Adaptivity vs Postselection, and Hardness Amplification in Polynomial Approximation

Lijie Chen

Tsinghua University

December 14, 2016

Lijie Chen (Tsinghua University) Adaptivity vs Postselection, and Hardness Am Dee

• "Adaptivity vs Postselection" ? What is that? Why would anyone on earth study this question?

• Well, need some background story...

• Back in this April, I was visiting MIT, worked with Prof. Scott Aaronson.

- I read a paper [Aar10] by him, and find a bug in a corollary: it claims the main result implies an oracle separation BQP^O ⊄ PostBPP^O.
 - I: Oops, the proof seems not right...!
 - Prof. Aaronson: Oops, can you fix that?
 - I: Let me have a try...
- Then this paper somehow came out...

In about **20 minutes**, explain what is the following (some not so standard) complexity classes and our results, then (probably) give you a taste of our techniques.

- PP.
- PostBPP.
- PostBQP.
- SBQP.
- SBP.
- A0PP.

Too many definitions...

I have to skip many formal discussions and some results.

Background: Relativization, Oracle Separation and Query Complexity

What is oracle separation? Quick overview some backgrounds.

- **Relativized Techniques**: Techniques that works equally well when given an *arbitrary* oracle.
- Oracle Separation: For two complexity classes C and D, find an oracle function $\mathcal{O}: \{0,1\}^* \to \{0,1\}$ such

$$\mathcal{C}^{\mathcal{O}} \not\subset \mathcal{D}^{\mathcal{O}}.$$

- Implies that relativized techniques along are not enough to show $\mathcal{C} = \mathcal{D}$. (A warning sign that new techniques are needed.)
- An evidence that ${\mathcal C}$ actually does not equal to ${\mathcal D}.$

Background: Relativization, Oracle Separation and Query Complexity

- Oracle Separation \Leftrightarrow Query Complexity
 - The usual way to find oracle separation is to show query complexity lower bound.
 - Quick example of P vs NP.
 - Imagine the oracle encodes a string of 2^n length.
 - A question on oracle: "Does that 2^n -bit string contains a 1"? (OR of 2^n -bits).
 - NP algorithm: simply guess the position of the 1-bit. $\Rightarrow O(n)$.
 - P algorithm: needs to query all the 2^n bits. $\Rightarrow \Omega(2^n)$. (A query complexity lower bound)
 - Some standard diagonalization \Rightarrow an oracle separation that $NP^{\mathcal{O}} \not\subset P^{\mathcal{O}}$.

Background: Relativization, Oracle Separation and Query Complexity

- Oracle Separation ⇔ Query Complexity
- So in general, to find an oracle separation between \mathcal{C} and \mathcal{D} , we:
 - Find a Boolean function $f: \{0,1\}^{2^n} \to \{0,1\}$ on oracles. (Probably a partial function.)
 - Such that given an oracle $\mathcal{O} \in \{0, 1\}^{2^n}$, to compute $f(\mathcal{O})$:
 - A \mathcal{D} algorithm needs super-polynomial queries to \mathcal{O} .
 - There is a poly-time C algorithm to solve f(O).
- Some examples:
 - OR function $\Rightarrow \mathbf{NP}^{\mathcal{O}} \not\subset \mathbf{P}^{\mathcal{O}}$.
 - GapMaj function \Rightarrow **BPP**^{\mathcal{O}} $\not\subset$ **P**^{\mathcal{O}}.
 - Simon function ⇒ BQP^O ∉ BPP^O.
 Collision function ⇒ SZK^O ∉ BQP^O.

 - ODD-MAX-BIT function $\Rightarrow \mathbf{P}^{\mathbf{NP}^{\mathcal{O}}} \not\subset \mathbf{PP}^{\mathcal{O}}$.

An interesting idea in computation, basically, it means that you can condition on some rare event.

Best illustrated by an example:

A foolproof way to solve 3-SAT is:

- Given a 3-SAT formula φ , need to output whether it is satisfiable.
- Output NO and terminate with probability 2^{-2n} .
- Guess a random assignment $x \in \{0, 1\}^n$.
- Kill yourself if x does not satisfy φ , output YES otherwise.

Analysis:

- Condition on you are alive.
 - Answer is NO: you always output NO.
 - Answer is YES: you output YES w.p. $\geq 2^n/(2^n+1)$ (Simple Bayesian).
 - You are correct w.h.p.

- **PostBPP** [HHT97]: problems can be solved in poly-time by **classical** postselection algorithm.
 - So $3\text{-}\mathsf{SAT} \in \mathsf{PostBPP}$, and $\mathsf{NP} \subseteq \mathsf{PostBPP}$ from the previous slide.
- **PostBQP** [Aar05]: problems can be solved in poly-time by **quantum** postselection algorithm.

