Adaptivity vs Postselection, and Hardness Amplification in Polynomial Approximation

Lijie Chen

Tsinghua University

December 14, 2016

Story Time

- "Adaptivity vs Postselection" ? What is that? Why would anyone on earth study this question?
- Well, need some background story...

Story Time

- Back in this April, I was visiting MIT, worked with Prof. Scott Aaronson.

- I read a paper [Aar10] by him, and find a bug in a corollary: it claims the main result implies an oracle separation $\mathrm{BQP}^{\mathcal{O}} \not \subset$ PostBPP $^{\mathcal{O}}$.
- I: Oops, the proof seems not right...!
- Prof. Aaronson: Oops, can you fix that?
- I: Let me have a try...
- Then this paper somehow came out...

My Challenge

In about 20 minutes, explain what is the following (some not so standard) complexity classes and our results, then (probably) give you a taste of our techniques.

- PP.
- PostBPP.
- PostBQP.
- SBQP.
- SBP.
- AOPP.

Too many definitions...
I have to skip many formal discussions and some results.

Background: Relativization, Oracle Separation and Query Complexity

What is oracle separation? Quick overview some backgrounds.

- Relativized Techniques: Techniques that works equally well when given an arbitrary oracle.
- Oracle Separation: For two complexity classes \mathcal{C} and \mathcal{D}, find an oracle function $\mathcal{O}:\{0,1\}^{*} \rightarrow\{0,1\}$ such

$$
\mathcal{C}^{\mathcal{O}} \not \subset \mathcal{D}^{\mathcal{O}}
$$

- Implies that relativized techniques along are not enough to show $\mathcal{C}=\mathcal{D}$. (A warning sign that new techniques are needed.)
- An evidence that \mathcal{C} actually does not equal to \mathcal{D}.

Background: Relativization, Oracle Separation and Query Complexity

- Oracle Separation \Leftrightarrow Query Complexity
- The usual way to find oracle separation is to show query complexity lower bound.
- Quick example of P vs NP.
- Imagine the oracle encodes a string of 2^{n} length.
- A question on oracle: "Does that 2^{n}-bit string contains a 1 "? (OR of 2^{n}-bits).
- NP algorithm: simply guess the position of the 1-bit. $\Rightarrow O(n)$.
- P algorithm: needs to query all the 2^{n} bits. $\Rightarrow \Omega\left(2^{n}\right)$. (A query complexity lower bound)
- Some standard diagonalization \Rightarrow an oracle separation that $\mathrm{NP}^{\mathcal{O}} \not \subset \mathrm{P}^{\mathcal{O}}$.

Background: Relativization, Oracle Separation and Query Complexity

- Oracle Separation \Leftrightarrow Query Complexity
- So in general, to find an oracle separation between \mathcal{C} and \mathcal{D}, we:
- Find a Boolean function $f:\{0,1\}^{2^{n}} \rightarrow\{0,1\}$ on oracles. (Probably a partial function.)
- Such that given an oracle $\mathcal{O} \in\{0,1\}^{2^{n}}$, to compute $f(\mathcal{O})$:
- A \mathcal{D} algorithm needs super-polynomial queries to \mathcal{O}.
- There is a poly-time \mathcal{C} algorithm to solve $f(\mathcal{O})$.
- Some examples:
- OR function $\Rightarrow \mathbf{N} \mathbf{P}^{\mathcal{O}} \not \subset \mathbf{P}^{\mathcal{O}}$.
- GapMaj function $\Rightarrow \mathbf{B P P}^{\mathcal{O}} \not \subset \mathbf{P}^{\mathcal{O}}$.
- Simon function $\Rightarrow \mathrm{BQP}^{\mathcal{O}} \not \subset \mathrm{BPP}^{\mathcal{O}}$.
- Collision function $\Rightarrow \mathrm{SZK}^{\mathcal{O}} \not \subset \mathrm{BQP}^{\mathcal{O}}$.
- ODD-MAX-BIT function $\Rightarrow \mathbf{P}^{\mathrm{NP}^{\mathcal{O}}} \not \subset \mathbf{P P}^{\mathcal{O}}$.

