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Abstract. Following the seminal work of [Williams, J. ACM 2014], in a recent breakthrough,4
[Murray and Williams, STOC 2018] proved that NQP (non-deterministic quasi-polynomial time)5
does not have polynomial-size ACC0 circuits (constant-depth circuits consisting of AND/OR/MODm6
gates for a fixed constant m, a frontier class in circuit complexity).7

We strengthen the above lower bound to an average case one, by proving that for all constants c,8
there is a language in NQP that cannot be (1/2 + 1/ logc n)-approximated by polynomial-size ACC09
circuits. Our work also improves the average-case lower bound for NEXP against polynomial-size10
ACC0 circuits by [Chen, Oliveira, and Santhanam, LATIN 2018].11

Our new lower bound builds on several interesting components, including:12
1. Barrington’s theorem and the existence of an NC1-complete language that is random self-13

reducible.14
2. The sub-exponential witness-size lower bound for NE against ACC0 and the conditional15

non-deterministic PRG construction in [Williams, SICOMP 2016].16
3. An “almost” almost-everywhere MA average-case lower bound (which strengthens the cor-17

responding worst-case lower bound in [Murray and Williams, STOC 2018]).18
4. A PSPACE-complete language that is downward self-reducible, same-length checkable,19

error-correctable, and paddable. Moreover, all its reducibility properties have correspond-20
ing low-depth non-adaptive oracle circuits. Our construction builds on [Trevisan and Vad-21
han, Computational Complexity 2007].22

Like other lower bounds proved via the “algorithmic approach”, the only property of ACC023
exploited by us is the existence of a non-trivial SAT algorithm for ACC0 [Williams, J. ACM 2014].24
Therefore, for any typical circuit class C , our results apply to C as well if a non-trivial SAT (in fact,25
Gap-UNSAT) algorithm for C is discovered.26
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1. Introduction.29

1.1. Background and Motivation. Establishing unconditional circuit lower30

bounds for explicit functions (with the ultimate goal of proving NP 6⊂ P/ poly) is one31

of the holy grails of theoretical computer science. Back in the 1980s, there was a lot of32

significant progress in proving circuit lower bounds for AC0 (constant depth circuits33

consisting of AND/OR gates of unbounded fan-in) [2, 24, 68, 33] and AC0[p] [49, 55]34

(AC0 circuits extended with MODp gates) for a prime p. But this quick develop-35

ment was then met with an obstacle—there was little progress in understanding the36

power of AC0[m] for a composite m. In fact, it was a long-standing open question37

in computational complexity whether NEXP (non-deterministic exponential time) has38

polynomial-size ACC0 circuits1, until a seminal work by Williams [66] from a decade39

ago, which proved NEXP does not have polynomial-size ACC0 circuits, via a new40

algorithmic approach to circuit lower bounds [64].41

This circuit lower bound has been an exciting new development after a long gap,42

especially since is believed to bypass all previous known barriers for proving circuits43

lower bounds: relativization [11], algebrization [1], and natural proofs [50]. More-44

over, the underlying approach, the algorithmic method [64], puts many important45

classical complexity results together, ranging from non-deterministic time hierarchy46

∗Massachusetts Institute of Technology lijieche@mit.edu.
1It had been stressed several times as one of the most embarrassing open questions in complexity

theory, see [7].
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2 L. CHEN

theorem [52, 69], IP = PSPACE [43, 54], hardness vs randomness [47], to the PCP47

Theorem [8, 9].48

While the circuit lower bound by Williams is a significant breakthrough after a49

long gap, it still has some drawbacks when comparing to the previous lower bounds.50

First, it only holds for the gigantic class NEXP, while our ultimate goal is to prove51

lower bound for a much smaller class NP. Second, it only proves a worst-case lower52

bound, while previous lower bounds and their subsequent extensions often also worked53

in the average-case; and it seems hard to adapt the algorithmic approach to the54

average-case settings.55

Motivated by the above limitations, subsequent works extend the worst-case56

NEXP 6⊂ ACC0 lower bound in several ways. In 2012, by refining the connection57

between circuit analysis algorithms and circuit lower bounds, Williams [67] proved58

that (NEXP ∩ coNEXP)/1 does not have polynomial-size ACC0 circuits. Two years59

later, by designing a fast #SAT algorithm for ACC0 ◦ THR circuits, Williams [65]60

proved that NEXP does not have polynomial-size ACC0 ◦THR circuits. Then in 2017,61

building on [67], Chen, Oliveira and Santhanam [20] proved that NEXP cannot be62

1/2 + 1/ polylog(n)-approximated by polynomial-size ACC0 circuits. Recently, in an63

exciting new breakthrough, with a new easy-witness lemma for NQP, Murray and64

Williams [46] proved that NQP does not have polynomial-size ACC0 ◦ THR circuits.265

1.2. Our Results. In this work, we strengthen all the above results by proving66

an average-case lower bound for NQP against ACC0 ◦ THR circuits.67

Theorem 1.1. For all a, c > 0, there is an integer b, such that NTIME[2logb n]68

cannot be (1/2 + 1/ logc n)-approximated by 2loga n size ACC0 ◦ THR circuits. The69

same holds for (N∩coN)TIME[2logb n]/1 in place of NTIME[2logb n]3.70

In other words, there is a language L in NTIME[2logb n] that cannot be (1/2 +71

1/ logc n)-approximated by 2loga n size ACd[m] ◦ THR circuits, for all constants d,m72

(i.e., the language L is fixed and its hardness is against any choice of d and m). We73

also remark that our new circuit lower bound builds crucially on another classical74

complexity gem: Barrington’s theorem [12] together with a random self-reducible75

NC1-complete language [10, 39].76

Either NQP 6⊂ P/ poly or MCSP /∈ ACC0. MCSP is the Minimum Circuit Size77

Problem such that, given a truth-table T : {0, 1}2n and an integer 0 ≤ s ≤ 2n, asks78

whether there is a circuit C of size at most s that computes the function described79

by the truth-table T (see [5] and the references therein for more information on this80

problem).81

Applying Theorem 1.1, we also resolve an open question from [30]. [30] proved82

(among many other results) that MAJ ∈ (AC0)MCSP, and used that together with83

NEXP 6⊂ ACC0 [66] to prove that either NEXP 6⊂ P/ poly or MCSP /∈ ACC0. It is asked84

whether one can further show either NQP 6⊂ P/ poly or MCSP /∈ ACC0. We answer85

that affirmatively by proving the following corollary of Theorem 1.1.86

Corollary 1.2. Either NQP 6⊂ P/ poly or MCSP /∈ ACC0.87

See Appendix D for a proof of the above corollary.88

2We also remark that [21] improved the dependence on depth by showing NEXP does not have
ACC0 circuits of o(logn/ log logn) depth.

3See Definition 3.11 for a formal definition of (N∩coN)TIME[T (n)]/1.
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NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 3

From Modest-Improvement on Gap-UNSAT Algorithms to Average-89

Case Lower Bounds. Like other lower bounds proved via the “algorithmic ap-90

proach” [64], the only property of ACC0 ◦ THR circuits exploited by us is the non-91

trivial satisfiability algorithm for them [65]. Hence, our results also apply to other92

natural circuit classes if corresponding algorithms are discovered.93

We say a circuit class C is typical, if it is closed under both negation and projection94

(see Subsection 3.1.1 for a formal definition). Also, we say a circuit class C is nice, if95

it is typical and either C = Circuit or C is weaker than formula.496

We first define the Gap-UNSAT problem: given a circuit C, the goal is to distin-97

guish between the case that C is unsatisfiable and the case that C has at least 1/3 ·2n98

satisfying assignments.5 Next, we define the non-trivial derandomization condition99

below.100

Definition 1.3 (Non-trivial derandomization condition). For a typical circuit101

class C , we say that the non-trivial derandomization condition holds for C , if there102

is ε ∈ (0, 1) such that the Gap-UNSAT problem for 2n
ε

-size n-input C circuits can be103

solved in 2n/nω(1) non-deterministic time.104

The following theorem generalizes Theorem 1.1 to any nice circuit class C such105

that AC0 ◦ C admits a non-trivial Gap-UNSAT algorithm.106

Theorem 1.4. Let C be a nice circuit class. Suppose the non-trivial derandom-107

ization condition holds for AC7 ◦ C . Then for every a, c ∈ N, there is b ∈ N, and108

a language L ∈ NTIME[2logb n] such that L cannot be (1/2 + 1/ logc n)-approximated109

by 2loga n-size C circuits. The same holds for (N∩coN)TIME[2logb n]/1 in place of110

NTIME[2logb n].111

Moreover, our average-case lower bounds can be significantly strengthened if AC0◦112

MAJ ◦ C admits a non-trivial Gap-UNSAT algorithm.113

Theorem 1.5. Let C be a nice circuit class. Suppose the non-trivial derandom-114

ization condition holds for AC5 ◦MAJ◦C . Then for every a, c ∈ N, there is b ∈ N, and115

a language L ∈ NTIME[2logb n] such that L cannot be (1/2 + 1/2logc n)-approximated116

by 2loga n-size C circuits. The same holds for (N∩coN)TIME[2logb n]/1 in place of117

NTIME[2logb n].118

In particular, for C ∈ {TC0,Formula,Circuit}, a non-trivial Gap-UNSAT algorithm119

for C circuits implies that NQP is strongly average-case hard against C . Hence,120

Theorem 1.4 and Theorem 1.5 essentially strengthen the similar algorithms-to-circuit-121

lower-bounds connections in [46] from worst-case lower bounds for NQP to average-122

case lower bounds for NQP.123

We remark that our connection does not go through an easy-witness lemma, since124

it is not clear how can one get an average-case easy witness lemma (i.e., a statement125

asserting that if NQP can be approximated by P/ poly, then all NQP verifiers have126

succinct witnesses). Rather, we use a different approach similar to [67] and prove the127

average case lower bound directly, without going through the easy-witness lemma.128

4Recall that a circuit class C is weaker than Formula, if there is polynomial p such that every
s-size C circuit has an equivalent p(s)-size formula. We note that most well-studied circuit classes
(AC0,ACC0,TC0,Formula,Circuit) are nice.