9 / 28

• Certainly $PostBPP \subseteq PostBQP$.

- **PostBQP**: problems can be solved in poly-time by **quantum** postselection algorithm.
 - Certainly PostBPP \subseteq PostBQP.
- **PP**: problems can be solved by a polynomial-time randomized Turing Machine with correct probability $1/2 + 2^{-\operatorname{poly}(n)}$.
 - A relaxation of BPP, in which you need to be correct w.p. $\geq 2/3$.
 - A fundamental classes in computational complexity theory.
 - Surprisingly, **PostBQP** = **PP** [Aar05].

... Finally we have went through the definitions...

- Recall that I want to rescue Prof. Aaronson's oracle separation $BQP^{\mathcal{O}} \not\subset PostBPP^{\mathcal{O}}$. (Hopefully now you know what is PostBPP!).
- From the previous discussion, I need to find a Boolean function $f\colon \{0,1\}^{2^n}\to \{0,1\}$ such that:
 - It is easy for quantum algorithm (only need poly(n) queries).
 - Hard for any postselection algorithms.
- But, what is hard for postselection algorithms?
 - Adaptive queries (this work)!

• Small Bounded Error Computation [BGM06]:

- There exist a real α (can be exponentially small) such that:
 - Answer is YES: your algorithm accept with probability $> \alpha$.
 - Answer is NO: your algorithm accept with probability $\leq \alpha/2$.
- Yet another generalization of BPP (in which α must be 2/3).
- SBP: poly-time classical small bounded error computation.
- SBQP: poly-time quantum small bounded error computation.
- Informally, we showed that, (classically or quantumly) for a partial Boolean function *f*:
 - If there is no efficient small bounded-error algorithm for f,
 - then no efficient **postselection bounded-error** algorithm can answer log *n* adaptive queries to *f*.

- The Simon function is hard for SBP, so the adaptive version of it is hard for PostBPP.
 - Its adaptive version is also obviously easy for BQP.
 - \Rightarrow an oracle separation BQP^O $\not\subseteq$ PostBPP^O!
 - Good, rescued the separation.
- Since PostBQP is equivalent to PP and PP is closely related to **polynomial approximation**.
 - Our work implies a polynomial hardness amplification scheme with the same effect in a recent work by Thaler [Tha14] but a much simpler *amplifier* (not cover in this talk.)
- Using AND, reproved an old oracle separation $\mathsf{P}^{\mathsf{NP}^{\mathcal{O}}} \not\subset \mathsf{PP}^{\mathcal{O}}$ by Beigel [Bei94].
- Also implies a new oracle separation $\mathsf{P}^{\mathsf{SZK}^{\mathcal{O}}} \not\subset \mathsf{PP}^{\mathcal{O}}$.

• To avoid too many technical details, we illustrate our techniques by constructing an oracle separation between P^{NP} and PP.

• The approach can be generalized to our full formal statement easily.

We need to formally define what is the adaptive version of a Boolean function:

Definition (Adaptive Construction)

 Given a function f: D → {0,1} with D ⊆ {0,1}^M and an integer d, we define Ada_{f,d}, its depth d adaptive version, as follows:

$$\begin{aligned} \mathsf{Ada}_{f,d} &: D \times D_{d-1} \times D_{d-1} \to \{0,1\} \\ \mathsf{Ada}_{f,0} &:= f \quad \text{and} \\ \mathsf{Ada}_{f,d}(w,x,y) &:= \begin{cases} \mathsf{Ada}_{f,d-1}(x) & f(w) = 0 \\ \mathsf{Ada}_{f,d-1}(y) & f(w) = 1 \end{cases} \end{aligned}$$

• where D_{d-1} denotes the domain of $Ada_{f,d-1}$.

The Adaptive Construction: Example when d = 2

An example for Ada_{f,2}, given input

December 14, 2016 16 / 28

Lemma (PP-to-Polynomial Lemma)

Given a Boolean function $f: \{0,1\}^M \to \{0,1\}$, suppose there is a d-time PP algorithm, then there is polynomial $p: \mathbb{R}^M \to \{0,1\}$:

• p is of degree at most d.

2
$$p(x) \ge 1$$
 when $f(x) = 1$.

3
$$p(x) \le -1$$
 when $f(x) = 0$.

③
$$|p(x)|_{\infty} = \max_{x \in \{0,1\}^M} |p(x)| \le 2^d.$$

Why?

• Simply let p(x) = #accept paths - #rejected paths.

Also, if a polynomial p satisfies (2) and (3) above, then we say it is a valid polynomial for f.

A Lemma from Minimax Theorem

We have the following interesting lemma proved using the Minimax Theorem.

