
Efficient Construction of Rigid Matrices Using an NP Oracle

Josh Alman
MIT

jalman@mit.edu

Lijie Chen
MIT

lijieche@mit.edu

October 11, 2019

Abstract

For a matrixH over a field F, its rank-r rigidity, denoted RH(r), is the minimum Hamming distance
from H to a matrix of rank at most r over F. A central open challenge in complexity theory is to give
explicit constructions of rigid matrices for a variety of parameter settings. In this work, building on
Williams’ seminal connection between circuit-analysis algorithms and lower bounds [Williams, J. ACM
2014], we give a construction of rigid matrices in PNP. Letting q = pr be a prime power, we show:

• There is an absolute constant δ > 0 such that, for all constants ε > 0, there is a PNP ma-
chine M such that, for infinitely many N ’s, M(1N ) outputs a matrix HN ∈ {0, 1}N×N with
RHN

(2(logN)1/4−ε

) ≥ δ ·N2 over Fq .

Using known connections between matrix rigidity and other topics in complexity theory, we derive
several consequences of our constructions, including:

• There is a function f ∈ TIME
[
2(logn)ω(1)

]NP
such that f /∈ PHcc. Previously, it was open whether

ENP ⊂ PHcc.

• For all ε > 0, there is a PNP machine M such that, for infinitely many N ’s, M(1N ) outputs an
N×N matrixHN ∈ {0, 1}N×N whose linear transformation requires depth-2 Fq-linear circuits of
size Ω(N · 2(logN)1/4−ε

). The previous best lower bound for an explicit family of N ×N matrices
over Fq was only Ω(N log2N/(log logN)2), for asymptotically good error-correcting codes.



1 Introduction

Let F be any field. The rank-r rigidity of a matrix H ∈ FN×N , denoted RH(r), is the minimum Hamming
distance between H and any matrix of rank at most r. Ever since Leslie Valiant introduced the notion of
matrix rigidity [Val77], it has been a major challenge to construct interesting rigid matrices.

Valiant showed that if {HN}N∈N is a family of matrices where HN is an N × N matrix with rigidity
RHN (N/ log logN) ≥ N1+ε for any ε > 0, then the linear transformation defined by HN cannot be com-
puted by circuits of size O(N) and depth O(logN). It remains an open problem to prove that any explicit
family of matrices does not have such circuits. Since Valiant’s result, connections have been drawn between
rigid matrices (for many different rank parameters) and lower bounds in a number of areas including in
arithmetic circuit complexity, Boolean circuit complexity, communication complexity, and error-correcting
codes; see [Lok09] for a survey of these connections.

Valiant also showed that there exists anN×N matrixRN over a finite field Fq with RRN (r) ≥ Ω
(
N2
)

for all r = o(N), and a random such matrixRN has RRN (r) ≥ Ω
(

(N−r)2
logN

)
for all r with high probability1.

However, this is not particularly exciting in the context of proving circuit lower bounds, since it is not hard to
see that a random linear transformation cannot be computed by small circuits with high probability. It is thus
most interesting to search for explicit rigid matrices: We say {HN}N∈N is explicit if there is a deterministic
polynomial-time algorithm which, on input 1N , outputs the N ×N matrix HN .

Despite decades of work and many known applications of rigid matrices, there has not been much suc-
cess in actually constructing rigid matrices for almost any interesting rank parameter. There are essentially
only three known deterministic constructions:

• For all ranks r, there is a family of N × N matrices MN constructible in P with RMN
(r) ≥

Ω
(
N2

r log(N/r)
)

[Fri93, SSS97]. This is proved via a combinatorial argument (“untouched minor
argument”), and it is known that this type of approach cannot be further improved [Lok00].

• By combining a brute-force search for very rigid r × r matrices with a padding argument (see
Lemma 2.7 below), we can construct, for any rank r, an N × N matrix LN in TIME[exp(r2)] with
RLN (r) ≥ Ω(N2).

• Goldreich and Tal [GT16] show that random N ×N Toeplitz matrices TN over a finite field Fq have

RTN (r) ≥ Ω
(

N3

r2 logN

)
for all r ≥

√
N with high probability. Their proof is primarily combinatorial

and linear algebraic. Using their construction, such rigid matrices can be constructed in E.2

Over large fields F, there are also approaches to constructing matrices which are rigid by virtue of having
very large entries. For instance, an ‘algebraic dimension’ approach [SS96] can be used to construct rigid
matrices over C with algebraically independent entries [Lok00, Lok06]. In this paper, we focus on matrices
over constant-size finite fields Fpr where such techniques cannot work.

1.1 Our Results

In this paper, we give a new construction of rigid matrices. Unlike previous constructions, which primarily
use combinatorial and algebraic techniques, our construction primarily uses complexity-theoretic ideas. Our

1By comparison, it is not hard to see that RRN (r) ≤ (N − r)2 for all r and all N ×N matrices RN .
2[GT16] gives a test computable in time 2O(N), such that: (1) a random N × N Toeplitz matrix passes the test with high

probability, and (2) all matrices passing the test are rigid with the stated parameters. Therefore, one can construct such an explicit
matrix in E by enumerating all possible random bits defining a Toeplitz matrix, and outputting the first matrix passing the test.
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matrices are rigid for rank parameters which are smaller than what is needed for Valiant’s program, but
are still high enough that we can prove new lower bounds in communication complexity, Boolean circuit
complexity, and arithmetic circuit complexity.

1.1.1 Construction of Rigid Matrices in PNP

Our main result is a construction of a rigid matrix in PNP:

Theorem 1.1 (An Infinitely Often Rigid Matrix Construction in PNP). There is an absolute constant δ > 0
such for all prime powers q = pr and all constants ε > 0:

• There is a PNP machineM such that, for infinitely manyN , on input 1N ,M outputs anN×N matrix
HN ∈ {0, 1}N×N such that RHN (2(logN)1/4−ε) ≥ δ ·N2 over Fq.

By comparison, applying previously known techniques to construct rigid N ×N matrices MN for this
rank r = 2(logN)1/4−ε , one either obtains:

• MN constructible in P with only RMN
(r) ≥ Ω

(
N2

2(logN)1/4−ε

)
, or

• MN only constructible in TIME[exp(exp((logN)1/4−ε))] with RMN
(r) ≥ Ω

(
N2
)
. Note that the

time bound here is larger than any quasi-polynomial inN , which can be written as exp(exp(log logN)).

Our construction in Theorem 1.1 is in PNP, and achieves RMN
(r) ≥ Ω

(
N2
)
.

1.1.2 Either NQP 6⊂ P/ poly or a Better Construction of Rigid Matrices

It is natural to ask whether one can improve the constant 1/4 − ε in the rank in Theorem 1.1. We show an
interesting “win-win” theorem: either the constant can be improved from 1/4−ε to 1−ε, or NQP 6⊂ P/ poly

follows.

Theorem 1.2 (Either a Better Construction in PNP or NQP 6⊂ P/poly). There is an absolute constant δ > 0
such that for all prime powers q = pr and all constants ε > 0, at least one of the following holds:

• NQP 6⊂ P/ poly.

• There is a PNP machineM such that, for infinitely manyN , on input 1N ,M outputs anN×N matrix
HN ∈ {0, 1}N×N such that RHN (2(logN)1−ε) ≥ δ ·N2 over Fq.

Theorem 1.2 is interesting from the perspective of proving circuit lower bounds. Recall that a main
motivation for constructing rigid matrices is to construct an explicit function which cannot be computed
by O(n)-size O(log n)-depth circuits [Val77]. If we aim to show that NE (or ENP) does not admit such
circuits (which is still open), then we can safely assume NEXP ⊂ P/poly before constructing the required
rigid matrices. Therefore, if one could further improve the construction in the second bullet of the above
Theorem 1.2 to match the rigidity required by [Val77] (which would require N × N matrices HN with
RHN (N/ log logN) ≥ N1+ε for any ε > 0, i.e. an improved rank parameter in exchange for a worsened
rigidity parameter), it would imply that ENP does not have O(n)-size O(log n)-depth circuits.
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1.1.3 Applications

Application: PHcc Lower Bound for NTIME[2(logn)ω(1) ]NP. A longstanding open problem in communi-
cation complexity is to prove a PHcc (the communication complexity analogue of the polynomial hierarchy)
lower bound for an explicit function [BFS86] (see [GPW18] for a recent reference). In fact, even for the
much weaker subclass AMcc, it is a notoriously open question to prove an ω(log n) lower bound for any
explicit function [GPW16, CW19a]. Prior to this paper, it was even open whether ENP ⊂ AMcc, i.e., does
every function in ENP have an efficient AM communication protocol?

Razborov showed a rigidity upper bound for the truth-table matrix of any function in PHcc:

Lemma 1.3 ([Raz89], see also [Wun12]). Letting f be a function in PHcc, the 2n × 2n communication
matrix Mf of f has RMf

(2(logn/ε)c) ≤ ε · 4n, where ε > 0 is arbitrary and c > 0 is a constant depending
only on f , but not n.

Using this, our construction of rigid matrices in Theorem 1.1 immediately shows that ENP 6⊂ PHcc,
giving the first non-trivial lower bound against PHcc. In fact, our rigidity bound is for a much higher rank
than is necessary for applying Lemma 1.3 (setting n = logN in Theorem 1.1, we give a 2n × 2n matrix M
with RM (2n

1/4−ε
) ≥ δ · 4n for infinitely many n). By a simple modification of our construction, we prove

an even stronger lower bound:

Theorem 1.4. For all functions α(n) = ω(1) such that nα(n) is time-constructible, there is a function
f ∈ TIME[2(logn)α(n) ]NP which is not in PHcc.

Of the three previously-known deterministic constructions of rigid matrices mentioned in the introduc-
tion, only the second constructs rigid enough matrices to apply Lemma 1.3. However, it only yields a 2n×2n

matrix M with RM (2(logn)ω(1)) ≥ Ω(4n) in TIME[exp(exp((log n)ω(1)))]. We obtain an exponential time
savings using an NP oracle.

Application: Depth-2 Arithmetic Circuit Lower Bounds Although the rank parameters in our rigidity
lower bounds from Theorems 1.1 are not high enough to give log-depth arithmetic circuit lower bounds
via Valiant’s approach, the rigidity parameters are high enough that we can prove lower bounds against
constant-depth arithmetic circuits. We consider a variant on rigidity which is useful for studying depth-2
arithmetic circuits:

Definition 1.5. For a field F and a matrix A ∈ FN×N , let

w2(A) := min{nnz(B) + nnz(C) | A = BC},

where the min is over all pairs B,C of matrices of any dimensions over F whose product is A, and nnz(X)
denotes the number of nonzero entries in the matrix X .

It is not hard to see that w2(A) equals, up to an additive3 n, the minimum size (number of wires) of a
depth-2 linear circuit over F which computes A, i.e. a depth-2 circuit which takes as input the N entries of a
vector x ∈ FN and outputs the N entries of the vector Ax, and whose gates compute F-linear combinations
of their inputs.

3w2(A) equals the minimum size of a depth-2 linear circuit for A when wires are not allowed to go directly from inputs to
outputs. We can convert a circuit where wires do go from inputs to outputs to one where they do not, by adding in n middle-level
gates which take the values of the n inputs. Hence, the minimum size of a depth-2 linear circuit for A differs from w2(A) by a
negligible additive ≤ n.
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Every matrix M ∈ {0, 1}N×N has w2(M) ≤ O(N2/ logN) over any field, and similar to the situation
for rigidity, for any fixed prime power q = pr, a random matrix A ∈ FN×Nq has w2(A) ≥ Ω(N2/ logN)
with high probability [Lup56]. However, the best known lower bounds on w2 for explicit families of N ×N
matrices over constant-size finite fields are only:

• Ω(N logN) for Boolean Hadamard matrices [AKW90], and

• Ω(N log2N/(log logN)2) for asymptotically good error-correcting codes [GHK+12].

A lower bound of Ω(N log2N/ log logN) is also known for matrices based on super-concentrator
graphs [RTS00], but these constructions require larger fields; see [Lok09, Section 2.3] for further discussion.

