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Algorithmic Approach to Lower Bounds: 
Interesting circuit-analysis algorithms 

tell us about the limitations of circuits in modeling algorithms

∃
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Circuits are not “black-boxes” to algs!
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Circuit-Analysis Problem #1:
Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

A very “simple” circuit analysis problem

[CL’70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2n |K|) time by brute force

The C-SAT Problem:
Given a circuit K(x1,…,xn) from C, is there an 

assignment (a1, …, an) ∈ {0,1}n such that K(a1,…,an) =1?



Circuit-Analysis Problem #2:
Gap Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

Even simpler! In randomized polynomial time

[Folklore?] Gap-Circuit-SAT ∈ P ⇒ P = RP 
[Hirsch, Trevisan, …]  Gap-kSAT ∈ P for all k

Gap-C-SAT:
Given 𝑲(x1,…,xn) from C, and the promise that either 

(a) 𝑲 ≡ 0, or (b) 𝑷𝒓𝒙 𝑲 𝒙 = 𝟏 ≥ 𝟏/𝟐,
decide which is true.



Nontrivially Faster C-SAT ⟹ Circuit Lower Bounds for C 

Slightly Faster Circuit-SAT
[R.W. ’10,’11]

Deterministic algorithms for:
• Circuit SAT in O(2n/n10) time
with n inputs and nk gates, for all k

• Formula SAT in O(2n/n10) time

• 𝑪-SAT in O(2n/n10) time

• Gap-𝑪-SAT in O(2n/n10) time 
on nk size, for all k

(Easily solved w/ randomness!)

No “Circuits for NEXP”

Would imply:

• NEXP  P/poly

• NEXP Poly-size formulas

• NEXP poly-size 𝑪

NEXP  poly-size 𝑪

Concrete LBs:
𝑪 = ACC
[W’11]
𝑪 = ACC of THR
[W’14]



Even Faster SAT ⟹ Stronger Lower Bounds

Somewhat Faster Circuit SAT
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2𝑛−𝑛𝜖
) time

with 𝑛 inputs and 2𝑛𝜖
gates

• Formula SAT in O(2𝑛−𝑛𝜖
) time

• 𝑪-SAT in O(2𝑛−𝑛𝜖
) time

• Gap-𝐶-SAT in O(2𝑛−𝑛𝜖
) time

on 2𝑛𝜖
gates

No “Circuits for Quasi-NP”

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  P/poly

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  NC1

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  𝑪

NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  𝑪

𝑪 = ACC of THR
[MW’18]



“Fine-Grained” SAT Algorithms
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2(1−𝜖)𝑛) time
on 𝑛 inputs and 2𝜖𝑛 gates

• FormSAT in O(2(1−𝜖)𝑛) time

• 𝑪-SAT in O(2(1−𝜖)𝑛) time

• Gap-𝑪-SAT is in O(𝟐 𝟏−𝝐 𝒏) 
time on 2𝜖𝑛 gates

(Implied by PromiseRP in P)

No “Circuits for NP”

Would imply:

• NP  SIZE(𝒏𝒌) for all 𝒌

• NP  Formulas of size 𝒏𝒌

• NP  𝑪-SIZE(𝒏𝒌) for all 𝒌

NP  𝑪-SIZE(𝒏𝒌) for all 𝒌

Even Faster SAT ⟹ Stronger Lower Bounds

𝑪 = SUM of THR
𝑪 = SUM of ReLU
𝑪 = SUM of low-

degree polys
[W’18]

Note: Would 
refute

Strong ETH!

