

)
.

20If neither of the above two cases hold, the algorithm can output anything.
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8.2 n2−1/O(log c) Time Algorithms for Apx-Min-IP and Apx-Max-IP

In order to apply the theorem above, we need to switch from Apx-Min-IP and Apx-Max-IP to their closely
related decision problems Gap-Min-IP and Gap-Max-IP.

Definition 8.2. For n, d ∈ N, we define the problems:

• Gap-Min-IPn,d : Given sets A and B of n vectors from {0, 1}d and an integer τ , and the promise that
either Min(A,B) ≤ τ or Min(A,B) ≥ 2τ , the task is to decide which.

• Gap-Max-IPn,d : Given sets A and B of n vectors from {0, 1}d and an integer τ , and the promise that
either Max(A,B) ≤ τ or Max(A,B) ≥ 2τ , the task is to decide which.

Moreover, for two vectors x, y ∈ {0, 1}d and an integer τ , we define the corresponding gap-deciding
function:

f
gap
d,τ (x, y) =


1 〈x, y〉 ≥ 2τ ,
0 〈x, y〉 ≤ τ ,
undefined otherwise.

When d and τ are clear from the context, we omit them for simplicity.

Remark 8.3. Gap-Max-IPn,d (Gap-Min-IPn,d) is equivalent to determine whether there is an (a, b) ∈ A×B
such that fgap(a, b) = 1 (fgap(a, b) = 0) or for all (a, b) ∈ A×B we have fgap(a, b) = 0 (fgap(a, b) = 1).

The following lemma is the key technical ingredient of this section.

Lemma 8.4. For all d, τ ∈ N and ε ∈ (0, 1/10), there is a t = O(log ε−1)-error probabilistic polynomial
P for fgap

d,τ . Moreover, a sample from P can be generated in poly(
(
d
≤t
)
) time.

Before proving Lemma 8.4, we first show it implies Theorem 1.7 (restated below) together with Theo-
rem 8.1.

Reminder of Theorem 1.7. There are n2−1/O(log c) time randomized algorithms for Apx-Min-IPn,c logn

and Apx-Max-IPn,c logn.

Proof of Theorem 1.7. We only consider Apx-Min-IP here; the case for Apx-Max-IP is symmetric. By
Lemma 8.4, Theorem 8.1, and Remark 8.3, there is a randomized algorithm A for Gap-Min-IPn,c logn in
n2−1/O(log c) time.

Now we turn A into an algorithm for Min-IP. We say A outputs 1 if it decides Min(A,B) ≤ τ , and 0
otherwise. We enumerate τ from 0 to d, and let τmin be the smallest τ such that A outputs 1. Note that such τ
exists, as A must output 1 when τ = d.

With probability at least 1− (d+ 1)/n ≥ 2/3, A operates correctly on all enumerated τ ’s. We condition
on that event in the following. Since A outputs 1 with τmin, we have Min(A,B) < 2τmin (otherwise it must
output 0). Similarly, as A outputs 0 with τmin − 1 (τmin is the smallest), we have Min(A,B) > τmin − 1
(otherwise it must output 1). Therefore, we can see 2τmin ∈ [Min(A,B), 2 ·Min(A,B)] with probability at
least 2/3, and we obtain an n1−1/O(log c) algorithm for Apx-Min-IP.

Finally, we devote the rest of this section to the proof of Lemma 8.4.
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Proof of Lemma 8.4. In the following, we assume τ ≤ d/2 as the function becomes trivial otherwise.
We begin by introducing some notation. Let T be a sequence of integers from [d], we use x|T ∈ {0, 1}|T |

to denote the projection of x on T , such that (x|T )i := xTi for i ∈ [|T |]. We also use the Iverson bracket
notation: for a predicate P , [P ] takes value 1 when P is true, and 0 otherwise.

Construction of “Micro” Probabilistic Polynomial Pmicro. The first step is to construct a probabilistic
polynomial Pmicro of degree 1, such that for x, y ∈ {0, 1}d:

• If 〈x, y〉 ≥ 2τ : PrP∼Pmicro [P (x, y) = 1] ≥ c1 for a universal constant c1.

• If 〈x, y〉 ≤ τ : PrP∼Pmicro [P (x, y) = 1] ≤ c2 for a universal constant c2.

