On the power of Statistical Zero Knowledge

Lijie Chen Joint work with Adam Bouland, Dhiraj Holden, Justin Thaler and Prashant Nalini Vasudevan Most graphics are credited to Adam Bouland

UC Berkeley MIT Georgetown University

October 17, 2017

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017 1 / 27

Zero Knowledge Proof [Goldwasser Micali Rackoff '84]

Alice wants to convince Bob that a certain statement is true,

• but doesn't want him to know anything more.

• Alice wants to convince Bob that coke and pepsi are different.

On the Power of SZK

< (T) >

- Alice wants to convince Bob that coke and pepsi are different.
- **Protocol**: Bob flips a random coin, secretly pours coke or pepsi into a glass.

- Alice wants to convince Bob that coke and pepsi are different.
- **Protocol**: Bob flips a random coin, secretly pours coke or pepsi into a glass.
- Alice answers whether it is coke or pepsi.

- Alice wants to convince Bob that coke and pepsi are different.
- **Protocol**: Bob flips a random coin, secretly pours coke or pepsi into a glass.
- Alice answers whether it is coke or pepsi.
- Zero knowledge: since Bob already knew the answer.

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

• Bob doesn't know any additional information:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Bob doesn't know any additional information:

• \Leftrightarrow Everything Bob learns from Alice, he can produce by himself.

- 4回 ト 4 日 ト 4 日

- Bob doesn't know any additional information:
- \Leftrightarrow Everything Bob learns from Alice, he can produce by himself.
- All information Bob gets from Alice is a (distribution of) conversation which convinced him.

- Bob doesn't know any additional information:
- \Leftrightarrow Everything Bob learns from Alice, he can produce by himself.
- All information Bob gets from Alice is a (distribution of) conversation which convinced him.
- $\Pi_{A\leftrightarrow B}$: the distribution of the conversation between Alice and Bob.

- Bob doesn't know any additional information:
- \Leftrightarrow Everything Bob learns from Alice, he can produce by himself.
- All information Bob gets from Alice is a (distribution of) conversation which convinced him.
- $\Pi_{A \leftrightarrow B}$: the distribution of the conversation between Alice and Bob.
- \Leftrightarrow Bob can produce a distribution of the conversation Π_B which "looks like" $\Pi_{A \leftrightarrow B}$. (In the YES case.)

• By $\Pi_{A\leftrightarrow B}$ "looks like" Π_B , in SZK, it means...

イロト 不得下 イヨト イヨト 二日

- By $\Pi_{A\leftrightarrow B}$ "looks like" Π_B , in SZK, it means...
- (Statistical Zero Knowledge Proof) SZK : Roughly the same, the total variational distance between Π_{A↔B} and Π_B are inverse exponentially small. (In the YES case)

< 日 > < 同 > < 三 > < 三 >

- By $\Pi_{A\leftrightarrow B}$ "looks like" Π_B , in SZK, it means...
- (Statistical Zero Knowledge Proof) SZK : Roughly the same, the total variational distance between Π_{A↔B} and Π_B are inverse exponentially small. (In the YES case)
- Indeed, our results apply for the following sub-class of SZK.

< 日 > < 同 > < 三 > < 三 >

- By $\Pi_{A\leftrightarrow B}$ "looks like" Π_B , in SZK, it means...
- (Statistical Zero Knowledge Proof) SZK : Roughly the same, the total variational distance between Π_{A↔B} and Π_B are inverse exponentially small. (In the YES case)
- Indeed, our results apply for the following sub-class of SZK.
- (Non-Interactive Statistical Zero Knowledge Proof) NISZK : Alice doesn't interact with Bob, just say something and leave (they share public random bits)

イロト イポト イヨト イヨト 二日

This work: Exploring the Power of SZK Motivation

• Evidence that SZK contains some very hard problems.

On the Power of SZK

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

This work: Exploring the Power of SZK Motivation

• Evidence that SZK contains some very hard problems.

• Relationship between several different kinds of proof systems related to SZK.