Strongly 
believed to 

be true…



[R.Chen-Oliveira-Santhanam’18, 
Chen-W’19, Chen’19, Chen-Ren ’20]

Det. algorithm for some 𝝐 > 𝟎:

• #Circuit SAT in O(2𝑛−𝑛𝜖
) time

with 𝑛 inputs and 2𝑛𝜖
gates

• #Formula SAT in O(2𝑛−𝑛𝜖
) time

• #𝑪-SAT in O(2𝑛−𝑛𝜖
) time

• 𝑪-CAPP in O(2𝑛−𝑛𝜖
) time

No Circuits for Computing 
Quasi-NP on Average

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] can’t be 

(1/2 +1/poly)-approximated in P/poly

• Inapproximability in NC1

• Inapproximability in 𝑪/poly

Faster #SAT and CAPP ⟹ Average-Case Lower Bounds

𝑪 = ACC of THR
[Chen-Ren’20]

Given a circuit of size s, 
approximate its fraction of SAT 

assignments to within +- 1/s



[R.Chen-Oliveira-Santhanam’18, 
Chen-W’19, Chen’19, Chen-Ren ’20]

Det. algorithm for some 𝝐 > 𝟎:

• #Circuit SAT in O(2𝑛−𝑛𝜖
) time

with 𝑛 inputs and 2𝑛𝜖
gates

• #Formula SAT in O(2𝑛−𝑛𝜖
) time

• #𝑪-SAT in O(2𝑛−𝑛𝜖
) time

• 𝑪-CAPP in O(2𝑛−𝑛𝜖
) time

No Circuits for Computing 
Quasi-NP on Average

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] can’t be 

(1/2 +1/poly)-approximated in P/poly

• Inapproximability in NC1

• Inapproximability in 𝑪/poly

Faster #SAT and CAPP ⟹ Average-Case Lower Bounds

𝑪 = ACC of THR
[Chen-Ren’20]

There is an 𝑓 ∈ NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] such that, 
for infinitely many 𝑛, every poly(𝑛)-size 

circuit 𝐶 fails to compute 𝑓𝑛 on more than 
1

2
+

1

poly 𝑛
2𝑛 inputs.

Given a circuit of size s, 
approximate its fraction of SAT 

assignments to within +- 1/s



A Subtle (But Important) Issue!
When we prove statements like NEXP ⊄ ACC0 via circuit-analysis algorithms, 

we end up showing that, for NEXP-complete problems such as Succinct3SAT, 
there are infinitely many input lengths 𝒏 such that Succinct3SAT fails to have the 
desired ACC circuits on length-𝒏 inputs. 

Let 𝒇: 𝟎, 𝟏 ∗ → {𝟎, 𝟏} and let 𝒇𝒏: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏} be the restriction of 𝒇

An infinitely-often circuit lower bound only says “𝒇𝒏 doesn’t have small circuits’’ for 
infinitely many 𝒏:

𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒, … . , 𝒇𝟏𝟎𝟎, … … … . , 𝒇𝟏𝟎𝟎𝟎, … . . , 𝒇𝟏𝟎𝟎𝟎𝟎, … . .

We would greatly prefer an “almost-everywhere” circuit lower bound, 
which holds for all but finitely many inputs! 

𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒, … . , 𝒇𝟏𝟎𝟎, … … … . , 𝒇𝟏𝟎𝟎𝟎, … . . , 𝒇𝟏𝟎𝟎𝟎𝟎, … . .

All of the classical circuit lower bounds from the 1980s 
(PARITY ∉ AC0, MAJORITY ∉ AC0[2], etc.) yield almost-everywhere lower bounds.



A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds? 

Prior work relies on other lower bounds such as the nondeterministic time 
hierarchy theorem or MA/1 circuit lower bounds, and neither results are 
known to hold almost-everywhere. 

If we knew (for example) 

NTIME[𝟐𝒏] is not infinitely often in NTIME[𝟐𝒏/𝒑𝒐𝒍𝒚(𝒏)], 

then we could conclude some kind of almost-everywhere lower bound. 

But there are oracles relative to which NEXP is infinitely often in NP! 
[Buhrman-Fortnow-Santhanam ’09]



A Subtle (But Important) Issue!

Why does the algorithmic approach only get infinitely-often lower bounds? 

Prior work relies on other lower bounds such as the nondeterministic time 
hierarchy theorem or MA/1 circuit lower bounds, and neither results are 
known to hold almost-everywhere. 