• c1 > c2.

Let k = d
τ . By our assumption, we have k ≥ 2. Now a sample from Pmicro is generated as follows:

• We pick a sequence T of k uniform random numbers from [d] and a uniform random vector z ∈ {0, 1}k.

• We set P (x, y) :=
∑k

i=1 zi · (x|T )i · (y|T )i (which is an F2 polynomial).

First, we make the following observations:

• If 〈x, y〉 ≥ 2τ :

Pr
T

[〈x|T , y|T 〉 > 0] ≥ 1−
(

1− 2τ

d

)k
= 1−

(
1− 2

k

)k
≥ 1− e−2 > 0.86.

• If 〈x, y〉 ≤ τ :

Pr
T

[〈x|T , y|T 〉 > 0] ≤ 1−
(

1− τ

d

)k
= 1−

(
1− 1

k

)k
≤ 1− 1

4
= 0.75.

Note that when 〈x|T , y|T 〉 = 0, P (x, y) is always 0, and when 〈x|T , y|T 〉 > 0, P (x, y) = 1 with
probability 1/2. Therefore, we have:

• If 〈x, y〉 ≥ 2τ :
Pr

P∼Pmicro
[P (x, y) = 1] ≥ (0.86)/2 = 0.43.

• If 〈x, y〉 ≤ τ :
Pr

P∼Pmicro
[P (x, y) = 1] ≤ (0.75)/2 = 0.375.

The above completes our construction of the “micro” probabilistic polynomial Pmicro.

Construction of the Probabilistic Polynomial Pfinal. Now, let m = c1 · log ε−1 for a sufficiently large
constant c1. And let P1, P2, . . . , Pm be m i.i.d. samples from Pmicro. By a simple Chernoff bound, we have:
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• If 〈x, y〉 ≥ 2τ :

Pr
P1,P2,...,Pm∼Pmicro

[
m∑
i=1

[Pi(x, y) = 1] > 0.4 ·m

]
≥ 1− ε.

• If 〈x, y〉 ≤ τ :

Pr
P1,P2,...,Pm∼Pmicro

[
m∑
i=1

[Pi(x, y) = 1] < 0.4 ·m

]
≥ 1− ε.

Finally, we set

Pfinal(x, y) :=
∑

S⊆[m],|S|>0.4m

∏
i∈S

Pi(x, y) ·
∏
i/∈S

(1− Pi(x, y)).

Clearly, Pfinal(x, y) = 1 if and only if
∑m

i=1 [Pi(x, y) = 1] > 0.4 ·m, and therefore its distribution Pfinal
is the ε-error probabilistic polynomial we want. And it is easy to see a polynomial from Pfinal can be sampled
in the stated time.

8.3 A Fast Algorithm for Approximating “Almost Satisfiable” MAX-SAT Instances

Finally, we give an application of the algorithm for Apx-Min-IP by proving Theorem 1.9 (restated below).

Reminder of Theorem 1.9 Letϕ be a MAX-SAT instance on n variables withm clauses, and ε = 1−sat(ϕ).
There is a 2n(1−1/O(log ε−1)) time algorithm to find an assignment x satisfying at least (1− 2ε) ·m clauses.

Proof. We use the reduction from CNF-SAT to OV, from [Wil05]. For simplicity, suppose 2 divides n. For
an assignment x to ϕ, we use val(ϕ, x) to denote the number of satisfied clauses of ϕ by x, divided by m.

First, we do a “sparsification” step: we pick M = c1 · ε−2 · n clauses from ϕ at uniformly random. Let ψ
be the MAX-SAT instance with these randomly chosen clauses.

By a standard Chernoff bound, with a sufficiently large universal constant c1, for every assignment
x ∈ {0, 1}n, we have

Pr [|val(ϕ, x)− val(ψ, x)| ≤ ε/3] ≤ 1/22n.

Therefore, by a union bound, with probability at least 1− 1/2n, for all x ∈ {0, 1}n we have |val(ϕ, x)−
val(ψ, x)| ≤ ε/3, and it follows that |sat(ϕ)− sat(ψ)| ≤ ε/3. So it suffices to consider ψ now.