- Result I : Query SZK is very powerful.
 - Black-box SZK contains problem outside of PP, open since [Watrous'02]. (an oracle separation between SZK and PP)

< □ > < □ > < □ > < □ > < □ > < □ >

• Result I : Query SZK is very powerful.

- Black-box SZK contains problem outside of PP, open since [Watrous'02]. (an oracle separation between SZK and PP)
- Result II : Communication SZK is very powerful.
 - SZK^{cc} lies outside of UPP^{cc}, open since [Göös, Pitassi and Watson'15].

< □ > < □ > < □ > < □ > < □ > < □ >

• Result I : Query SZK is very powerful.

- Black-box SZK contains problem outside of PP, open since [Watrous'02]. (an oracle separation between SZK and PP)
- Result II : Communication SZK is very powerful.
 - SZK^{cc} lies outside of UPP^{cc}, open since [Göös, Pitassi and Watson'15].
- Result III : SZK may be larger than PZK.
 - Black-box SZK contains problems outside of PZK, open since [Aiello Hastad'91]. (an oracle separation between SZK and PZK).

< 日 > < 同 > < 三 > < 三 >

• Result I : Query SZK is very powerful.

- Black-box SZK contains problem outside of PP, open since [Watrous'02]. (an oracle separation between SZK and PP)
- Result II : Communication SZK is very powerful.
 - SZK^{cc} lies outside of UPP^{cc}, open since [Göös, Pitassi and Watson'15].
- Result III : SZK may be larger than PZK.
 - Black-box SZK contains problems outside of PZK, open since [Aiello Hastad'91]. (an oracle separation between SZK and PZK).
- And more!

< □ > < □ > < □ > < □ > < □ > < □ >

New Oracle Separations (Result I & III)

solid line : containment dashed line : separation black : known results red : new results

October 17, 2017 7 / 27

- Applications to Crypto \Rightarrow need SZK to contain problems outside of P or BPP.
 - Quadratic Residuosity.
 - Some lattice problems.

(4 個) トイヨト イヨト

- Applications to Crypto \Rightarrow need SZK to contain problems outside of P or BPP.
 - Quadratic Residuosity.
 - Some lattice problems.
- What is the evidence that SZK contains some really hard problems?

- Applications to Crypto ⇒ need SZK to contain problems outside of P or BPP.
 - Quadratic Residuosity.
 - Some lattice problems.
- What is the evidence that SZK contains some really hard problems?
- **Obstacle:** $P \neq SZK$ implies $P \neq NP$
 - $\bullet \ \mathsf{P} = \mathsf{NP} \implies \mathsf{P} = \mathsf{PH} \text{ and } \mathsf{SZK} \subseteq \mathsf{PH}.$

- 小田 ト イ ヨ ト イ ヨ ト

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.

A (1) < A (1) < A (1)</p>

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.
- Relativized SZK contains problems outside of:

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.
- Relativized SZK contains problems outside of:
 - [Aiello Hastad'91]: BPP

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.
- Relativized SZK contains problems outside of:
 - [Aiello Hastad'91]: BPP
 - [Aaronson'02]: BQP

- 小田 ト イ ヨ ト イ ヨ ト

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.
- Relativized SZK contains problems outside of:
 - [Aiello Hastad'91]: BPP
 - [Aaronson'02]: BQP
 - [Aaronson'12]: QMA (quantum version of NP)

< 日 > < 同 > < 三 > < 三 >

- So what about the relativized(query) version of SZK (e.g. oracle separation?)
 - Query Complexity: just count the number of queries to an oracle, and don't have limitation on computational resources.
- Relativized SZK contains problems outside of:
 - [Aiello Hastad'91]: BPP
 - [Aaronson'02]: BQP
 - [Aaronson'12]: QMA (quantum version of NP)
- [Watrous'02]: Does relativized SZK contain problems outside of PP? (PP is the smallest natural classical class containing BQP.)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Probabilistic Polynomial-Time (PP)

- Languages decidable by poly-time randomized algorithms with unbounded error.
 - If Yes: $\Pr[\mathsf{accept}] > 1/2$.
 - If No: $\Pr[\mathsf{accept}] < 1/2$.
 - Gap may be exponentially small. (because there is only polynomial number of coin flips).
- PP is very powerful : PP contains NP and P^{PP} contains PH by [Toda'91].