If we knew (for example) 

NTIME[𝟐𝒏] is not infinitely often in NTIME[𝟐𝒏/𝒑𝒐𝒍𝒚(𝒏)], 

then we could conclude some kind of almost-everywhere lower bound. 

But there are oracles relative to which NEXP is infinitely often in NP! 
[Buhrman-Fortnow-Santhanam ’09]

“There are functions in NTIME[𝟐𝒏] that are so hard, no nondeterministic
algorithm running in 𝟐𝒏/𝒑𝒐𝒍𝒚 𝒏 time can correctly compute the 

function on any infinite sequence of input lengths”
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[R.Chen-Oliveira-Santhanam’18, 
Chen-W’19, Chen’19, Chen-Ren ’20]

Det. algorithm for some 𝝐 > 𝟎:
• C-SAT (or Gap-C-SAT) with 𝑛

inputs and 𝑠 𝑛 𝑂 1 gates in

𝟐𝒏/𝒏𝝎 𝟏 time

• #𝑪-SAT (or 𝑪-CAPP) in

O(𝟐𝒏−𝒏𝝐
) time on 2𝑛𝜖

gates

A.E. Circuit Lower Bounds
for 𝑬𝑵𝑷 on Average

Would imply:

• 𝑬𝑵𝑷 does not have 𝒔(𝒏/𝟐) size

C-circuits, for almost every 𝒏

• 𝑬𝑵𝑷 can’t be 𝟏/𝟐 + 𝟏/𝟐𝒏𝒐 𝟏
-

approximated with 𝟐𝒏𝒐 𝟏
size

C-circuits, for a.e. 𝒏

This Work:
Faster SAT ⟹ Almost-Everywhere Lower Bounds

𝑪 = ACC of THR

𝒔(𝒏) = 𝟐𝒏𝒐 𝟏

Almost-everywhere 
average-case 

lower bounds for ACC of THR!

There is an 𝑓 ∈ TIME[𝟐𝑶(𝒏)]SAT such that, 
for all but finitely many 𝑛, every s(𝑛)-size 
circuit 𝐶 fails to compute 𝑓𝑛 on more than

1

2
+

1

s 𝑛
2𝑛 inputs.

Given a circuit of size s, 
approximate its fraction of SAT 

assignments to within +- 1/s
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More Almost-Everywhere Goodness
In fact, we can extend all previous “ENP lower bounds” proved via the 

algorithmic method to the almost-everywhere setting.

Rigid matrices in 𝐏𝐍𝐏: There is a PNP algorithm 𝒜 such that, for all but finitely many 𝑛, 
𝒜 on input 1𝑛 outputs an 𝑛 × 𝑛 matrix 𝑀𝑛 satisfying ℛ

2log1−𝜀 𝑛 𝑀𝑛 = Ω 𝑛2 .

Extends [Alman-C’19], [Bhangale-Harsha-Paradise-Tal’20]

Probabilistic degree lower bounds:
There is an ENP language 𝐿 such that, for all but 

finitely many 𝑛, 𝐿𝑛 does not have 
𝑜 𝑛 /log2 𝑛 -degree probabilistic 𝐅2-

polynomials. Extends [Viola’20]

Strong average-case 𝐀𝐂𝐂𝟎 lower bounds: 
Extends [Chen-W’19], [Chen-Ren’20]

with better inapproximability parameters

Correlation bounds: For all 𝜀 > 0, and for all but 

finitely many 𝑛, 𝐿𝑛 cannot be 
1

2
+

1

2𝑛Ω 1

approximated by 𝑛1−𝜀-degree 𝐅2-polynomials. 
Extends [Viola’20]



Theorem: There is an ENP function 𝑓, such that for all sufficiently large 𝒏, 

𝑓𝑛 cannot be 
1

2
+ 2−𝑛𝑜 1

-approximated by 2𝑛𝑜 1
-size ACC0 circuits.

[Chen-Ren’20] There is a function 𝑓 in QuasiNP such that, 
for infinitely many 𝑛, every ACC0 circuit 𝐶 of size poly 𝑛 cannot 

1

2
+

1

poly 𝑛
-approximate 𝑓𝑛.