Connections between rigidity lower bounds and w2 lower bounds for a number of different parameter
settings are known [Pud94]. We apply our rigidity lower bounds using a similar connection in the high
rigidity setting to show higher w2 lower bounds for matrices constructible in PNP:

Theorem 1.6. For all prime powers q = pr and constants ε > 0, it holds:

• There is a PNP machineM such that, for infinitely manyN , on input 1N ,M outputs anN×N matrix
HN ∈ {0, 1}N×N such that w2(HN ) ≥ Ω(N · 2(logN)1/4−ε) over Fq.

Application: AC0[p] ◦ LTF ◦ AC0[p] ◦ LTF Circuit Lower Bounds. We next give an application of our
construction to Boolean circuit complexity. Building off of a known connection between rigid matrices and
threshold circuits [Lok01, AW17] we give a lower bound against a powerful class of circuits with threshold
gates:

Theorem 1.7. For every δ > 0 and prime p, there is an a > 0 such that the class ENP does not have
non-uniform AC0[p] ◦ LTF ◦ AC0[p] ◦ LTF circuits of depth o(log n/ log logn) where the bottom LTF layer
has 2O(na) gates, the rest of the circuit has polynomial size, and the middle layer LTF gates have fan-in
O(n1/2−δ).

We briefly compare with some prior lower bounds for threshold circuits:

• It is known [ACW16] that ENP does not have non-uniform ACC0◦LTF◦LTF circuits where the bottom
LTF layer has n2−ε gates and the remaining ACC0 ◦ LTF subcircuit has 2n

o(1)
size. Tamaki [Tam16]

also showed similar results for depth-2 circuits with symmetric and threshold gates. Our new lower
bound is incomparable to these: we allow for many more LTF gates in the bottom layer, and un-
bounded depth, but the prior result allowed for larger size above the bottom layer, as well as ACC0

circuitry rather than just AC0[p] circuitry.

• Kane and Williams [KW16] previously showed there is a function in P which requires MAJ◦LTF◦LTF
circuits of size Ω(n3/2/ log3 n). Our lower bound is for much larger circuits than this, but without a
MAJ gate on top, and for a function in ENP instead of P.

In fact, in order to prove Theorem 1.7, we actually prove a more general lower bound about polynomials
over linear threshold functions which must be correct on all but a constant fraction of inputs. For a field F
and positive integers d and m, let POLY[d,m,F] denote the set of functions {0, 1}m → F (with fan-in m)
which can be computed4 by degree d polynomials over F.

4Such a polynomial may output any values over F. However, in order to correctly compute a Boolean function f : {0, 1}m →
{0, 1} on input x ∈ {0, 1}m, the polynomial must correctly output 0 or 1 on x. Over a constant-sized finite field, one may map all
nonzero values in F to 1 with only a constant factor increase in the degree.
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Theorem 1.8. There is a universal δ > 0 such that for all prime powers q = pr and all constants ε > 0,
there is an a > 0 such that:

• There is an f ∈ ENP such that every (non-uniform) function in POLY[O(n1/4−ε), 2O(na),Fq] ◦ LTF
disagrees with f on a δ-fraction of inputs for infinitely many n. In other words, ENP cannot be
approximated by degree-O(n1/4−ε) Fq polynomials over any 2O(na) linear threshold functions of the
inputs.

By comparison, Williams [Wil18b] recently showed that, for every unbounded α(n) such that nα(n) is
time constructible, there is a function in NTIME[nα(n)] which does not have a (non-uniform) representation
in POLY[1, nO(1),R] ◦ LTF.

1.2 Proof Overview

In this subsection we give an overview of our construction of rigid matrices in PNP. For simplicity, we only
consider the field F2 in this overview.

1.2.1 Either NE 6⊂ P/poly or a Construction of Rigid Matrices

We begin with a proof overview of Theorem 1.2. Note that Theorem 1.2 is equivalent to saying that there
is a rigid matrix construction in PNP under the assumption NQP ⊂ P/ poly. Here we outline a conditional
construction under the stronger assumption NE ⊂ P/ poly for simplicity. We will then show how to get rid
of the assumption using an additional bootstrapping argument.

Theorem 1.9 (Either a Better Construction in PNP or NE 6⊂ P/ poly). There is an absolute constant δ > 0
such that for all constants ε > 0, at least one of the following holds:

• NE 6⊂ P/ poly.

• There is a PNP machineM such that, for infinitely manyN , on input 1N ,M outputs anN×N matrix
HN ∈ {0, 1}N×N such that RHN (2(logN)1−ε) ≥ δ ·N2 over Fq.

Low-Rank Matrices as a Circuit Class, and Corresponding Circuit Analysis Algorithms. We begin
with the observation that we can view low-rank matrices over F2 as a special type of ‘circuit’ defined by a
pair of matrices. That is, supposing M ∈ FN×N2 is a matrix with rank r (think of r � N ), then there are
matrices A ∈ FN×r2 and B ∈ Fr×N2 such that M = A · B. Assuming N is a power of 2 for simplicity, M
can be interpreted as (the truth-table of) a Boolean function f : {0, 1}2 logN → {0, 1}, which has a special
type of circuit of size O(N · r) defined by A and B.

In this way, our task of constructing rigid matrices can equivalently be viewed as the task of proving a
certain average-case lower bound against this special class of circuits. This is how Williams’ algorithmic
approach [Wil13, Wil14b], which exploits circuit analysis algorithms to prove such lower bounds, comes
into play. When given the matrices A,B, the corresponding circuit analysis questions are:

1. Satisfiability (SAT), which asks whether A ·B is the all zero matrix,

2. Derandomization (CAPP), which asks for an estimate of the probability that a random entry of A ·B
is 1, and

3. Counting (#SAT), which asks for the exact number of ones in A ·B.
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In fact, we observe that given the pair (A,B), we can solve the hardest of these three problems, #SAT,
in better-than-2n time (note n = 2 logN ). More formally, let ai denote the i-th row of A, and let bj denote
the j-th column ofB. The goal of #SAT is to count the number of pairs such that 〈ai, bj〉 = 0 (the number of
ones is N2 minus the number of zeros). This is exactly an instance of Counting OV over F2 (F2-#OV), with
N vectors of r dimensions; compared to the usual OV problem, our inner product here is over F2 instead of
Z. An algorithm by Chan and Williams [CW16] solves this problem in deterministic N2−Ω(1/ log(r/ logN))

time, for all r ≤ No(1) (see Subsection 2.4 and Appendix A for the details). This algorithm will play a
crucial part in our construction.

Williams’ Algorithmic Approach to Circuit Lower Bounds, and a First Attempt. In a seminal work,
Williams [Wil13] demonstrated an algorithmic approach to proving circuit lower bounds. At a high level,
the approach works as follows: Assuming a circuit lower bound is false, one combines the resulting small
circuits with other algorithmic ideas to get a better-than-2n non-deterministic algorithm for NTIME[2n],
therefore contradicting the non-deterministic time hierarchy theorem [Zák83].

A first attempt at using this approach in our situation proceeds as follows. Let L be a unary language in
NTIME[2n] \NTIME[2n/n] [Zák83]. Fix an efficient PCP verifier V for L (such as [BV14]). That is, for a
function ` := `(n) = n+O(log n), V (1n) takes ` random inputs, runs in poly(n) time, and is given access
to an oracle O : {0, 1}` → {0, 1} (O corresponds to the length-2` proof for V , but we will interpret it as an
`-bit Boolean function to help with intuition later on), and satisfies the following conditions:

1. (PCP Completeness) if 1n ∈ L, then there exists an oracle O such that V (1n)O always accepts;

2. (PCP Soundness) if 1n /∈ L, then for all possible oraclesO, the probability V (1n)O accepts is≤ 1/3.

Intuitively, we are going to show that the truth table of the oracle O which makes V always accept (in
the PCP Completeness case) has to be a rigid matrix. More precisely, letting N = 2`/2, we can fix a PNP

machineMrigid such that, on input 1N ,Mrigid(1N ) outputs the lexicographically first oracleOn which makes
V (1n) always accept. Mrigid runs in PNP (on input 1N , which has length 2Ω(n)), since it can guess the oracle
outputs bit by bit, using its NP oracle to verify its guesses. The output of Mrigid(1N ), and hence On itself,
can be viewed as a matrix from {0, 1}N×N which we want to show is rigid.

Assume toward a contradiction that RMrigid(1N )(r) ≤ δ · N2 for a small constant δ (one can think of

r := 2(logN)1−ε for a small constant ε > 0) for all N . It follows that On can be (1− δ)-approximated by a
matrix of rank at most r. We can thus attempt to solve L as follows:

• Given an input 1n, we guess matrices A ∈ FN×r2 and B ∈ Fr×N2 in Õ(r · 2n/2) time, with the hope
that M := A ·B approximates On.

• We estimate
pacc(M) = Pr

τ∈{0,1}`
[V (1n)M (τ) = 1],

and accept only if pacc(M) ≥ 2/3.

Following Williams’ approach, the hope is that we can estimate pacc(M) in 2n/n time (i.e. faster than
iterating over all choices of the randomness τ ) by taking advantage of the given low-rank approximation
of M , combined with the #SAT algorithm for low rank matrices. If this were possible, it would put L in
NTIME[2n/n], and contradict the non-deterministic time hierarchy theorem, completing our proof.
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Two Issues with the First Attempt. Unfortunately, there are two main issues with this attempt. The first
issue is that V (1n)M (·) can no longer be written as a low-rank matrix, even if M can. Ideally we would like
V (1n)M (·) to be a low-rank matrix so that our #SAT algorithm applies to estimate pacc(M); without this
condition, it’s unclear how the low-rank matrix M is helpful. From [BV14], one can actually take V (1n) to
be a 3-CNF, but this is still not enough, since a 3-CNF of low-rank matrices is not necessarily a low-rank
matrix.

The second issue is more subtle. If we can estimate pacc(M) with a high enough accuracy, clearly we
will always reject when 1n /∈ L, by the soundness of the PCP. But, in order to accept when 1n ∈ L, even if
we have guessed an M which (1− δ)-approximates On, it still could be the case that pacc(M) is small. For
instance, what if V (1n) always queries positions on which M and On differ?

We will ultimately resolve the second issue by making the verifier smooth (meaning each query is uni-
formly distributed), which we will explain later. To resolve the first issue, we use a recent idea from Chen
and Williams [CW19b], together with easy-witness lemmas [IKW02, MW18].

The Easy Witness Lemma. Assuming NE ⊂ P/ poly, by [IKW02], we know that all NE verifiers have
polynomial-size witness circuits, including the verifier V (1n) discussed above. In other words, when 1n ∈
L, before we were only able to assume there is an oracle O : {0, 1}` → {0, 1} such that V (1n)O always
accepts, but now we can further assume that there is such an oracle which is computed by a circuit C :
{0, 1}` → {0, 1} of size nk for a constant k. Let us set Cbest to be the lexicographically first circuit having
this property. Now we can modify our algorithm from the first attempt by guessing C, and trying to estimate
pacc(C) instead. Notice that with this modification, there are no longer any low-rank matrices involved in
our current approach. We will instead use low-rank approximations of the proof for a different PCP, which
we describe next.

Smooth PCP of Proximity (PCPP). We are now going to make use of a very recent construction of a
smooth PCPP [Par19]. Using PCPPs in conjunction with Williams’ algorithmic approach to circuit lower
bounds in this way was a key idea from [CW19b]. For a polynomial-size circuit F : {0, 1}n → {0, 1}
(we are eventually going to pick F to be a modification of the circuit C from above), a smooth PCPP
verifier VC-EVAL(F ) for F 5 takes as input a proof π of length poly(n) and O(log n) random bits, and makes
a constant number of uniformly distributed, non-adaptive queries to the proof and the input (i.e. which
bits are queries depend only on the random bits, and each bit has an equal probability of being queried).
Moreover, for some small constant δp > 0:

• (PCPP Completeness) If F (τ) = 1, then there is a proof π such that VC-EVAL(F )τ◦π always accepts.
Moreover, there is a polynomial-time algorithm which computes π given F and τ .