- 本間 と く ヨ と く ヨ と 二 ヨ

• A PP algorithm in query complexity is similar to randomized query algorithms, except for that it only needs to be correct on every input w.p. > 0.5.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- A PP algorithm in query complexity is similar to randomized query algorithms, except for that it only needs to be correct on every input w.p. > 0.5.
 - The complexity of an algorithm is the **sum** of the number of bits it queried

(4) (日本)

- A PP algorithm in query complexity is similar to randomized query algorithms, except for that it only needs to be correct on every input w.p. > 0.5.
 - The complexity of an algorithm is the **sum** of the number of bits it queried
 - and the number of random bits it used.

4 AR & 4 E & 4 E &

- A PP algorithm in query complexity is similar to randomized query algorithms, except for that it only needs to be correct on every input w.p. > 0.5.
 - The complexity of an algorithm is the **sum** of the number of bits it queried
 - and the number of random bits it used.
 - a *d*-cost PP query algorithm must have gap $\geq 2^{-d}$.

イヨト イヨト イヨト

PP in query complexity

- A PP algorithm in query complexity is similar to randomized query algorithms, except for that it only needs to be correct on every input w.p. > 0.5.
 - The complexity of an algorithm is the **sum** of the number of bits it queried
 - and the number of random bits it used.
 - a *d*-cost PP query algorithm must have gap $\geq 2^{-d}$.

On the Power of SZK

• similar to PP query algorithms.

イロト イポト イヨト イヨト 二日

- similar to PP query algorithms.
- an UPP algorithm in query complexity is **not** charged for using random bits (or runtime).
- only charged for query.

- 4 回 ト 4 三 ト 4 三 ト

- similar to PP query algorithms.
- an UPP algorithm in query complexity is **not** charged for using random bits (or runtime).
- only charged for query.
- the gap can be arbitrarily small.

4 AR & 4 E & 4 E &

- similar to PP query algorithms.
- an UPP algorithm in query complexity is **not** charged for using random bits (or runtime).
- only charged for query.
- the gap can be arbitrarily small.
- UPP query complexity is equivalent to
 - Threshold Degree of f: $\deg_{\pm}(f)$, the least degree polynomial p which sign-represents f
 - p(x) > 0 when f(x) = 1, and p(x) < 0 when f(x) = 0.

• **Result I**: relativized version of SZK (indeed NISZK) contains problem outside of PP (even UPP).

< □ > < □ > < □ > < □ > < □ > < □ >

- **Result I**: relativized version of SZK (indeed NISZK) contains problem outside of PP (even UPP).
- A query problem with polylog(n)-SZK algorithm, has no $o(n^{1/4})$ UPP algorithm.
 - implies an oracle separation between SZK and PP. (Answer [Watrous'02]).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **Result I**: relativized version of SZK (indeed NISZK) contains problem outside of PP (even UPP).
- A query problem with polylog(n)-SZK algorithm, has no $o(n^{1/4})$ UPP algorithm.
 - implies an oracle separation between SZK and PP. (Answer [Watrous'02]).
- since PP = PostBQP ([Aaronson'05]), even post-selected quantum algorithms can not crack SZK in a black-box way.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- **Result I**: relativized version of SZK (indeed NISZK) contains problem outside of PP (even UPP).
- A query problem with polylog(n)-SZK algorithm, has no $o(n^{1/4})$ UPP algorithm.
 - implies an oracle separation between SZK and PP. (Answer [Watrous'02]).
- since PP = PostBQP ([Aaronson'05]), even post-selected quantum algorithms can not crack SZK in a black-box way.
- A brief overview of how is it proved.

• Difficulty: All previous hard problems from SZK are actually in PP.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Difficulty: All previous hard problems from SZK are actually in PP.
- Collision: Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.

< □ > < □ > < □ > < □ > < □ > < □ >

- Difficulty: All previous hard problems from SZK are actually in PP.
- Collision: Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - has a constant query SZK protocol.