Next, we split these n variables into two groups

xL := {x1, . . . , xn/2} and xR := {xn/2+1, . . . , xn}.

Let C1, C2, . . . , CM be all clauses in ψ. For each a ∈ {0, 1}n/2, interpreted as an assignment to variables in
xL, we construct a vector ua ∈ {0, 1}M , such that (ua)i = 1 iff Ci is not satisfied when setting variables in
xL according to a. Similarly, for each b ∈ {0, 1}n/2, we interpret it as an assignment to variables in xR, and
construct a vector vb ∈ {0, 1}M in the same way.

Next, for a, b ∈ {0, 1}n/2, 〈(ua)i, (vb)i〉 = 1 if and only if Ci is not satisfied by the joint assignment
(a, b). Therefore, 〈ua, vb〉 is the number of clauses that are not satisfied by the joint assignment (a, b).

Let A be the set of all ua’s for a ∈ {0, 1}n/2, and B be the set of all vb’s for b ∈ {0, 1}n/2. By
Theorem 1.7, there is an algorithm which finds a (ua, vb) ∈ A × B such that 〈ua, vb〉 ∈ [Min(A,B), 1.1 ·
Min(A,B)].
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From the definition, we have Min(A,B) := (1− sat(ψ)) ·M ≤ 4
3 · ε ·M (recall that ε = 1− sat(ϕ)).

Therefore, we have 〈ua, vb〉 ≤ 1.1 · 4
3 · ε ·M ≤ 1.5 · ε ·M .

Let x be the joint assignment (a, b). We have val(ψ, x) ≥ (1−1.5ε). Since |val(ψ, x)−val(ϕ, x)| ≤ ε/3,
val(ϕ, x) ≥ (1− 2ε), which means x is a valid answer.

Finally, as M = O(ε−2) ·n, the algorithm runs in
(
2n/2

)2−1/O(log ε−1)
= 2n·(1−1/O(log ε−1)) time, which

completes the proof.
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[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 337–347, 1986.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 51–58,
2015.

[BOR99] Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 312–321,
1999.

[Bri14] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670,
2014.

[Bro97] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
complexity of sequences, pages 21–29. IEEE, 1997.

29



[CGI+16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and
Stefan Schneider. Nondeterministic extensions of the strong exponential time hypothesis and
consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 261–270,
2016.

[CGL04] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 91–100, 2004.

[CGL+18] Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy Rothblum, and Aviad Rubinstein. Fine-grained
complexity meets IP = PSPACE. To appear in the proceedings of SODA 2019, 2018.

[Cha17] Timothy M. Chan. Orthogonal range searching in moderate dimensions: k-d trees and range
trees strike back. In 33rd International Symposium on Computational Geometry, SoCG 2017,
July 4-7, 2017, Brisbane, Australia, pages 27:1–27:15, 2017.

[Che18] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product.
In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA,
USA, pages 14:1–14:45, 2018.

[CIP02] Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query, partial
match, orthogonal range searching, and related problems. In Automata, Languages and
Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002,
Proceedings, pages 451–462, 2002.

[CMWW17] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 22:1–22:15, 2017.

[CW16] Timothy M. Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and More:
Quickly Derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 1246–1255, 2016.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the 20th ACM Symposium on
Computational Geometry, Brooklyn, New York, USA, June 8-11, 2004, pages 253–262, 2004.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2162–2181.
SIAM, 2017.
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A Missing Proofs

Here we give some missing proofs in the paper.

Proof of Lemma 5.2. Let X =
∑cm

i=1Xi and µ = E[X] = ε · cm. Set δ = ε−1/3. By the multiplicative
Chernoff bound, we have

Pr[X > (1 + δ) · µ] <

(
eδ

(1 + δ)1+δ

)µ
.

Note that (1 + δ) · µ = (1 + ε−1/3) · ε · cm < 1
2 · cm. Also, we have(

eδ

(1 + δ)1+δ

)µ
= e−µ·[(1+δ) log(1+δ)−δ]

≤ e−µ·[δ ln δ−δ]

≤ e−ε·cm·[ε−1/3 ln(ε−1/3)]/2

≤ e−ε·cm·[ε−1 ln(ε−1)]/12

≤ e− ln ε−1·cm/12 = ε−cm/12.

Therefore, we can set c = 12, and the proof is completed.