• (PCPP Soundness) If F (τ ′) = 0 for every τ ′ ∈ {0, 1}n which differs from τ in at most a δp fraction
of entries, then Pru∈{0,1}O(logn) [VC-EVAL(F )τ◦π(u) = 1] ≤ 1/3 for all possible proofs π ∈ {0, 1}`proof .

The fact that the queries are both smooth and non-adaptive will be crucial to our construction later on. This
‘proximity’ aspect of the soundness condition is necessary for these properties to hold. For instance, if one
fixed F to be the parity function, then it is not hard to see that such a construction without the ‘proximity’
aspect (i.e. with δp = 0) is impossible. Our goal is to apply such a smooth PCPP to C, but since we don’t
have any guarantees about which inputs C should reject, we will first need to make some modifications to
C to deal with the ‘proximity’ aspect.

5More precisely, VC-EVAL(F ) is a smooth PCPP for the Circuit-Eval problem, in which we have fixed the circuit to be F .
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Defining DC(τ) := V (1n)C(τ), which is still a polynomial-size circuit, our goal is to design a fast
algorithm to estimate

pacc(C) := Pr
τ∈{0,1}`

[V (1n)C(τ) = 1] = Pr
τ∈{0,1}`

[DC(τ) = 1].

In preparation for using the PCP of proximity, we next apply an error correcting code to τ . Specifically,
fix a constant-rate F2-linear error correcting code ECC with efficient encoder Enc : {0, 1}` → {0, 1}c1·`
and decoder Dec : {0, 1}c1·` → {0, 1}` which can recover error up to a δdec fraction. We define another
circuit EC : {0, 1}c1·` → {0, 1}, as EC(w) := DC(Dec(w)). That is, EC treats the input as a codeword of
ECC, decodes it, and feeds the result into the circuit DC . Now our goal is to estimate

pacc(C) = Pr
τ∈{0,1}`

[EC(Enc(τ)) = 1].

Now we will apply the PCP of Proximity to simplify the estimation of pacc(C). More precisely, we use
a q = O(1) query smooth PCPP, VC-EVAL(EC), for the circuit EC , which has proximity parameter < δdec,
proof length `proof = poly(SIZE(EC)) = poly(n), and number of random bits m = O(log `proof) =
O(log n). The crucial observation here is that we have dealt with the ‘proximity’ aspect of the smooth PCPP
by using the error correcting code: if DC(τ) = 0, then Enc(τ) is δdec-far from any yes-inputs to EC . This
is because, for any w ∈ {0, 1}c1·` which is δdec-close to Enc(τ), w decodes to τ and EC(w) = DC(τ) = 0.

Summarizing, so far we have the following:

• (PCPP Completeness) IfDC(τ) = 1, then there is a proof π ∈ {0, 1}`proof such that VC-EVAL(EC)Enc(τ)◦π

always accepts. Moreover, givenEC and τ , there is a polynomial-time computable function π(EC , τ) ∈
{0, 1}`proof to compute the proof π.

• (PCPP Soundness) If DC(τ) = 0, then Pru∈{0,1}m [VC-EVAL(EC)Enc(τ)◦π(u) = 1] ≤ 1/3 for all
possible proofs π ∈ {0, 1}`proof .

The PNP Machine Mrigid. Finally, we are ready to define our rigid matrix. It will be the concate-
nation, over all τ ∈ {0, 1}`, of the proof π(ECbest

, τ) from the PCPP Completeness condition above.
More precisely, let πCbest

(τ, j) be the j-th bit of π(ECbest
, τ). Note that πCbest

is a Boolean function on
nπ := n+ O(log n) bits. Letting N = 2nπ/2, we define our PNP machine Mrigid as the function which, on
input 1N , outputs the truth-table of πCbest

, which we interpret as a matrix in {0, 1}N×N . Mrigid runs in PNP

since, similar to before, one can guess Cbest bit-by-bit and verify with the NP oracle.
Again, assume toward a contradiction that RMrigid(1N )(r) ≤ δ · N2 for a small constant δ (recall that

one can think of r := 2(logN)1−ε for a small constant ε > 0) for all N . That is, we know πCbest
(·, ·) can be

(1− δ)-approximated by a matrix M of rank at most r. We guess a low-rank decomposition of that matrix
M = A ·B, in O(N · r) time, and now we wish to estimate

pacc(M) := Pr
u∈{0,1}m,τ∈{0,1}`

[VC-EVAL(EC)Enc(τ)◦M(τ,·)(u) = 1].

Recall that τ is the randomness to the old PCP verifier V , of length ` = n + O(log n), and u is the
randomness to the new smooth PCPP verifier VC-EVAL(EC), of length m = O(log n).
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Fast Algorithm for Computing pacc(M). We now use the fact that the queries made by VC-EVAL(EC)
only depend on u. Our algorithm will simply iterate over all poly(n) choices of u. Hence, fix u ∈ {0, 1}m,
and suppose V queries M(τ, j1),M(τ, j2), . . . ,M(τ, jq1) in M(τ, ·), and e1, e2, . . . , eq2 in Enc(τ). Now
we want to estimate

Pr
τ∈{0,1}`

[Fu(M(τ, j1),M(τ, j2), . . . ,M(τ, jq1),Enc(τ)e1 ,Enc(τ)e2 , . . . ,Enc(τ)eq2 ) = 1]

for a Boolean function Fu on q = q1 + q2 = O(1) inputs. Next, using a standard trick from the analysis
of Boolean functions, we observe that since we are aiming to compute the expected value of Fu, we can
assume that Fu is a parity function. In other words, it is sufficient to quickly estimate

Pr
τ∈{0,1}`

[M(τ, j1) +M(τ, j2) + . . .+M(τ, jq1) + Enc(τ)e1 + Enc(τ)e2 + . . .+ Enc(τ)eq2 = 1],

where the sum is taken mod 2. The parity of M(τ, j1) + M(τ, j2) + . . . + M(τ, jq1), which is a sum of
a constant number of low-rank matrices, can itself be written as a low rank matrix. Since Enc is a linear
function over F2, incorporating Enc(τ)e1 + Enc(τ)e2 + . . . + Enc(τ)eq2 , which is a linear function of
the indices of the matrix, can only increase the rank by an additive constant. Hence, our goal is exactly
to compute the number of 1s in a low rank matrix. This is an instance of the previously discussed #SAT
problem for low-rank matrices which, as discussed, can can be solved in N2−Ω(1/ log r) time as described
by [CW16].

Notice that:

• If 1n ∈ L, and we guessed the circuit Cbest and a matrix M which (1− δ)-approximates πCbest
, then

pacc(M) ≥ 1 − q · δ since VC-EVAL(EC)’s queries are smooth (meaning, uniformly distributed over
the proof).

• If 1n /∈ L, then for all possibles guesses, pacc(M) ≤ 1/2, by the soundness of PCPP and PCP.

Putting everything together, it follows that L is in non-deterministic time

poly(n) ·N2−Ω(1/ log r) = 2n−Ω(n/ log r) = 2n−Ω(nε),

contradicting the non-deterministic time hierarchy. This completes the proof overview for Theorem 1.9.

1.3 Unconditional Construction of Rigid Matrices

Getting Rid of the Easy-Witness Assumption: A Boot-Strapping Scheme. We now move on to a proof
overview of Theorem 1.1. Note that in the above argument, the only consequence of NE ⊂ P/ poly used
is the fact that V (1n) has a succinct witness circuit. In order to get rid of the assumption NE ⊂ P/poly,
we next show how to construct a succinct witness for V (1n) solely based on the assumption that all PNP

machines have non-rigid output matrices.
The key idea is based on a bootstrapping argument. Observe that an No(1)-rank decomposition of a

matrix M ∈ {0, 1}N×N actually compresses the N2 bits of M into an N1+o(1) bit representation. If we can
further treat those bits after the compression as a low-rank matrix, and compress it again, and so on, we can
further reduce the number of bits required to represent the matrix.

A key property of low-rank decompositions we will use is that they are locally decodable. That is, if
A,B are the two matrices of a rank-r expression for M , then one can compute a particular entry Mi,j , by
looking at only O(r) entries of the matrices A and B (the ith row of A and the jth column of B).
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High-Level Idea. Recall from the proof above that On is the lexicographically first oracle which makes
V (1n) always accept. The high level idea for constructing a succinct witness for On is as follows. We
first interpret On as a matrix M1 ∈ {0, 1}N1×N1 . Letting (A1, B1) be its low-rank decomposition, we then
interpret the concatenation (A1, B1) as a matrix M2 ∈ {0, 1}N2×N2 . We will show that M2 also has a
low-rank decomposition (A2, B2). We then interpret this as a matrix M3 ∈ {0, 1}N3×N3 , and repeat until
we have a small enough matrix Mk ∈ {0, 1}Nk×Nk . Note that for all i, we have Ni = N

1/2+o(1)
i−1 ; that is,

each time we compress the bits by about a square-root.
Why do all these matrices have low-rank approximations? This follows from our assumption that all

PNP machines’ output matrices are non-rigid, and hence have low-rank approximations. First, similar to
before, we know that there is a PNP algorithm M that, on input 1

√
|On|, outputs On = M1. Then, we

can recursively show that each of the matrices M2, . . . ,Mk can be constructed by an NP oracle machine:
for each i, to construct Mi, we use the oracle to find the lexicographically first low-rank approximation of
Mi−1.

Our succinct witness for On is Mk for a large constant k. Mk is small enough that we can construct a
circuit for it by brute-force. The idea is to then repeatedly use the local decoding scheme we discussed earlier
to construct circuits for Mk−1,Mk−2, . . . ,M1, since each corresponds to a low-rank approximation of the
next. However, having a low-rank approximation of Mi is not enough to recover Mi exactly. To circumvent
this issue, we apply locally-decodable codes to the matrices. Indeed, if our low-rank decomposition Ai ·Bi
gives a (1−δ)-approximation to the matrix Enc(Mi) (the encoding ofMi using a suitable locally-decodable
code), rather than to Mi, then we can use the local decoder to compute Mi exactly.

Locally-Decodable Codes and the Actual Compression Scheme fi(·). We now give more details of the
construction. We fix a locally-decodable code ECClocal, with message length n1+εenc (εenc can be made
an arbitrarily small constant), and a polylog(n)-time local decoder. Let the encoder be Enc : {0, 1}n →
{0, 1}n1+εenc . The local decoder implies that, for S ∈ {0, 1}n, if we have a T -size circuit which approxi-
mates the string Enc(S), then there is a polylog(n) · T -size circuit which computes S exactly.

We now define two functions to describe how to go from a matrix to its low-rank decomposition. First
define the function rk(N) = 2(logN)b for a constant b > 0. Then, for a string S, define comp(S) as
follows: Let N =

√
|S| (we will pretend here that |S| is the square of an integer; in the real proof we use

a slight padding to make sure of this), and let A,B be two matrices in {0, 1}N×rk(N) and {0, 1}rk(N)×N ,
respectively, such that A ·B equals S on the most possible positions (viewing S as a matrix in {0, 1}N×N ).
If there are multiple equally good options for A,B, then pick the lexicographically first one. We then define
comp(S) = A ◦B, as the concatenation of matrices A and B.

Next, we define a series of functions which recursively give compressions of a given string S:

fi(S) :=

{
Enc(S) i = 1,
Enc(comp(fi−1(S))) i ≥ 2.

Note that A and B (the outputs of comp(S)) can be computed from S in TIME[poly(|S|)]NP. Now, we
set `n,i =

√
|fi(On)|. We can then pick our NP oracle machine to, on input 1`n,i , output the corresponding

matrix for fi(On). (In the full proof below we use some simple tricks to make sure the `n,i’s are all distinct.)
Therefore, by assumption, we know that each fi(On) can be approximated by a rk(`n,i)-rank matrix.

Finally, we are ready to implement our bootstrapping. We know that, for a parameter j, fj(On) has an
`n,j-size circuit which computes it exactly. Suppose we have a T -size circuitCj which (1−δ)-approximates
fj(On). From this we can construct a circuit Cj−1 which (1− δ)-approximates fj−1(On) as follows:
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• First, applying the local decoder for ECClocal, we can construct a polylog(`n,j−1) · T -size circuit
Ccomp which exactly computes comp(fj−1(On)).