Background: Postselection

An interesting idea in computation, basically, it means that you can condition on some rare event.
Best illustrated by an example:
A foolproof way to solve 3-SAT is:

- Given a 3-SAT formula φ, need to output whether it is satisfiable.
- Output NO and terminate with probability $2^{-2 n}$.
- Guess a random assignment $x \in\{0,1\}^{n}$.
- Kill yourself if x does not satisfy φ, output YES otherwise.

Analysis:

- Condition on you are alive.
- Answer is NO: you always output NO.
- Answer is YES: you output YES w.p. $\geq 2^{n} /\left(2^{n}+1\right)$ (Simple Bayesian).
- You are correct w.h.p.

Background: PostBPP and PostBQP

- PostBPP [HHT97]: problems can be solved in poly-time by classical postselection algorithm.
- So 3 -SAT \in PostBPP, and NP \subseteq PostBPP from the previous slide.
- PostBQP [Aar05]: problems can be solved in poly-time by quantum postselection algorithm.
- Certainly PostBPP \subseteq PostBQP.

Background: PostBQP and PP

- PostBQP: problems can be solved in poly-time by quantum postselection algorithm.
- Certainly PostBPP \subseteq PostBQP.
- PP: problems can be solved by a polynomial-time randomized Turing Machine with correct probability $1 / 2+2^{-\operatorname{poly}(n)}$.
- A relaxation of BPP, in which you need to be correct w.p. $\geq 2 / 3$.
- A fundamental classes in computational complexity theory.
- Surprisingly, PostBQP = PP [Aar05].

Story Time: Cont

...Finally we have went through the definitions...

- Recall that I want to rescue Prof. Aaronson's oracle separation $\mathrm{BQP}^{\mathcal{O}} \not \subset$ PostBPP ${ }^{\mathcal{O}}$. (Hopefully now you know what is PostBPP!).
- From the previous discussion, I need to find a Boolean function $f:\{0,1\}^{2^{n}} \rightarrow\{0,1\}$ such that:
- It is easy for quantum algorithm (only need poly(n) queries).
- Hard for any postselection algorithms.
- But, what is hard for postselection algorithms?
- Adaptive queries (this work)!

Our Results: Informal Statement

- Small Bounded Error Computation [BGM06]:
- There exist a real α (can be exponentially small) such that:
- Answer is YES: your algorithm accept with probability $>\alpha$.
- Answer is NO: your algorithm accept with probability $\leq \alpha / 2$.
- Yet another generalization of BPP (in which α must be $2 / 3$).
- SBP: poly-time classical small bounded error computation.
- SBQP: poly-time quantum small bounded error computation.
- Informally, we showed that, (classically or quantumly) for a partial Boolean function f :
- If there is no efficient small bounded-error algorithm for f,
- then no efficient postselection bounded-error algorithm can answer $\log n$ adaptive queries to f.

Some Applications

- The Simon function is hard for SBP, so the adaptive version of it is hard for PostBPP.
- Its adaptive version is also obviously easy for BQP.
- \Rightarrow an oracle separation $\mathrm{BQP}^{\mathcal{O}} \nsubseteq$ Post $\mathrm{BPP}^{\mathcal{O}}$!
- Good, rescued the separation.
- Since PostBQP is equivalent to PP and PP is closely related to polynomial approximation.
- Our work implies a polynomial hardness amplification scheme with the same effect in a recent work by Thaler [Tha14] but a much simpler amplifier (not cover in this talk.)
- Using AND, reproved an old oracle separation $\mathrm{P}^{\mathrm{NPO}} \not \subset \mathrm{PP}^{\mathcal{O}}$ by Beigel [Bei94].
- Also implies a new oracle separation $\mathrm{PSKK}^{\mathcal{O}} \not \subset \mathrm{PP}^{\mathcal{O}}$.

