# Almost-Everywhere Circuit Lower Bounds from Circuit-Analysis Algorithms

Ryan Williams MIT

But all "heavy-lifting" done by: Xin Lyu (Tsinghua) and Lijie Chen (MIT)

## Outline

- Prior Work and a "Subtle" Issue
- What We Do
- A Little About How We Do It
- Conclusion

## **Algorithmic Approach to Lower Bounds: Interesting circuit-analysis algorithms** tell us about the *limitations* of circuits in modeling algorithms



# Circuit-Analysis Problem #1: Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

 $C = \{\text{formulas}\}, C = \{\text{arbitrary circuits}\}, C = \{\text{3CNFs}\}$ 

#### The C-SAT Problem:

Given a circuit  $K(x_1,...,x_n)$  from C, is there an assignment  $(a_1, ..., a_n) \in \{0,1\}^n$  such that  $K(a_1,...,a_n) = 1$ ?

## A very "simple" circuit analysis problem

[CL'70s] C-SAT is NP-complete for practically all interesting C-SAT is solvable in  $O(2^n |K|)$  time by brute force

# Circuit-Analysis Problem #2: Gap Circuit Satisfiability

Let C be a class of Boolean circuits

 $C = \{formulas\}, C = \{arbitrary circuits\}, C = \{3CNFs\}$ 

#### Gap-C-SAT:

Given  $K(\mathbf{x}_1,...,\mathbf{x}_n)$  from C, and the **promise** that either (a)  $K \equiv \mathbf{0}$ , or (b)  $Pr_x[K(x) = 1] \geq 1/2$ , decide which is true.

## Even simpler! In randomized polynomial time

[Folklore?] Gap-Circuit-SAT  $\in$  P  $\Rightarrow$  P = RP [Hirsch, Trevisan, ...] Gap-kSAT  $\in$  P for all k

# Nontrivially Faster C-SAT $\Longrightarrow$ Circuit Lower Bounds for C

Slightly Faster Circuit-SAT [R.W. '10,'11]

#### Deterministic algorithms for:

- Circuit SAT in O(2<sup>n</sup>/n<sup>10</sup>) time
   with n inputs and n<sup>k</sup> gates, for all k
- Formula SAT in O(2<sup>n</sup>/n<sup>10</sup>) time
- *C*-SAT in O(2<sup>n</sup>/n<sup>10</sup>) time
- Gap-C-SAT in O(2<sup>n</sup>/n<sup>10</sup>) time on n<sup>k</sup> size, for all k

(Easily solved w/randomness!)

No "Circuits for NEXP"

#### Would imply:

NEXP ⊄ poly-size C

#### **Concrete LBs:**

C = ACC[W'11]C = ACC of THR[W'14]

# Even Faster SAT → Stronger Lower Bounds

# Somewhat Faster Circuit SAT [Murray-W. '18]

Det. algorithm for some  $\epsilon > 0$ :

- Circuit SAT in  $O(2^{n-n^{\epsilon}})$  time with n inputs and  $2^{n^{\epsilon}}$  gates
- Formula SAT in  $O(2^{n-n^{\epsilon}})$  time
- *C*-SAT in  $O(2^{n-n^{\epsilon}})$  time
- Gap-C-SAT in  $O(2^{n-n^{\epsilon}})$  time on  $2^{n^{\epsilon}}$  gates

No "Circuits for Quasi-NP"

Would imply:

- NTIME[ $n^{polylog n}$ ]  $\not\subset$  P/poly
- NTIME[ $n^{polylog n}$ ]  $\not\subset$  NC1
- NTIME $[n^{polylog \ n}] \not\subset C$

 $\mathsf{NTIME}[n^{polylog\;n}] \not\subset \mathcal{C}$ 

*C* = ACC of THR [MW'18]

# Even Faster SAT → Stronger Lower Bounds

Note: Would refute Strong ETH! "Fine-Grained" SAT Algorithms
[Murray-W. '18]

Det. algorithm for some  $\epsilon > 0$ :

- Circuit SAT in  $O(2^{(1-\epsilon)n})$  time on n inputs and  $2^{\epsilon n}$  gates
- FormSAT in  $O(2^{(1-\epsilon)n})$  time
- C-SAT in  $O(2^{(1-\epsilon)n})$  time

No "Circuits for NP"

Would imply:

- NP  $\not\subset$  SIZE $(n^k)$  for all k
- NP  $\not\subset$  Formulas of size  $n^k$
- NP  $\not\subset$  C-SIZE $(n^k)$  for all k

Strongly believed to be true...