• Let A,B be the matrices corresponding to comp(fj−1(On)). By our assumption, A ·B is a (1− δ)-
approximation for fj−1(On). We know that (A · B)x,y can be computed in rk(`n,j−1) time, given
oracle access to Ccomp. It follows from the locally-decodable property of ECClocal that we get a
circuit of size rk(`n,j−1) · polylog(`n,j−1) · T which approximates fj−1(On).

From this construction, we can show that f1(On) = Enc(On) can be approximated by a small circuit,
which in turn shows On has a small exact circuit. It is not hard to see, in particular, that

SIZE(On) ≤
j−1∏
i=1

rk(`n,j−1)1+o(1) · |`n,j | = poly(rk(|On|)) · |`n,j | = 2O(nb) · |`n,j |.

The Constant 1/4 − ε. Supposing that On has a 2n
a
-size witness, and the rank we consider is rk(N) =

2(logN)b , the running time of our algorithm is

2O(na) · 2n−Ω(n1−b) = 2n+O(na)−Ω(n1−b).

In order to make the above faster than 2n and get a contradiction, we want to pick b < 1− a. From the
bound on SIZE(On), we can see that the bootstrapping scheme can only achieve a > b. Therefore, we set
a = 1/2 + ε and b = 1/2− 2ε, for a small constant ε > 0.

We now consider the running time of Mcomp. Since we only aim to compress On to a witness of size
2O(na), we can stop if we find `n,j ≤ 2n

a
, as there is no need to further compress. Let M := `n,j . On

input 1M , Mcomp needs poly(`n,1) = 2O(n) ≤ M logM time to compute fi(On). Therefore, Mcomp runs in
TIME[nlogn]NP, and hence yields a rigid matrix constructible in TIME[nlogn]NP for rank 2(logN)1/2−2ε

. In
other words, the time is slower than we hoped for, but the rank is higher than we hoped for.

Finally, we use a tensor product argument (Lemma 2.7 below) to transform this into a PNP construction,
which is rigid for a worse rank of 2(logN)1/4−ε . The idea is to take the tensor product of our rigid matrix
with a large all-1s matrix. The resulting matrix is still rigid for the same rank, but has larger dimensions.
Equivalently, in terms of the dimension N of the matrix, the complexity to compute the matrix has gone
down, but it is also rigid for a lower rank.

1.4 Other Related Work

Explicit Construction Based on Complexity-Theoretical Ideas. In a recent breakthrough work, Oliveira
and Santhanam [OS17] gave an infinite often pseudodeterministic construction of primes in sub-exponential
time. (That is, given an input 1N , the (randomized) algorithm outputs a fixed prime PN of N bits with high
probability, for infinite number of N ’s, and it runs in sub-exponential time). Their results are similar to ours
in that they construct algebraic objects by building on complexity-theoretic ideas.

Our approach differs from theirs in several ways. First, [OS17] make crucial use of the fact that primes
can be recognized in polynomial-time [AKS04], while in contrast, testing whether a matrix is rigid is coNP-
complete (cf, Proposition 29 of [Des07]). Second, their results build on hardness vs randomness, and a
crucial component of their arguments is to use special pseudo-random generators to hit the set of all N -bit
primes, while our results build on Williams’ algorithmic approach to lower bounds [Wil13, Wil14b]: we
show one can contradict the non-deterministic time hierarchy theorem, assuming there is no PNP construc-
tion of rigid matrices.
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Conditional Explicit Construction of Rigid Matrices. There are several works achieving P-time con-
struction of rigid matrices under strong complexity assumptions. They are all based on the hardness-vs-
randomness paradigm [NW94]. The observation is that since checking rigidity is in coNP, the ability of
fooling a non-deterministic algorithm implies the ability to construct rigid matrices.

In [KvM02], it is shown that under the assumption that E has no 2o(n)-size SAT-oracle circuits, there is
a P-time construction of matrices MN over Zp(N) such that R(MN )(r) ≥ Ω((n− r)2/ log n), where p(N)
is prime bounded by a polynomial of N . [MV05] give the same construction under the weaker assumption
that E has no 2o(n)-size non-deterministic circuits6. In [GST03], the same construction is achieved with a
uniform assumption that E has no 2o(n)-time Arther-Merlin protocols.

Lower Bounds on w2. Recently announced concurrent work by Kumar and Volk [KV19] also constructs
matrices with high w2. Among other results, they show that there are constants a, b, c > 0 and a family
{AN}N∈N such that AN is an N × N matrix over an extension of F2 of degree exp(N1−a) which can
be computed in time exp(N1−b) and with w2(AN ) > N1+c. By comparison, our Theorem 1.6 constructs
N ×N matrices HN in PNP with the worse lower bound w2(HN ) ≥ Ω(N · 2(logN)1/4−ε), but our matrices
are over F2 instead of a large extension field. Their techniques seem very different from ours, although they
also use a padding trick, similar to our Lemma 2.7, of taking the Kronecker product of a rigid matrix with a
large simple matrix to decrease its computational complexity in terms of the matrix size.

Circuit Lower Bounds via PCPP. In a recent work, Chen and Williams [CW19b] applied PCPP to
show that in order to prove C lower bound for various non-deterministic time classes such as NEXP or
NQP, it suffices to derandomize ⊕2 ◦ C circuits (an XOR of two C circuits) in a better-than-2n time.
The proof crucially combines the forgoing derandomization algorithms and PCPP to obtain a non-trivial
derandomization of general circuits. Here, our proof for Theorem 1.2 makes similar, but more sophisticated
use of PCPP. In particular, we actually require the PCPP to be smooth, which is not required in [CW19b].
Our proof for Theorem 1.1 also relies on a completely different bootstrapping argument, which is specific
for our task of constructing rigid matrices.

Rigidity and Data Structure Lower Bounds. Recent work by Dvir, Golovnev, and Weinstein [DGW19]
showed connections between rigidity and static data structure lower bounds. In particular, they posed the
challenge of constructing rigid matrices in PNP or ENP as an avenue toward proving new data structure
lower bounds. Unfortunately, the parameters of our new PNP construction do not seem to yield any new
bounds using their approach.

2 Preliminaries

Our construction of rigid matrices makes use of a number of tools from the complexity theory literature; in
this Section we precisely define the tools from prior work which we will use.

The Circuit Evaluation Problem (Circuit-Eval) is the language of pairs (C,w) where C is a general
fan-in-2 circuit, and w is an input such that C(w) = 1. For two strings a, b, we use a ◦ b to denote their
concatenation.7

6Indeed, the requirement is E has no 2o(n)-size SV-nondeterministic circuits, which is the non-uniform analogue of NP∩coNP;
see [MV05] for details.

7The symbol ◦ is also used for circuit composition; its meaning will always be clear from context.
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2.1 Probabilistic Checkable Proofs of Proximity

Our proof will make heavy use of probabilistically checkable proofs of proximity.

Definition 2.1 (Probabilistic Checkable Proofs of Proximity (PCP of proximity, or PCPP)). For s, δ : N→
[0, 1] and r, q : N → N, a verifier V is a PCP of proximity system for a pair language L with proximity
parameter δ, soundness parameter s, number of random bits r and query complexity q if the following holds
for all x, y:

• (Completeness) If (x, y) ∈ L, then there is a proof π such that V (x) accepts oracle y ◦ π with
probability 1.

• (Soundness) If y is δ(|x|)-far from L(x) := {z : (x, z) ∈ L}, then for all proofs π, V (x) accepts
oracle y ◦ π with probability at most s(|x|).

• V (x) tosses r(|x|) random coins, and makes at most q(|x|) non-adaptive queries.

Lemma 2.2 ([BGH+06, Theorem 3.3]). For any constants 0 < δ, s < 1, there is a PCP of proximity system
for Circuit-Eval with proximity δ, soundness s, number of random bits r = O(log n) and query complexity
q = O(1). Moreover, given the pair (C,w) ∈ Circuit-Eval, a proof π which makes V (C) always accept
can be constructed in poly(|C|+ |w|) time.

Remark 2.3. The last (‘Moreover’) sentence is not explicitly stated in [BGH+06], but it is evident from
their construction.

In this paper, we need a stronger PCPP construction which is additionally smooth, meaning, every
position in the proof π is queried with equal probability (assuming without loss of generality that all queries
are non-adaptive and distinct). Such a construction can be found in [Par19].8

Lemma 2.4 ([Par19]). For any constants 0 < δ, s < 1, there is a smooth PCP of proximity system for
Circuit-Eval with proximity δ, soundness s, number of random bits r = O(log n) and query complexity
q = O(1). Moreover, given the pair (C,w) ∈ Circuit-Eval, a proof π making V (C) always accepts can be
constructed in poly(|C|+ |w|) time.

2.2 Error Correcting Codes

We also need standard constructions of two different types of codes: constant-rate linear error correcting
codes, and nε-rate codes with polylog(n) time local decoders.

Lemma 2.5 ([Spi96]). There is a constant-rate linear error correcting code ECC with a linear-time encoder
Enc and a linear-time decoder Dec recovering error up to a universal constant δ.

Lemma 2.6 (cf, Section 2.3 of [Yek12]). For any constant ε > 0, there is a nε-rate error correcting code
ECC with a poly(n)-time encoder Enc and a polylog(n)-time local-decoder Dec which recovers up to a
0.01 fraction of errors.

8[Par19]’s construction actually ensures that this holds for every query position in the second input y as well. This additional
property is not required by our proof.
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2.3 A Simple Fact About Matrix Rigidity

We use 1N to denote the all-ones matrix of size N ×N , and⊗ to denote the Kronecker product of matrices.

Lemma 2.7. For any field F and any matrix A ∈ FM×M , we have

R1N⊗A(r) = RA(r) ·N2.

Proof. We first show R1N⊗A(r) ≥ RA(r) · N2. Assume to the contrary that there is a way to change
k < RA(r) · N2 entries of 1N ⊗ A to make its rank r. The matrix 1N ⊗ A consists of N2 disjoint copies
of A, so by the pigeonhole principle, there were at most k/N2 < RA(r) entries changed in one of those
copies of A. Thus, that submatrix still has rank greater than r after the change, a contradiction.

We next show that R1N⊗A(r) ≤ RA(r) ·N2. Let B a matrix of rank r whose Hamming distance from
A is RA(r). Thus, 1N ⊗ B has rank rank(1N ) · rank(B) = r, and its Hamming distance from 1N ⊗ A is
RA(r) ·N2.

2.4 Fpr-#OV

One crucial component of our construction is the algorithm for Fpr -#OV from [CW16].

Definition 2.8. For a prime power q = pr, in an Fq-#OVn,d instance, we are given two collections of vectors
from Fdq , A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}, and want to compute the number of pairs such
that 〈ai, bj〉 = 0 over Fq.

We use the following algorithm for Fq-#OVn,d.

Theorem 2.9 ([CW16]). For all fixed prime powers q = pr, there is an n2−Ω(1/ log(d/ logn)) time determin-
istic algorithm for Fq-#OVn,d, when d = no(1).

The original paper [CW16] only states an algorithm for #OV (the problem whenA andB are collections
of vectors from {0, 1}d and the inner product is over Z). We make two small modifications to their algorithm
to get the result stated in Theorem 2.9 above; see Appendix A for details.

3 Easy-Witness and Rigidity Matrix Construction in PNP

In this section we prove Theorem 1.2.
We say an algorithm is a matrix-constructing algorithm if on input 1N , it outputs a matrix in {0, 1}N×N .

We say a function f : N → N is a typical resource bound function if it is strictly increasing, and satis-
fies f(n) = ω(f(n + 1)/(n + 1)). We first prove the following lemma, which says that if certain non-
deterministic time classes have easy witnesses, then there is a PNP construction of rigid matrices.

Lemma 3.1. There is an absolute constant δ > 0 such that, for all prime powers q = pr, and any three
typical resource bound functions T, S,R : N → N with T (n), S(n) ≥ n for all n, the following three
conditions cannot hold simultaneously.