Extension to Average Case

“New” XOR Lemma: Suppose there is no 𝑝𝑜𝑙𝑦 𝑠 -size linear 
combination 𝐿 of 𝑪-circuits for f such that 𝐸𝑥 𝐿 𝑥 − 𝑓 𝑥 < 1/10. 

Then 𝑓⊕𝑘 cannot be 
1

2
+

1

𝑠
-approximated by size-𝑠 𝑪-circuits.

(Follows Levin’s proof of the XOR Lemma)𝑥1, … , 𝑥𝑘 ↦ 𝑓 𝑥1 ⊕ ⋯ ⊕ 𝑓 𝑥𝑘
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A Little About How We Do It

• How NEXP ⊄ ACC0 Was Proved

• Another View of the Proof

• Extending to Almost-Everywhere



How NEXP ⊄ ACC0 Was Proved

Let ℂ be a “typical” circuit class (like ACC0)

Thm A [W’11] (algorithm design ➔ lower bounds)
If for all k, Gap-ℂ-SAT on nk-size is in O(2n/nk) time, 
then NEXP does not have poly-size ℂ-circuits.

Thm B [W’11] (algorithm)

∃ ℰ, #ACC0-SAT on 𝟐𝒏ℇ
size is in O(𝟐𝒏−𝒏ℇ

) time.
(Used a well-known representation of ACC0 from 1990, that 
people long suspected should imply lower bounds)

Note that Theorem B gives a stronger algorithm 
than necessary in the hypothesis of Theorem A.

(This is the starting point of [Murray-W’18] which proves 
Quasi-NP lower bounds, and other subsequent work)



Idea of Theorem A
Let ℂ be some circuit class (like ACC0)

Thm A  [W’11] (algorithm design ➔ lower bounds)
If for all k, Gap ℂ-SAT on nk-size is in O(2n/nk) time, 
then NEXP does not have poly-size ℂ-circuits.

Idea. Show that if we assume both: 

(1) NEXP has poly-size ℂ-circuits, 
AND

(2) a faster Gap ℂ-SAT algorithm

Then we can show NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)].
This contradicts the nondeterministic time hierarchy:
there’s an 𝑳𝒉𝒂𝒓𝒅 in NTIME[𝟐𝒏] ∖ NTIME[o(𝟐𝒏)]



Proof Ideas in Theorem A
Idea. Assume 

(1) NEXP has poly-size ℂ-circuits, AND

(2) there’s a faster Gap ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]   (contradiction)

Take any problem 𝐿 in nondeterministic 𝟐𝒏 time. 
Given an input 𝑥, we decide 𝐿 on 𝑥 by: 

1. Guessing a witness 𝑦 of O(𝟐𝒏) length.

2. Checking 𝑦 is a witness for 𝑥 in O(𝟐𝒏) time.

Want to “speed-up” both parts 1 and 2, 
using the above assumptions



Proof Ideas in Theorem A
Idea. Assume 

(1) NEXP has poly-size ℂ-circuits, AND

(2) there’s a faster Gap ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time. 
Given an input 𝑥, we decide L on 𝑥 in a FASTER way:

1. Use (1) to guess a witness 𝒚 of o(𝟐𝒏) length 
(Easy Witness Lemma [IKW02]: 
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check 𝒚 is a witness for 𝒙 in o(𝟐𝒏) time
Technical: Use a highly-structured PCPs for NEXP 
[W’10, BV’14] to reduce the check to Gap ℂ-SAT



Extend to Almost-Everywhere?
Idea. Assume 

(1) NEXP has poly-size ℂ-circuits, AND

(2) there’s a faster Gap ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)] ?

Take any problem L in nondeterministic 𝟐𝒏 time. 
Given an input 𝑥, we decide L on 𝑥 in a FASTER way:

1. Use (1) to guess a witness 𝒚 of o(𝟐𝒏) length 
(Infinitely-Often Easy Witness Lemma [???]: 
if NEXP is in io-P/poly, then L has “small witnesses” ?)