5This problem is weaker than both the SAT problem and the CAPP problem. In the CAPP
problem, one is given a circuit C and the goal is to approximate the acceptance probability of C over
random assignments, within a constant additive error.
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4 L. CHEN

A Simpler Proof for the New Easy Witness Lemma for NP and NQP129

of [46]. As an interesting by-product of our new ideas, we give a simpler proof130

for new easy-witness lemma for NP and NQP of [46] (Lemma 1.6 and Lemma 1.7).131

The proof from [46] crucially depends on a certain “bootstrapping” argument ([46,132

Lemma 3.1]), while we provide a more direct and simpler proof without involving that133

bootstrapping. We believe that this new proof is an independent contribution of this134

work.135

Lemma 1.6 (Easy-witness lemma for NP, Lemma 1.2 of [46]). For all k ∈ N,136

there is b ∈ N such that if NP ⊂ SIZE[nk], then every L ∈ NP has witness circuits6 of137

size at most nb.7138

Lemma 1.7 (Easy-witness lemma for NQP, Lemma 1.3 of [46]). For all k ∈ N,139

there is b ∈ N such that if NQP ⊂ SIZE[2logk n], then every L ∈ NQP has witness140

circuits of size at most 2logb n.141

Subsequent Work. In the conference version of this paper [17], two open ques-142

tions was raised, and were (essentially) resolved by subsequently work. The first open143

question was whether the algorithmic approach can be used to construct rigid ma-144

trices (i.e., proving average-case lower bounds against low-rank matrices), this was145

later answered in the affirmative by Alman and the author [6], whose results was then146

significantly simplified and strengthened by Bhangale, Harsha, Paradise, and Tal [14].147

The second open question was whether we can strengthen Theorem 1.1 to that148

NQP cannot be (1/2 + 1/nω(1))-approximated by ACC0 ◦ THR. Such a strengthening149

was later proved by the author and Ren [19]. In another follow-up work, the author,150

Lyu, and Williams [18] proved that there is a function f ∈ ENP that cannot be151

(1/2+2−n
o(1)

)-approximated by ACC0◦THR circuits of 2n
o(1)

-size, for all large enough152

input lengths n. The result of [18] is incomparable to [19], since it established a much153

harder function against ACC0 ◦ THR but also in a much larger complexity class.154

Moreover, one important technical ingredient of this paper, a new PSPACE-155

complete language with several useful properties (see Theorem 3.7), is also proven156

to be useful in the construction of better pseudodeterministic PRGs by Lu, Oliveira,157

and Santhanam [42].158

2. Technique Overview. In the following we discuss the intuition behind our159

new average-case lower bounds. For simplicity of argument, we will sketch a proof for160

NQP cannot be (1−δ)-approximated by polynomial-size ACC0 circuits, for a universal161

constant δ (δ can be thought of as 1/1000).162

2.1. Main Difficulty: The Absence of an Easy-Witness Lemma Under163

the Approximability Assumption. First, it is instructive to see why it is hard164

to generalize the previous proofs for worst-case lower bound against ACC0 [66, 46] to165

prove an average-case lower bound against ACC0.166

The first step of the NQP 6⊂ ACC0 lower bound by Murray and Williams [46], is167

applying the so called easy witness lemma. The easy witness lemma states: assuming168

NQP ⊂ ACC0, for every language L in NQP with a verifier V (x, y), whenever V (x, ·)169

is satisfiable, it has a succinct witness y that is the truth-table of a small ACC0
170

circuit. Then they apply a proof by contradiction8: assuming NQP ⊆ ACC0, they use171

6See Definition 3.13 for a formal definition.
7To simplify the presentation, we do not specify the relations between b and k here, but we

nonetheless remark that one can take b = Θ(k3), just as in [46].
8A similar argument is also used in [64, 66].
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NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 5

the existence of easy-witness circuits (implied by the easy-witness lemma) together172

with the non-trivial SAT algorithm for ACC0 circuits in [66] to contradict the non-173

deterministic time hierarchy theorem [69].174

Now for proving the average-case lower bound for NQP, we can only start with the175

assumption that NQP can be (1− δ)-approximated by polynomial-size ACC0 circuits176

(and hope to contradict the non-deterministic time hierarchy theorem). As already177

explained by [20], we cannot apply the easy witness lemma even if we start from the178

much stronger assumption that NEXP can be (1 − δ)-approximated by ACC0: the179

proofs of both the original and the new easy-witness lemma [37, 46] completely break180

when we only have the approximability assumption.181

2.1.1. Review of [20]’s Approach. To get around the difficulty above, [20]182

start from a worst-case lower bound against ACC0 [67], and then apply a worst-case183

to average-case hardness amplification. Their approach works roughly as follows:184

1. By [67], there is a language L ∈ (NEXP ∩ coNEXP)/1 that does not have185

poly(n)-size ACC0 circuits.186

2. Using the locally list decodable codes of [29, 32], one can define a language L̃ ∈187

(NEXP∩coNEXP)/1 that cannot be (1/2+1/ log n)-approximated by poly(n)188

size ACC0 circuits. That is, we treat the truth-table of Ln as a message189

z ∈ {0, 1}2n of the locally-list-decodable code, and set L̃m so that its truth-190

table is the codeword of z for an appropriate input length m = m(n). (Note191

that here it is important to work with a language L in (NEXP ∩ coNEXP)/1,192

as otherwise we do not know how to compute the truth-table of L in NEXP.)193

3. In particular, the above L̃ ∈ NEXP/1. They then get rid of the advice bit by194

an enumeration trick, and therefore prove the average case lower bound for195

NEXP.196

Unfortunately, it seems very hard to generalize the approach above to prove an197

average-case lower bound for NQP: the second step of the approach above breaks, as198

we no longer can afford to compute an error correcting code on the entire truth-table199

of a particular input length, which takes (at least) exponential time.200

Therefore, we have to take a different approach that proves the average-case201

lower bound directly, without going through the worst-case to average-case hardness202

amplification. In order to do that, it is helpful to review the proof of the new easy-203

witness lemma in [46].204

2.2. Easy-Witness Lemma for NQP: “Almost” Almost-Everywhere205

(a.a.e.) MA Lower Bounds and i.o. Non-deterministic PRGs (NPRGs).206

(An instantiation of) the new easy-witness lemma of [46] states that if NQP ⊂207

P/ poly, then all verifiers for NQP languages have succinct (polynomial-size) witness208

(Lemma 1.7). For the sake of contradiction, we now suppose that NQP ⊂ P/ poly and209

some verifier for a language L ∈ NQP does not have poly(n)-size witness circuits. That210

is, there is a polynomial-time verifier V (x, y) with |x| = n and y = 2logb n for some211

b ∈ N, such that for infinitely many n’s, there is an xn ∈ {0, 1}n such that V (xn, ·) is212

satisfiable, but for any yn such that V (xn, yn) = 1, we have SIZE(yn) = nω(1).213

Now, yn can be interpreted as a truth-table of a function on ` = logb n variables,214

and we have SIZE(yn) ≥ 2ω(`1/b). Therefore, given such a yn, using the well-known215

hardness-to-pseudorandomness connection (see, e.g., [47, 38, 57, 60]), one can con-216

struct a pseudorandom generator Gyn with seed length O(`), running time 2O(`), and217

it fools all circuits of size 2a·`
1/b

, for all constants a.218

Scaling everything properly by setting S = 2a·`
1/b

, it follows that for an infinite219

This manuscript is for review purposes only.



6 L. CHEN

number of S, if we are given the xn (of length |xn| = S1/a) as advice, we can guess a220

yn such that V (xn, yn) = 1, and compute the PRG Gyn . Hence, for every a ≥ 1, there221

is a non-deterministic PRG that has seed length O(logb S), running time 2O(logb S),222

and fools all S-size circuits, and takes S1/a bits as advice. (See Subsection 3.2 for a223

formal definition of NPRGs.)224

The key ingredient of [46] is an “almost” almost-everywhere (a.a.e.) MA circuit225

lower bound, which builds on the MA circuit lower bound by Santhanam [51].9 For226

the simplicity of arguments, we now pretend that we have an almost-everywhere MA227

circuit lower bound. Specifically, for each c ∈ N, there is an integer k = k(c) and a228

language Lc ∈ MATIME[nk] such that SIZE(Lcn) ≥ nc for all sufficiently large n.229

The crucial idea is that, using the above i.o. NPRG, one can non-deterministically230

derandomize Lc on an infinite number of input length n’s (as the string yn can be231

non-deterministically guessed-and-verified). To derandomize MATIME[nk], it suffices232

to use the PRG that fools circuits of size S = n2k. Therefore, by setting a = 2k,233

we have a language L? ∈ NTIME[2O(logb+1 n)]/n,10 such that it agrees with Lc on in-234

finitely many input lengths. Since c can be an arbitrary integer, we conclude that235

NTIME[2O(logb+1 n)]/n is not in P/ poly. Thus, we obtain a contradiction to our as-236

sumption (the n bits of advice can be got rid of easily).11237

Digest. To summarize, the proof of new easy witness lemma constructed i.o.238

NPRGs from the assumed non-existence of easy witness-circuits, and combined i.o.239

NPRG together with a.a.e. MA lower bounds to prove NQP 6⊆ P/ poly, a contradiction240

to the assumption that NQP ⊆ P/ poly. Therefore, NQP must have easy witness-241

circuits assuming NQP ⊆ P/ poly.242

2.3. Our New Approach: “Almost” Almost-Everywhere Average-Case243

MA Lower Bound and i.o. NPRG. As mentioned before, we do not attempt244

to prove an average-case version of easy-witness lemma (and we do not know how245

to prove such an analogue). Instead, we will directly construct suitable i.o. NPRGs246

under the assumption that NQP is average-case easy for ACC0, and combine that247

with an appropriate average-case hard language in MA. Derandomization of this248

average-case hard MA languages means that NQP is average-case hard for ACC0, a249

contradiction to the assumption that NQP is average-case easy for ACC0.250

Nevertheless, the detailed implementation of the plan above is quite challenging,251

and we will give an outline below.252

(i.o. NPRGs) Under the assumption that NQP can be approximated by ACC0, we253

construct an i.o. NPRG fooling low-depth circuits.12254

(New a.a.e. MA lower bounds) To complement the above new NPRG, we prove that255

there is a hard language L ∈ MAQP = MATIME[2polylog(n)] such that:256

1. L is average-case hard against low-depth circuits, and257

2. L can be derandomized using an i.o. NPRG into NQP, while retaining258

its average-case hardness infinitely often.259

9[46, 51]’s lower bounds are actually for MA with advice bits. We ignore the advice bits issue for
the sake of simplicity in the intuition part. See the end of the this section for some discussions on
how to deal with the advice bits.

10By choosing a = 2k, the seed length of the NPRG is bounded by S1/2k = n, hence L? only
needs n bits of advice.

11Given L ∈ NTIME[2O(logb+1 n)]/n that is not in P/ poly, one can define another language L′ ∈
NTIME[2O(logb+1 n)] such that on inputs x of length 2n, L′ simulates L on x≤n (the first half of x)
with advice being set to x>n (the second half of x). It is easy to see that L′ is not in P/ poly as well.

12We informally use low-depth circuits to mean circuit with polylog(n) depth.
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(Section 4) NC1 ⊆ AC0 ◦ C if uniform

NC1 can be approximated by C .

(Subsection 5.1) Witness-size lower
bound for NE against ACC0 ◦ THR
circuits [67].

This is based on the non-trivial

Gap-UNSAT algorithm for ACC0 ◦
THR in [65].

(Subsection 5.2) i.o. NPRG for low-

depth circuits assuming that NQP

can be approximated by ACC0 ◦THR.

(Section 7) An a.a.e. average-case
MA language that is hard against
low-depth circuits and has a low-
depth computable predicate.

This is based on the PSPACE-

complete language with useful prop-

erties constructed in Section 9.

(Subsection 8.1 and 8.2) NQP cannot

be (1 − δ)-approximated by ACC0 ◦
THR circuits.

(Subsection 8.3) NQP cannot be

(1/2 + 1/polylog(n))-approximated

by ACC0 ◦ THR circuits.

Fig. 1. The structure of the whole argument.