• All polynomial-time verifiers9 for unary NTIME[T (n)] languages have S(n)-size witness circuits.

9That is, for L ∈ NTIME[T (n)], the verifier V takes two inputs x, y with |x| = n and |y| = poly(T (n)), runs in poly(|x|+|y|)
time, and has the property that x ∈ L if and only if there is a y such that V (x, y) = 1.
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• For all PNP matrix-constructing algorithms M , RM(1N )(R(N)) ≤ δ ·N2 for almost all N .

• log T (n)/ logR(N) = ω(log log T (n) + logS(n)), where N = 2nπ/2, for nπ = log T (n) +
O(log log T (n)) +O(logS(n)), and R(N) = No(1).

Remark 3.2. In the following proof, we will actually only need the first assumption to hold for the special
PCP verifier V (1n) of the language L we consider. This remark will be useful in the proof in the next
Section.

Proof. Let δ > 0 be a constant to be decided later. We first only consider the case when the field is F2, and
then show how to generalize the argument for other finite fields. We will assume that all three items are true,
and derive a contradiction.

Unary Language L and PCP. Let L be a unary language in NTIME[T (n)] \ NTIME[T (n)/n]. Using
the non-deterministic time hierarchy theorem [Zák83], such an L exists because T (n) is a typical resource
function. Let V be an efficient PCP verifier for L from [BV14]. That is, there is a function ` = `(n) =
log T (n) + O(log log T (n)), such that V (1n) takes an oracle O : {0, 1}` → {0, 1} and ` random bits as
input, runs in poly(n) time, and:

1. (PCP Completeness) If 1n ∈ L, then there exists a circuit C : {0, 1}` → {0, 1} of size S(n) such
that Prr∈{0,1}` [V (1n)C(r) = 1] = 1. (This follows from the first assumption of the Lemma.)

2. (PCP Soundness) If 1n 6∈ L, then for all oraclesO : {0, 1}` → {0, 1}, we have Prr∈{0,1}` [V (1n)O(r) =
1] ≤ 1/n.

We will next show how to put L ∈ NTIME[T (n)/n] by using the second and the third assumptions of
the Lemma, which will give us the contradiction we want.

The Plan. Let Cbest be the circuit of size S(n) such that Prr∈{0,1}` [V (1n)Cbest(r) = 1] = 1, and if there
are multiple such circuits, we break the tie by choosing the lexicographically first one. Note that such a
circuit doesn’t exist when 1n /∈ L, and in that case we set Cbest to be a trivial circuit which always outputs
0.

In our non-deterministic algorithm to solve L, given an input 1n, we first guess a circuit C of size at
most S(n), and wish to ensure that the following two conditions hold:

1. When 1n ∈ L and C = Cbest, we accept, and

2. When 1n /∈ L, we always reject.

If our algorithm satisfies these two conditions and runs in T (n)/n non-deterministic time, then we have put
L ∈ NTIME[T (n)/n] and arrived at the desired contradiction.

Implementation. Now suppose we have guessed a circuit C of size at most S(n). Toward achieving the
tweo conditions above, we want to estimate

pacc(C) := Pr
r∈{0,1}`

[V (1n)C(r) = 1].
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Define another circuit DC : {0, 1}` → {0, 1} as DC(r) := V (1n)C(r). We thus equivalently have that

pacc(C) = Pr
r∈{0,1}`

[(DC , r) ∈ Circuit-Eval],

by the definition of Circuit-Eval.

Applying Error Correcting Codes. Fix an F2-linear error correcting code ECC with rate c1 and re-
covering error δ1, whose existence is guaranteed by Lemma 2.5. Let Enc : {0, 1}` → {0, 1}c1·` and
Dec : {0, 1}c1·` → {0, 1}` be the corresponding linear-time encoder and decoder.

We now define yet another circuitEC : {0, 1}c1·` → {0, 1} asEC(w) := DC(Dec(w)). Then it suffices
to estimate

pacc(C) = Pr
r∈{0,1}`

[(EC ,Enc(r)) ∈ Circuit-Eval].

Notice that SIZE(EC) ≤ poly(n) · S(n), since the verifier V (1n) runs in poly(n) time, and the decoder
Dec runs in linear time.

Applying the PCPP. Now we use a qPCPP = O(1)-query smooth PCPP for Circuit-Eval from Lemma 2.4
with constant soundness sPCPP and proximity parameter δPCPP to be specified later. Let VC-EVAL(EC) be
the verifier for this smooth PCPP with the circuit fixed to EC . Hence, VC-EVAL(EC) uses proof length
`proof = poly(SIZE(EC)) = poly(S(n)) and m = O(log `proof) random bits.

Claim 1. VC-EVAL(EC) satisfies the following three properties by setting δPCPP < δdec, and sPCPP = 1/3.

1. (PCPP Completeness) If (DC , r) ∈ Circuit-Eval, there is a proof π ∈ {0, 1}`proof that

Pr
u∈{0,1}m

[VC-EVAL(EC)Enc(r)◦π(u)] = 1.

2. (From PCPP Smoothness) Suppose (DC , r) ∈ Circuit-Eval, and let π be a proof satisfying the
previous property. If proof π̃ ∈ {0, 1}`proof is a (1− δ)-approximation to π for some δ ∈ [0, 1], then

Pr
u∈{0,1}m

[VC-EVAL(EC)Enc(r)◦π̃(u)] ≥ 1− qPCPP · δ.

3. (PCPP Soundness) If (DC , r) /∈ Circuit-Eval, then for all proofs π ∈ {0, 1}`proof , we have

Pr
u∈{0,1}m

[VC-EVAL(EC)Enc(r)◦π(u)] ≤ 1/3.

Property (1) of Claim 1 follows from the completeness property of the PCPP system, and property (2)
follows from the smoothness of the PCPP system combined with a simple union bound.

For property (3), note that if (DC , r) /∈ Circuit-Eval, then Enc(r) is δdec-far from the set {w ∈
{0, 1}c1·` : (EC , w) ∈ Circuit-Eval}. This is because for any string w ∈ {0, 1}c1·` which is < δdec-close
to Enc(r), we know Dec(w) = r and hence (EC , w) /∈ Circuit-Eval. Therefore, by setting δPCPP < δdec,
and sPCPP = 1/3, property (3) follows from the soundness of the PCPP system.
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The Function πCbest
(r, j). Note that by Lemma 2.4, there is a polynomial time computable function

π(EC ,Enc(r)) ∈ {0, 1}`proof , such that when (EC ,Enc(r)) ∈ Circuit-Eval, we have

Pr
u∈{0,1}m

[VC-EVAL(EC)Enc(r)◦π(EC ,Enc(r))(u)] = 1.

Define the Boolean function πC(r, j), for j ∈ [`proof ], to be the j-th bit of π(EC , r) (suppose `proof is a
power of 2 for simplicity).

The function πCbest
(r, j) is computable in ENP, by using the following procedure. First we show how to

compute the circuit Cbest in ENP. We are given two inputs r, j with length |r| = ` and |j| = log `proof =
O(logS(n)). In O(2`) time with an NP oracle, we can first decide whether V (1n) always accepts a circuit
of size at most S(n). If not, then we just output a trivial circuit. If so, then we guess that circuit bit by bit
to construct the lexicographically first one, again using the NP oracle to check each guess. In this way, we
can compute Cbest in ENP. We can then construct the circuit ECbest

from Cbest, and then (using the fact that
π(EC ,Enc(r)) can be computed in polynomial time) compute πCbest

(r) and output its j-th bit. The whole
procedure runs in ENP.

The PNP Machine Mrigid. Note that πCbest
has input length nπ = `+O(logS(n)). We can thus construct

a PNP machine Mrigid such that, given an input 12nπ/2 , it outputs the truth-table of πCbest
as a matrix.

Therefore, by the second assumption of the Lemma, πCbest
as a matrix can be δ-approximated by a matrix

of rank R(2nπ/2).

Putting L in NTIME[T (n)/n]. Finally, consider the following algorithm for solving L. We first guess a
circuitC of size S(n), with the hope that it isCbest. Then, lettingN = 2nπ/2, we guess a matrixM : N×N
of rank R(N), with the hope that it δ-approximates πCbest

. More specifically, we guess two matrices U, V
of size N ×R(N) and R(N)×N , and set (implicitly, without explicitly computing it) M = UV .

Now we try to calculate

pacc(M) := Pr
r∈{0,1}`,u∈{0,1}m

[VC-EVAL(EC)Enc(r)◦M(r)(u) = 1].

Fix u, and suppose that for randomness u, the verifier VC-EVAL(EC) queriesM(r, j1),M(r, j2), . . . ,M(r, jq1)
in M(r, ·), and e1, e2, . . . , eq2 in Enc(r) (note that VC-EVAL(EC)’s query positions only depend on the ran-
domness u). Now we want to estimate

Pr
r∈{0,1}`

[Fu(M(r, j1),M(r, j2), . . . ,M(r, jq1),Enc(r)e1 ,Enc(r)e2 , . . . ,Enc(r)eq2 ) = 1]

for a Boolean function Fu on qPCPP = q1 + q2 inputs. First, we can write Fu in the basis of XOR functions:

Fu(z1, z2, . . . , zqPCPP) =
∑

S⊆[qPCPP]

αS ·
⊕
i∈S

zi.

(Here, we consider the XOR function ⊕ to be outputting a {0, 1} value, and the coefficients αS and the
sum Σ are over R, not over F2.) Since our goal is to compute the expected value of Fu, by linearity of
expectation, it suffices to separately compute the expected value of each of the (constant number of) parity
functions. Therefore, it suffices to consider the case when Fu is just an XOR function.

Also, note that since ECC is a linear code, it follows that Enc(r)k is an XOR function on a subset of
coordinates of r. Thus, if r = a ◦ b where |a| = nπ/2 and |b| = |r| − |a| (note that ` > nπ/2 by the third
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assumption of the Lemma), we have Enc(r)e = EncL(a)e⊕EncR(b)e, where EncL(a)e and EncR(b)e are
the corresponding contributions of a and b to Enc(r)e.

Next, we define

EL(a)e :=

{
(1, 0) if EncL(a)e = 0,
(0, 1) if EncL(a)e = 1,

and ER(b)e :=

{
(0, 1) if EncL(b)e = 0,
(1, 0) if EncL(b)e = 1.

It is easy to verify that 〈EL(a)e, ER(b)e〉 = EncL(a)e ⊕ EncR(b)e = Enc(r)e.

Constructing F2-#OV Instance. We can now simplify the quantity we want to compute as

Pr
a∈{0,1}nπ/2,b∈{0,1}`−nπ/2

[
q1⊕
i=1

〈Ua, Vb◦ji〉 ⊕
q2⊕
i=1

〈EL(a)ei , ER(b)ei〉 = 1

]

= Pr
a∈{0,1}nπ/2,b∈{0,1}`−nπ/2

[〈
q1
©
i=1

Ua ◦
q2
©
i=1

EL(a)ei ◦ 1,
q1
©
i=1

Vb◦ji ◦
q2
©
i=1

ER(b)ei ◦ 1

〉
= 0

]
.

In above, we use Ui and Vj to denote the i-th row of U and j-th column of V respectively, so that
〈Ui, Vj〉 = Mi,j . By duplicating each of the ‘b’s 2nπ−` times, the above can be reduced to a counting
F2-#OVN,d instance, with N = 2nπ/2 vectors of d = O(R(N)) dimensions. By Theorem 2.9, this can be
solved in time

N2−Ω(1/ log d) = N2−Ω(1/ logR(N))

= 2nπ−Ω(nπ/ logR(N))

≤ 2log T (n)+O(log log T (n))+O(logS(n))−Ω(log T (n)/ logR(N)).
(nπ = `+O(logS(n)) = log T (n) + log log T (n) + S(n))

Since we also need poly(S(n)) time for enumerating all possible u ∈ {0, 1}m, the overall running time
for calculating pacc(M) is

2log T (n)+O(log log T (n))+O(logS(n))−Ω(log T (n)/ logR(N)).

By our third assumption, we know the above running time is ≤ 2log T (n)−ω(logS(n)) ≤ T (n)/n, since
S(n) ≥ n.