Proof of Lemma 5.3. We define two functions ϕx, ϕy : {0, 1} → {0, 1}2 such that:

ϕx(0) := (1, 0), ϕx(1) := (0, 1), ϕy(0) := (1, 1), ϕy(1) := (1, 0).

It is easy to check that for a, b ∈ {0, 1}, a · b = 1− 〈ϕx(a), ϕy(b)〉. Then, for x, y ∈ {0, 1}d, we define
ψxrev(x) ∈ {0, 1}2d as the concatenation of ϕx(xi) for each i ∈ [d], and similarly ψyrev(y) ∈ {0, 1}2d as the
concatenation of ϕy(yi) for each i ∈ [d].

Then we can see 〈ψxrev(x), ψyrev(y)〉 =
∑d

i=1〈ϕx(xi), ϕy(yi)〉 = d− 〈x, y〉.
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Proof of Lemma 5.4. We remark the reduction here is essentially the same as the trick used in [Wil18]. For a
vector v ∈ {0, 1}∗, we use v⊗k to denote the concatenation of k copies of v.

Consider the following polynomial P (x, y) := (〈x, y〉 −m)2, we have

P (x, y) = 〈x, y〉2 − 2m〈x, y〉+m2 = 〈x, y〉2 + 2m(d− 〈x, y〉) +m2 − 2dm.

For convenience, for a vector z ∈ {0, 1}d2 , we use z(i,j) to denote the (i− 1) · d+ j-th coordinate of z.
For x, y ∈ {0, 1}d, we construct x̃, ỹ ∈ {0, 1}d2 such that x̃(i,j) = xi · xj and ỹ(i,j) = yi · yj . Then we can
see

〈x̃, ỹ〉 =

d∑
i=1

d∑
j=1

xixj · yiyj =

(
d∑
i=1

xiyi

)2

= 〈x, y〉2.

Let ψxrev and ψyrev be the two functions from Lemma 5.3. For x, y ∈ {0, 1}d, we define

ϕxd,m(x) := (x̃, ψxrev(x)⊗(2m)) and ϕyd,m(y) := (ỹ, ψyrev(y)⊗(2m)).

Then we have 〈ϕxd,m(x), ϕyd,m(y)〉 = 〈x, y〉2 + 2m(d − 〈x, y〉) = P (x, y) + 2dm −m2. And we set
Md,m = 2dm−m2.

Now, if 〈x, y〉 = m, we have P (x, y) = 0, and therefore 〈ϕxd,m(x), ϕyd,m(y)〉 = Md,m. Otherwise,
〈x, y〉 6= m and we haveP (x, y) > 0, and hence 〈ϕxd,m(x), ϕyd,m(y)〉 > Md,m. Note thatϕxd,m(x), ϕyd,m(y) ∈
{0, 1}d2+4dm, we add 5d2−Md,m dummy ones to the end of ϕxd,m(x) and ϕyd,m(y) and setMd = 5d2, which
completes the proof.

Proof of Lemma 6.3. We begin by the construction of two embeddings ψx, ψy : {0, 1, . . . , r} → {0, 1}r2

such that for any x, y ∈ {0, 1, . . . , r}, 〈ψx(x), ψy(y)〉 = x · y.
For convenience, in the following we use z(i,j) to denote the (i− 1) · r + j-th coordinate of z. Then we

define ψx(x)(i,j) as 1 when i ≤ x, and 0 otherwise; similarly, we define ψy(y)(i,j) as 1 when j ≤ y, and 0
otherwise. We have

〈ψx(x), ψy(y)〉 =

r∑
i=1

r∑
j=1

ψx(x)(i,j) · ψy(y)(i,j) =

x∑
i=1

y∑
j=1

1 · 1 = 〈x, y〉.

Slightly abusing notations, for x, y ∈ {0, 1, . . . , r}d, we define ψx(x) and ψy(y) as the concatena-
tion of ψx or ψy applying on all coordinates of x and y. Then we have ψx(x), ψy(y) ∈ {0, 1}dr2 , and
〈ψx(x), ψy(y)〉 = 〈x, y〉. Then applying Lemma 5.4 and Lemma 5.3 completes the proof.