Crucially, the combination of the two components above is enough to conclude260

NQP cannot be (1 − δ)-approximated by ACC0 circuits: assuming otherwise that261

NQP can be (1 − δ)-approximated by ACC0, we can construct an i.o. NPRG G262

fooling low-depth circuits. Next, we use G to derandomize the MAQP average-case263

hard language L into NQP, this implies that NQP cannot be approximated by low-264

depth circuits, a contradiction to our assumption that NQP can be approximated by265

ACC0. See Subsection 8.1 for details on how average-case lower bounds follow from266

i.o. NPRGs and new a.a.e. MA lower bounds.267

Outline of Subsection 2.4 and Subsection 2.5. In Subsection 2.4, we will268

first explain why we can only get an i.o. NPRG fooling low-depth circuits (instead269

of general circuits as in [46]) from the assumption that NQP can be approximated270

by ACC0. Then we will explain the technical challenges we have overcome in order271

to get such an i.o. NPRG. In Subsection 2.5, we explain how to prove the desired272

average-case MA lower bound. This part is more technical and contains several steps,273

see Subsection 2.5 for details.274

See also Figure 1 for the structure of the whole argument.275

2.4. i.o. Non-deterministic PRG. Williams [67] proved that assuming P ⊆276

ACC0, one can get an i.o. NPRG with polylog(n) seed length fooling poly-size general277

circuits. In this section, we will first explain why the construction of [67] does not278
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directly work in our setting13. We then show that by lowering our goal to constructing279

an NPRG only for low-depth circuits, we can construct such NPRGs using the fact280

that NC1 has a random self-reducible complete-problem.281

2.4.1. The i.o. NPRG construction in [67]. The starting point in [67] is282

the (unconditional) witness-size lower bound for NE against ACC0. That is, [67]283

proved that there is unary language in NE, whose verifier does not have 2n
ε

-size284

ACd? [m?] witness (ε = ε(d?,m?)). Therefore, let the verifier be V (x, y) with |x| = n285

and |y| = 2n; for infinitely many n, V (1n, ·) is satisfiable, yet for all y such that286

V (1n, y) = 1, y is not the truth-table of a 2n
ε

-size ACd? [m?] circuit.287

Further assuming P ⊂ ACC0, [67] showed that the above implies an i.o. NPRG288

for general circuits. Note that P ⊂ ACC0 implies that the Circuit-Evaluation problem289

has an ACC0 circuit, and consequently P/ poly collapses to ACC0. Therefore, for a y290

such that V (1n, y) = 1, y cannot be computed by 2n
ε

-size general circuits as well,291

which means one can substitute y into the known hardness-to-pseudorandomness con-292

struction of [47, 60], and get a quasi-polynomial time i.o. NPRG.293

However, starting with our assumption that NQP can be (1−δ)-approximated by294

ACC0, it is not clear how to show that P/ poly collapses to ACC0. So we have to take a295

more sophisticated approach. To make the situation worse, performing worst-case to296

average-case hardness amplification requires majority [53, 31]14. Since it is not clear297

whether ACC0 can compute majority, we do not even know how to get a PRG fooling298

ACC0 circuits, from a truth-table y that is only worst-case hard against ACC0.299

2.4.2. i.o. Non-deterministic PRG for Low-Depth Circuits. So we wish300

to verify a truth-table y that is hard against a stronger circuit class, for which at least301

hardness amplification is possible, like NC1. By an argument similar to that of [67],302

if NC1 collapses to ACC0, then the verifier V that verifies hard-truth tables for ACC0
303

also verifies truth-tables that cannot be computed by low-depth circuits.304

In more details, from NC1 ⊆ ACC0, there are d?,m? ∈ N such that any depth-d305

circuit has an equivalent 2O(d)-size ACd? [m?] circuit. Now, get back to the verifier V .306

It follows that for an infinite number of n’s, V (1n, ·) is satisfiable and for any y such307

that V (1n, y) = 1, y is not the truth-table of an nε-depth circuit. This is enough to308

obtain a quasi-polynomial time i.o. NPRG that fools polylog(n)-depth circuits (see309

Theorem 3.3 for details).310

So our goal now is to show that NC1 collapses to ACC0 under the assumption311

that NQP can be (1− δ)-approximated by ACC0. We call such a statement a collapse312

theorem for NC1. Fortunately, we are able to prove such a collapse theorem using the313

existence of an NC1-complete problem that admits a nice random self-reduction [12,314

10, 39]. By our assumption, this problem can be (1 − δ)-approximated by ACC0
315

circuits. Utilizing its random self-reduction and the fact that approximate-majority316

can be computed in AC0 [2, 62], we can show that this NC1-complete problem has317

polynomial-size ACC0 circuits. This in particular means that NC1 collapses to ACC0.318

The above construction of i.o. NPRG for low-depth circuits is detailed in Section 4319

(where we prove the collapse theorem for NC1) and Section 5 (where we construct the320

conditional i.o NPRGs).321

13We can only assume that NQP is average-case easy for ACC0, from which it is not clear how to
derive P ⊆ ACC0.

14That is, to get average-case lower bounds against C circuits using hardness amplification, one
needs to start from worst-case lower bounds against MAJ ◦ C circuits.
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2.5. An A.a.e. Average-Case MA Lower Bound. Next we explain how do322

we prove a suitable average-case MA lower bound that can be derandomized by our323

i.o. NPRGs fooling low-depth circuits.324

2.5.1. Our MA Language Needs a Low-Depth Computable Predicate.325

We first note that in order to non-deterministically derandomize a general MA al-326

gorithm (i.e., put it into NQP), a PRG for polylog(n)-depth circuits is not enough.327

Suppose the MA algorithm A takes an input x, guesses a witness string y, and flips328

some random coins r; in order to obtain a non-deterministic simulation, we would329

need to fool circuits Cy(r) := PA(x, y, r) for all possible y. Here, PA(x, y, r) is called330

the predicate of the MA algorithm. Since there is no restriction on PA other than a331

bound on its running time, the circuit Cy could well be a general circuit that does332

not necessarily have low depth.333

The above difficulty brings us to our key component—an MA language Lhard that334

has a low-depth computable predicate, and is average-case hard against low-depth335

circuits. Now, since PA(x, y, r) has a low-depth circuit, it follows that Cy(r) :=336

PA(x, y, r) also has a low-depth circuit, and therefore our i.o. NPRG can be used337

to achieve an i.o. derandomization of Lhard, which results in a contradiction to our338

assumption.339

2.5.2. A.a.e. Average-case MA Lower Bounds from a PSPACE-complete340

Language with Nice Properties. Roughly speaking, the MA circuit lower bounds341

in [51] and [46] make crucial use of a PSPACE-complete language by [59], which342

admits several nice properties, including being same-length checkable, downward self-343

reducible, and paddable (see Definition 3.4 for details). We modify the construction344

from [59] to obtain a PSPACE-complete language LPSPACE that is also error correctable:345

that is, if it is hard in the worst-case, then it is also hard in the average-case. We346

think this new language LPSPACE is of independent interest and may be useful for other347

problems.348

The construction of such an average-case hard MA language is the technical349

centerpiece of this paper; the key observation is that all the nice properties of our350

PSPACE-complete problem LPSPACE (i.e., being same-length checkable, downward self-351

reducible, and paddable) have low-depth uniform oracle circuits. For instance, the352

instance checker in the same-length checkable property (see Definition 3.4), can ac-353

tually be implemented by a uniform TC0 non-adaptive oracle circuit. Using the exis-354

tence of those oracle circuits, together with a careful case-analysis similar to previous355

work [51, 46], and some additional new ideas, we are able to construct the desired356

average-case hard MA language.357

The PSPACE-complete language LPSPACE is constructed in Section 9, and the a.a.e.358

average-case MA lower bounds are proved in Section 7.359

2.5.3. A Technicality: Dealing with Advice Bits. In the above discussion,360

we (intentionally) omitted a technical detail—the a.a.e. MA lower bound proved in [46]361

is actually for MA/O(logn). Therefore our i.o. derandomization of the MA/O(logn)362

algorithm also needs O(log n) advice bits. But then, we only have that NQP/O(logn)363

is average-case hard for polynomial-size ACC0 circuits. And the enumeration trick364

from [20] requires the advice to be o(log n).365

Luckily, we further relax the definition of an “almost” almost-everywhere circuit366

lower bound in [46]. Our relaxation is weak enough for us to prove the required MA367

average-case lower bound with only one bit of advice, but also strong enough to allow368

us to prove the average-case circuit lower bound for NQP/O(1). Then we can apply the369
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enumeration trick from [20] to get the desired lower bound for NQP without advice.370

3. Preliminaries. We use N to denote all non-negative integers, and N≥1 to371

denote all positive integers. We use GF(pr) to denote the finite field of size pr, where372

p is a prime and r is an integer. For a set U , we often use x ∈R U to denote that we373

pick an element x from U uniformly at random.374

For r,m ∈ N, we use Fr,m to denote the set of all functions from {0, 1}r to {0, 1}m.375

For a language L : {0, 1}∗ → {0, 1}, we use Ln to denote its restriction on n-bit inputs.376

For a function f : {0, 1}n → {0, 1}, we use tt(f) to denote the truth-table of f (i.e.,377

tt(f) is a string of length 2n such that tt(f)i is the output of f on the i-th string378

from {0, 1}n in the lexicographical order). For a string Z : {0, 1}2n , we use func(Z) to379

denote the unique function from Fn,1 with the truth-table being Z.380

Let Σ be an alphabet set. For two strings x, y ∈ Σ∗, we use x ◦ y to denote their381

concatenation. We also use f ◦ g to denote the composition of two functions f and382

g. The meaning of the symbol ◦ (concatenation or composition) will always be clear383

from the context. We sometimes use ~x (~y, ~z, etc.) to emphasize that ~x is a vector.384

For ~x ∈ Σn for some n ∈ N, we use ~x<i and ~x≤i to denote its prefix (x1, . . . , xi−1)385

and (x1, . . . , xi), respectively. We also define ~x>i and ~x≥i in the same way.386

3.1. Complexity Classes and Basic Definitions. We assume knowledge of387

basic complexity theory (see [7, 26] for excellent references on this subject).388

3.1.1. Basic Circuit Families. Unless otherwise specified, the circuits appear389

in this paper are general circuits consisting of fan-in 2 AND/OR gates and fan-in 1390

NOT gates.391

A circuit family is a collection of circuits {Cn : {0, 1}n → {0, 1}}n∈N. A circuit392

class is a collection of circuit families. The size of a circuit is the number of gates393

in the circuit, and the size of a circuit family is a function of the input length that394

upper-bounds the size of circuits in the family. The depth of a circuit is the maximum395

number of wires on a path from an input gate to the output gate.396

We will mainly consider classes in which the size of each circuit family is bounded397

by some polynomial; however, for a circuit class C , we will sometimes also abuse398

notation by referring to C circuits with various other size or depth bounds.399

AC0 is the class of circuit families of constant depth and polynomial size, with400

AND,OR and NOT gates, where AND and OR gates have unbounded fan-in. For an401

integer m, the function MODm : {0, 1}∗ → {0, 1} is one if and only if the number of402

ones in the input is not divisible by m. The class AC0[m] is the class of constant-403

depth circuit families consisting of polynomially-many unbounded fan-in AND, OR404

and MODm gates, along with unary NOT gates. We denote ACC0 = ∪m≥2AC
0[m].405

We also use ACd (resp. ACd[m]) to denote the subclass of AC0 (resp. AC0[m]) with406

depth at most d.407

The function majority, denoted as MAJ : {0, 1}∗ → {0, 1}, is the function that408

outputs 1 if the number of ones in the input is no less than the number of zeros,409

and outputs 0 otherwise. TC0 is the class of circuit families of constant depth and410

polynomial size, with unbounded fan-in MAJ gates. NCk for a constant k is the class411

of O(logk n)-depth and poly-size circuit families consisting of fan-in two AND and OR412

gates and unary NOT gates.413

We say that a circuit family {Cn}n∈N is uniform, if there is a deterministic al-414

gorithm A, such that A(1n) runs in time polynomial of the size of Cn, and outputs415

Cn.15416

15That is, we use the P uniformity by default.
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For a circuit class C , we say that a circuit C is a C oracle circuit, if C is also417

allowed to use a special oracle gate (which can occur multiple times in the circuit,418

but with the same fan-in), in addition to the usual gates allowed by C circuits. We419

say that an oracle circuit is non-adaptive, if on any path from an input gate to the420

output gate, there is at most one oracle gate.421

We say that a circuit class C is typical, if given the description of a circuit C of422

size s, for indices i, j ≤ n and a bit b, the following functions423

¬C,C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn)424

all have C circuits of size s, and their corresponding circuit descriptions can be con-425

structed in poly(s) time. That is, C is typical if it is closed under both negation and426

projection.427

For two circuit class C1 and C2, we say that C1 is weaker than C2, if there is428

polynomial p such that every s-size C circuit has an equivalent p(s)-size C circuits.429

