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. . . . . .

Story Time

“Adaptivity vs Postselection” ? What is that? Why would anyone on
earth study this question?

Well, need some background story...
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. . . . . .

Story Time

Back in this April, I was visiting MIT, worked with Prof. Scott
Aaronson.

I read a paper [Aar10] by him, and find a bug in a corollary: it claims
the main result implies an oracle separation BQPO ̸⊂ PostBPPO.

I: Oops, the proof seems not right...!
Prof. Aaronson: Oops, can you fix that?
I: Let me have a try...

Then this paper somehow came out...
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. . . . . .

My Challenge

In about 20 minutes, explain what is the following (some not so
standard) complexity classes and our results, then (probably) give you a
taste of our techniques.

PP.
PostBPP.
PostBQP.
SBQP.
SBP.
A0PP.

Too many definitions...
I have to skip many formal discussions and some results.
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. . . . . .

Background: Relativization, Oracle Separation and Query
Complexity

What is oracle separation? Quick overview some backgrounds.
Relativized Techniques: Techniques that works equally well when
given an arbitrary oracle.
Oracle Separation: For two complexity classes C and D, find an
oracle function O : {0, 1}∗ → {0, 1} such

CO ̸⊂ DO.

Implies that relativized techniques along are not enough to show
C = D. (A warning sign that new techniques are needed.)

An evidence that C actually does not equal to D.
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. . . . . .

Background: Relativization, Oracle Separation and Query
Complexity

Oracle Separation ⇔ Query Complexity
The usual way to find oracle separation is to show query complexity
lower bound.

Quick example of P vs NP.
Imagine the oracle encodes a string of 2n length.

A question on oracle: “Does that 2n-bit string contains a 1”? (OR of
2n-bits).

NP algorithm: simply guess the position of the 1-bit. ⇒ O(n).

P algorithm: needs to query all the 2n bits. ⇒ Ω(2n). (A query
complexity lower bound)

Some standard diagonalization ⇒ an oracle separation that NPO ̸⊂ PO.
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. . . . . .

Background: Relativization, Oracle Separation and Query
Complexity

Oracle Separation ⇔ Query Complexity
So in general, to find an oracle separation between C and D, we:

Find a Boolean function f : {0, 1}2n → {0, 1} on oracles. (Probably a
partial function.)
Such that given an oracle O ∈ {0, 1}2n , to compute f(O):

A D algorithm needs super-polynomial queries to O.
There is a poly-time C algorithm to solve f(O).

Some examples:
OR function ⇒ NPO ̸⊂ PO.
GapMaj function ⇒ BPPO ̸⊂ PO.
Simon function ⇒ BQPO ̸⊂ BPPO.
Collision function ⇒ SZKO ̸⊂ BQPO.
ODD-MAX-BIT function ⇒ PNPO

̸⊂ PPO.
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. . . . . .

Background: Postselection

An interesting idea in computation, basically, it means that you can
condition on some rare event.
Best illustrated by an example:
A foolproof way to solve 3-SAT is:

Given a 3-SAT formula φ, need to output whether it is satisfiable.
Output NO and terminate with probability 2−2n.
Guess a random assignment x ∈ {0, 1}n.
Kill yourself if x does not satisfy φ, output YES otherwise.

Analysis:
Condition on you are alive.

Answer is NO: you always output NO.
Answer is YES: you output YES w.p. ≥ 2n/(2n + 1) (Simple Bayesian).
You are correct w.h.p.
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. . . . . .

Background: PostBPP and PostBQP

PostBPP [HHT97]: problems can be solved in poly-time by classical
postselection algorithm.

So 3-SAT ∈ PostBPP, and NP ⊆ PostBPP from the previous slide.

PostBQP [Aar05]: problems can be solved in poly-time by quantum
postselection algorithm.

Certainly PostBPP ⊆ PostBQP.
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. . . . . .

Background: PostBQP and PP

PostBQP: problems can be solved in poly-time by quantum
postselection algorithm.

Certainly PostBPP ⊆ PostBQP.

PP: problems can be solved by a polynomial-time randomized Turing
Machine with correct probability 1/2 + 2− poly(n).

A relaxation of BPP, in which you need to be correct w.p. ≥ 2/3.
A fundamental classes in computational complexity theory.
Surprisingly, PostBQP = PP [Aar05].
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. . . . . .

Story Time: Cont

...Finally we have went through the definitions...
Recall that I want to rescue Prof. Aaronson’s oracle separation
BQPO ̸⊂ PostBPPO. (Hopefully now you know what is PostBPP!).
From the previous discussion, I need to find a Boolean function
f : {0, 1}2n → {0, 1} such that:

It is easy for quantum algorithm (only need poly(n) queries).

Hard for any postselection algorithms.

But, what is hard for postselection algorithms?
Adaptive queries (this work)!
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. . . . . .