• Gap-C-SAT is in  $O(2^{(1-\epsilon)n})$  time on  $2^{\epsilon n}$  gates

(Implied by **PromiseRP** in **P**)

 $NP \not\subset C$ -SIZE $(n^k)$  for all k

C = SUM of THR
C = SUM of ReLU
C = SUM of lowdegree polys
[W'18]

# Faster #SAT and CAPP → Average-Case Lower Bounds

[R.Chen-Oliveira-Santhanam'18, Chen-W'19, Chen'19, Chen-Ren '20]

#### Det. algorithm for some $\epsilon > 0$ :

- #Circuit SAT in  $O(2^{n-n^{\epsilon}})$  time with n inputs and  $2^{n^{\epsilon}}$  gates
- #Formula SAT in  $O(2^{n-n^{\epsilon}})$  time
- #C-SAT in O( $2^{n-n^{\epsilon}}$ ) time
- C-CAPP in  $O(2^{n-n^{\epsilon}})$  time

No Circuits for Computing Quasi-NP on Average

#### Would imply:

• NTIME[ $n^{polylog n}$ ] can't be

(1/2 +1/poly)-approximated in P/poly

- Inapproximability in NC1
- Inapproximability in *C*/poly

C = ACC of THR [Chen-Ren'20]

Given a circuit of size **s**, approximate its *fraction* of SAT assignments to within **+- 1/s** 

# Faster #SAT and CAPP → Average-Case Lower Bounds

[R.Chen-Oliveira-Santhanam'18, Chen-W'19, Chen'19, Chen-Ren '20]

#### Det. algorithm for some $\epsilon > 0$ :

- #Circuit SAT in  $O(2^{n-n^{\epsilon}})$  time with n inputs and  $2^{n^{\epsilon}}$  gates
- #Formula SAT in  $O(2^{n-n^{\epsilon}})$  time
- #C-SAT in O( $2^{n-n^{\epsilon}}$ ) time
- *C*-CAPP in  $O(2^{n-n^{\epsilon}})$  time

No Circuits for Computing Quasi-NP on Average

#### Would imply:

• NTIME[ $n^{polylog}$  n] can't be

(1/2 +1/poly)-approximated in P/poly

There is an  $f \in \mathbf{NTIME}[n^{polylog n}]$  such that, for **infinitely many** n, every poly(n)-size circuit C fails to compute  $f_n$  on more than

$$\left(\frac{1}{2} + \frac{1}{\text{poly}(n)}\right) 2^n$$
 inputs.

Given a circuit of size **s**, approximate its *fraction* of SAT assignments to within **+- 1/s** 

# A Subtle (But Important) Issue!

When we prove statements like NEXP  $\not\subset$  ACC<sup>0</sup> via circuit-analysis algorithms,

we end up showing that, for NEXP-complete problems such as Succinct3SAT, there are infinitely many input lengths n such that Succinct3SAT fails to have the desired ACC circuits on length-n inputs.

Let  $f: \{0, 1\}^* \to \{0, 1\}$  and let  $f_n: \{0, 1\}^n \to \{0, 1\}$  be the restriction of f

An infinitely-often circuit lower bound only says " $f_n$  doesn't have small circuits" for infinitely many n:

$$f_1, N, f_3, f_4, \dots, N_{00}, \dots, N_{1000}, \dots, N_{0000}, \dots$$

We would greatly prefer an "almost-everywhere" circuit lower bound, which holds for all but finitely many inputs!