For n ∈ N and ε ∈ (0, 1/2), we define Approx-MAJn,ε to be the function that430

outputs 1 (resp. 0) if at least a (1 − ε) fraction of the inputs are 1 (resp. 0), and431

is undefined otherwise. We also use Approx-MAJn to denote Approx-MAJn,1/3 for432

simplicity.433

The following standard construction for approximate-majority in AC0 will be use-434

ful for the proofs in this paper.435

Lemma 3.1 ([4, 3, 62]). Approx-MAJn can be computed by uniform AC3.436

3.1.2. Notation. For an approximation parameter γ > 1/2, we say that a circuit437

C : {0, 1}n → {0, 1} γ-approximates a function f : {0, 1}n → {0, 1}, if C(x) = f(x)438

for a γ fraction of inputs from {0, 1}n. For a function f : {0, 1}n → {0, 1}, we define439

SIZE(f) (resp. DEPTH(f)) to be the minimum size (resp. depth) of a circuit comput-440

ing f exactly. Similarly, for γ > 1/2, we define Avgγ-SIZE(f) (resp. Avgγ-DEPTH(f))441

to be the minimum size (resp. depth) of a circuit that γ-approximates f .442

We say that a language L can be γ(n)-approximated by C , if there is a circuit443

family {Cn}n∈N ∈ C such that Cn γ(n)-approximates Ln for all sufficiently large n.444

We also say a class of languages L can be γ(n)-approximated by C , if all languages445

L ∈ L can be γ(n)-approximated by C .446

In other words, if a class of languages L cannot be γ(n)-approximated by C , it447

means there exists a language L ∈ L such that, for every {Cn}n∈N ∈ C , there are448

infinitely many n’s such that Cn does not γ(n)-approximate Ln.449

3.2. Pseudorandom Generators. We will deal with different types of pseu-450

dorandom generators (PRG) throughout the paper. In the following, we recall their451

definitions.452

PRGs and NPRGs. Let r,m ∈ N and ε ∈ (0, 1), and let H ⊆ Fm,1 be a set of453

functions. We say G ∈ Fr,m is a PRG for H with error ε, if for every D ∈ H454 ∣∣∣∣ Pr
z∈R{0,1}r

[D(G(z)) = 1]− Pr
z∈R{0,1}m

[D(z) = 1]

∣∣∣∣ ≤ ε.455

We also call r the seed length of G.456

We also need the notion of non-deterministic PRGs, which is defined as below.457

Let w ∈ N. We say a pair of function G = (GP, GW) such that GP ∈ {0, 1}w ×458

{0, 1}r → {0, 1}m and GW ∈ Fw,1 is an NPRG for H with error ε, if the following459

hold:460
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1. For every u ∈ {0, 1}w, if GW(u) = 1, then GP(u, ·) is a PRG for H with error461

ε.462

2. There exists u ∈ {0, 1}w such that GW(u) = 1.463

Here, we call r the seed length of G and w the witness length of G.464

Although NPRG in general does not compute the same PRG for different witness465

u (i.e., GP(u1, ·) and GP(u2, ·) can be two different PRG for H), it is still useful for466

many tasks such as the derandomization of MA. The concept of NPRG is implicit in467

[37].468

Family of PRGs and NPRGs. Most of the time we will be interested in a469

family of PRGs (NPRGs) G = {Gn} that fools a family of sets of functionsH = {Hn}.470

In this case, for seed r : N → N, error ε : N → (0, 1), output length m : N → N and471

witness length w : N → N, we say G = {Gn} is a PRG (resp. NPRG) family for472

H = {Hn} if for every n ∈ N, (1) Hn ⊆ Fm(n),1 (2) Gn is a PRG (resp. NPRG)473

for Hn with error ε(n), seed length r(n) (and witness length w(n) for G being an474

NPRG). We also say G is an i.o. PRG (resp. i.o. NPRG) family for H if the above475

two conditions hold for infinitely many n instead of every n. When the meaning is476

clear, sometimes we just say G is a PRG (resp. NPRG) instead of a PRG (resp.477

NPRG) family.478

We say that a PRG G = {Gn} is computable in T : N → N time, if there is a479

uniform algorithm A : N × {0, 1}∗ → {0, 1} such that An (meaning the first input of480

A is fixed to n) computes Gn in T (n) time. Similarly, we say an NPRG G = {Gn} is481

computable in T : N→ N time, if there are two uniform algorithms AP : N×{0, 1}∗×482

{0, 1}∗ → {0, 1} and AW : N × {0, 1}∗ → {0, 1} such that (AP)n computes (GP)n483

and (AW)n computes (GW)n, both in T (n) time. Note that a T (n)-time computable484

NPRG G also has witness length at most T (n). So if we do not specify the witness485

length parameter, it is by default the running time T .486

We will need the following PRG construction from [60].487

Theorem 3.2 ([60]). There is a universal constant c ∈ N≥1 and an algorithm488

G such that:489

1. G takes two integers ` and m such that ` ≤ m ≤ 2`/c, together with two490

strings u ∈ {0, 1}2` and z ∈ {0, 1}c` as inputs, and outputs an m-bit string.491

G is also computable in 2O(`) time.492

2. If f ∈ F`,1 does not have S-size circuits for S ≥ mc, then G`,m(tt(f), ·)16 is493

a PRG for S1/c-size m-input circuits with error 1/m and seed length c`.494

PRGs for low-depth circuits. The following PRG construction follows directly495

from the local-list-decodable codes with low-depth decoder of [36, 29, 32], and the496

hardness-to-pseudorandomness transformation of [47].497

Theorem 3.3. Let δ ∈ (0, 1) be a constant. There are universal constants c ∈498

(0, 1) and g > 1, and an algorithm G such that:499

1. G takes two integers ` and m such that ` ≤ m ≤ 2`
cδ

, together with two500

strings u ∈ {0, 1}2` and z ∈ {0, 1}`g as inputs, and outputs an m-bit string.501

G is also computable in 2O(`) time.502

2. For every large enough ` ∈ N, if f ∈ F`,1 does not have `δ-depth circuits,503

then G`,m(tt(f), ·) is a PRG for `cδ-depth m-input circuits with error 1/m504

and seed length `g.505

16For notational convenience, we use G`,m to denote that the first two inputs of G are fixed to `
and m.
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We provide a proof for the above theorem in Appendix C for completeness.506

3.3. A PSPACE-complete Language with Low-complexity Reducibility507

Properties. A fundamental result often used in complexity theory is the existence of508

a PSPACE-complete language [59] that is based on the protocol underlying the IP =509

PSPACE proof of [43, 54], and satisfies strong reducibility properties. This PSPACE-510

complete language has found applications in the time-hierarchy theorem for BPP with511

one bit of advice [23], the fixed polynomial circuit lower bound MA/1 ⊆ SIZE(nk) for512

any k [51], and the recent easy witness lemmas for NQP and NP [46].513

The key technical ingredient of our new average-case lower bounds is a modified514

construction of the PSPACE-complete language in [59]. Our new construction satisfies515

the additional property of being error correctable17 (see Definition 3.4 for the precise516

definitions), which is useful for proving average-case lower bounds. Moreover, we517

prove that the reductions in these reducibility properties of our PSPACE-complete518

languages can be implemented by low-depth circuits classes. We believe this new519

construction would be of independent interest, and may be useful for resolving other520

open questions in complexity theory.521

We first define these reducibility properties.522

Definition 3.4. Let L : {0, 1}∗ → {0, 1} be a language, we define the following523

properties:524

1. L is C downward self-reducible if there is a uniform C oracle circuit family525

{Cn}n∈N such that for every large enough n ∈ N and for every x ∈ {0, 1}n,526

ALn−1(x) = Ln(x).527

2. L is paddable, if there is a polynomial time computable projection Pad (i.e.,528

each output bit is either a constant or only depends on 1 input bit), such that529

for all integers 1 ≤ n < m and x ∈ {0, 1}n, we have x ∈ L if and only if530

Pad(x, 1m) ∈ L, where Pad(x, 1m) always has length m.531

3. L is C weakly error correctable, if there is a constant c such that for all suf-532

ficiently large n, for every oracle O : {0, 1}n → {0, 1} that 0.99-approximates533

Ln, there is an nc-size C oracle circuit D, such that DO computes Ln exactly.534

4. L is same-length checkable, if there is a randomized oracle algorithm M with535

output in {0, 1,⊥} such that, for every input x ∈ {0, 1}∗,536

(a) M asks its oracle queries only of length |x|.537

(b) MLn outputs Ln(x) with probability 1.538

(c) MO outputs an element in {L(x),⊥} with probability at least 2/3 for539

every oracle O : {0, 1}n → {0, 1}.540

We call M an instance checker for L. Moreover, we say that L is C same-541

length checkable, if there is an instance checker M that can be implemented542

by uniform C oracle circuits.543

Additionally, we say that L is non-adaptive C downward self-reducible (weakly544

error correctable, same-length checkable), if the corresponding C oracle circuits are545

non-adaptive.546

Remark 3.5. The paddable property implies that SIZE(Ln) and DEPTH(Ln) are547

non-decreasing.548

The following PSPACE-complete language is given by [51] (modifying a construc-549

tion of Trevisan and Vadhan [59]).550

17The error correctable property here is stronger than the piecewise random self-reducible property
in [51].
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Theorem 3.6 ([59, 51]). There is a PSPACE-complete language LTV that is551

paddable, TC0 downward self-reducible, and same-length checkable.18552

Based on the above language LTV, we construct a modified PSPACE-complete553

language LPSPACE that is also NC3 weakly error correctable. Moreover, with a careful554

analysis, we prove that the instance checker for LPSPACE can be implemented by uni-555

form randomized non-adaptive TC0 oracle circuits. That is, LPSPACE is non-adaptive556

TC0 same length checkable.557

Theorem 3.7. There is a PSPACE-complete language LPSPACE that is paddable,558

non-adaptive TC0 downward self-reducible, non-adaptive TC0 same-length checkable,559

and non-adaptive NC3 weakly error correctable.560

See Section 9 for a proof of Theorem 3.7.561

3.4. Average-Case Hard Languages with Low Space. We also need the562

following folklore result, which can be proved by a direct diagonalization.563

Theorem 3.8. Let s : N → N be a space-constructible function such that s(n) ≤564

2o(n) and s(n) ≥ n for every n. There is a universal constant c and a language565

L ∈ SPACE[s(n)c] that Avg0.99-SIZE(Ln) > s(n) for all sufficiently large n.566

Proof. In the following we always assume that n is large enough. Let c1 ≥ 1 be a567

large enough constant and let ` = c1 log s(n). There are 22` = 2s(n)c1 many functions568

in F`,1. Also, there are at most 2s(n)2 many `-input s(n)-size circuits. We claim569

that there exists a function f ∈ F`,1 that cannot be 0.99-approximated by s(n)-size570

circuits.571

To see the claim. Fix an `-input s(n)-size circuit C. We draw a random function572

f ∈ F`,1. By a Chernoff bound, C 0.99-approximates f with probability at most573

2−Ω(2`) ≤ 2−Ω(s(n)c1 ) ≤ 2−s(n)3 , the last inequality follows from the fact that c1 and574

n are large enough. Our claim then follows from a union bound over all 2s(n)2 many575