$\mathrm{P}^{\mathrm{NP}} \not \mathrm{P}^{\mathrm{O}} \not \mathrm{PP}^{0}:$ A Toy Example

- To avoid too many technical details, we illustrate our techniques by constructing an oracle separation between P^{NP} and PP .
- The approach can be generalized to our full formal statement easily.

The Adaptive Construction

We need to formally define what is the adaptive version of a Boolean function:

Definition (Adaptive Construction)

- Given a function $f: D \rightarrow\{0,1\}$ with $D \subseteq\{0,1\}^{M}$ and an integer d, we define $\mathrm{Ada}_{f, d}$, its depth d adaptive version, as follows:

$$
\text { Ada }_{f, d}: D \times D_{d-1} \times D_{d-1} \rightarrow\{0,1\}
$$

$$
\operatorname{Ada}_{f, 0}:=f \quad \text { and } \quad \operatorname{Ada}_{f, d}(w, x, y):= \begin{cases}\operatorname{Ada}_{f, d-1}(x) & f(w)=0 \\ \operatorname{Ada}_{f, d-1}(y) & f(w)=1\end{cases}
$$

- where D_{d-1} denotes the domain of $\mathrm{Ada}_{f, d-1}$.

The Adaptive Construction: Example when $d=2$

An example for Ada $_{f, 2}$, given input

$$
x=\left(x_{\mathrm{root}},\left(x_{\mathrm{L}}, x_{\mathrm{LL}}, x_{\mathrm{LR}}\right),\left(x_{\mathrm{R}}, x_{\mathrm{RL}}, x_{\mathrm{RR}}\right)\right) \in D^{7}
$$

Warm Up: PP and Polynomials

Lemma (PP-to-Polynomial Lemma)

Given a Boolean function $f:\{0,1\}^{M} \rightarrow\{0,1\}$, suppose there is a d-time $P P$ algorithm, then there is polynomial $p: \mathbb{R}^{M} \rightarrow\{0,1\}$:
(1) p is of degree at most d.
(2) $p(x) \geq 1$ when $f(x)=1$.
(3) $p(x) \leq-1$ when $f(x)=0$.
(9) $|p(x)|_{\infty}=\max _{x \in\{0,1\}^{M}}|p(x)| \leq 2^{d}$.

Why?

- Simply let $p(x)=\#$ accept paths - \#rejected paths.

Also, if a polynomial p satisfies (2) and (3) above, then we say it is a valid polynomial for f.

A Lemma from Minimax Theorem

We have the following interesting lemma proved using the Minimax Theorem.

Lemma (Base-Case Lemma)

- Let $f=$ AND $_{n}$ (AND on n-bits).
- Then there exist two distributions:
- \mathcal{D}_{0} supported on $f^{-1}(0)$ and \mathcal{D}_{1} supported $f^{-1}(1)$, such that

$$
-p\left(\mathcal{D}_{0}\right)>2 \cdot p\left(\mathcal{D}_{1}\right)
$$

- where $p(\mathcal{D})=\mathbb{E}_{x \sim \mathcal{D}}[p(x)]$,
- for all degree- \sqrt{n} valid polynomial p for f.

Very easy to prove using the one-sided approximate degree lower bound [NS94] on $\mathrm{OR}_{n}\left(\neg \mathrm{AND}_{n}\right)$, omit here.

The Proof Details: An Induction

We want to prove the following theorem by an induction.

Theorem (Induction Theorem)

- Let $f=$ AND $_{n}$ (AND on n-bits). Then for each integer d,
- there exist two distributions \mathcal{D}_{1}^{d} supported on $\operatorname{Ada}_{f, d}^{-1}(1)$ and \mathcal{D}_{0}^{d} supported on $\mathrm{Ada}_{f, d}^{-1}(0)$, such that
-

$$
-p\left(\mathcal{D}_{0}^{d}\right)>2^{2^{d}} \cdot p\left(\mathcal{D}_{1}^{d}\right)
$$

- for any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$.