2. Use (2) to check 𝒚 is a witness for 𝒙 in o(𝟐𝒏) time
Technical: Use a highly-structured PCPs for NEXP 
[W’10, BV’14] to reduce the check to Gap ℂ-SAT

Even if we could prove
NTIME[𝟐𝒏] ⊄ io-NTIME[o(𝟐𝒏)],

We still don’t know how to 
complete step 1!

INFINITELY OFTEN
^ 

NT[𝟐𝒏] ⊄ io-NT[o(𝟐𝒏)] and

𝑬𝑿𝑷𝑵𝑷 ⊂ io-ℂ
would imply our desired 

easy witnesses. We could 
infer a contradiction!

But such an NTIME 
hierarchy looks very hard 
to prove… what to do??



A Little About How We Do It

• How NEXP ⊄ ACC0 Was Proved

• Another View of the Proof

• Extending to Almost-Everywhere



Another View of the Proof
NTIME hierarchy ⇒ There is a function 𝑓ℎ𝑎𝑟𝑑 ∈ 𝐍𝐓𝐈𝐌𝐄 𝟐𝒏 ∖ 𝐍𝐓𝐈𝐌𝐄 𝟐𝒏/𝒏

Consider a “canonical” algorithm for 𝑓ℎ𝑎𝑟𝑑:

𝓐𝐡𝐚𝐫𝐝(𝒙):
1. Guess a witness 𝑦 of O(𝟐𝒏) length.
2. Check 𝑦 is a witness for 𝑥 in O(𝟐𝒏) time.

Consider an algorithm that tries to “cheat” 
in the computation of 𝑓ℎ𝑎𝑟𝑑, by only

verifying witnesses that are “compressible” 
by small ACC0 circuits.

𝓐𝒄𝒉𝒆𝒂𝒕(𝒙):

1. Guess a 𝟐𝒏𝒐 𝟏
-size ACC0 circuit 

𝐶: 0,1 𝑛 → 0,1 .
2. Check the truth-table of 𝐶 is a

witness for 𝑥, in 𝟐𝒏/𝒏𝝎 𝟏 time.

NTIME hierarchy ⇒ 𝒜cheat fails to compute 𝑓ℎ𝑎𝑟𝑑 on infinitely many inputs

⇒ There are infinitely many 𝒙 such that 𝓐𝒄𝒉𝒆𝒂𝒕 𝒙 = 𝟎 and 𝓐𝒉𝒂𝒓𝒅 𝒙 = 𝟏

For each such 𝑥, every valid witness for 𝒜hard 𝑥 is a hard function:
it cannot be computed by small 𝐀𝐂𝐂𝟎 circuits!



Another View of the Proof

Can use this to construct an 𝑬𝑵𝑷/𝒏 algorithm with no small 𝐀𝐂𝐂𝟎 circuits:

For each such 𝑥, every valid witness for 𝒜hard 𝑥 is a hard function:
it cannot be computed by small 𝐀𝐂𝐂𝟎 circuits!

There are infinitely many 𝒙 such that 𝓐𝒄𝒉𝒆𝒂𝒕 𝒙 = 𝟎 and 𝓐𝒉𝒂𝒓𝒅 𝒙 = 𝟏

Finally, we can “remove” the advice by just considering an 𝑬𝑵𝑷 algorithm 
that takes 𝒊, 𝒙 as input. This will also have no small 𝐀𝐂𝐂𝟎 circuits.

What was gained by this perspective??? (We already had NEXP not in 𝐀𝐂𝐂𝟎)

Vague Idea: Can we use another hierarchy? Can we “construct” these bad 𝒙𝒏? 

Input: an 𝑛-bit index 𝒊 ∈ {𝟎, 𝟏}𝒏.

Advice: an 𝑛-bit string 𝒙𝒏 such that 𝒜cheat 𝒙𝒏 = 0, 𝒜hard 𝑥𝑛 = 1.
Output: Repeatedly call an NP oracle to find the lexicographically first witness 𝒚
such that 𝓐𝒉𝒂𝒓𝒅 𝒙𝒏 = 𝟏, and output the 𝑖-th bit of 𝒚.