`-input s(n)-size circuits.576

Now, letting c = 2c1, our algorithm for L first enumerates all `-bit functions577

to find the lexicographically first f0 ∈ F`,1 that cannot be 0.99-approximated by all578

s(n)-size circuits. Note that by our claim above, such f0 exists for a sufficiently large579

n. Then our algorithm computes f0 on the first ` bits of the input, and ignores the580

rest of the input. (Note that here we use the fact that ` ≤ O(log s(n)) ≤ o(n).)581

This algorithm can be implemented in s(n)c space in a straightforward way, and the582

average-case hardness for L follows from our construction of f0.583

3.5. MA ∩ coMA and NP ∩ coNP Algorithms. We first introduce convenient584

definitions of (MA ∩ coMA)TIME[T (n)] and (N∩coN)TIME[T (n)] algorithms, which585

simplifies the presentation.586

Definition 3.9. Let T : N→ N be a time-constructible function. A language L is587

in (MA∩coMA)TIME[T (n)], if there is a constant c ≥ 1 and a deterministic algorithm588

A(x, y, z) (which is called the predicate) such that:589

• A takes three strings x, y, z such that |x| = n, |y| = |z| = c ·T (n) as inputs (y590

is the witness and z is the collection of random bits), runs in O(T (n)) time,591

and outputs an element from {0, 1,⊥}.592

18 [59] does not explicitly state the TC0 downward self-reducible property, but it is evident from
their proof.
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• (Completeness) For every x ∈ {0, 1}∗, there exists a y such that593

Pr
z

[A(x, y, z) = L(x)] = 1.594

• (Soundness) For every x ∈ {0, 1}∗ and every y,595

Pr
z

[A(x, y, z) = 1− L(x)] ≤ 1/3.596

Moreover, let C = {Cn}n∈N be such that Cn is a set of c · T (n)-input circuits.597

We say that the randomness part of the predicate L is computable by C, if there is598

an algorithm B such that for every n ∈ N, given x ∈ {0, 1}n and y ∈ {0, 1}c·T (n),599

B(x, y) outputs a circuit C ∈ Cn in O(T (n)) time such that A(x, y, z) = C(z) for600

every z ∈ {0, 1}c·T (n).601

Remark 3.10. (MA ∩ coMA) languages with advice are defined similarly, with A602

being an algorithm with the corresponding advice.603

Definition 3.11. Let T : N → N be a time-constructible function. A language604

L is in (N∩coN)TIME[T (n)], if there is an algorithm A(x, y) (which is called the605

predicate) such that:606

• A takes two inputs x, y such that |x| = n, |y| = O(T (n)) (y is the witness),607

runs in O(T (n)) time, and outputs an element from {0, 1,⊥}.608

• (Completeness) For all x ∈ {0, 1}∗, there exists a y such that609

A(x, y) = L(x).610

• (Soundness) For all x ∈ {0, 1}∗ and all y,611

A(x, y) 6= 1− L(x).612

Remark 3.12. (N∩coN)TIME[T (n)] languages with advice are defined similarly,613

with A being an algorithm with the corresponding advice.614

Note that by above definition, the semantic of (MA ∩ coMA)/1 is different from615

MA/1 ∩ coMA/1. A language in (MA ∩ coMA)/1 has both an MA/1 algorithm and616

a coMA/1 algorithm, and their advice bits are the same. In contrast, a language in617

MA/1 ∩ coMA/1 can have an MA/1 algorithm and a coMA/1 algorithm with different618

advice sequences. Similar a relationship holds for (NP∩ coNP)/1 and NP/1 ∩ coNP/1.619

3.6. Witness Circuits. Here we provide formal definition regarding witness620

circuits. Our definition below is adapted from [46].621

Definition 3.13. Let T : N→ N be time-constructible, and let L ∈ NTIME[T (n)].622

We say an algorithm V is a verifier for L, if for some ` : N → N such that `(n) ≤623

log T (n) + O(1), V takes two inputs x ∈ {0, 1}n and y ∈ {0, 1}2`(n)

and satisfies the624

condition that x ∈ L if and only if there is y ∈ {0, 1}2`(|x|) such that V (x, y) = 1.19625

We say that V has witness circuits of size w(n), if for every large enough n ∈ N626

and every x ∈ Ln, there is a w(n)-size `(n)-input circuit Cx such that V (x, tt(Cx)) =627

1. And we say that L has witness circuits of size w(n), if every verifier V for L has628

witness circuits of size w(n).629

19Note that here we assume the witness length of V to be a power of 2 for simplicity. This
assumption is without loss of generality since a verifier can always ignore part of the witness.
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3.7. Hardness Amplification. We will also need some results in hardness am-630

plification.631

For n ∈ N, f ∈ Fn,1, and k ∈ N, we use f⊕k to be denote the (kn)-input function632

f⊕k(x1, . . . , xk) := ⊕i∈[k]f(xi), where xi ∈ {0, 1}n for every i ∈ [k].633

The following Lemma follows from a careful analysis of Levin’s proof of Yao’s634

XOR Lemma [41, 28]. We provide a proof in Appendix B for completeness.635

Lemma 3.14. Let C be a typical circuit class. There is a universal constant c ≥ 1636

such that, for every n ∈ N, f ∈ Fn,1, δ ∈ (0, 0.01), k ∈ N, εk = (1 − δ)k−1
(

1
2 − δ

)
637

and ` = c · log δ−1

ε2k
, if f cannot be (1− 5δ)-approximated by MAJ` ◦ C circuits of size638

s · `+ 1, then f⊕k cannot be ( 1
2 + εk)-approximated by C circuits of size s.639

4. Random self-reduction for NC1. In this section, we prove that NC1 col-640

lapses to AC0 ◦ C if uniform-NC1 can be approximated by C circuits (Theorem 4.3,641

we also call it a collapse theorem for NC1). In Subsection 4.1 we introduce the NC1-642

complete language by Barrington, together with its random self-reduction. Next,643

in Subsection 4.2 we define a special encoding of the inputs to that language. The644

purpose here is to make sure the random self-reduction can be implemented by a645

projection.20 Finally, in Subsection 4.3, we prove Theorem 4.3.646

4.1. A Random Self-reducible NC1-Complete Problem. We first define647

the following problem, iterated group product over S5 (the group of all permutations648

on [5], we use id to denote the identity permutation), denoted as WS5
, as follows:649

Iterated group product over S5 (WS5)

Given n permutations m1,m2, . . . ,mn ∈ S5, compute
∏n
i=1mi.

From the classical theorem of Barrington [12], WS5 is NC1-complete under pro-650

jections. Formally, we have:651

Lemma 4.1 ([12]). For every depth-d n-input circuit C, there is a projection652

P : {0, 1}n → {0, 1}2O(d)

such that C(x) = 1 if and only if WS5
(P (x)) = id, for all653

x ∈ {0, 1}n.654

The above problem is random self reducible [10, 39], which is crucial for the proof655

of our collapse theorem. Here we recall its random self-reduction:656

The random self-reduction of WS5

Given an input ~m = (m1, . . . ,mn) ∈ (S5)n to WS5
and

~u = (u1, . . . , un+1) ∈ Sn+1
5 , we define the following input to WS5

:

Rand(~m, ~u) := (u1m1u
−1
2 , u2m2u

−1
3 , . . . , unmnu

−1
n+1).

For every ~m ∈ (S5)n, if we draw ~u ∈R Sn+1
5 , then Rand(~m, ~u) is distributed as a

uniform random input to WS5
. Moreover, for every ~u ∈ Sn+1

5 , we have

WS5
(~m) = u−1

1 ·WS5
(Rand(~m, ~u)) · un+1.

20We remark that projections are required only for proving average-case lower bounds against
ACC0 ◦ THR. See Subsection 4.2 for more details.
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4.2. A Special Encoding. It may seem that Lemma 4.1 and the random self-657

reduction of WS5
are already sufficient for proving our collapse theorem for NC1. But658

there are still some remaining technical problems.21659

1. First, we have to encode WS5 as a Boolean function. A naive way would be660

to construct a bijection between [120] and S5, and then divide the input into661

blocks of 7 bits, each representing one element in S5. The problem is that662

most of the Boolean inputs would be invalid in this encoding; therefore, this663

would make it a promise problem only defined on a negligible fraction of the664

inputs, which is not suited for our purpose.665

2. Second, a straightforward implementation of the random self-reduction re-666

quires NC0 circuits, as one needs to implement multiplication of two elements667

in S5. This would collapse NC1 to ACC0 ◦THR◦NC0 rather than ACC0 ◦THR,668

and we currently do not know any non-trivial circuit-analysis algorithms for669

ACC0 ◦ THR ◦ NC0.22670

A special encoding for the second issue. We first deal with the second issue671

via a special encoding of the group elements. Note that |S5| = 120. For each i ∈ [120],672

let ei ∈ {0, 1}120 be the vector with i-th bit being 1 while others are all 0. We identify673

S5 with [120] (i.e., we fix a bijection between S5 and [120]), and use ea to represent674

the element a ∈ S5. Now the problem is formally defined as follows:675

Iterated group product over S5 with Boolean inputs (BWS5)

Given n vectors ea1 , . . . , ean ∈ {0, 1}120, compute a =
∏n
i=1 ai and output ea.

The advantage of this special encoding is that for all p, q ∈ S5, there is a projection676

Pp,q : {0, 1}120 → {0, 1}120 (in fact, a permutation), such that for all a ∈ S5, Pp,q(ea) =677

ep·a·q. This is crucial to make sure the random self-reduction can be implemented by678

a projection (so we can collapse NC1 to ACC0 ◦ THR instead of ACC0 ◦ THR ◦ NC0).679

Note that for a ∈ S5, (ea)id = 1 if and only if a = id. We also have the following680

simple corollary of Lemma 4.1.681

Corollary 4.2. For every depth-d n-input circuit C, there is a projection P :682

{0, 1}n → {0, 1}2O(d)

such that C(x) = BWS5
(P (x))id for every x ∈ {0, 1}n.683

Slightly abusing notation, we sometimes use p·m·q to denote Pp,q(m) for p, q ∈ S5684

and m ∈ {0, 1}120.685

A redundant encoding for the first issue. The first issue still remains: BWS5
686

is a promise problem as well, since we require all vectors to be one of the ea’s. We687

will use a redundant encoding to make this problem defined on all possible inputs.688

Let Sgood be the set of all the ea’s for a ∈ S5 (i.e., all vectors in {0, 1}120 with689

hamming weight 1), and Sbad be all other vectors in {0, 1}120.690

We define the following problem Redundant-WS5
:691

Iterated group product over S5 with a redundant encoding

21We remark that similar issues arise in [29] as well.
22This is not an issue if we only wish to prove average-case lower bounds against ACC0, since

ACC0 ◦ NC0 is contained in ACC0.
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(Redundant-WS5)

We are given n2 vectors {mi,j}(i,j)∈[n]×[n] from {0, 1}120.
For each i ∈ [n], let ji be the first integer such that mi,ji ∈ Sgood.

• We call the input a bad input, if there is no such ji for some i, and we
just output the all-zero vector of length 120 in this case.

• Otherwise, we call the input a good input. For every i ∈ [n], let ai ∈ S5

be such that mi,ji = eai . Our goal is to compute a =
∏n
i=1 ai and

output ea.