Analysis of the Algorithm. Consider first when 1n ∈ L. We know that on the correct guess of C = Cbest

and the appropriate M ≈ πCbest
, we have that M (1 − δ)-approximates πCbest

. That is, for a random
r ∈ {0, 1}`, the average relative distance betweenM(r, ·) and πCbest

(r, ·) is at most δ. Hence, by Property (2)
of Claim 1 and by linearity of expectation, we know that pacc(M) > 1− qPCPP · δ in this case.

Otherwise, if 1n 6∈ L, then for every guess of C and M , by the soundness property of PCP, we know
that

Pr
r∈{0,1}`

[(DC , r) ∈ Circuit-Eval] ≤ 1/n.

Then by Property (3) of Claim 1, we have that

pacc(M) ≤ 1/n+ 1/3 ≤ 1/2.

Therefore, when we set δ to be small enough so that 1− qPCPP · δ > 1/2, we can distinguish the above
two cases. By the above argument, this puts L ∈ NTIME[T (n)/n], a contradiction.
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Adaptation for the field Fq. Let q = pr be a prime power. In the following, we sketch the adaptation to
deal with Fq. The only thing we need to modify is how to reduce the computation of pacc(M) to Fq-#OV.
Again, we guess a rank R(N) matrix M = UV over Fq, and we want to calculate

Pr
r∈{0,1}`

[Fu(M(r, j1)q−1,M(r, j2)q−1, . . . ,M(r, jq1)q−1,Enc(r)e1 ,Enc(r)e2 , . . . ,Enc(r)eq2 ) = 1]

for a Boolean function Fu on qPCPP = q1 + q2 inputs. Note that in the above, we raise all the M(r,ji)
inputs to the (q − 1)-th power to make them Boolean. Now, we can write Fu as a real sum of 2qPCPP AND
functions, each one for a subset of the inputs of Fu. Hence, like before, it suffices to consider the case when
Fu is an AND function, and in this case we want to calculate

Pr
r∈{0,1}`

[
q1∏
i=1

M(r, ji)
q−1 ·

q2∏
i=1

Enc(r)ei = 1

]
,

which is equivalent to

Pr
a∈{0,1}nπ/2

Pr
b∈{0,1}`−nπ/2

[
q1∏
i=1

〈Ua, Vb◦ji〉
q−1 ·

q2∏
i=1

〈EL(a)ei , ER(b)ei〉 = 1

]

= Pr
a∈{0,1}nπ/2

Pr
b∈{0,1}`−nπ/2

[〈(
q1⊗
i=1

U⊗(q−1)
a ⊗

q2⊗
i=1

EL(a)ei

)
◦ 1,

(
q1⊗
i=1

Vb◦ji ⊗
q2⊗
i=1

ER(b)ei

)
◦ −1

〉
= 0

]
.

That last line follows from the fact that for vectors a1, b1, a2, b2, we always have 〈a1, b1〉 · 〈a2, b2〉 =
〈a1⊗a2, b1⊗ b2〉. Finally, the above can be reduced to an Fq-#OV instance with 2nπ/2 vectors of R(N)O(1)

dimensions. One can see that this polynomial blowup in the dimension is acceptable, and we can still
proceed as in the case of F2.

Now we are ready to prove Theorem 1.2 (restated below). Notice that here we use the stronger condition
NQP 6⊂ P/ poly instead of NE 6⊂ P/poly.

Reminder of Theorem 1.2 There is an absolute constant δ > 0 such that, for all prime powers q = pr and
all ε > 0 at least one of the following holds:

• NQP 6⊂ P/ poly.

• There is a PNP machine M such that, for infinitely many N ’s, on input 1N , M outputs an N × N
matrix HN ∈ {0, 1}N×N such that RHN (2(logN)1−ε) ≥ δ ·N2 over Fq.

Proof of Theorem 1.2. Let δ > 0 be a constant to be chosen later.
Assume that NQP ⊂ P/ poly. By [MW18], this in particular implies that for a constant b to be specified

later and T (n) := 2logb n, all polynomial-time verifiers for unary languages in NTIME[2logb n] have S(n) :=
nk-size witness circuits, for a constant k = k(b).

Set R(N) := 2(logN)1−ε . We will now apply Lemma 3.1 with R,S, T as above. Note that nπ =

log T (n) + O(log log T (n)) + O(logS(n)) = logb n+ O(log n) and N = 2nπ/2 = 2logb n/2+O(logn). We
thus calculate that

log T (n)/ logR(N) ≥ logb n/ logb(1−ε) n ≥ logb·ε n = ω(log log T (n) + logS(n)) = ω(log n),

if we set b = 2/ε.
Therefore, since Conditions (1) and (3) of Lemma 3.1 hold, we conclude that Condition (2) of Lemma 3.1

does not hold, and this completes the proof.
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4 Rigid Matrix Construction in PNP

In this section, we prove Theorem 1.1 by using an additional bootstrapping argument.
For an integer n ∈ N, we write n[k] to denote the smallest integer m ≥ n such that m ≡ 2k − 1

(mod 2k+1). Notice that n[k] satisfies |n − n[k]| ≤ 2k+1. Moreover, for all integers n,m, i, j ∈ N with
i 6= j, we have that n[i] 6= m[j].

We first prove the following lemma, which gives an (unconditional) construction of a matrix which
is rigid for a higher rank than the construction in Theorem 1.1, but with a slower construction time of
TIME[nlogn]NP.

Lemma 4.1. There is an absolute constant δ > 0 such for all prime powers q = pr and all constants ε > 0:

• There is a TIME[nlogn]NP machine M such that, for infinitely many N ’s, on input 1N , M outputs an
N ×N matrix HN ∈ {0, 1}N×N such that RHN (2(logN)1/2−ε) ≥ δ ·N2 over Fq.

Proof. Let δ be a constant to be specified later. For simplicity, we only consider the finite field F2 in the
following. It is not hard to see that our proof also works for all finite fields Fpr with a straightforward
modification.

Assume toward a contradiction that for all TIME[nlogn]NP machines M , and for almost all input lengths
N , the output matrixHN ∈ {0, 1}N×N ofM satisfies RHN (2(logN)1/2−ε) < δ ·N2. (By padding with zeros
or only keeping the first N2 output bits, we can always assume that M outputs exactly N2 bits on inputs of
length N .)

Notation. Throughout the proof, we will often identify a matrix from {0, 1}N×N with a string from
{0, 1}N2

(reading the matrix from top row to bottom row, and from leftmost column to rightmost column to
construct the corresponding string).

Define the functions rk(N) := 2(logN)1/2−ε and `comp(N) := 2 ·
√
N · rk(

√
N).

Set εenc = 0.01, and `enc(N) := N1+εenc . Define the function `PCP(N) := N · logCPCP N for a constant
CPCP to be specified later.

Applying Lemma 2.6, we fix a locally-decodable error correcting code ECClocal with a poly(N)-time
encoder Enc : {0, 1}N → {0, 1}`enc(N), which has a (logN)Cenc-time randomized decoder that decodes any
position with probability at least 0.99 when given oracle access to a codeword which is corrupted in less
than a 0.01 fraction of its entries.

The Compression Scheme fi(·). Now, given a string S ∈ {0, 1}N , we define the function comp(S) as
follows. Let N ′ be the smallest square number ≥ N and let A,B ∈ {0, 1}

√
N ′×rk(

√
N ′) be the two matrices

such that S ◦ 0N
′−N (interpreted as a {0, 1}

√
N ′×
√
N ′ matrix) agrees with ABT (over F2) on the greatest

number of positions. In case of a tie, make the choice resulting in A ◦B being the lexicographically earliest
string. We define comp(S) := A ◦B.

Given a string S ∈ {0, 1}N , we further define the sequence of functions f1(S) := Enc(S) and fi(S) :=
Enc(comp(fi−1(S))) for i > 1.

We now aim to apply Lemma 3.1 from the previous section. Fix a unary language L ∈ NTIME[2n] such
that L /∈ NTIME[2n/n] [Zák83]. Fix an efficient PCP verifier V for L from [BV14], such that V (1n) takes
log `PCP(2n) random bits and oracle access to a string of length `PCP(2n). In order to apply Lemma 3.1, we
need to show V (1n) has small witness circuits.
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The Construction of the TIME[nlogn]NP Machine Mcomp: A Bootstrapping Argument. Let On ∈
{0, 1}`PCP(2n) be the lexicographically first string which makes V (1n) always accept, if such a string exists,
and 0`PCP(2n) otherwise.

Our TIME[nlogn]NP machine Mcomp works as follows. For n and 1 ≤ i ≤ 2/3 · log n, let `n,i :=⌈√
|fi(On)|

⌉
[i]

. If `n,i ≥ 2n
1/2+ε1 for a constant ε1 to be specified later, thenMcomp on input 1`n,i computes

fi(On), padded with `2n,i − |fi(On)| zeros. Otherwise it outputs an all-zero matrix.
We first claim that Mcomp is well-defined, meaning there exists a constant N0 such that for all n ≥ N0

and 1 ≤ i ≤ 2/3 log n, the `n,i’s are distinct. To prove this, it suffices to show that `n,i < `m,i whenever
i ≤ 2/3 log n and n < m, but this follows from the definitions of the function fi(·)’s.

Next, we note that Mcomp indeed runs in TIME[nlogn]NP: on input 1`n,i of length m = `n,i ≥ 2n
1/2+ε1 ,

the algorithm runs in time poly(`n,1) = 2O(n) ≤ mlogm.

V (1n) Has Succinct Witness. We first show from our assumption (that TIME[nlogn]NP does not have
rigid matrices) that V (1n) has a succinct witness circuit if there is an oracle which always satisfies it.

When this is the case, notice that for all 1 ≤ i ≤ 2/3 log n, the output of Mcomp(1`n,i) can be δ-
approximated by a matrix of rank rk(`n,i). We can calculate that `n,2/3 logn < 2n

1/2
; let j be the largest

integer such that `n,j ≥ 2n
1/2+ε1 , and note that `n,j ≤ 23n1/2+ε1 . Hence, Mcomp(1`n,j ) can be implemented

as a circuit of size 2O(n1/2+ε1 ).
Next, if there is a size-S circuit which (1− δ)-approximates Mcomp(1`n,i), then Mcomp(1`n,i−1) can be

(1−δ)-approximated by a rk(`n,i−1)·poly(n)·S size circuit by using the local decoder of the corresponding
locally decodeable codes. Therefore, Mcomp(1`n,1) can be (1− δ)-approximated by a circuit of size

j−1∏
i=1

rk(`n,i) · nO(logn) · 2O(n1/2+ε1 ) = 2O(n1/2+ε1 ).

Since Mcomp(1`n,1) = Enc(On), it follows that On can be computed exactly by a 2O(n1/2+ε1 )-size circuit.

Applying Lemma 3.1. Toward applying Lemma 3.1, we set T (n) = 2n, S(n) = 2O(n1/2+ε1 ) andR(N) =

2(logN)1/2−ε , where ε1 := ε/2 > 0. The two parameters in Condition (3) of Lemma 3.1 are bounded by
nπ = log T (n) + O(log log T (n)) + O(logS(n)) = n + O(n1/2+ε1) and N = 2n/2+O(n1/2+ε1 ). We thus
calculate that

log T (n)/ logR(N) = Ω(n/n1/2−ε) = Ω(n1/2+ε) = ω(n1/2+ε1) = ω(log log T (n) + logS(n)).

Therefore, Conditions (1) and (3) of Lemma 3.1 are satisfied, and it follows that Condition (2) must be
violated, which completes the proof.

Finally, we prove Theorem 1.1 (restated below) by using a simple padding argument.

Reminder of Theorem 1.1 There is an absolute constant δ > 0 such for all prime powers q = pr and all
constants ε > 0:

• There is a PNP machine M such that, for infinitely many N ’s, on input 1N , M outputs an N × N
matrix HN ∈ {0, 1}N×N such that RHN (2(logN)1/4−ε) ≥ δ ·N2 over Fq.
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Proof of Theorem 1.1. We have shown, from Lemma 4.1, that there is an absolute constant δ > 0 such that
for all constants ε > 0:

• There is a TIME[nlogn]NP machine M such that, for infinitely many Ns, on input 1N , M outputs an
N ×N matrix HN ∈ {0, 1}N×N such that RHN (2(logN)1/2−ε) ≥ δ ·N2 over F2.