A Little About How We Do It

• How NEXP ⊄ ACC0 Was Proved

• Another View of the Proof

• Extending to Almost-Everywhere 



Extending to Almost-Everywhere

Recall: It is open if there is an 𝑓 ∈ NTIME 2𝑛 ∖ io-NTIME 𝑜(2𝑛)

Idea: Start from a restricted almost-everywhere NTIME hierarchy

NTIMEGUESS[𝑇(𝑛), 𝑔(𝑛)]: languages that can be decided by nondeterministic 

algorithms running in 𝑂 𝑇 𝑛 time and guessing at most 𝑔 𝑛 bits of witness.

Theorem [Fortnow-Santhanam 2016]

NTIME 𝑇 𝑛 ⊈ io-NTIMEGUESS 𝑜 𝑇 𝑛 , 𝑜 𝑛
For time-constructible 𝑇 𝑛 , there’s a function decidable in 𝑂(𝑇 𝑛 )
nondeterministic time that cannot be decided, even infinitely often, 

by any 𝑜 𝑇 𝑛 -time algorithm using 𝑜(𝑛) bits of guessing.



[FS’16] There is a function 𝒇𝒉𝒂𝒓𝒅 ∈ 𝐍𝐓𝐈𝐌𝐄 𝒏𝒌 ∖ 𝐢𝐨−𝐍𝐓𝐈𝐌𝐄𝐆𝐔𝐄𝐒𝐒 𝒐 𝒏𝒌 , 𝒐 𝒏

Consider a “canonical” algorithm for 𝑓ℎ𝑎𝑟𝑑:

𝓐𝐡𝐚𝐫𝐝(𝒙):
1. Guess a witness 𝑦 of O(𝒏𝒌) length.
2. Check 𝑦 is a witness for 𝑥 in O(𝒏𝒌) time.

As before, we consider an algorithm that 
tries to “cheat” to compute 𝑓ℎ𝑎𝑟𝑑…

Let 𝒎 = 𝒌 log 𝒏 .

𝓐𝒄𝒉𝒆𝒂𝒕(𝒙):

1. Guess a 𝟐𝒎𝒐 𝟏
-size ACC0 circuit 

𝐶: 0,1 𝑚 → 0,1 .
2. Check the truth-table of 𝐶 is a

witness for 𝑥, in 𝒐 𝟐𝒎 time.

[FS’16] ⇒ for a.e. 𝑛, 𝒜cheat fails to compute 𝑓ℎ𝑎𝑟𝑑 on some input of length 𝑛

⇒ For a.e. 𝒏, there’s an 𝒙 ∈ 𝟎, 𝟏 𝒏 such that 𝓐𝒄𝒉𝒆𝒂𝒕 𝒙 = 𝟎 and 𝓐𝒉𝒂𝒓𝒅 𝒙 = 𝟏

For each such 𝑥, every valid witness for 𝒜hard 𝑥 is a hard function:
it cannot be computed by small 𝐀𝐂𝐂𝟎 circuits!

Does it Just Work??

2𝑚𝑜 1
≤ 𝑜 𝑛

𝑜 2𝑚 ≤ 𝑜 𝑛𝑘



Does it Just Work??

What happens when we try the same 𝑬𝑵𝑷 algorithm again? 

For each such 𝑥, every valid witness for 𝒜hard 𝑥 is a hard function:
it cannot be computed by small 𝐀𝐂𝐂𝟎 circuits!

Input: an 𝑚-bit index 𝒊 ∈ {𝟎, 𝟏}𝒎, recall 𝒎 = 𝒌 log 𝒏

Advice: an 𝑛-bit string 𝒙𝒏 such that 𝒜cheat 𝑥𝑛 = 0, 𝒜hard 𝑥𝑛 = 1.
Output: Repeatedly call an 𝐍𝐏 oracle to find the lexicographically first witness 𝒚
such that 𝓐𝒉𝒂𝒓𝒅 𝒙𝒏 = 𝟏, and output the 𝑖-th bit of 𝒚.