All of the classical circuit lower bounds from the 1980s (PARITY ∉ ACO, MAJORITY ∉ ACO[2], etc.) yield *almost-everywhere* lower bounds.

# A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds?

Prior work relies on other lower bounds such as the *nondeterministic time* hierarchy theorem or MA/1 circuit lower bounds, and neither results are known to hold almost-everywhere.

If we knew (for example)

 $\mathsf{NTIME}[2^n]$  is not *infinitely often* in  $\mathsf{NTIME}[2^n/poly(n)]$ ,

then we could conclude some kind of almost-everywhere lower bound.

But there are oracles relative to which NEXP is *infinitely often* in NP! [Buhrman-Fortnow-Santhanam '09]

# A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds?

Prior work relies on other lower bounds such as the nondeterministic time

hierarchy theorem or NAA/1 circuit lower bounds and neither results are

known t

If we knev

"There are functions in NTIME[ $2^n$ ] that are so hard, no nondeterministic algorithm running in  $2^n/poly(n)$  time can correctly compute the function on any *infinite sequence of* input lengths"

 $\mathsf{NTIME}[2^n]$  is not *infinitely often* in  $\mathsf{NTIME}[2^n/poly(n)]$ ,

then we could conclude some kind of almost-everywhere lower bound.

But there are oracles relative to which NEXP is *infinitely often* in NP! [Buhrman-Fortnow-Santhanam '09]

# Outline

- Prior Work and a "Subtle" Issue
- What We Do
- A Little About How We Do It
- Conclusion

## This Work:

# Faster SAT ⇒ Almost-Everywhere Lower Bounds

[R.Chen-Oliveira-Santhanam'18, Chen-W'19, Chen'19, Chen-Ren '20]

#### Det. algorithm for some $\epsilon > 0$ :

• C-SAT (or Gap-C-SAT) with n inputs and  $s(n)^{O(1)}$  gates in  $2^n/n^{\omega(1)}$  time

• #*C*-SAT (or *C*-CAPP) in  $O(2^{n-n^{\epsilon}})$  time  $2^{n^{\epsilon}}$  gates

Given a circuit of size **s**, approximate its *fraction* of SAT assignments to within **+- 1/s** 

A.E. Circuit Lower Bounds for  $E^{NP}$  on Average

There is an  $f \in \mathbf{TIME}[2^{O(n)}]^{\mathbf{SAT}}$  such that, for **all but finitely many** n, every  $\mathbf{s}(n)$ -size circuit C fails to compute  $f_n$  on more than  $\left(\frac{1}{2} + \frac{1}{\mathbf{s}(n)}\right) 2^n$  inputs.

•  $E^{NP}$  can't be  $1/2 + 1/2^{n^{o(1)}}$ -

approximated with  $2^{n^{o(1)}}$  size

C-circuits, for a.e. n

Almost-everywhere average-case lower bounds for ACC of THR!

## This Work:

# Faster SAT ⇒ Almost-Everywhere Lower Bounds

[R.Chen-Oliveira-Santhanam'18, Chen-W'19, Chen'19, Chen-Ren '20]

A.E. Circuit Lower Bounds for  $E^{NP}$  on Average

#### Det. algorithm for some $\epsilon > 0$ :

• C-SAT (or Gap-C-SAT) with n inputs and  $s(n)^{O(1)}$  gates in  $2^n/n^{\omega(1)}$  time

#### Would imply:

•  $E^{NP}$  does not have s(n/2) size

C-circuits, for almost every n

C = ACC of THR $s(n) = 2^{n^{o(1)}}$ 

• #*C*-SAT (or *C*-CAPP) in  $O(2^{n-n^{\epsilon}})$  time  $2^{n^{\epsilon}}$  gates

Given a circuit of size **s**, approximate its *fraction* of SAT assignments to within **+- 1/s** 

•  $E^{NP}$  can't be  $1/2 + 1/2^{n^{o(1)}}$ -

approximated with  $2^{n^{o(1)}}$  size

C-circuits, for a.e. n

# More Almost-Everywhere Goodness

In fact, we can extend all previous " $E^{NP}$  lower bounds" proved via the algorithmic method to the almost-everywhere setting.