< □ > < □ > < □ > < □ > < □ > < □ >

- Difficulty: All previous hard problems from SZK are actually in PP.
- Collision: Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - has a constant query SZK protocol.
 - requires Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
 - which implies the $\Omega(\textit{n}^{1/3})$ quantum query complexity lower bound.

イロト イポト イヨト イヨト 二日

- Difficulty: All previous hard problems from SZK are actually in PP.
- Collision: Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - has a constant query SZK protocol.
 - requires Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
 - which implies the $\Omega(\textit{n}^{1/3})$ quantum query complexity lower bound.
- Unfortunately it is in PP:
 - whether there are collisions, in fact in NP.

イロト イポト イモト イモト

- Difficulty: All previous hard problems from SZK are actually in PP.
- Collision: Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - has a constant query SZK protocol.
 - requires Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
 - which implies the $\Omega(\textit{n}^{1/3})$ quantum query complexity lower bound.
- Unfortunately it is in PP:
 - whether there are collisions, in fact in NP.
- Sad reality: PP is too powerful.

イロト イポト イヨト イヨト 二日

• Hand-waving Intuition: find something which is easy for SZK, but hard for PP. (In query complexity setting)

< □ > < □ > < □ > < □ > < □ > < □ >

- Hand-waving Intuition: find something which is **easy** for SZK, but hard for PP. (In query complexity setting)
- Randomized Reduction! (the BP operator).
 - BP $\cdot C$: $L \in$ BP $\cdot C$ iff there is a poly-time randomized reduction T and a language $L' \in C$ such that

$$\begin{array}{l} x \in \mathcal{L} \implies \Pr[\mathcal{T}(x) \in \mathcal{L}'] \geq 2/3 \\ x \notin \mathcal{L} \implies \Pr[\mathcal{T}(x) \in \mathcal{L}'] \leq 1/3 \end{array}$$

(4) (日本)

- Hand-waving Intuition: find something which is **easy** for SZK, but hard for PP. (In query complexity setting)
- Randomized Reduction! (the BP operator).
 - BP $\cdot C : L \in BP \cdot C$ iff there is a poly-time randomized reduction T and a language $L' \in C$ such that

$$\begin{array}{l} x \in \mathcal{L} \implies \Pr[\mathcal{T}(x) \in \mathcal{L}'] \geq 2/3 \\ x \notin \mathcal{L} \implies \Pr[\mathcal{T}(x) \in \mathcal{L}'] \leq 1/3 \end{array}$$

• $BP \cdot NP = AM$, $BP \cdot P = BPP$.

- Hand-waving Intuition: find something which is easy for SZK, but hard for PP. (In query complexity setting)
- Randomized Reduction! (the BP operator).
 - BP $\cdot C$: $L \in$ BP $\cdot C$ iff there is a poly-time randomized reduction T and a language $L' \in C$ such that

$$\begin{array}{l} x \in L \implies \Pr[T(x) \in L'] \geq 2/3 \\ x \notin L \implies \Pr[T(x) \in L'] \leq 1/3 \end{array}$$

• $BP \cdot NP = AM$, $BP \cdot P = BPP$.

 Easy for SZK: SZK is closed under-randomized reduction. (BP · SZK = SZK relative to all oracles). [Sahai and Vadhan'97]

イロト イポト イヨト イヨト 二日

- Hand-waving Intuition: find something which is easy for SZK, but hard for PP. (In query complexity setting)
- Randomized Reduction! (the BP operator).
 - BP $\cdot C$: $L \in$ BP $\cdot C$ iff there is a poly-time randomized reduction T and a language $L' \in C$ such that

$$\begin{array}{l} x \in L \implies \Pr[T(x) \in L'] \geq 2/3 \\ x \notin L \implies \Pr[T(x) \in L'] \leq 1/3 \end{array}$$

• $BP \cdot NP = AM$, $BP \cdot P = BPP$.

- Easy for SZK: SZK is closed under-randomized reduction. (BP · SZK = SZK relative to all oracles). [Sahai and Vadhan'97]
- Hard for PP: PP is not closed under randomized reduction for some oracle O.
 - In fact, $(\mathsf{BP}\cdot\mathsf{NP})^\mathcal{O} = \mathsf{AM}^\mathcal{O} \not\subset \mathsf{PP}^\mathcal{O}$ [Vereshchagin'92].