The definition of Redundant-WS5 above ensures that only a negligible fraction of692

the inputs are bad, and resolves our first issue.693

We note that Redundant-WS5
is in uniform NC.23 For each i ∈ [120], we use694

Redundant-W
(i)
S5

to denote the Boolean language corresponding to the i-th output bit695

of Redundant-WS5
. Formally, given an input z ∈ {0, 1}∗, Redundant-W(i)

S5
(z) outputs696

the i-th bit of Redundant-WS5
(z) if |z| = 120n2 for some n ∈ N, and outputs 0697

otherwise. Clearly, for every i ∈ [120], Redundant-W
(i)
S5

is in also uniform NC.698

4.3. NC1 Collapses to AC0 ◦C if Uniform NC1 can be Approximated by699

C . Now we are ready to show that for a general circuit class C , NC1 collapses to700

AC0 ◦ C , if uniform NC1 can be approximated by C .701

Theorem 4.3. Let C be a typical circuit class, and let S : N → N be a size702

parameter. There is a universal constant δ ∈ (0, 1) such that, if for every i ∈ [120]703

Redundant-W
(i)
S5

can be (1 − δ)-approximated by S-size C circuit families, then every704

depth-d n-input circuit D inputs has an equivalent poly(S(2O(d)), n)-size AC3 ◦ C705

circuit.706

Proof. Let δ = 1/480, and D be a depth-d circuit on n input. By Corol-707

lary 4.2, there is a projection P : {0, 1}n → {0, 1}` where ` ≤ 2O(d), such that708

D(x) = BWS5(P (x))id for every x ∈ {0, 1}n. Without loss of generality, we can709

assume that n is sufficiently large and d ≥ log n.710

Construction of the circuit C approximating Redundant-WS5
. Now, let711

t = `/120 (i.e., BWS5
on ` bits computes the iterated group product of t permutations712

from S5). Now we consider the Redundant-WS5 problem on t2 vectors.713

From the assumption, there are 120 C circuits {Ci}i∈[120] such that Ci (1 − δ)-714

approximates the i-th output bit of Redundant-WS5
. We also use C(x) ∈ {0, 1}120 to715

denote the vector (C1(x), C2(x), . . . , C120(x)).716

By a simple union bound, we have717

(4.1) Pr
z∈R{0,1}120t2

[Redundant-WS5
(z) = C(z)] ≥ 1− δ · 120 ≥ 0.75.718

On the other hand, note that a random input to Redundant-WS5
is a good input719

with probability at least720

(4.2) 1− t ·
(
|Sbad|
2120

)t
≥ 0.99,721

23We can first compute all the ji for i ∈ [n] in uniform NC1. If any of the ji does not exist, we
output the all-zero vector with length 120. Otherwise, we compute BWS5 with inputs being all the
mi,ji for i ∈ [n], which can be done in uniform NC1 as well.
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when n (and therefore t) is sufficiently large.722

Let RWgood be the set of all good inputs to Redundant-WS5
. Combining (4.1)723

and (4.2) and applying another union bound, it follows that724

(4.3) Pr
z∈RRWgood

[Redundant-WS5
(z) = C(z)] ≥ 0.7.725

Implementation of the random self-reduction. Now we define the function726

First : {0, 1}120t → Sgood ∪ {⊥}. Given an input ~m = (m1,m2, . . . ,mt) ∈ ({0, 1}120)t,727

letting j be the first integer that mj ∈ Sgood, we define First(~m) = mj . If there is no728

such j, we define First(~m) = ⊥.729

For each m ∈ Sgood, we define Mm be the uniform distribution over the set730

{z ∈ {0, 1}120t : First(z) = m}. Note that a sample from Mm can be generated as731

follows:732

• For j ∈ [t], let pj be the probability that a random sample ~w = (w1, . . . , wt)733

from Mm satisfies that j is the first integer that wj ∈ Sgood (note that we734

must have wj = m).735

• We first draw j ∈ [t] according to the probabilities pj ’s. Then a sample736

~w = (w1, w2, . . . , wt) from Mm can be generated as follows: for k ∈ [j − 1],737

we set wk to be a uniform sample from Sbad; we set wj = m; for k ∈ {j +738

1, j + 2, . . . , t}, we set wk to be a uniform sample from {0, 1}120.739

Note that when the randomness in the above process is fixed (i.e., j is fixed,740

together with wk for k ∈ [t] \ j), then a sample generated as above is a projection of741

m. (Indeed, only the j-th part of the sample is now set to m, and other parts are742

completely fixed by the randomness.)743

Next, given a valid input ~m = (m1,m2, . . . ,mt) to BWS5 (i.e., ~m ∈ Stgood), we744

define an input distribution to Redundant-WS5
, denoted by N~m, generated as follows:745

1. We draw ~u = (u1, u2, . . . , ut, ut+1) ∈R St+1
5 , and set746

~v = Rand(~m, ~u) = (u1m1u
−1
2 , u2m2u

−1
3 , . . . , utmtu

−1
t+1).747

2. For each i ∈ [t], we draw wi from Mvi independently. Then we output748

w1, w2, . . . , wt.749

We claim that for every ~m ∈ Stgood, N~m is distributed identically to a random750

good input to Redundant-WS5
.751

To see this, note that for every ~m ∈ Stgood, ~v = Rand(~m, ~u) is distributed uni-752

formly random on the set Stgood. Therefore, the distribution of N~m is identical to753

the following distribution: one first draws ~v ∈R Stgood, and then draws wi from Mvi754

independently for every i ∈ [t]. By the definition of good inputs to Redundant-WS5
,755

the later distribution is identical to the uniform distribution over good inputs to756

Redundant-WS5
.757

Moreover, for every ~u ∈ St+1
5 , it holds that758

(4.4) BWS5
(~m) = u−1

1 · BWS5
(Rand(~m, ~u)) · ut+1.759

Note that a sample of N~m is generated from both the randomness over ~u ∈ St+1
5 ,760

and the randomness used in generating all the wi from Mvi . Formally, there is a761

set R and a function Gen(~m, ~u, r) (here we use r to denote the randomness used to762

generate all the wi), such that Gen(~m, ~u, r) is distributed identically to N~m when r is763

drawn from R and ~u is drawn from St+1
5 .764

Finally, applying (4.3) and (4.4), for any ~m ∈ Stgood, we have765

Pr
~u∈RSt+1

good

Pr
r∈RR

[
WS5

(~m) = u−1
1 · C(Gen(~m, ~u, r)) · ut+1

]
≥ 0.7.766
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Construction of the final circuit E. Now, one can see that when ~u is fixed,767

Rand(~m, ~u) is a projection of ~m (since uimiu
−1
i+1 = Pui,u−1

i+1
(mi) is a projection of mi).768

And when r is fixed, Gen(~m, ~u, r) is also a projection of Rand(~m, ~u). Therefore, when769

both ~u and r are fixed, Gen(~m, ~u, r) is a projection of ~m.770

Next, we pick T = 100n i.i.d. samples ~u1, ~u2, . . . , ~uT from St+1
good, and r1, r2, . . . , rT771

from R. For each j ∈ [T ], we define the circuit772

Ej(x) :=
(

(uj1)−1 · C(Gen(P (x), ~uj , rj)) · ujt+1

)
id
.773

Note that Ej can be computed by a C circuit of size S1 = poly(S(2O(d)), n).774

Moreover, for each x ∈ {0, 1}n, over the randomness of ~uj and rj , we have775

Pr[Ej(x) = D(x)] ≥ 0.7.776

Therefore, we set our final circuit to be an approximate-majority of these T777

circuits E1, E2, . . . , ET . By a simple Chernoff bound, there is a fixed choice of all the778

~uj ’s and rj ’s, such that the resulting circuit E computes D exactly. By Lemma 3.1,779

E is an AC3 ◦ C circuit of size T · S1 + poly(T ) ≤ poly(S(2O(d)), n), which completes780

the proof.781

The following corollary follows immediately from Theorem 4.3.782

Corollary 4.4. Let C be a typical circuit class, and let S : N → N be a size783

parameter. There is a universal constant δ ∈ (0, 1) such that, if all languages in784

uniform NC1 can be (1−δ)-approximated by S-size C circuit families, then any depth-d785

n-input circuit D has an equivalent poly(S(2O(d)), n)-size AC3 ◦ C circuit.786

5. Construction of i.o. NPRG for Low-Depth Circuits. In this section we787

construct the required i.o. NPRG for low-depth circuits, under the assumption that788

for some typical circuit class C , (1) uniform NC1 can be approximated by C circuits789

and (2) Gap-UNSAT for AC0 ◦ C has a non-trivial algorithm. (See Theorem 5.3 for790

details.) We also a non-trivial algorithm for Gap-UNSAT for Circuit implies an i.o.791

NPRG for general circuits.792

In Subsection 5.1 we show that for every typical circuit class C , witness lower793

bounds against C circuits follows from a non-trivial Gap-UNSAT algorithm for AC2 ◦C794

circuits. Then in Subsection 5.2, we construct our conditional i.o. NPRGs.795

5.1. Witness-Size Lower Bound for NE. The following lemma is proved by796

combining ideas from [67] with the new PCP construction of [13].797

Lemma 5.1. Let C be a typical circuit class. Suppose there is an ε ∈ (0, 1) such798

that the Gap-UNSAT problem for 2n
ε

-size n-input AC2 ◦ C circuits can be solved in799

2n/nω(1) non-deterministic time. Then there is a polynomial-time verifier V (x, y)800

with |x| = n and |y| = 2n, such that for infinitely many n, V (1n, ·) is satisfiable, and801

V (1n, y) = 1 implies that func(y) cannot be computed by 2n
ε/2

-size C circuits.802

To prove Lemma 5.1, we need the following PCP construction from [13].803

Lemma 5.2 ([13]). Let M be an algorithm running in time T = T (n) ≥ n804

on inputs of the form (x, y) where |x| = n. Given x ∈ {0, 1}n, one can output in805

poly(n, log T ) time circuits Q : {0, 1}r → {0, 1}rt for t = poly(r) and R : {0, 1}t →806

{0, 1} such that:807

Proof length. 2r ≤ T · polylog T .808
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Completeness. If there is a y ∈ {0, 1}T (n) such that M(x, y) accepts then there is a809

map π : {0, 1}r → {0, 1} such that for all z ∈ {0, 1}r, R(π(q1), . . . , π(qt)) = 1810

where (q1, . . . , qt) = Q(z).811

Soundness. If no y ∈ {0, 1}T (n) causes M(x, y) to accept, then for every map812

π : {0, 1}r → {0, 1}, at most 2r

n10 many z ∈ {0, 1}r have R(π(q1), . . . , π(qt)) =813

1 where (q1, . . . , qt) = Q(z).814

Complexity. Q is a projection, i.e., each output bit of Q is a bit of input, the negation815

of a bit, or a constant. R is a 3-CNF.816

Now we are ready to prove Lemma 5.1.817

Proof of Lemma 5.1. Let L be a unary language such that L ∈ NTIME[2n] \818

NTIME[2n/n], whose existence is guaranteed by the non-deterministic time hierarchy819

theorem [69].820

Given an input 1n to L, we apply Lemma 5.2 to L to obtain a poly(n)-size AC2821

oracle circuit VPCPn that takes `(n) = n+O(log n) random bits as input, and queries822

an oracle O : {0, 1}` → {0, 1}. From the complexity part of Lemma 5.2, for a C circuit823

C of size S, VPCPCn is an AC2 ◦ C circuit with size at most S · poly(n). Moreover,824

from the completeness and soundness part of Lemma 5.2, we have:825

(Completeness) If 1n ∈ L, then there is an oracle O : {0, 1}` → {0, 1} such that826

Pr
r∈R{0,1}`

[VPCPCn (r) = 1] = 1.827

(Soundness) Otherwise 1n /∈ L, then for all oracle O : {0, 1}` → {0, 1}, it holds that828

Pr
r∈R{0,1}`

[VPCPCn (r) = 1] ≤ 1/n10.829

Now we consider the following non-deterministic algorithm APCP attempting to830

solve L: Given an input 1n, APCP guesses a 2`
ε/2

-size `-input C circuit C, and runs831

the assumed non-deterministic algorithm for Gap-UNSAT on ¬VPCPCn . It accepts if832