The Oracle Separation

- Let $d=\log n$, then for any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$:
- $\|p\|_{\infty} \geq-p\left(\mathcal{D}_{0}^{d}\right)>2^{2^{d}} \cdot p\left(\mathcal{D}_{1}^{d}\right) \geq 2^{2^{\log d}}=2^{n}$.
- Comparing with the PP-to-Polynomial Lemma, \Rightarrow a PP algorithm need $\Omega(\sqrt{n})$ time to solve Ada ${ }_{\mathrm{AND}, \log n}$.
- On the other side: there is a trivial polylog(n)-time P^{NP} algorithm.
- Big separation!
- So Ada ${ }_{A N D,} \log _{n}$ implies an oracle separation $\mathrm{P}^{\mathrm{NP}} \nsubseteq \mathrm{PPO}^{\mathcal{O}}$!

Proof for the Induction Theorem: Base Case when $d=0$

Now we prove our induction theorem.

- Consider the base case when $d=0$.
- Simply set $\mathcal{D}_{0}^{0}=\mathcal{D}_{0}$ and $\mathcal{D}_{1}^{0}=\mathcal{D}_{1}$ as in the Base-Case Lemma.
- From the definition, Ada $_{f, 0}:=f$, the base case just follows from the Base-Case Lemma.

$$
-p\left(\mathcal{D}_{0}^{0}\right)>2 \cdot p\left(\mathcal{D}_{1}^{0}\right)=2^{2^{0}} \cdot p\left(\mathcal{D}_{1}^{0}\right)
$$

Proof for the Induction Theorem: when $d \geq 1$ Construction of \mathcal{D}_{0}^{d} and \mathcal{D}_{1}^{d}

- Suppose that we have already constructed the required distributions \mathcal{D}_{0}^{d-1} and \mathcal{D}_{1}^{d-1} for $\mathrm{Ada}_{f, d-1}$.
- Decompose the input to $\operatorname{Ada}_{f, d}$ as $(w, x, y) \in D \times D_{d-1} \times D_{d-1}$ as in the definition.
- We claim that

$$
\mathcal{D}_{0}^{d}=\left(\mathcal{D}_{0}, \mathcal{D}_{0}^{d-1}, \mathcal{D}_{0}^{d-1}\right)=\mathcal{D}_{0} \times \mathcal{D}_{0}^{d-1} \times \mathcal{D}_{0}^{d-1}
$$

and

$$
\mathcal{D}_{1}^{d}=\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{1}^{d-1}\right)=\mathcal{D}_{1} \times \mathcal{D}_{1}^{d-1} \times \mathcal{D}_{1}^{d-1}
$$

satisfy our conditions.

Proof for the Induction Theorem: Outline

- From definition, easy to see that \mathcal{D}_{d}^{0} and \mathcal{D}_{d}^{1} are supported on $\operatorname{Ada}_{f, 0}$ and Ada $_{f, 1}$.
- We are going to show for any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$:

$$
\begin{align*}
-p\left(\mathcal{D}_{0}, \mathcal{D}_{0}^{d-1}, \mathcal{D}_{0}^{d-1}\right) & >2^{2^{d-1}} \cdot p\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) \tag{StepI}\\
p\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) & >-p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) \tag{StepII}\\
-p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) & >2^{2^{d-1}} \cdot p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{1}^{d-1}\right)
\end{align*}
$$

(Step III)

- Putting them together:
$-p\left(\mathcal{D}_{0}^{d}\right)=-p\left(\mathcal{D}_{0}, \mathcal{D}_{0}^{d-1}, \mathcal{D}_{0}^{d-1}\right)>2^{2^{d}} \cdot p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{1}^{d-1}\right)=2^{2^{d}} \cdot p\left(\mathcal{D}_{1}^{d}\right)$.
- DONE!

Step I: $\left(\mathcal{D}_{0}, \mathcal{D}_{0}^{d-1}, \mathcal{D}_{0}^{d-1}\right) \Rightarrow\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)$.