• What we have : a function $f: \{0,1\}^M \to \{0,1\}$.

• What we have : a function $f: \{0,1\}^M \to \{0,1\}$.

• Gapped Majority: $F := \text{GapMaj}_d(f) : \{0,1\}^{d \cdot M} \to \{0,1\}$

• What we have : a function $f: \{0,1\}^M \to \{0,1\}$.

- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0, 1\}^{d \cdot M} \to \{0, 1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \ldots, x_d).$

- What we have : a function $f: \{0,1\}^M \to \{0,1\}$.
- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0, 1\}^{d \cdot M} \to \{0, 1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \dots, x_d).$
 - F(x) = 1 when 2/3 of the $f(x_i)$'s are 1.

- What we have : a function $f: \{0,1\}^M \to \{0,1\}$.
- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0,1\}^{d \cdot M} \to \{0,1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \dots, x_d).$
 - F(x) = 1 when 2/3 of the $f(x_i)$'s are 1.
 - F(x) = 0 when 2/3 of the $f(x_i)$'s are 0.

- What we have : a function $f: \{0,1\}^M \to \{0,1\}$.
- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0, 1\}^{d \cdot M} \to \{0, 1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \dots, x_d).$
 - F(x) = 1 when 2/3 of the $f(x_i)$'s are 1.
 - F(x) = 0 when 2/3 of the $f(x_i)$'s are 0.
 - undefined otherwise.

- What we have : a function $f: \{0,1\}^M \to \{0,1\}$.
- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0, 1\}^{d \cdot M} \to \{0, 1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \ldots, x_d).$
 - F(x) = 1 when 2/3 of the $f(x_i)$'s are 1.
 - F(x) = 0 when 2/3 of the $f(x_i)$'s are 0.
 - undefined otherwise.

• Captures what can be randomized reduced to f.

- What we have : a function $f: \{0,1\}^M \to \{0,1\}$.
- Gapped Majority: $F := \text{GapMaj}_d(f) : \{0, 1\}^{d \cdot M} \to \{0, 1\}$
 - Given *d* copies of inputs x_1, x_2, \ldots, x_d to *f*.
 - $x = (x_1, x_2, \ldots, x_d).$
 - F(x) = 1 when 2/3 of the $f(x_i)$'s are 1.
 - F(x) = 0 when 2/3 of the $f(x_i)$'s are 0.
 - undefined otherwise.
- Captures what can be randomized reduced to f.

• Intuition:

• Since randomized reduction is hard for PP, GapMaj_d(f) should be harder than f for PP in some sense.

On the Power of SZK

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Core Technique Result: Hardness Amplification Theorem Gapped Majority is really hard for PP

1 when 2/3 of $f(x_i)$'s are 1 0 when 2/3 of $f(x_i)$'s are 0

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017 17 / 27

< □ > < □ > < □ > < □ > < □ > < □ >

Core Technique Result: Hardness Amplification Theorem Gapped Majority is really hard for PP

• Proved by constructing the dual object to witness the high threshold degree. ([Sherstov'14],[Bun and Thaler'15]).

< □ > < □ > < □ > < □ > < □ > < □ >

Core Technique Result: Hardness Amplification Theorem Gapped Majority is really hard for PP

- Proved by constructing the dual object to witness the high threshold degree. ([Sherstov'14],[Bun and Thaler'15]).
- Actually it has a converse, when f has a degree d L_{∞} -approximate-polynomial, GapMaj_d(f) has threshold degree O(d).