¬VPCPn is a yes instance of Gap-UNSAT, and rejects if it is a no instance.24833

By previous discussions, VPCPCn is an AC2 ◦ C circuit of size at most 2`
ε

, and834

therefore APCP runs in at most 2`/`ω(1) ≤ 2n/n non-deterministic time.835

Since L /∈ NTIME[2n/n], it follows that APCP does not compute L. From the836

soundness property of VPCP, 1n /∈ L implies that ¬VPCPCn is a no instance of837

Gap-UNSAT for every C, and APCP rejects 1n. Hence, for infinitely many n, we838

have 1n ∈ L and yet APCP rejects 1n. We call these n good.839

Now we are ready to define our verifier V (x, y). Without loss of generality we can840

assume `(n) is an increasing function. For every α ∈ N, V (1α, y) rejects immediately841

if there is no n ∈ N such that `(n) = α. Otherwise, there is a unique n such that842

`(n) = α, and V (1α, y) accepts if and only if843

Pr
r∈R{0,1}`(n)

[VPCPfunc(y)
n (r) = 1] = 1.844

Finally we argue that for every good n, V (1`(n), ·) satisfies our requirements. First,845

since 1n ∈ L, from the completeness of VPCP, it follows that there is y ∈ {0, 1}2` such846

that V (1`, y) accepts. Second, since APCP rejects 1n, it means for every 2`
ε/2

-size C847

circuit C : {0, 1}` → {0, 1}, we must have V (1`, tt(C)) = 0. Meaning that for every y848

such that V (1`, y) accepts, func(y) cannot be computed by 2`
ε/2

-size C circuits.849

24APCP may either accept or reject when ¬VPCPn is neither a yes instance nor a no instance. We
will see this does not affect our proof.
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5.2. The NPRG Construction. Now we are ready to give the construction of850

our conditional NPRGs.851

Theorem 5.3. (Conditional i.o. NPRG for low-depth circuits) Let C be a typical852

circuit class. There is a universal constant δ ∈ (0, 1) such that, suppose the following853

hold854

1. there is an ε ∈ (0, 1) such that the Gap-UNSAT problem for 2n
ε

-size n-input855

AC5 ◦ C circuits can be solved in 2n/nω(1) non-deterministic time, and856

2. uniform NC1 can be (1− δ)-approximated by 2logc n-size C circuit families for857

some c ∈ N.858

Then for every a ∈ N, there is b ∈ N and an NPRG family G = {Gn} such that859

1. For infinitely many n, for S = 2loga n, Gn is an NPRG for S-size logS-depth860

circuits with S-bit inputs, with error 1/S.861

2. G is computable in 2logb n time and has seed length logb n.862

In other words, let H = {Hn} be such that Hn is the set of S-size logS-depth863

circuits with S-bit inputs. G is an i.o. NPRG for H with error 1/S.864

Proof. Let δ be the universal constant in Corollary 4.4. Without of loss generality,865

we assume that n is a sufficiently large integer. Recall that an NPRG Gn is a pair of866

functions (GP)n and (GW)n. We will write the pair as G
(n)
P and G

(n)
W for notational867

convenience.868

Construction of the “hardness certifier” V ′ for low-depth circuits. We869

first combine Corollary 4.4 with the witness-size lower bound from Lemma 5.1 to870

construct a hardness certifier V ′.871

Let d = logk n for a constant k to be specified later. By Corollary 4.4 and our872

second assumption, we know that a depth-d n-input circuit has an equivalent 2ce·d
c

-873

size AC3 ◦ C circuit for a universal constant ce.874

Let a1 ∈ N to be specified later. Applying Lemma 5.1 for the circuit class AC3◦C ,875

there is a large enough constant b1 = b1(a1) and a polynomial-time algorithm V ′(x, y)876

with |x| = logb1 n, |y| = 2logb1 n, such that for infinitely many n’s, we have that877

V ′(1logb1 n, ·) is satisfiable, and V ′(1logb1 n, y) = 1 implies that func(y) cannot be878

computed by a 2loga1 n-size AC3 ◦ C circuit. We will call these n’s good.879

Now, we set a1 = ck + 1 (hence loga1 n > ce logck n = ced
c) so that for a good880

n and a string y of length 2logb1 n such that V ′(1logb1 n, y) = 1, we know that func(y)881

cannot be computed by depth-d circuits.882

Construction of the NPRG. Now we can plug this y into a standard construc-883

tion of a PRG. Let c2, g and G be the constants and the algorithm in Theorem 3.3.884

We also set ` = logb1 n, w = 2`, and m = 2loga n. Now we are ready to define G
(n)
P885

and G
(n)
W as follows:886

• G(n)
W takes a w-bit string y as input, and outputs V ′(1`, y).887

• G(n)
P takes a w-bit string y and an `g-bit string z as input, and outputs888

G`,m(y, z).889

Now we set k = a/c2 and verify that Gn = (G
(n)
P , G

(n)
W ) is an NPRG for Hn with890

error 1/m when n is good.891

Since n is good, we know that there exists y ∈ {0, 1}w such that G
(n)
W (y) = 1,892

and for such y, by previous discussions, func(y) cannot be computed by logk n-depth893

circuits. By Theorem 3.3 and the fact that logc2k n ≥ loga n, G`,m(y, ·) : {0, 1}`g →894

{0, 1}m is a PRG for Hn with error 1/m, and is computable in poly(|y|) ≤ 2O(`) time.895

Finally we set b = b1 · g, and this completes the proof.896
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The following theorem is a direct corollary of Theorem 3.2 and Lemma 5.1.897

Theorem 5.4. Suppose there is an ε ∈ (0, 1) such that the Gap-UNSAT problem898

for 2n
ε

-size n-input circuits can be solved in 2n/nω(1) non-deterministic time. Then899

there is an NPRG family G = {Gn} such that900

1. For infinitely many n, for S = 2loga n, Gn is an NPRG for S-size S-input901

circuits with error 1/S.902

2. G is computable in 2logb n time and has seed length logb n.903

6. A Simpler Proof for the New Easy Witness Lemma for NP and NQP904

of [46]. In this section, we present our simpler proof of the easy-witness lemma for905

NP from [46] (it is straightforward to adapt that for NQP). This also serves as a906

warm-up for our a.a.e. average-case MA lower bound in ??, which is the technical907

centerpiece of this paper.908

As already discussed in Section 2, the technical centerpiece of the new easy witness909

lemma of [46] is an a.a.e. MA circuit lower bound. In Subsection 6.1, we first give910

a simpler proof of that MA lower bound. Then in Subsection 6.2, we sketch how to911

prove the easy-witness lemma for NP based on that (this is basically an adaption of912

the proof of [46, Lemma 4.1]).913

We also remark that our proof in fact follows a case-analysis that is similar to the914

fixed polynomial-size circuit lower bounds for MA/1 in [51], while relying on additional915

nice properties (paddability and downwards self-reducibility) of the PSPACE-complete916

language LPSPACE from Theorem 3.7.917

6.1. A.a.e. Fixed-polynomial Lower Bounds for (MA∩coMA)/1. Now we918

are ready to prove the a.a.e. fixed-polynomials lower bounds for (MA ∩ coMA)/1.919

Lemma 6.1. For all constants k, there is c ∈ N and a language L ∈ (MA ∩920

coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either921

• SIZE(Ln) > nk or922

• SIZE(Lm) > mk for some m ∈ (nc, 2 · nc) ∩ N.923

Our relaxation of the a.a.e. condition. The statement of Lemma 6.1 also924

illustrates our relaxation of the a.a.e. condition that is crucial in the average-case925

setting. In [46], the lower bound shows that for almost all n’s and m = nc, either926

SIZE(Ln) > nk or SIZE(Lm) > mk. This lower bound of [46] only holds for an927

MA/O(logn) language. Here we relax the a.a.e. condition by only requiring the lower928

bound to hold for almost all n that is a power of 2 and some m ∈ (nc, 2 · nc). This929

relaxation enables us to prove a lower bound for an (MA ∩ coMA)/1 language. In930

Subsection 6.2, we show how the simplification above still suffices for the proof of the931

easy witness lemma for NP.932

Proof of Lemma 6.1. Let LPSPACE be the language specified by Theorem 3.7.933

By Theorem 3.8, there is c1 ∈ N and a language Ldiag ∈ SPACE(nc1) such that934

SIZE(Ldiag
n ) ≥ nk for all sufficiently large n. Since LPSPACE is PSPACE-complete and935

paddable, there is c2 ∈ N such that Ldiag
n can be reduced to LPSPACE on input length936

nc2 in O(nc2) time. We set c = c2.937

The algorithm. Let τ ∈ N be sufficiently large. We also let b be a large enough938

constant to be specified later (we will make sure b� k). Given an input x of length939

n = 2τ and for m = nc, we first provide an informal description of the (MA∩coMA)/1940

algorithm AL that computes the language L. There are two cases:941

1. When SIZE(LPSPACE
m ) ≤ nb. That is, when LPSPACE

m is easy. In this case, on942

inputs of length n, we guess-and-verify a circuit for LPSPACE
m of size nb, and943
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use that to compute Ldiag
n .944

2. Otherwise, we know that LPSPACE
m is hard. Let ` be the largest integer such945

that SIZE(LPSPACE
` ) ≤ nb.25 On inputs of length m1 = m + `, we guess-and-946

verify a circuit for LPSPACE
` , and compute it (i.e., compute LPSPACE

` on the947

first ` input bits and ignore the rest).26948

Intuitively, AL computes a hard function because either it computes the hard949

language Ldiag
n on inputs of length n, or it computes the hard language LPSPACE

` on950

inputs of length m1. A formal description of AL is given in Algorithm 6.1, and an951

algorithm Aadv for setting the advice sequence of AL is given in Algorithm 6.2.952

To complete the description of our (MA ∩ coMA)/1 algorithm, we claim that an953

αn can only be set once in Algorithm 6.2. To see this, we first note that Line 5 only954

sets αn such that n is a power of 2. And also, whenever one enters Line 8, we have955

that (1) m = nc is a power of 2 and (2) 1 ≤ ` < m since SIZE(LPSPACE
m ) > nb and956

SIZE(LPSPACE
` ) is nondecreasing. Hence, at Line 8, m + ` is never a power of 2. The957

above discussions means that an αn cannot be set by both Line 5 and Line 8. Further958

observing that an αn cannot be set twice by Line 5 or Line 8 finishes the proof of our959

claim.960

Algorithm 6.1: The (MA ∩ coMA)/1 algorithm AL

1 Given an input x with input length n = |x|;
2 Given an advice bit α = αn ∈ {0, 1};
3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc0 ≤ n;
5 Let m0 = nc0;
6 Let ` = n−m0;
7 if α = 0 then
8 Output 0 and terminate

9 if n is a power of 2 then
// We are in the case that SIZE(LPSPACE

m ) ≤ nb.
10 Compute z ∈ {0, 1}m in O(nc) time such that Ldiag

n (x) = LPSPACE
m (z);

11 Guess an m-input circuit C of size at most nb;

12 Let M be the instance checker for LPSPACE
m ;

13 Flip an appropriate number of random coins, let them be r;

14 Accept if MC(z, r) = 1;

15 else
// We are in the case that SIZE(LPSPACE

m0
) > nb0 and ` is the

largest integer such that SIZE(LPSPACE
` ) ≤ nb0.