#### Strong average-case ACC<sup>0</sup> lower bounds:

Extends [Chen-W'19], [Chen-Ren'20]

with better inapproximability parameters

# Correlation bounds: For all $\varepsilon>0$ , and for all but finitely many n, $L_n$ cannot be $\frac{1}{2}+\frac{1}{2^{n^{\Omega(1)}}}$ approximated by $n^{1-\varepsilon}$ -degree $\mathbf{F}_2$ -polynomials. Extends [Viola'20]

#### **Probabilistic degree lower bounds:**

There is an  $\mathbf{E^{NP}}$  language L such that, for **all but finitely many** n,  $L_n$  does not have  $o(n/\log^2 n)$ -degree probabilistic  $\mathbf{F_2}$ -polynomials. Extends [Viola'20]

**Rigid matrices in P<sup>NP</sup>**: There is a P<sup>NP</sup> algorithm  $\mathcal{A}$  such that, for **all but finitely many** n,  $\mathcal{A}$  on input  $1^n$  outputs an  $n \times n$  matrix  $M_n$  satisfying  $\mathcal{R}_{\left(2^{\log^{1-\varepsilon} n}\right)}(M_n) = \Omega(n^2)$ .

Extends [Alman-C'19], [Bhangale-Harsha-Paradise-Tal'20]

# **Extension to Average Case**

[Chen-Ren'20] There is a function f in QuasiNP such that, for **infinitely many** n, every  $ACC^0$  circuit C of size poly(n) cannot  $\left(\frac{1}{2} + \frac{1}{poly(n)}\right)$ -approximate  $f_n$ .

**Theorem:** There is an  $\mathbb{E}^{NP}$  function f, such that for all sufficiently large n,  $f_n$  cannot be  $\left(\frac{1}{2} + 2^{-n^{o(1)}}\right)$ -approximated by  $2^{n^{o(1)}}$ -size  $ACC^0$  circuits.

**"New" XOR Lemma:** Suppose there is **no** poly(s)-size linear combination L of  ${\it C}$ -circuits for f such that  $E_x[|L(x)-f(x)|]<1/10$ . Then  $f^{\bigoplus k}$  cannot be  $\left(\frac{1}{2}+\frac{1}{s}\right)$ -approximated by size- ${\it S}$   ${\it C}$ -circuits.

$$(x_1, \dots, x_k) \mapsto f(x_1) \oplus \dots \oplus f(x_k)$$

(Follows Levin's proof of the XOR Lemma)

# Outline

- Prior Work and a "Subtle" Issue
- What We Do
- A Little About How We Do It
- Conclusion

## A Little About How We Do It

- Another View of the Proof
- Extending to Almost-Everywhere

# How **NEXP** ⊄ **ACC**<sup>0</sup> Was Proved

Let C be a "typical" circuit class (like ACC<sup>0</sup>)

Thm A [W'11] (algorithm design → lower bounds)

If for all k, Gap-ℂ-SAT on n<sup>k</sup>-size is in O(2<sup>n</sup>/n<sup>k</sup>) time,
then NEXP does not have poly-size ℂ-circuits.

Thm B [W'11] (algorithm)

 $\exists \ \varepsilon$ , #ACC°-SAT on  $2^{n^{\varepsilon}}$  size is in  $O(2^{n-n^{\varepsilon}})$  time. (Used a well-known representation of ACC° from 1990, that people long suspected should imply lower bounds)

Note that Theorem B gives a stronger algorithm than necessary in the hypothesis of Theorem A.

(This is the starting point of [Murray-W'18] which proves Quasi-NP lower bounds, and other subsequent work)

## Idea of Theorem A

Let C be some circuit class (like ACC<sup>0</sup>)

Thm A [W'11] (algorithm design → lower bounds)
If for all k, Gap ℂ-SAT on n<sup>k</sup>-size is in O(2<sup>n</sup>/n<sup>k</sup>) time,
then NEXP does not have poly-size ℂ-circuits.