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017

17 / 27

- Collision : Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - constant query SZK protocol.
 - require Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]

- Collision : Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - constant query SZK protocol.
 - require Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
- Compose Gapped-Majority with Collision.
 - $F := \operatorname{GapMaj}_{n^{1/3}}(\operatorname{Collision}).$

- Collision : Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - constant query SZK protocol.
 - require Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
- Compose Gapped-Majority with Collision.
 - $F := \text{GapMaj}_{n^{1/3}}(\text{Collision}).$
 - *F* still in SZK, because BP · SZK = SZK (SZK is closed under randomized reduction). [Sahai and Vadhan'97]

- Collision : Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - constant query SZK protocol.
 - require Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
- Compose Gapped-Majority with Collision.
 - $F := \text{GapMaj}_{n^{1/3}}(\text{Collision}).$
 - *F* still in SZK, because BP · SZK = SZK (SZK is closed under randomized reduction). [Sahai and Vadhan'97]
 - *F* has threshold degree $\Omega(n^{1/4})$. [Our Work]

- Collision : Distinguish whether a given function from [n] to [n] is 1-to-1 or 2-to-1.
 - constant query SZK protocol.
 - require Ω(n^{1/3}) (bounded) approximate polynomial degree.
 [Aaronson'02],[Aaronson and Shi'04],[Ambainis'05],[Kutin'05]
- Compose Gapped-Majority with Collision.
 - $F := \text{GapMaj}_{n^{1/3}}(\text{Collision}).$
 - *F* still in SZK, because BP · SZK = SZK (SZK is closed under randomized reduction). [Sahai and Vadhan'97]
 - *F* has threshold degree $\Omega(n^{1/4})$. [Our Work]
- Implies our separation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

• Result 2: SZK^{cc} (even NISZK^{cc}) is not contained in UPP^{cc}.

< □ > < □ > < □ > < □ > < □ > < □ >

• Result 2: SZK^{cc} (even NISZK^{cc}) is not contained in UPP^{cc}.

- Answers [Göös, Pitassi and Watson'15].
 - [GPW'15] : can we show $(AM^{cc} \cap coAM^{cc}) \not\subseteq UPP^{cc}$?

•
$$SZK \subseteq (AM^{cc} \cap coAM^{cc}) \subseteq AM^{cc}$$
.

UPP^{CC} AM^{CC} Can prove lower bounds Can't prove lower bounds

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017 20 / 27

э

< □ > < □ > < □ > < □ > < □ > < □ >

UPPCC

• AM^{cc} : Notoriously hard to prove a communication complexity lower bound against it (first step toward proving lower bound for PH^{cc}).

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017 20 / 27

イヨト イモト イモト

- AM^{cc}: Notoriously hard to prove a communication complexity lower bound against it (first step toward proving lower bound for PH^{cc}).
- UPP^{cc} : the strongest class we know how to prove non-trivial communication lower bound.

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

On the Power of SZK

October 17, 2017 21 / 27

э

• Not possible to use UPP lower bound to prove AM^{cc} lower bound.

イヨト イモト イモト

- Not possible to use UPP lower bound to prove AM^{cc} lower bound.
- Some related previous work:

4 AR & 4 E & 4 E &

- Not possible to use UPP lower bound to prove AM^{cc} lower bound.
- Some related previous work:
 - [Razbarov and Sherstov'2010] : $PH^{cc} \not\subseteq UPP^{cc}$ (infact Σ_2^{cc} , $AM^{cc} \subseteq \Sigma_2^{cc}$).

・ 何 ト ・ ヨ ト ・ ヨ ト

- Not possible to use UPP lower bound to prove AM^{cc} lower bound.
- Some related previous work:
 - [Razbarov and Sherstov'2010] : $PH^{cc} \not\subseteq UPP^{cc}$ (infact Σ_2^{cc} , $AM^{cc} \subseteq \Sigma_2^{cc}$).
 - [Klauck'2011]: $(AM^{cc} \cap coAM^{cc}) \not\subseteq PP^{cc}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Not possible to use UPP lower bound to prove AM^{cc} lower bound.
- Some related previous work:
 - [Razbarov and Sherstov'2010] : $PH^{cc} \not\subseteq UPP^{cc}$ (infact Σ_2^{cc} , $AM^{cc} \subseteq \Sigma_2^{cc}$).
 - [Klauck'2011]: $(AM^{cc} \cap coAM^{cc}) \not\subseteq PP^{cc}$.
 - **Our improvement** : NISZK^{cc} $\not\subseteq$ UPP^{cc}, NISZK^{cc} \subseteq SZK^{cc} \subseteq AM^{cc}.