Let N ′ = N logN , and consider the PNP machine M ′ which, given an input 1N
′
, outputs a matrix

H ′N ′ := 1N logN−1 ⊗HN . By Lemma 2.7, we have

RH′
N′

(2(logN)1/2−ε) ≥ δ ·N ′2

for infinitely many N ′. This rigidity bound is equivalent to

RH′
N′

(2(logN ′)1/4−ε/2) ≥ δ ·N ′2,

as desired.

5 PHcc Communication Lower Bound for TIME
[
2(log n)ω(1)]NP

In this section we apply our construction of rigid matrices to prove a PHcc communication lower bound for
functions in TIME

[
2(logn)ω(1)

]NP. Our main tool will be a known connection between rigid matrices and
PHcc:

Lemma 5.1 ([Raz89], see also [Wun12]). Letting f be a function in PHcc, the 2n × 2n communication
matrix Mf of f has RMf

(2(logn/ε)c) ≤ ε · 4n over F2, where ε > 0 is arbitrary and c > 0 is a constant
depending only on f , but not n.

We will also use the following simple Lemma.

Lemma 5.2. For any field F and any matrix A ∈ FN×N , and for M > N , define PA,M ∈ FM×M to be the
matrix such that the top-left N ×N sub-matrix is A, and the rest of entries are all zeros. For all r, we have

RPA,M (r) ≥ RA(r).

Reminder of Theorem 1.4 For all functions α(n) = ω(1) such that nα(n) is time-constructible, there is a
function f ∈ TIME[2(logn)α(n) ]NP which is not in PHcc.

Proof. By Theorem 1.1, we know that there is a PNP machine M such that RM(1N )(2
(logN)1/5) ≥ δ · N2

over F2, for a constant δ > 0 and infinitely many N ’s. For simplicity, we can assume α(n) ≤ log n (e.g.,
by setting α′(n) = min(α(n), log n)).

The Definition of f . Now we define a function f ∈ TIME[2(logn)α(n) ]NP as follows:

• Given as input x ∈ {0, 1}n, the function f outputs zero immediately if 4 does not divide n. Otherwise
let m = n/4.

• It treats the first 2m bits of the input as an integer N in [22m], and if N > 2(logm)α(n) , it outputs zero.

• Otherwise, it constructs the matrix H = M(1N ). Let S = 2m, and Q = P1bS/Nc⊗H,S . It treats the
next 2m bits of the input as a pair of integers (i, j) ∈ [S]× [S], and outputs Qi,j .

Qi,j can be computed easily given H , so f can be computed in TIME[2(logn)α(n) ]NP.
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f is not in in PHcc. We will now show that f , when interpreted as a communication problem, is not in
PHcc. We distribute the input bits of f among the two players as follows: When 4 divides n, setting m =
n/4, then Alice holds the bits x1, x2, . . . , xm and x2m+1,...,3m, and Bob holds the bits xm+1, xm+2, . . . , x2m

and x3m+1,3m+2,...,4m.
Assume to the contrary that f ∈ PHcc. This means that for all assignments α to x1, x2, . . . , x2m, the

restricted function fα : {0, 1}m × {0, 1}m → {0, 1} is still in PHcc. That is, there exists a constant c, such
that for all N ≤ 2(logm)α(n) , S = 2m, and Q = P1bS/Nc⊗M(1N ),S , we have

RQ(2(logm)c) ≤ δ/2 · S2.

By Lemma 5.2, this implies

R1bS/Nc⊗M(1N )(2
(logm)c) ≤ δ/2 · S2 ≤ δ · 2/3 · (bS/Nc ·N)2.

By Lemma 2.7, this further implies

RM(1N )(2
(logm)c) ≤ 2/3 · δ ·N2.

Now, let N be a sufficiently large integer such that

RM(1N )(2
(logN)1/5) ≥ δ ·N2.

Let m be the smallest integer such that 2(logm)α(4m) ≥ N . Since α(n) is unbounded, we can pick N to be
large enough such that α(4m− 4) ≥ 20 · c. By definition of m, we have 2(log(m−1))α(4m−4)

< N , meaning
2(log(m−1))20c < N , and so 2(logm)10c < N . But then by the above discussion, we have

RM(1N )(2
(logN)1/10) ≤ 2/3 · δ ·N2,

a contradiction.

6 Depth-2 Arithmetic Circuit Lower Bounds

In this section we prove Theorem 1.6 (restated below). Recall first the definition of w2:

Definition 6.1. For a field F and a matrix A ∈ FN×N , let

w2(A) := min{nnz(B) + nnz(C) | A = BC},

where the min is over all pairs B,C of matrices of any dimensions over F whose product is A, and nnz(X)
denotes the number of nonzero entries in the matrix X .

Reminder of Theorem 1.6 For all prime powers q = pr and constants ε > 0, it holds:

• There is a PNP machineM such that, for infinitely manyN , on input 1N ,M outputs anN×N matrix
HN ∈ {0, 1}N×N such that w2(HN ) ≥ Ω(N · 2(logN)1/4−ε) over Fq.

We first prove the following folklore lemma.
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Lemma 6.2. For any field F, and any matrix A ∈ FN×N , let r = w2(A)/N . Then, for any constant δ > 0,
we have

RA(ρδ · r2) ≤ δ ·N2,

for some constant ρδ depending only on δ.

In other words, if RA(ρδ · r2) > δ ·N2, then we have w2(A) ≥ r ·N .

Proof. For some integerM , letB andC be matrices over F of dimensionsN×M andM×N , respectively,
such that A = BC and nnz(B) + nnz(C) = r · N . For i, j ∈ [N ], let bi ∈ FM be the i-th row of B, and
cj ∈ FM be the j-th column of C. Hence, Ai,j = 〈bi, cj〉.

Now, let ρδ be a function of δ to be specified later, and set m = ρδ · r2. Pick a hash function P : [M ]→
[m] uniformly at random. Next, for each bi, we define a vector b̃i by setting, for each j ∈ [m]:

(̃bi)j :=
∑

k∈P−1(j)

(bi)k.

We similarly define c̃j . Now, let B̃ be the N ×m matrix with the b̃i’s as rows, and C̃ be the m × N
matrix with the c̃j’s as columns. We will now argue that B̃C̃ approximates A well.

First, from definition, we have

E
(i,j)∈[N ]×[N ]

nnz(bi) + nnz(cj) =
nnz(A) + nnz(B)

N
= r.

Hence, by Markov’s inequality, for at least a 1 − δ/2 fraction of the pairs (i, j) ∈ [N ] × [N ], we have
nnz(bi) + nnz(cj) ≤ r · 2

δ .
Fix such a pair of (i, j), and let I = {k ∈ [M ] : (bi)k 6= 0 ∨ (cj)k 6= 0}, which has size |I| ≤ r · 2

δ .
Note that if all the elements of I have distinct images under the mapping P , then 〈̃bi, c̃j〉 = 〈bi, cj〉 = Mi,j .
By a union bound, this happens with probability at least 1− |I|2/m over the random choice of P .

Setting ρδ = (2
δ )3, we have 1 − |I|2/m ≥ 1 − δ/2. Thus, by the probabilistic method, there is a fixed

P for which B̃C̃ agrees with A on a 1− δ fraction of inputs, and hence RA(ρδ · r2) ≤ δ ·N2.

Theorem 1.6 then follows by combining Lemma 6.2, Theorem 1.1, and Theorem 1.2.

7 Threshold Circuit Lower Bound for ENP

Definition 7.1. For a Boolean function f : {0, 1}n → {0, 1}, its truth-table matrix is the matrix Mf ∈
F2n/2×2n/2

2 which is given by Mf [x, y] = f(x, y) for all x, y ∈ {0, 1}n/2.

In this section, we prove threshold circuit lower bounds for ENP.

Reminder of Theorem 1.7 For every δ > 0 and prime p, there is an a > 0 such that the class ENP does
not have non-uniform AC0[p] ◦ LTF ◦ AC0[p] ◦ LTF circuits of depth o(log n/ log log n) where the bottom
LTF layer has 2O(na) gates, the rest of the circuit has polynomial size, and the middle layer LTF gates have
fan-in O(n1/2−δ).

We prove Theorem 1.7 by combining our main results, rigidity lower bounds for matrices which can be
computed in PNP (and hence which are the truth tables of functions in ENP), with a rigidity upper bound for
such threshold circuits:
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Lemma 7.2. For any prime p and constants c, δ, a > 0 such that c > δ and δ2 > 2ca, there is a constant
γ > 0 such that every AC0[p]◦LTF◦AC0[p]◦LTF circuit C on n inputs, where the bottom layer has 2O(na)

LTF gates, the middle layer LTF gates have fan-in O(nc−δ), and the rest of the circuit has polynomial size
and depth o(log n/ log logn), has RMC

(2n
c/2−γ

) ≤ ε2n for all ε ≥ 1/2n
o(1)

over Fp.

Lemma 7.2 is a variant on [AW17, Theorem C.1], and its proof is very similar. We nonetheless give the
proof here as some important details are different. We begin with some definitions.

Definition 7.3. A ε-error probabilistic polynomial for a Boolean function f : {0, 1}n → {0, 1} over a field
F is a distribution Q on polynomials q : Fn → F such that, for all x ∈ {0, 1}n, we have Prq∼Q[q(x) =
f(x)] ≥ 1− ε. The degree of Q is the maximum degree of the polynomials in its support. The ε-error prob-
abilistic degree of Boolean function f over F is the minimum degree of an ε-error probabilistic polynomial
for f over F.

Definition 7.4. The ε-probabilistic rank of a Boolean function f : {0, 1}2n → {0, 1} is the minimum r
such that there is a distribution D on matrices in F2n×2n of rank at most r such that for all x, y ∈ {0, 1}n
we have PrM∼D[M [x, y] = f(x, y)] ≥ 1− ε.

Rigidity, probabilistic rank, and probabilistic degree have a simple known relationship:

Proposition 7.5. For a Boolean function f : {0, 1}2n → {0, 1}:

• If the ε-probabilistic degree of f is d, then the ε-probabilistic rank of f is at most nO(d).

• If the ε-probabilistic rank of f is r, then RMf
(r) ≤ ε22n.

Our proof will make use of a number of probabilistic polynomial and probabilistic rank constructions
from past work:

Lemma 7.6 ([KS12] Lemma 10). For any prime p and ε ∈ (0, 1/2), any AC0[p] circuit C of size s and
depth d has an ε-error probabilistic polynomial over Fp of degree at most (log s)O(d) · log(1/ε).

Theorem 7.7 ([AW15] Theorem 1.1). Every symmetric Boolean function on n variables has ε-probabilistic
degree O(

√
n log(1/ε)).

Lemma 7.8 ([AW17] Theorem D.3). For every n, every linear threshold function on n inputs has ε-
probabilistic rank O(n2/ε).

Theorem 7.9 ([MT98] Theorem 3.3, [ACW16] Theorem 7.1). For every α > 0, every LTF on n inputs can
be computed by a polynomial-size AC0 ◦ MAJ circuit where the fan-in of each MAJ gate is n1+α and the
circuit has depth O(log(1/α)).