Idea. Show that if we assume both:

- (1) NEXP has poly-size C-circuits, AND
- (2) a faster Gap C-SAT algorithm

Then we can show NTIME[ $2^n$ ]  $\subseteq$  NTIME[ $o(2^n)$ ]. This contradicts the nondeterministic time hierarchy: there's an  $L_{hard}$  in NTIME[ $2^n$ ]  $\setminus$  NTIME[ $o(2^n)$ ]

## Proof Ideas in Theorem A

#### Idea. Assume

- (1) NEXP has poly-size C-circuits, AND
- (2) there's a faster Gap C-SAT algorithm

Show that  $NTIME[2^n] \subseteq NTIME[o(2^n)]$  (contradiction)

Take any problem L in nondeterministic  $2^n$  time Given an input x, we decide L on x by:

- 1. Guessing a witness y of  $O(2^n)$  length.
- 2. Checking y is a witness for x in  $O(2^n)$  time.

Want to "speed-up" both parts 1 and 2, using the above assumptions

## Proof Ideas in Theorem A

#### Idea. Assume

- (1) NEXP has poly-size C-circuits, AND
- (2) there's a faster Gap C-SAT algorithm

Show that  $NTIME[2^n] \subseteq NTIME[o(2^n)]$ 

Take any problem L in **nondeterministic 2**<sup>n</sup> time Given an input x, we decide L on x in a FASTER way:

- Use (1) to guess a witness y of o(2<sup>n</sup>) length
   (Easy Witness Lemma [IKW02]:
   if NEXP is in P/poly, then L has "small witnesses")
- 2. Use (2) to check y is a witness for x in  $o(2^n)$  time Technical: Use a highly-structured PCPs for NEXP [W'10, BV'14] to reduce the check to Gap  $\mathbb{C}$ -SAT

# Extend to Almost-Everywhere?

#### Idea. Assume

#### **INFINITELY OFTEN**

- (1) NEXP has poly-size C-circuits, AND
- (2) there's a faster Gap  $\mathbb{C}$ -SAT algorithm Show that NTIME[ $2^n$ ]  $\subseteq$  NTIME[ $o(2^n)$ ]?

Even if we could prove  $NTIME[2^n] \not\subset io-NTIME[o(2^n)],$  We still don't know how to complete step 1!

Take any problem L in **nondeterministic 2**<sup>n</sup> time Given an input x, we decide L on x in a FASTER way:

- 1. Use (1) to guess a witness y of  $o(2^n)$  length (Infinitely-Often Easy Witness Lemma [???]: if NEXP is in io-P/poly, then L has "small witnesses"?
- 2. Use (2) to check y is a witness for x in  $o(2^n)$  time Technical: Use a highly-structured PCPs for NEXP [W'10, BV'14] to reduce the check to Gap  $\mathbb{C}$ -SAT

 $\mathsf{NT}[2^n] \not\subset \mathsf{io}\mathsf{-NT}[\mathsf{o}(2^n)]$  and  $EXP^{NP} \subset \mathsf{io}\mathsf{-}\mathbb{C}$ 

would imply our desired easy witnesses. We could infer a contradiction!

But such an NTIME hierarchy looks very hard to prove... what to do??

## A Little About How We Do It

- Another View of the Proof
- Extending to Almost-Everywhere

## Another View of the Proof

**NTIME** hierarchy  $\Rightarrow$  There is a function  $f^{hard} \in \text{NTIME}[2^n] \setminus \text{NTIME}[2^n/n]$  Consider a "canonical" algorithm for  $f^{hard}$ :

## $\mathcal{A}^{hard}(x)$ :

- 1. Guess a witness y of  $O(2^n)$  length.
- 2. Check y is a witness for x in  $O(2^n)$  time.

Consider an algorithm that tries to "cheat" in the computation of  $f^{hard}$ , by **only** verifying witnesses that are "compressible" by small  $ACC^0$  circuits.