For a.e. 𝒏, there’s an 𝒙 ∈ 𝟎, 𝟏 𝒏 such that 𝓐𝒄𝒉𝒆𝒂𝒕 𝒙 = 𝟎 and 𝓐𝒉𝒂𝒓𝒅 𝒙 = 𝟏

Now the advice is insanely long! We can’t just remove it, as before!
(And of course there’s a function in 𝑬𝑵𝑷/𝟐𝒏/𝒌 without small ACC circuits…)

But now, the construction of such inputs 𝒙𝒏 becomes an important problem!

If we could construct these “bad” 𝒙𝒏 in 𝑬𝑵𝑷 (given input 𝟏𝒎) we’d be done!

Advice has length 𝒏 = 𝟐𝒎/𝒌 (!!)



Rough Idea: Using a variation on the proof of this time 
hierarchy, 𝑹 does a “binary search” with its NP oracle, 

making 𝑂(𝑛) calls with queries of length about 𝑂(𝑇 𝑛 ), 
to find a bad input 𝑥𝑛.

Theorem:  There is a 𝐃𝐓𝐈𝐌𝐄 𝒏 𝑻 𝒏 𝐍𝐏 algorithm 𝑹 (a refuter) 

such that for every NTIMEGUESS 𝑜 𝑇 𝑛 , 𝑜 𝑛 algorithm 𝒜,  

𝑹(1𝑛, 𝒜) outputs an 𝑛-bit 𝑥𝑛 such that 𝑓ℎ𝑎𝑟𝑑 𝑥𝑛 ≠ 𝒜 𝑥𝑛 , 
for every sufficiently large 𝑛.

Theorem: [Fortnow-Santhanam 2016]

There’s an 𝑓hard ∈ NTIME 𝑇 𝑛 ∖ io-NTIMEGUESS 𝑜 𝑇 𝑛 , 𝑜 𝑛

One More (New!) Ingredient



One More Try…

The 𝐄𝐍𝐏 algorithm computing an almost-everywhere hard function:

For each such 𝑥, every valid witness for 𝒜hard 𝑥 is a hard function:
it cannot be computed by small 𝐀𝐂𝐂𝟎 circuits!

Input: 𝑚-bit index 𝒊 ∈ {𝟎, 𝟏}𝒎, recall 𝒎 = 𝒌 log 𝒏

Algorithm: Set 𝑛 ≈ 2𝑚/𝑘 and run refuter 𝑹(𝟏𝒏, 𝓐𝒄𝒉𝒆𝒂𝒕) in 𝐄𝐍𝐏, obtaining (for all 

but finitely many 𝑛) an 𝑛-bit string 𝒙𝒏 such that 𝒜cheat 𝒙𝒏 ≠ 𝒜hard 𝒙𝒏 . 
Repeatedly call an 𝐍𝐏 oracle to find the lexicographically first witness 𝒚 such that

𝓐𝒉𝒂𝒓𝒅 𝒙𝒏 = 𝟏, and output the 𝑖-th bit of 𝒚.

For a.e. 𝒏, there’s an 𝒙 ∈ 𝟎, 𝟏 𝒏 such that 𝓐𝒄𝒉𝒆𝒂𝒕 𝒙 = 𝟎 and 𝓐𝒉𝒂𝒓𝒅 𝒙 = 𝟏

Conclusion: 𝐄𝐍𝐏 ⊄ 𝐢𝐨-𝐀𝐂𝐂𝟎



Conclusion
We have managed to prove several almost-everywhere lower 

bounds for functions in 𝑬𝑵𝑷, even for the average case.

What about NEXP? Or Quasi-NP? Or NP?

Can we prove 𝐍𝐄𝐗𝐏 ⊄ 𝐢𝐨-𝐀𝐂𝐂𝟎 ?

What other lower bounds can be made a.e.?
(e.g. 𝚺𝟐𝑷 ⊄ 𝑺𝑰𝒁𝑬 𝒏𝒌 )

Thanks for watching!