- For any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$,
- for any fixed $W \in \operatorname{support}\left(\mathcal{D}_{0}\right)$ and $Y \in \operatorname{support}\left(\mathcal{D}_{0}^{d-1}\right)$,
- let

$$
p_{L}(x):=p(W, x, Y) .
$$

- From definition, p_{L} is a valid polynomial for $\operatorname{Ada}_{f, d-1}$.
- Hence,

$$
-p_{L}\left(\mathcal{D}_{0}^{d-1}\right)>2^{2^{d-1}} \cdot p_{L}\left(\mathcal{D}_{1}^{d-1}\right)
$$

- By linearity, we have

$$
-p\left(\mathcal{D}_{0}, \mathcal{D}_{0}^{d-1}, \mathcal{D}_{0}^{d-1}\right)>2^{2^{d-1}} \cdot p\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)
$$

Step II: $\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) \Rightarrow\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)$.

Similarly,

- for any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$,
- for any fixed $X \in \operatorname{support}\left(\mathcal{D}_{1}^{d-1}\right)$ and $Y \in \operatorname{support}\left(\mathcal{D}_{0}^{d-1}\right)$.
- Let

$$
p_{M}(w):=-p(w, X, Y),
$$

- from definition, p_{M} is a valid polynomial for f.
- Hence,

$$
-p_{M}\left(\mathcal{D}_{0}\right)>2 \cdot p_{M}\left(\mathcal{D}_{1}\right)
$$

- Again by linearity, we have

$$
p\left(\mathcal{D}_{0}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)>-2 \cdot p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)>-p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)
$$

Step III: $\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right) \Rightarrow\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{1}^{d-1}\right)$.

Finally,

- for any degree- \sqrt{n} valid polynomial p for Ada $_{f, d}$,
- for any fixed $W \in \operatorname{support}\left(\mathcal{D}_{1}\right)$ and $X \in \operatorname{support}\left(\mathcal{D}_{1}^{d-1}\right)$,
- let

$$
p_{R}(y):=p(W, X, y)
$$

- From definition, p_{R} is a valid polynomial for Ada $_{f, d-1}$.
- Hence,

$$
-p_{R}\left(\mathcal{D}_{0}^{d-1}\right)>2^{2^{d-1}} \cdot p_{R}\left(\mathcal{D}_{1}^{d-1}\right)
$$

- Still by linearity, we have

$$
-p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{0}^{d-1}\right)>2^{2^{d-1}} \cdot p\left(\mathcal{D}_{1}, \mathcal{D}_{1}^{d-1}, \mathcal{D}_{1}^{d-1}\right)
$$

- Q.E.D.

Open Question

- In this work, we found a sufficient condition for a function's adaptive version to be hard for PostBPP(PostBQP).
- Can we find a necessary and sufficient condition?
- Our condition here is not necessary.
- The Adaff,d construction seems very interesting, are there any other applications?

Thanks for listening!

Scott Aaronson.
Quantum computing, postselection, and probabilistic polynomial-time.
In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 461, pages 3473-3482.
The Royal Society, 2005.
Scott Aaronson.
Bqp and the polynomial hierarchy.
In Proceedings of the forty-second ACM symposium on Theory of computing, pages 141-150. ACM, 2010.
围 Richard Beigel.
Perceptrons, pp, and the polynomial hierarchy.
Computational Complexity, 4(4):339-349, 1994.
Elmar Böhler, Christian Glaßer, and Daniel Meister.
Error-bounded probabilistic computations between ma and am. Journal of Computer and System Sciences, 72(6):1043-1076, 2006.

- Yenjo Han, Lane A Hemaspaandra, and Thomas Thierauf.

Threshold computation and cryptographic security.

SIAM Journal on Computing, 26(1):59-78, 1997.
Noam Nisan and Mario Szegedy.
On the degree of boolean functions as real polynomials.
Computational complexity, 4(4):301-313, 1994.
Justin Thaler.
Lower bounds for the approximate degree of block-composed functions.
In Electronic Colloquium on Computational Complexity (ECCC), volume 21, page 150, 2014.