Lemma (Base-Case Lemma)

- Let $f = AND_n$ (AND on n-bits).
- Then there exist two distributions:
- \mathcal{D}_0 supported on $f^{-1}(0)$ and \mathcal{D}_1 supported $f^{-1}(1)$, such that

 $-p(\mathcal{D}_0) > 2 \cdot p(\mathcal{D}_1)$

- where $p(\mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}}[p(x)]$,
- for all degree- \sqrt{n} valid polynomial p for f.

Very easy to prove using the *one-sided approximate degree* lower bound [NS94] on OR_n ($\neg AND_n$), omit here.

We want to prove the following theorem by an induction.

Theorem (Induction Theorem)

- Let $f = AND_n$ (AND on n-bits). Then for each integer d,
- there exist two distributions \mathcal{D}_1^d supported on $\operatorname{Ada}_{f,d}^{-1}(1)$ and \mathcal{D}_0^d supported on $\operatorname{Ada}_{f,d}^{-1}(0)$, such that

$$-p(\mathcal{D}_0^d) > 2^{2^d} \cdot p(\mathcal{D}_1^d)$$

19 / 28

• for any degree- \sqrt{n} valid polynomial p for Ada_{f,d}.

The Oracle Separation

• Let $d = \log n$, then for any degree- \sqrt{n} valid polynomial p for $Ada_{f,d}$:

•
$$\|\mathbf{p}\|_{\infty} \ge -\mathbf{p}(\mathcal{D}_0^d) > 2^{2^d} \cdot \mathbf{p}(\mathcal{D}_1^d) \ge 2^{2^{\log d}} = 2^n.$$

- Comparing with the PP-to-Polynomial Lemma, ⇒ a PP algorithm need Ω(√n) time to solve Ada_{AND,log n}.
- On the other side: there is a trivial polylog(n)-time P^{NP} algorithm.
- Big separation!
- So Ada_{AND,log n} implies an oracle separation $\mathsf{P}^{\mathsf{NP}^{\mathcal{O}}} \not\subseteq \mathsf{PP}^{\mathcal{O}}$!

Proof for the Induction Theorem: Base Case when d = 0

Now we prove our induction theorem.

- Consider the base case when d = 0.
- Simply set $\mathcal{D}_0^0 = \mathcal{D}_0$ and $\mathcal{D}_1^0 = \mathcal{D}_1$ as in the Base-Case Lemma.
- From the definition, Ada_{*f*,0} := *f*, the base case just follows from the Base-Case Lemma.

$$-\boldsymbol{p}(\mathcal{D}_0^0) > 2 \cdot \boldsymbol{p}(\mathcal{D}_1^0) = 2^{2^0} \cdot \boldsymbol{p}(\mathcal{D}_1^0).$$

Proof for the Induction Theorem: when $d \ge 1$ Construction of \mathcal{D}_0^d and \mathcal{D}_1^d

- Suppose that we have already constructed the required distributions \mathcal{D}_0^{d-1} and \mathcal{D}_1^{d-1} for $\operatorname{Ada}_{f,d-1}$.
- Decompose the input to Ada_{f,d} as (w, x, y) ∈ D × D_{d−1} × D_{d−1} as in the definition.
- We claim that

$$\mathcal{D}_0^{\textit{d}} = (\mathcal{D}_0, \mathcal{D}_0^{\textit{d}-1}, \mathcal{D}_0^{\textit{d}-1}) = \mathcal{D}_0 \times \mathcal{D}_0^{\textit{d}-1} \times \mathcal{D}_0^{\textit{d}-1}$$

and

$$\mathcal{D}_1^d = (\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_1^{d-1}) = \mathcal{D}_1 \times \mathcal{D}_1^{d-1} \times \mathcal{D}_1^{d-1}$$

satisfy our conditions.

Proof for the Induction Theorem: Outline

- From definition, easy to see that \mathcal{D}_d^0 and \mathcal{D}_d^1 are supported on $\operatorname{Ada}_{f,0}$ and $\operatorname{Ada}_{f,1}$.
- We are going to show for any degree- \sqrt{n} valid polynomial p for Ada_{f,d}:

$$-p(\mathcal{D}_0, \mathcal{D}_0^{d-1}, \mathcal{D}_0^{d-1}) > 2^{2^{d-1}} \cdot p(\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1})$$
(Step I)

$$p(\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) > -p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1})$$
 (Step II)

$$-p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) > 2^{2^{d-1}} \cdot p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_1^{d-1})$$
 (Step III)

23 / 28

• Putting them together:

$$-p(\mathcal{D}_0^d) = -p(\mathcal{D}_0, \mathcal{D}_0^{d-1}, \mathcal{D}_0^{d-1}) > 2^{2^d} \cdot p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_1^{d-1}) = 2^{2^d} \cdot p(\mathcal{D}_1^d).$$

DONE!