## $\mathcal{A}^{cheat}(x)$ :

- 1. Guess a  $2^{n^{o(1)}}$ -size ACC<sup>0</sup> circuit  $C: \{0,1\}^n \rightarrow \{0,1\}.$
- 2. Check the **truth-table** of C is a witness for x, in  $2^n/n^{\omega(1)}$  time.

**NTIME hierarchy**  $\Rightarrow \mathcal{A}^{\text{cheat}}$  fails to compute  $f^{hard}$  on infinitely many inputs

 $\Rightarrow$  There are infinitely many x such that  $\mathcal{A}^{cheat}(x) = 0$  and  $\mathcal{A}^{hard}(x) = 1$ 

For each such x, every valid witness for  $\mathcal{A}^{\mathrm{hard}}(x)$  is a hard function: it **cannot** be computed by **small**  $\mathbf{ACC^0}$  **circuits**!

## Another View of the Proof

There are infinitely many x such that  $\mathcal{A}^{cheat}(x) = 0$  and  $\mathcal{A}^{hard}(x) = 1$ 

For each such x, every valid witness for  $\mathcal{A}^{\mathrm{hard}}(x)$  is a hard function: it cannot be computed by small  $\mathbf{ACC^0}$  circuits!

Can use this to construct an  $E^{NP}/n$  algorithm with no small ACC<sup>0</sup> circuits:

Input: an n-bit index  $i \in \{0, 1\}^n$ .

**Advice:** an *n*-bit string  $x_n$  such that  $\mathcal{A}^{\text{cheat}}(x_n) = 0$ ,  $\mathcal{A}^{\text{hard}}(x_n) = 1$ .

Output: Repeatedly call an NP oracle to find the lexicographically first witness y

such that  $\mathcal{A}^{hard}(x_n) = 1$ , and output the *i*-th bit of *y*.

Finally, we can "remove" the advice by just considering an  $E^{NP}$  algorithm that takes (i, x) as input. This will also have no small  $ACC^0$  circuits.

What was gained by this perspective??? (We already had NEXP not in ACC<sup>0</sup>)

Vague Idea: Can we use another hierarchy? Can we "construct" these bad  $x_n$ ?

## A Little About How We Do It

- Another View of the Proof
- Extending to Almost-Everywhere

# **Extending to Almost-Everywhere**

**Recall:** It is open if there is an  $f \in \text{NTIME}[2^n] \setminus \text{io-NTIME}[o(2^n)]$ 

Idea: Start from a restricted almost-everywhere NTIME hierarchy

NTIMEGUESS[T(n), g(n)]: languages that can be decided by nondeterministic algorithms running in O(T(n)) time and guessing at most g(n) bits of witness.

## **Theorem [Fortnow-Santhanam 2016]**

 $NTIME[T(n)] \nsubseteq io-NTIMEGUESS[o(T(n)), o(n)]$ 

For time-constructible T(n), there's a function decidable in O(T(n)) nondeterministic time that cannot be decided, even infinitely often, by any o(T(n))-time algorithm using o(n) bits of guessing.

## Does it Just Work??

[FS'16] There is a function  $f^{hard} \in \text{NTIME}[n^k] \setminus \text{io-NTIMEGUESS}[o(n^k), o(n)]$ 

Consider a "canonical" algorithm for  $f^{hard}$ :

## $\mathcal{A}^{\text{hard}}(x)$ :

- 1. Guess a witness y of  $O(n^k)$  length.
- 2. Check y is a witness for x in  $O(n^k)$  time.

As before, we consider an algorithm that tries to "cheat" to compute  $f^{hard}$ ...

```
Let m = k \log(n). 2^{m^{o(1)}} \le o(n)
```

- 1. Guess a  $2^{m^{o(1)}}$ -size ACC<sup>0</sup> circuit  $C: \{0,1\}^m \rightarrow \{0,1\}.$
- 2. Check the **truth-table** of C is a witness for x, in  $o(2^m)$   $o(2^m) \le o(n^k)$

[FS'16]  $\Rightarrow$  for a.e. n,  $\mathcal{A}^{cheat}$  fails to compute  $f^{hard}$  on some input of length n  $\Rightarrow$  For a.e. n, there's an  $x \in \{0,1\}^n$  such that  $\mathcal{A}^{cheat}(x) = 0$  and  $\mathcal{A}^{hard}(x) = 1$ 

For each such x, every valid witness for  $\mathcal{A}^{\mathrm{hard}}(x)$  is a hard function: it cannot be computed by small  $\mathbf{ACC}^0$  circuits!