B More Applications of the Σcc
2 Reduction Framework

To demonstrate the potential power of our Σcc
2 framework. In the following we discuss some of its applications

other than establishing our equivalence class. The first one is a very simple reduction from Hopcroft’s problem
in constant dimensions to OV in polylogarithmic dimensions. And the second one is a reduction from 3-SUM
to 3-OV.

B.1 Integer Inner Product and Hopcroft’s Problem

The Hopcroft’s problem is defined as follows: you are given two sets A,B of n vectors from Zd, and want
to determine whether there is an (a, b) ∈ A×B such that 〈a, b〉 = 0. In other words, it is the same as OV
except for now vectors consist of integer entries.
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We use Z-OVn,d to denote this problem in d dimensions for simplicity, and assume the integers in
Z-OVn,d belong to [−nc, nc] for a constant c, which is the most interesting case. Now we formally state our
reduction.

Theorem B.1. Let c, d be two constants, a Z-OVn,d instance I with entries in [−nc, nc] can be reduced to
an OVn,O(logn)d+1 instance J in n1+o(1) time, such that I is a yes instance if and only if J is a yes instance.

An immediate corollary is that if moderate dimensional OV is in truly subquadratic time, then Z-OVn,d
is also in truly subquadratic time for all constant d.

Let d be an integer, we define Z-IPd : Zd × Zd → {0, 1} be the function that checks whether two d
dimensional vectors in Zd are orthogonal. Note that Z-OVn,d is equivalent to Z-IPd-Satisfying-Pairn.

Theorem B.1 is just a direct corollary of the following fast Σ2 communication protocol for Z-IPd (it is in
fact a coNP communication protocol, as Merlin sends nothing) and Theorem 1.14.

Lemma B.2. Let c, d be two constants, there is a Σcc
2 protocol for Z-IPd with entries in [−nc, nc], in which

Merlin sends nothing, Megan sends log log(n) +O(1) bits and Alice and Bob communicate d · log log(n) +
O(d) bits.

Proof. Let x, y be two vectors from [−nc, nc]d, we have |〈x, y〉| ≤ d · n2c.
Let t be the smallest number such that the first t primes p1, p2, . . . , pt satisfy

∏t
i=1 pi > d · n2c. We first

bound t and the largest prime pt. Clearly, t ≤ log(d ·n2c) = O(log n). Recall that n# denotes the product of
all primes less than or equal to n (the primordial function), and we have n# = e(1+o(1))n. By the definition
of t, it follows that (pt − 1)# = e(1+o(1))·(pt−1) ≤ d · n2c and pt = O(log n).

From our choice of t, we have 〈x, y〉 = 0 if and only if 〈x, y〉 ≡ 0 (mod pi) for all i ∈ [t]. So in the
protocol, Merlin sends nothing. Megan sends an index i ∈ [t], which takes log t = log log n + O(1) bits.
After that, for each j ∈ [d], Bob sends yj mod pi to Alice, which takes d · log pi ≤ d · log log n+O(d) bits,
and Alice accepts if and only if 〈x, y〉 ≡ 0 (mod pi).

B.2 Sum-Check and 3-Sum

Next we discuss a reduction from 3-SUM to 3-OV. 3-OV is a generalized version of OV, in which you
are given three sets A,B,C, each of n vectors from {0, 1}d, and want to determine whether there is an
(a, b, c) ∈ A × B × C such that

∑d
i=1 ai · bi · ci = 0 (the generalized inner product of a, b, and c is zero).

We use 3-OVn,d to denote the 3-OV problem with sets of n vectors of d dimensions.

Theorem B.3. If 3-OV is in truly-subquadratic time21, then so is 3-SUM.

We remark that this reduction is not optimal, as it is conjectured that 3-OV requires n3−o(1) time (also
implied by SETH). We include it here only as an illustration of the applicability of our reduction framework.
It would be very interesting to improve it to a reduction from 3-SUM to OV22.