Step I: $(\mathcal{D}_0, \mathcal{D}_0^{d-1}, \mathcal{D}_0^{d-1}) \Rightarrow (\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}).$

- For any degree- \sqrt{n} valid polynomial p for Ada_{f,d},
- for any fixed $W \in \operatorname{support}(\mathcal{D}_0)$ and $Y \in \operatorname{support}(\mathcal{D}_0^{d-1})$,

Iet

$$p_L(x) := p(W, x, Y).$$

• From definition, p_L is a valid polynomial for $Ada_{f,d-1}$.

• Hence,

$$-\boldsymbol{p}_{\boldsymbol{L}}(\mathcal{D}_0^{\boldsymbol{d}-1}) > 2^{2^{\boldsymbol{d}-1}} \cdot \boldsymbol{p}_{\boldsymbol{L}}(\mathcal{D}_1^{\boldsymbol{d}-1}).$$

• By linearity, we have

$$-p(\mathcal{D}_0, \mathcal{D}_0^{d-1}, \mathcal{D}_0^{d-1}) > 2^{2^{d-1}} \cdot p(\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}).$$

Step II: $(\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) \Rightarrow (\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}).$

Similarly,

- for any degree- \sqrt{n} valid polynomial p for Ada_{f,d},
- for any fixed $X \in \operatorname{support}(\mathcal{D}_1^{d-1})$ and $Y \in \operatorname{support}(\mathcal{D}_0^{d-1})$.

Let

$$p_M(w) := -p(w, X, Y),$$

• from definition, p_M is a valid polynomial for f.

• Hence,

$$-p_{\mathcal{M}}(\mathcal{D}_0) > 2 \cdot p_{\mathcal{M}}(\mathcal{D}_1).$$

Again by linearity, we have

$$p(\mathcal{D}_0, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) > -2 \cdot p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) > -p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}).$$

Step III: $(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) \Rightarrow (\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_1^{d-1}).$

Finally,

- for any degree- \sqrt{n} valid polynomial p for Ada_{f,d},
- for any fixed $W \in \operatorname{support}(\mathcal{D}_1)$ and $X \in \operatorname{support}(\mathcal{D}_1^{d-1})$,

Iet

$$p_R(y) := p(W, X, y).$$

• From definition, p_R is a valid polynomial for $Ada_{f,d-1}$.

• Hence,

$$-\boldsymbol{p}_{\boldsymbol{R}}(\mathcal{D}_0^{\boldsymbol{d}-1}) > 2^{2^{\boldsymbol{d}-1}} \cdot \boldsymbol{p}_{\boldsymbol{R}}(\mathcal{D}_1^{\boldsymbol{d}-1}).$$

• Still by linearity, we have

$$-p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_0^{d-1}) > 2^{2^{d-1}} \cdot p(\mathcal{D}_1, \mathcal{D}_1^{d-1}, \mathcal{D}_1^{d-1}).$$

26 / 28

Q.E.D.

- In this work, we found a **sufficient** condition for a function's adaptive version to be hard for PostBPP(PostBQP).
 - Can we find a necessary and sufficient condition?
 - Our condition here is not necessary.
- The Ada_{f,d} construction seems very interesting, are there any other applications?

Thanks for listening!

Lijie Chen (Tsinghua University) Adaptivity vs Postselection, and Hardness Am December 14, 2016

э

Quantum computing, postselection, and probabilistic polynomial-time.

In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 461, pages 3473–3482. The Royal Society, 2005.

Scott Aaronson.

Bqp and the polynomial hierarchy.

In Proceedings of the forty-second ACM symposium on Theory of computing, pages 141–150. ACM, 2010.

Richard Beigel.

Perceptrons, pp, and the polynomial hierarchy. *Computational Complexity*, 4(4):339–349, 1994.

Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded probabilistic computations between ma and am. Journal of Computer and System Sciences, 72(6):1043–1076, 2006.

December 14, 2016

28 / 28

Yenjo Han, Lane A Hemaspaandra, and Thomas Thierauf. Threshold computation and cryptographic security.

Lijie Chen (Tsinghua University) Adaptivity vs Postselection, and Hardness Am

SIAM Journal on Computing, 26(1):59–78, 1997.

Noam Nisan and Mario Szegedy.

On the degree of boolean functions as real polynomials. *Computational complexity*, 4(4):301–313, 1994.

Justin Thaler.

Lower bounds for the approximate degree of block-composed functions.

In *Electronic Colloquium on Computational Complexity (ECCC)*, volume 21, page 150, 2014.