 Moral : Communication SZK contains some very hard problems(even outside of UPP), which explains why we can't prove lower bounds for AM^{cc}.

(4) (日本)

 Zero Knowledge : Bob gets no additional information from Alice ⇔ Bob can produce a "simulated" prover which looks like Alice.

< (17) > < (27 >)

- Zero Knowledge : Bob gets no additional information from Alice ⇔ Bob can produce a "simulated" prover which looks like Alice.
- **Statistical** Zero Knowledge (SZK) : the simulated prover looks the same as Alice except for an inverse exponential total variational distance.

- Zero Knowledge : Bob gets no additional information from Alice ⇔ Bob can produce a "simulated" prover which looks like Alice.
- **Statistical** Zero Knowledge (SZK) : the simulated prover looks the same as Alice except for an inverse exponential total variational distance.
- **Perfect** Zero Knowledge (PZK) : the simulated prover looks exactly the same as Alice.

- Zero Knowledge : Bob gets no additional information from Alice ⇔ Bob can produce a "simulated" prover which looks like Alice.
- **Statistical** Zero Knowledge (SZK) : the simulated prover looks the same as Alice except for an inverse exponential total variational distance.
- **Perfect** Zero Knowledge (PZK) : the simulated prover looks exactly the same as Alice.
- Non-Interactive Zero Knowledge (NISZK or NIPZK) : no interaction, Alice says something and just leave. (they share some public random bits).

Bouland - Chen- Holden - Thaler - Vasudevan

On the Power of SZK

October 17, 2017 23 / 27

イロト 不得 トイヨト イヨト 二日

What is the relationship between these classes?

• Two intriguing open questions here:

< □ > < □ > < □ > < □ > < □ > < □ >

What is the relationship between these classes?

- Two intriguing open questions here:
 - Is SZK equal to PZK (or at least an oracle separation)? [Aiello Hastad'91]

(4 個) トイヨト イヨト

What is the relationship between these classes?

- Two intriguing open questions here:
 - Is SZK equal to PZK (or at least an oracle separation)? [Aiello Hastad'91]
 - Is PZK closed under complement, the same way that SZK is [Sahai Vadhan'99] (or at least an oracle separation)?

Our Result

Result III: There exists an oracle O such that SZK^O ≠ PZK^O.

- 20

イロト イポト イヨト イヨト

Our Result

- Result III: There exists an oracle O such that
 SZK^O ≠ PZK^O.
- We also have
 - $coPZK^{\mathcal{O}} \neq PZK^{\mathcal{O}}$.
 - $coNIPZK^{\mathcal{O}} \neq NIPZK^{\mathcal{O}}$.

- 31

< 日 > < 同 > < 三 > < 三 >

Our Result

- Result III: There exists an oracle O such that
 SZK^O ≠ PZK^O.
- We also have
 - $coPZK^{\mathcal{O}} \neq PZK^{\mathcal{O}}$.
 - $coNIPZK^{\mathcal{O}} \neq NIPZK^{\mathcal{O}}$.
- Therefore SZK may be more powerful than PZK, and any proof that SZK = PZK, or PZK = coPZK, must be nonrelativizing.

(4 個) トイヨト イヨト

• Lemma: $\mathsf{PZK}^{\mathcal{O}} \subseteq \mathsf{PP}^{\mathcal{O}}$, relative to all oracle \mathcal{O} .

On the Power of SZK

October 17, 2017 26 / 27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Technique

Lemma: PZK^O ⊆ PP^O, relative to all oracle O. SZK^O ⊈ PP^O ⇒ SZK^O ≠ PZK^O.

Technique

- Lemma: PZK^O ⊆ PP^O, relative to all oracle O.
 SZK^O ⊈ PP^O ⇒ SZK^O ≠ PZK^O.
- For $PZK^{\mathcal{O}} \neq coPZK^{\mathcal{O}}$, we use a different proof with another hardness amplification theorem.

イロト 不得下 イヨト イヨト 二日

Thanks!

Bouland-Chen-Holden-Thaler-Vasudevan

On the Power of SZK

October 17, 2017 27 / 27

3

< □ > < □ > < □ > < □ > < □ >