## Does it Just Work??

For a.e. n, there's an  $x \in \{0, 1\}^n$  such that  $\mathcal{A}^{cheat}(x) = 0$  and  $\mathcal{A}^{hard}(x) = 1$ 

For each such x, every valid witness for  $\mathcal{A}^{\mathrm{hard}}(x)$  is a hard function: it cannot be computed by small  $\mathbf{ACC}^0$  circuits!

What happens when we try the same  $E^{NP}$  algorithm again?

Input: an m-bit index  $i \in \{0,1\}^m$ , recall  $m = k \log(n)$ Advice: an n-bit string  $x_n$  such that Advice has length  $n = 2^{m/k}$  (!!) L.

Output: Repeatedly call an NP oracle to find the lexicographically first witness y such that  $\mathcal{A}^{hard}(x_n) = 1$ , and output the i-th bit of y.

Now the advice is *insanely* long! We can't just remove it, as before! (And of course there's a function in  $E^{NP}/2^{n/k}$  without small ACC circuits...) But *now*, the *construction* of such inputs  $x_n$  becomes an important problem! If we could construct these "bad"  $x_n$  in  $E^{NP}$  (given input  $1^m$ ) we'd be done!

# One More (New!) Ingredient

Theorem: [Fortnow-Santhanam 2016] There's an  $f^{\mathrm{hard}} \in \mathrm{NTIME}[T(n)] \setminus \mathrm{io-NTIMEGUESS}[o(T(n)), o(n)]$ 

**Theorem:** There is a **DTIME**[n T(n)]<sup>NP</sup> algorithm R (a refuter) such that for every NTIMEGUESS[o(T(n)), o(n)] algorithm A,  $R(1^n, A)$  outputs an n-bit  $x_n$  such that  $f^{hard}(x_n) \neq A(x_n)$ , for every sufficiently large n.

**Rough Idea:** Using a variation on the proof of this time hierarchy,  $\mathbf{R}$  does a "binary search" with its NP oracle, making O(n) calls with queries of length about O(T(n)), to find a bad input  $x_n$ .

# One More Try...

For a.e. n, there's an  $x \in \{0, 1\}^n$  such that  $\mathcal{A}^{cheat}(x) = 0$  and  $\mathcal{A}^{hard}(x) = 1$ 

For each such x, every valid witness for  $\mathcal{A}^{\mathrm{hard}}(x)$  is a hard function: it cannot be computed by small  $\mathbf{ACC^0}$  circuits!

The E<sup>NP</sup> algorithm computing an almost-everywhere hard function:

Input: m-bit index  $i \in \{0,1\}^m$ , recall  $m = k \log(n)$ Algorithm: Set  $n \approx 2^{m/k}$  and run refuter  $R(1^n, \mathcal{A}^{cheat})$  in  $E^{NP}$ , obtaining (for all but finitely many n) an n-bit string  $x_n$  such that  $\mathcal{A}^{cheat}(x_n) \neq \mathcal{A}^{hard}(x_n)$ . Repeatedly call an NP oracle to find the lexicographically first witness y such that  $\mathcal{A}^{hard}(x_n) = 1$ , and output the i-th bit of y.

Conclusion:  $E^{NP} \not\subset io-ACC^0$ 

# Conclusion

We have managed to prove several almost-everywhere lower bounds for functions in  $E^{NP}$ , even for the average case.

What about NEXP? Or Quasi-NP? Or NP?

Can we prove NEXP  $\not\subset$  io-ACC<sup>0</sup>?

What other lower bounds can be made a.e.?

(e.g.  $\Sigma_2 P \not\subset SIZE(n^k)$ )

Thanks for watching!