Our Results: Informal Statement

Small Bounded Error Computation [BGM06]:
There exist a real α (can be exponentially small) such that:

Answer is YES: your algorithm accept with probability > α.
Answer is NO: your algorithm accept with probability ≤ α/2.

Yet another generalization of BPP (in which α must be 2/3).
SBP: poly-time classical small bounded error computation.
SBQP: poly-time quantum small bounded error computation.

Informally, we showed that, (classically or quantumly) for a partial
Boolean function f:

If there is no efficient small bounded-error algorithm for f,
then no efficient postselection bounded-error algorithm can answer
log n adaptive queries to f.
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. . . . . .

Some Applications

The Simon function is hard for SBP, so the adaptive version of it is
hard for PostBPP.

Its adaptive version is also obviously easy for BQP.
⇒ an oracle separation BQPO ̸⊆ PostBPPO!
Good, rescued the separation.

Since PostBQP is equivalent to PP and PP is closely related to
polynomial approximation.

Our work implies a polynomial hardness amplification scheme with the
same effect in a recent work by Thaler [Tha14] but a much simpler
amplifier (not cover in this talk.)

Using AND, reproved an old oracle separation PNPO
̸⊂ PPO by

Beigel [Bei94].
Also implies a new oracle separation PSZKO

̸⊂ PPO.
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. . . . . .

PNPO
̸⊂ PPO:

A Toy Example

To avoid too many technical details, we illustrate our techniques by
constructing an oracle separation between PNP and PP.

The approach can be generalized to our full formal statement easily.
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. . . . . .

The Adaptive Construction

We need to formally define what is the adaptive version of a Boolean
function:
.
Definition (Adaptive Construction)
..

......

Given a function f : D → {0, 1} with D ⊆ {0, 1}M and an integer d,
we define Adaf,d, its depth d adaptive version, as follows:

Adaf,0 := f and
Adaf,d : D × Dd−1 × Dd−1 → {0, 1}

Adaf,d(w, x, y) :=
{

Adaf,d−1(x) f(w) = 0

Adaf,d−1(y) f(w) = 1

where Dd−1 denotes the domain of Adaf,d−1.
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. . . . . .

The Adaptive Construction: Example when d = 2

An example for Adaf,2, given input

x =
(

xroot, (xL, xLL, xLR), (xR, xRL, xRR)
)
∈ D7.

..

f(xroot)

.

f(xL)

.

f(xR)

. f(xLL). f(xLR). f(xRL). f(xRR).

0

.

1

.

0

.

1

.

0

.

1
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. . . . . .

Warm Up: PP and Polynomials

.
Lemma (PP-to-Polynomial Lemma)
..

......

Given a Boolean function f : {0, 1}M → {0, 1}, suppose there is a d-time
PP algorithm, then there is polynomial p : RM → {0, 1}:

...1 p is of degree at most d.

...2 p(x) ≥ 1 when f(x) = 1.

...3 p(x) ≤ −1 when f(x) = 0.

...4 |p(x)|∞ = maxx∈{0,1}M |p(x)| ≤ 2d.

Why?
Simply let p(x) = #accept paths − #rejected paths.

Also, if a polynomial p satisfies (2) and (3) above, then we say it is a valid
polynomial for f.
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. . . . . .

A Lemma from Minimax Theorem

We have the following interesting lemma proved using the Minimax
Theorem.
.
Lemma (Base-Case Lemma)
..

......

Let f = ANDn (AND on n-bits).
Then there exist two distributions:
D0 supported on f−1(0) and D1 supported f−1(1), such that

−p(D0) > 2 · p(D1)

where p(D) = Ex∼D[p(x)],
for all degree-

√
n valid polynomial p for f.

Very easy to prove using the one-sided approximate degree lower
bound [NS94] on ORn (¬ANDn), omit here.
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. . . . . .

The Proof Details: An Induction

We want to prove the following theorem by an induction.
.
Theorem (Induction Theorem)
..

......

Let f = ANDn (AND on n-bits). Then for each integer d,
there exist two distributions Dd

1 supported on Ada−1
f,d (1) and Dd

0

supported on Ada−1
f,d (0), such that

−p(Dd
0) > 22

d · p(Dd
1)

for any degree-
√

n valid polynomial p for Adaf,d.
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. . . . . .

The Oracle Separation

Let d = log n, then for any degree-
√

n valid polynomial p for Adaf,d:

∥p∥∞ ≥ −p(Dd
0) > 22

d · p(Dd
1) ≥ 22

log d
= 2n.

Comparing with the PP-to-Polynomial Lemma, ⇒ a PP algorithm
need Ω(

√
n) time to solve AdaAND,log n.

On the other side: there is a trivial polylog(n)-time PNP algorithm.

Big separation!