Proof of Lemma 7.2. Let b ≤ 2O(na) be the number of LTF gates in the bottom layer of C. We know by
Lemma 7.8 that each of these b LTF gates has ε/(2b)-probabilistic rank O(n2b/ε). We will next show
that there is an ε/2-error probabilistic polynomial of degree O(nc/2−a−γ

′
) for computing all the layers of

C above the bottom LTF layer, for some γ′ > 0. We can then view the terms of the probabilistic rank
expressions for the bottom layer LTF gates as ‘variables’ that we substitute into this polynomial. Since
there are b such gates, each with rank O(n2b/ε), the resulting probabilistic rank expression for C has rank
O(n2b2/ε)O(nc/2−a−γ) ≤ 2O(nc/2−γ) for any γ < γ′. (Here we used that ε ≥ 2n

o(1)
.) By a union bound, the

resulting error is at most ε.
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It remains to bound the ε/2-probabilistic degree of a AC0[⊕] ◦ LTF ◦ AC0[⊕] circuit on n inputs of
polynomial size and depth d ≤ o(log n/ log logn), where the LTF gates have fan-in O(nc−δ). First, ap-
plying Theorem 7.9 with α = δ/c to the LTF gates, we reduce the circuit to a AC0[⊕] ◦ MAJ ◦ AC0[⊕]
of size s = nO(1) and depth O(d), where each MAJ gate has fan-in O(n(c−δ)(1+δ/c)) = O(nc−δ

2/c). We
now use Theorem 7.7 to replace each MAJ gate with a ε/(4s)-error probabilistic polynomial of degree
O(
√
nc−δ2/c log(s/ε)) ≤ nc/2−δ

2/(2c)+o(1), and we use Lemma 7.6 to replace the AC0[⊕] circuitry with a
ε/4-error probabilistic polynomial of degree no(1) logO(d)(n) ≤ no(1). Combined, by a union bound, the
entire circuit has a ε/2-error probabilistic polynomial of degree nc/2−δ

2/(2c)+o(1). This is of the desired
form O(nc/2−a−γ

′
) for any γ′ < δ2/(2c)− a. Since we assumed that δ2 > 2ac, there are γ′ > 0 satisfying

this inequality, as desired.

Proof of Theorem 1.7. Consider first this circuit class where the middle layer LTF gates have fan-inO(n1/2−δ).
By Lemma 7.2 with c = 1/2, for every δ > 0, there are a, γ > 0 such that every circuit C in this class has
RMC

(2n
1/4−γ

) ≤ o(2n) over Fp. By comparison, Theorem 1.1 says that there is a ENP machine H such
that for all γ > 0, we have RMH

(2n
1/4−γ

) ≥ Ω(2n) over Fp.

In fact, Theorem 1.8 follows from an almost identical argument, by noting that in the proof of Lemma 7.2,
the only property of the upper AC0[p] ◦ LTF ◦ AC0[p] circuitry we used is that it has a ε-error probabilistic
polynomial of degree nc/2−Ω(1) for all constant ε > 0.
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A Algorithm for Counting Orthogonal Vectors over Finite Fields

Finally, in this Section, we give a sketch of the algorithm for Fpr -#OV which we stated in Theorem 2.9 and
which is needed by our construction above. The algorithm is a minor modification of the deterministic al-
gorithm for #OV by Chan and Williams [CW16], which makes use of the ‘polynomial method in algorithm
design.’

A.1 Reduction to Prime Fields

We begin by sketching a reduction from Fpr -#OV to Fp-#OV. More precisely, for a prime power q =
pr, we give a reduction from one instance of Fq-#OVn,d to a constant number of different instances of
Fp-#OVn,d·Or(1). The reduction builds on ideas from [LPT+17] and [Wil18a].

We first define an intermediate problem Fp-#AND-OVn,d,r: given as input two size-n collectionsA,B ⊆
(Fdq)r, with A = {a1, . . . , an} and B = {b1, . . . , bn} (so, for instance, each ai is an r-tuple of vectors from
Fdq), the goal is to compute the number of pairs (i, i′) ∈ [n]2 such that 〈ai,j , bi′,j〉 = 0 for all j ∈ [r].
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Fq-#OV⇒ Fp-#AND-OV. We first show how to reduce an Fq-#OVn,d instance to an Fp-#AND-OVn,dr2,r
instance in nearly linear time. Pick a degree-r Fp irreducible polynomial P ; we know that Fq isomorphic to
Fp[X]/(P ). In the calculations below, we perform the arithmetic mod P .

Suppose we have two vectors u, v ∈ Fdq . Let ui =
∑r−1

j=0 αi,j · Xj , and vi =
∑r−1

j=0 βi,j · Xj for
coefficients αi,j , βi,j ∈ Fp. We have that

d∑
i=1

ui · vi =

d∑
i=1

r−1∑
j=0

αi,j ·Xj

 ·
r−1∑
j=0

βi,j ·Xj


=

d∑
i=1

r−1∑
j=0

r−1∑
k=0

αi,j · βi,kXj+k.

Define the coefficients γj+k,` ∈ Fp so that Xj+k =
∑r−1

`=0 γj+k,` ·X` (mod P ). The above simplifies to

r−1∑
j=0

r−1∑
k=0

Xj+k ·
d∑
i=1

αi,j · βi,k =

r−1∑
`=0

X` ·

r−1∑
j=0

r−1∑
k=0

d∑
i=1

γj+k,` · αi,j · βi,k

 (mod P ).

We therefore see that 〈ui, vi〉 = 0 if and only if

r−1∑
j=0

r−1∑
k=0

d∑
i=1

γj+k,` · αi,j · βi,k = 0 (1)

for all 0 ≤ ` ≤ r − 1. For each `, we can build vectors u(`)
i and v(`)

i in Fr2·dp so that 〈u(`)
i , v

(`)
i 〉 equals the

left hand side of (1). This transformation reduces an Fq-#OVn,d instance to an Fp-#AND-OVn,dr2,r instance
as desired.

Fp-#AND-OV ⇒ Fp-#OV. Now, given an Fp-#AND-OVn,d,r instance with input collections A,B, we
show how to reduce it to pr different Fp-#OVn,dr+1 instances, again in nearly linear time.

Let a, b ∈ (Fdp)r. For a random vector u ∈ Frp, observe that:

• If 〈ai, bi〉 = 0 for all i ∈ [r], then
∑r

i=1 ui · 〈ai, bi〉 is always zero.

• Otherwise,
∑r

i=1 ui · 〈ai, bi〉 = 1 with probability 1/p.

For our reduction, we iterate over all vectors u ∈ Frp, and sum the number of pairs (a, b) ∈ A×B such
that

r∑
i=1

ui · 〈ai, bi〉 =

〈
r
©
i=1

uiai,
r
©
i=1

bi

〉
= 1.

For each u, this can be written as an Fp-#OVn,dr+1 instance (via 〈a, b〉 = 1⇔ 〈a ◦ 1, b ◦ −1〉 = 0).
For a pair (a, b) ∈ A × B, if 〈ai, bi〉 = 0 for all i ∈ [r], then (a, b) is never counted in the above sum.

Otherwise, it is counted pr−1 times. Therefore, by summing up the results of all these Fp-#OV instances after
the reduction, dividing the result by pr−1, and then finally subtracting the resulting number from |A| · |B|,
we can compute the answer to the given Fn,d,r-#AND-OV instance.
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A.2 Algorithm for Prime Fields

In this subsection, we give a self-contained exposition of the Fp-#OV algorithm which is implicit in [CW16].
In [CW16], the deterministic #OV algorithm works by combining two key technical tools: small-biased
sets, and modulus-amplifying polynomials. We won’t need small-biased sets here as we only aim to solve
Fpr -#OV. We first recall the definition of modulus-amplifying polynomials.

Lemma A.1 (Modulus-Amplifying Polynomial [Yao90, BT94]). For all integers ` ≥ 1, there is a poly-
nomial F` over Z of degree (2` − 1) with O(`)-bit coefficients such that for all integers m ≥ 1 and all
a ∈ Z:

(1) if a ≡ 0 (mod m) , then F`(a) ≡ 0 (mod m`), and

(2) if a ≡ 1 (mod m), F`(a) ≡ 1 (mod m`).

We also need the following algorithm for fast rectangular matrix multiplication.

Theorem A.2 ([Cop82]; see also [Wil14a]). There is an algorithm for multiplying matrices of dimensions
N ×N0.172 and N0.172 ×N over any field using N2 · polylog(N) field operations.

Now we are ready to prove Theorem 2.9 when the modulus q is a prime. The case when q is a prime
power then follows using the reduction from Subsection A.1.

Theorem A.3. For all primes p, there is an n2−Ω(1/ log(d/ logn)) time deterministic algorithm for Fp-#OVn,d,
when d = no(1).

Proof. Let ` be a parameter to be specified later. Let X,Y be two collections of p`/4 vectors from Fdp. We
define the polynomial

P (X,Y ) :=
∑

(x,y)∈X×Y

(1− F`(〈x, y〉p−1)),

where F` is the modulus-amplifying polynomial from Lemma A.1. Hence,

1− F`(〈x, y〉p−1) ≡

{
1 (mod p`) when 〈x, y〉 ≡ 0 (mod p),

0 (mod p`) when 〈x, y〉 6≡ 0 (mod p).

Let us count the number M of monomials in F`(〈x, y〉p−1) = F`((x1y1 +x2y2 + · · ·+xdyd)
p−1) when

it is expanded and simplified. F` is a polynomial of degree (2` − 1) · (p − 1) in x, y ∈ Fdp. In particular,
since we are working over Fp, we may simplify F` so that each of the 2d input variables has individual
degree at most p − 1 in any given monomial. Thus, using the simple bound that no monomial depends on
more variables than the degree of the polynomial, combined with the fact that the power of xi in a given
monomial is always equal to the power of yi in that monomial, we get the bound

M ≤ (p− 1)2`·p ·
2`·p∑
i=0

(
d

i

)
≤ (p− 1)2`·p ·O

(
d

` · p

)2`·p
≤ O

(
d

`

)2`·p
.

Next, we will construct two mappings ΦX ,ΦY : (Fdp)p
`/4 → ZM such that for any X,Y ∈ (Fdp)p

`/4
,

P (X,Y ) = 〈ΦX(X),ΦY (Y )〉.
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We construct ΦX ,ΦY as follows. For a set S ⊆ [d], let xS (resp. yS) denote
∏
i∈S xi (

∏
i∈S yi). Let

S1, S2, . . . , SM be an enumeration of all subsets of [d] of size no greater than (2`− 1) · (p− 1). There are
corresponding coefficients c1, c2, . . . , cM ∈ Z such that

1− F`(〈x, y〉p−1) =

M∑
i=1

ci · xSi · ySi .

We can then define

ΦX(X) :=

(∑
x∈X

c1 · xS1 ,
∑
x∈X

c2 · xS2 , . . . ,
∑
x∈X

cM · xSM

)
,

ΦY (Y ) :=

∑
y∈Y

yS1 ,
∑
y∈Y

yS2 , . . . ,
∑
y∈Y

ySM

 ,

and it follows that

〈ΦX(X),ΦY (Y )〉 =

M∑
i=1

∑
(x,y)∈X×Y

ci · xSi · ySi = P (X,Y ).

Picking c = d/ log n and ` = ε/p · log n/ log c for a small enough constant ε, we have

M ≤ O
(
c log n

`

)2`·p
= O

(
p · c log c

ε

)2ε logn/ log c

≤ n0.01.

Let b = p`/4 (and set ε small enough so that b ≤ n0.01 as well). We partitionA (resp. B) into n/b blocks
A1, A2, . . . , An/b (B1, B2, . . . , Bn/b), each of size b. We then apply the algorithm from Theorem A.2 to
evaluate P (Ai, Bj) for each (i, j) ∈ [n/b]×[n/b] in (n/b)2 ·polylog(n) = n2−1/O(log c) time by multiplying
two matrices of dimensions n/b× n0.01 and n0.01 × n/b over Z whose entries are polylog(n)-bit integers.
Since

P (Ai, Bj) ≡
∑

(x,y)∈Ai×Bj

[〈x, y〉 ≡ 0 (mod p)] (mod p`),

this allows us to solve Fp-#OV in n2−1/O(log c) time.

References

[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of threshold
functions and algorithmic applications. In FOCS, pages 467–476. IEEE, 2016.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of mathematics,
pages 781–793, 2004.

[AKW90] Noga Alon, Mauricio Karchmer, and Avi Wigderson. Linear circuits over gf(2). SIAM Journal
on Computing, 19(6):1064–1067, 1990.

29



[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors. In
FOCS, pages 136–150. IEEE, 2015.

[AW17] Josh Alman and R. Ryan Williams. Probabilistic rank and matrix rigidity. In STOC, pages
641–652. ACM, 2017.
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