Note that 3-OV is actually a Satisfying-Triple problem23, and Theorem 1.14 only works for Satisfying-Pair
problems. Still, we can generalize Theorem 1.14 easily to get the same connection between a 3-party Σ2

communication protocol and a reduction from a satisfying-triple problem to 3-OV.
Let F :

(
{0, 1}d

)3 → {0, 1} be a function, F -Satisfying-Triplen is the problem that you are given sets
A,B,C of n vectors from {0, 1}d, and want to determine whether there is an (a, b, c) ∈ A× B × C such
that F (a, b, c) = 1. A 3-party Σ2 communication protocol can be defined similarly as in Definition 1.13 with
the third player named Charles, we omit it here. We have the following analogous theorem of Theorem 1.14.

21This means there is an ε > 0 such that for all constant c, 3-OVn,c logn can be solved in n2−ε time.
22In [CGI+16], it is shown that under the NSETH (which is controversial, see [Wil16]), there is no fine-grained reduction from

OV to 3-SUM. But there is no formal evidence against the other direction.
23It is also called a Product Space Problem in [KLM18].
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Theorem B.4. Let F :
(
{0, 1}d

)3 → {0, 1} and n be an integer, suppose F admits a computationally-
efficient Σcc

2 protocol. In which Merlin sends m1 bits, Megan sends m2 bits, Alice, Bob and Charles
communicate ` bits.

Then there is a reduction from an F -Satisfying-Triplen instance I to 2m1 3-OVn,2(m2+`) instances
J1, J2, . . . , J2m1 , such that I is a yes instance if and only if one of the reduced instances is a yes instance.
And the reduction takes O(n · 2O(m1+m2+`) · poly(d)) time.

We omit its proof here as it is identical to that of Theorem 1.14.
Note that we can assume the integers in the 3-SUM instance are in [−n4/2, n4/2) without loss of

generality. In order to apply Theorem B.4, we need an efficient Σcc
2 protocol for checking whether 3 numbers

sum to zero.

Theorem B.5. For an integer n, let Fzero :
(
{0, 1}4 logn

)3 → {0, 1} be the function that treats its inputs
as three numbers in [−n4/2, n4/2) (via a natural encoding), and checks whether they sum to zero. For
any 1 ≤ T ≤ 4 log n, Fzero admits a Σcc

2 protocol in which Merlin sends O(log n/T ) bits, Megan sends
dlog(n/T )e bits and Alice, Bob and Charles communicate O(T ) bits.

Proof. Let x, y, z be three input numbers. Suppose Alice holds x, Bob holds y and Charles holds z. We
add n4/2 to each of them so that they now belong to [0, n4), and we want to check whether they sum up
to t = n4/2 · 3. Assuming T divides 4 log n for simplicity, we treat x, y, z as numbers in 2T base. Let
` = 4 log n/T , and x1, x2, . . . , x` be the digits of x (from the least significant one to the most significant one,
yi’s, zi’s, and ti’s are defined similarly).

Suppose we add x, y, z together as numbers in 2T base. Let c ∈ {0, 1, 2}` be a sequence of carries. We
can see x+ y + z = t for t = n4/2 · 3 with respect to the carry sequence c if and only if

xi + yi + zi + ci−1 = ti + ci · 2T for i ∈ [`+ 1].

In the above we set c0 = x`+1 = y`+1 = z`+1 = 0.
Therefore, in the protocol, Merlin sends the carry sequence c, which takes O(`) = O(log n/T ) bits.

Megan sends an index i ∈ [`+ 1]. After that, Bob and Charles send yi and zi to Alice, respectively, and Alice
accepts if and only if the above equality holds. It is straightforward to verify the protocol works.

Finally, we are ready to prove Theorem B.3.

Proof of Theorem B.3. Suppose 3-OV is in truly-subquadratic time. That is, there is a constant ε such that
for all constant c, 3-OVn,c logn can be solved in n2−ε time.

Given a 3-SUM instance with integer entries in [−n4/2, n4/2), it is just a Fzero-Satisfying-Triplen
instance. Let c1 be the constant hiding in O(log n/T ) of Theorem B.4, then Fzero admits a Σcc

2 protocol in
which Merlin sends c1 log n/T bits, Megan sends dlog(n/T )e bits and Alice, Bob and Charles communicate
O(T ) bits.

Set T = c1 · 2/ε, Theorem B.4 implies this 3-SUM instance can be reduced to nε/2 3-OVn,2O(1/ε) logn

instances. Applying the algorithm for 3-OV, 3-SUM can be solved in n2−ε/2 time, which completes the
proof.
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