So AdaAND,log n implies an oracle separation PNPO
̸⊆ PPO!
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. . . . . .

Proof for the Induction Theorem:
Base Case when d = 0

Now we prove our induction theorem.
Consider the base case when d = 0.

Simply set D0
0 = D0 and D0

1 = D1 as in the Base-Case Lemma.

From the definition, Adaf,0 := f, the base case just follows from the
Base-Case Lemma.

−p(D0
0) > 2 · p(D0

1) = 22
0 · p(D0

1).
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. . . . . .

Proof for the Induction Theorem: when d ≥ 1
Construction of Dd

0 and Dd
1

Suppose that we have already constructed the required distributions
Dd−1

0 and Dd−1
1 for Adaf,d−1.

Decompose the input to Adaf,d as (w, x, y) ∈ D × Dd−1 × Dd−1 as in
the definition.

We claim that

Dd
0 = (D0,Dd−1

0 ,Dd−1
0 ) = D0 ×Dd−1

0 ×Dd−1
0

and
Dd

1 = (D1,Dd−1
1 ,Dd−1

1 ) = D1 ×Dd−1
1 ×Dd−1

1

satisfy our conditions.
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. . . . . .

Proof for the Induction Theorem: Outline

From definition, easy to see that D0
d and D1

d are supported on Adaf,0
and Adaf,1.
We are going to show for any degree-

√
n valid polynomial p for Adaf,d:

−p(D0,Dd−1
0 ,Dd−1

0 ) > 22
d−1 · p(D0,Dd−1

1 ,Dd−1
0 ) (Step I)

p(D0,Dd−1
1 ,Dd−1

0 ) > −p(D1,Dd−1
1 ,Dd−1

0 ) (Step II)
−p(D1,Dd−1

1 ,Dd−1
0 ) > 22

d−1 · p(D1,Dd−1
1 ,Dd−1

1 ) (Step III)

Putting them together:

−p(Dd
0) = −p(D0,Dd−1

0 ,Dd−1
0 ) > 22

d ·p(D1,Dd−1
1 ,Dd−1

1 ) = 22
d ·p(Dd

1).

DONE!

Lijie Chen (Tsinghua University) Adaptivity vs Postselection, and Hardness Amplification in Polynomial ApproximationDecember 14, 2016 23 / 28



. . . . . .

Step I: (D0,Dd−1
0 ,Dd−1

0 ) ⇒ (D0,Dd−1
1 ,Dd−1

0 ).

For any degree-
√

n valid polynomial p for Adaf,d,
for any fixed W ∈ support(D0) and Y ∈ support(Dd−1

0 ),
let

pL(x) := p(W, x,Y).

From definition, pL is a valid polynomial for Adaf,d−1.
Hence,

−pL(Dd−1
0 ) > 22

d−1 · pL(Dd−1
1 ).

By linearity, we have

−p(D0,Dd−1
0 ,Dd−1

0 ) > 22
d−1 · p(D0,Dd−1

1 ,Dd−1
0 ).
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. . . . . .

Step II: (D0,Dd−1
1 ,Dd−1

0 ) ⇒ (D1,Dd−1
1 ,Dd−1

0 ).

Similarly,
for any degree-

√
n valid polynomial p for Adaf,d,

for any fixed X ∈ support(Dd−1
1 ) and Y ∈ support(Dd−1

0 ).
Let

pM(w) := −p(w,X,Y),

from definition, pM is a valid polynomial for f.
Hence,

−pM(D0) > 2 · pM(D1).

Again by linearity, we have

p(D0,Dd−1
1 ,Dd−1

0 ) > −2 · p(D1,Dd−1
1 ,Dd−1

0 ) > −p(D1,Dd−1
1 ,Dd−1

0 ).
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. . . . . .

Step III: (D1,Dd−1
1 ,Dd−1

0 ) ⇒ (D1,Dd−1
1 ,Dd−1

1 ).

Finally,
for any degree-

√
n valid polynomial p for Adaf,d,

for any fixed W ∈ support(D1) and X ∈ support(Dd−1
1 ),

let
pR(y) := p(W,X, y).

From definition, pR is a valid polynomial for Adaf,d−1.
Hence,

−pR(Dd−1
0 ) > 22

d−1 · pR(Dd−1
1 ).

Still by linearity, we have

−p(D1,Dd−1
1 ,Dd−1

0 ) > 22
d−1 · p(D1,Dd−1

1 ,Dd−1
1 ).

Q.E.D.
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. . . . . .

Open Question

In this work, we found a sufficient condition for a function’s adaptive
version to be hard for PostBPP(PostBQP).

Can we find a necessary and sufficient condition?
Our condition here is not necessary.

The Adaf,d construction seems very interesting, are there any other
applications?
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. . . . . .

The End

Thanks for listening!
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