16 Let z ∈ {0, 1}` be the first ` bits of x;

17 Guess an `-input circuit C of size at most nb0;

18 Let M be the instance checker for LPSPACE
` ;

19 Flip an appropriate number of random coins, let them be r;

20 Accept if MC(z, r) = 1;

25Here we have SIZE(LPSPACE
`+1 ) > nb by the choice of `. Since LPSPACE is downward self-reducible

and b is a large enough constant, we have SIZE(LPSPACE
` ) ≥ nb/2. Therefore, LPSPACE

` is hard as well.
26We choose input length m1 = m+ ` instead of ` because we wish to show L is hard on an input

length in (nc, 2 · nc) ∩ N and ` can be smaller than nc.
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Algorithm 6.2: The algorithm Aadv for setting advice bits

1 All the αn are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ and m = nc;

4 if SIZE(LPSPACE
m ) ≤ nb then

5 Set αn = 1;
6 else
7 Let ` = max{` : SIZE(LPSPACE

` ) ≤ nb};
8 Set αm+` = 1;

Now it remains to show that (1) AL satisfies the MA ∩ coMA promise (see Defi-961

nition 3.9) and (2) AL computes a hard language.962

AL satisfies the MA∩coMA promise. We first show AL satisfies the MA∩coMA963

promise. The intuition is that AL only tries to guess-and-verify a circuit for LPSPACE964

when it exists, and the properties of the instance checker (see Definition 3.4) ensure965

that in this case AL satisfies the MA ∩ coMA promise . There are three cases:966

1. αn = 0. In this case, AL computes the all zero function, and clearly satisfies967

the promise.968

2. αn = 1 and n is a power of 2. In this case, from Algorithm 6.2, we know969

that SIZE(LPSPACE
m ) ≤ nb for m = nc. Therefore, at least one guess of the970

circuit C is the correct circuit for LPSPACE
m , and on that guess, AL outputs971

LPSPACE
m (z) = Ldiag

n (x) with probability 1, by the property of the instance972

checker (see Definition 3.4). Again by the property of the instance checker,973

on all guesses of C, AL outputs 1−LPSPACE
m (z) = 1−Ldiag

n (x) with probability974

at most 1/3.975

3. αn = 1 and n is not a power of 2. In this case, from Algorithm 6.2, we know976

that SIZE(LPSPACE
` ) ≤ nb0. Therefore, at least one guess of the circuit C is the977

correct circuit for LPSPACE
` , and on that guess, AL outputs LPSPACE

` (z) with978

probability 1, again by the property of the instance checker. Similar to the979

previous case, on all possible guesses of C, AL outputs 1 − LPSPACE
` (z) with980

probability at most 1/3.981

To summarize, we have the following claim.982

Claim 1. The algorithm AL with advice set by Aadv is an (MA ∩ coMA)/1 algo-983

rithm for a language L such that, for every n ∈ N, Ln is defined as below:984

1. If αn = 0, then Ln is the all-zero function.985

2. If αn = 1 and n is a power of 2, then Ln is the same function as Ldiag
n .986

3. If αn = 1 and n is not a power of 2, then Ln is the n-bit function that987

computes LPSPACE
` on the first ` bits and ignores the rest of the input.988

AL computes a hard language. Next we show that the algorithm indeed989

computes a hard language as stated. Let τ be a sufficiently large integer, n = 2τ , and990

m = nc. There are two cases:991

1. SIZE(LPSPACE
m ) ≤ nb. In this case, we have αn = 1 by Algorithm 6.2. By992

Item (2) of Claim 1, we have that Ln is the same function as Ldiag
n , and993

therefore SIZE(Ln) > nk.994

2. SIZE(LPSPACE
m ) > nb. Let ` be the largest integer such that SIZE(LPSPACE

` ) ≤995

nb. By Remark 3.5, we have 0 < ` < m.996
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Note that SIZE(LPSPACE
`+1 ) ≤ (` + 1)d · SIZE(LPSPACE

` ) for a universal constant997

d, because LPSPACE is downward self-reducible. Therefore,998

SIZE(LPSPACE
` ) ≥ SIZE(LPSPACE

`+1 )/(`+ 1)d ≥ nb/md ≥ nb−c·d.999

Now, on inputs of length m1 = m + `, we have αm1 = 1 by Algorithm 6.21000

(note that m1 ∈ (m, 2m) as ` ∈ (0,m)). Then by Item (3) of Claim 1, we1001

have that Lm1
is the m1-input function that computes LPSPACE

` on the first `1002

bits and ignores the last m input bits. Hence, we have1003

SIZE(Lm1
) = SIZE(LPSPACE

` ) ≥ nb−c·d.1004

We set b such that nb−cḋ ≥ (2m)k ≥ mk
1 (we can set b = cd + 3 · ck), which1005

completes the proof.1006

6.2. An Easy-Witness Lemma for NP. Now we sketch the proof for the easy-1007

witness lemma for NP, which also illustrates why our relaxation of a.a.e. condition is1008

still enough for the purpose of proving lower bounds.1009

First we need the following simple lemma.1010

Lemma 6.2. For a constant k, if NP/O(n) is not in SIZE[O(nk)], then NP is not1011

in SIZE[nk].1012

Proof. We prove the contrapositive. Suppose NP is in SIZE(nk) for an integer1013

k. Let L ∈ NP/cn for a constant c, and M and {αn}n∈N be its corresponding non-1014

deterministic Turing machine and advice sequence. Let p(n) be a polynomial running1015

time upper bound of M on inputs of length n.1016

Now we define a language L′ such that a pair (x, α) ∈ L′ if and only if c|x| = |α|1017

and M accepts x with advice bits set to α in p(|x|) steps. Clearly, L′ ∈ NP from1018

the definition, so it has an nk-size circuit family. Fixing the advice bits to the actual1019

αn’s in the circuit family, we have an O(nk)-size circuit family for L as well. This1020

completes the proof.1021

Reminder of Lemma 1.6. For all k ≥ 1, there is a constant b such that if1022

NP ⊂ SIZE[nk], then every L ∈ NP has witness circuits of size at most nb.1023

Proof Sketch. Fix k ≥ 1, let b = b(k) be a constant to be specified later. We1024

prove the contrapositive of the lemma: if some L ∈ NP does not have witness circuits1025

of size at most nb, then NP 6⊂ SIZE[nk].1026

Now we assume that there is a language L ∈ NP that does not have nb-size1027

witness circuits. From definition 3.13, there is a constant a ∈ N, `(n) = da log ne, and1028

a polynomial-time verifier V (x, y) for L (x ∈ L ⇔ ∃y V (x, y) = 1) with |x| = n and1029

|y| = 2`(n) such that for infinite many n ∈ N, there is xn ∈ Ln satisfying that (1)1030

V (xn, ·) is satisfiable and (2) V (xn, y) = 1 implies that func(y) does not have nb size1031

circuits. We call these n good.1032

Let c1 and GUmans be the constant and the algorithm from Theorem 3.2. We1033

construct an NPRG Gn = (G
(n)
P , G

(n)
W ) as follows:1034

• Both G
(n)
P and G

(n)
W takes an input xn ∈ {0, 1}n as the advice.1035

• G(n)
W takes a string y ∈ {0, 1}2`(n)

as input, and outputs V (xn, y).1036

• G(n)
P takes a string y ∈ {0, 1}2`(n)

and a string z ∈ {0, 1}c1`(n) as input, and1037

outputs GUmans
`(n),nb/c1

(y, z).1038
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From Theorem 3.2, for every good n, there is an advice xn ∈ {0, 1}n such that1039

Gn is an NPRG fooling nb/c1-size nb/c1-input circuits with error 1/10.1040

Applying Lemma 6.1 with parameter 2k. There are constants t, c ∈ N and a1041

language Lhard ∈ MATIME[nt]/1 such that the following holds: For every sufficiently1042

large τ ∈ N and n = 2τ , either SIZE(Lhard
n ) > n2k or SIZE(Lhard

m ) > m2k for some1043

m ∈ (nc, 2nc) ∩ N.1044

Hence, for a sufficiently large good n, let n1 = n1(n) be the smallest power of 21045

that is at most n. We have either1046

(1) SIZE(Lhard
n1

) ≥ n2k
1 or1047

(2) SIZE(Lhard
m ) ≥ m2k for some m ∈ (nc1, 2 · nc1).1048

We now set b� t · c · c1, and consider the following two cases.1049

(1) holds for infinitely many good n’s. In this case, we define an NP/O(n)1050

language given by the following algorithms:1051

1. On an input z ∈ {0, 1}n. We are given two advice bit αn, βn and an advice1052

input xn ∈ {0, 1}n. αn is 1 if n is good and (1) holds for n1, and is 01053

otherwise. When αn = 1, βn is supposed to be the advice of Lhard on n1-bit1054

inputs, and xn is supposed to be the advice input such that Gn is an NPRG1055

fooling nb/c1 -size nb/c1-input circuits with error 1/10.1056

2. If αn = 0 we simply output 0. Otherwise, we use Gn with advice xn, together1057

with the advice βn for Lhard
n1

to compute Lhard(z≤n1) in non-deterministic1058

poly(n) time. (We can use Gn to derandomize the nt1-time MA/1 algorithm1059

for Lhard
n1

because we have set b� t · c · c1 and hence nb/c1 � (n1)t.)1060

(2) holds for infinitely many good n’s. In this case, we define an NP/O(n)1061

language given by the following algorithms:1062

1. On an input z ∈ {0, 1}m. We are given two advice bit αm, βm and an advice1063

integer n ≤ m and an advice string xn ∈ {0, 1}n. αm is 1 there is a good1064

n ∈ N such that m ∈ (nc1, 2 · nc1) and SIZE(Lhard
m ) > mk. When αm = 1, βm1065

is supposed to be the advice of Lhard on m-bit inputs, and xn is supposed to1066

be the advice input that Gn is an NPRG fooling nb/c-size nb/c-input circuits1067

with error 1/10.1068

2. If αm = 0 we simply output 0. Otherwise, we use Gn with advice xn, together1069

with the advice βm for Lhard
m to compute Lhard(z) in non-deterministic poly(n)1070

time. (We can use Gn to derandomize the mt-time MA/1 algorithm for Lhard
m1071

because we have set b� t · c · c1 and hence nb/c1 � (2n1)t·c ≥ mt.1072

We can see that in both cases above, there is an NP/O(n) language that cannot1073

be computed by Ω(n2k)-size circuits. By Lemma 6.2, we have NP 6⊂ SIZE[nk] and this1074

completes the proof.1075

7. Average-Case “Almost” Almost Everywhere Lower Bounds for MA∩1076

coMA. In this section, we prove the average-case circuit lower bounds for MA∩coMA,1077

which is the most important technical component of the paper.1078

We will need the following lemma, which is a direct corollary of Theorem 3.8.1079

Lemma 7.1. For all a ∈ N, there is h ∈ N and a language Ldiag ∈ SPACE(2logh n)1080

such that for all sufficiently large n,1081

Avg0.99-SIZE(Ldiag
n ) > 2loga n and Avg0.99-DEPTH(Ldiag

n ) > loga n.1082

Now we are ready to prove the technical centerpiece of the paper, an (MA ∩1083

coMA)/1 language that has a low-depth computable predicate and is average-case1084

hard for low-depth circuits.1085
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Theorem 7.2. For all a ∈ N, there are b, c ∈ N and a language L ∈ (MA ∩1086

coMA)TIME(2O(logb n))/1 such that the following hold:1087

1. For all sufficiently large τ ∈ N and n = 2τ , either1088

• Avg0.99-DEPTH(Ln) > loga n, or1089

• Avg0.99-DEPTH(Lm) > logam, for an m ∈ (2logc n, 2logc n+1) ∩ N.1090

2. The randomness part of the predicate of L is computable by O(logb n)-depth1091

circuits.1092

3. For every n ∈ N, if the advice for L on n-bit inputs is 0, then Ln is the1093

all-zero function.1094

Algorithm 7.1: The (MA ∩ coMA)TIME(2O(logb n))/1 algorithm AL

1 Given an input x with length n = |x|;
2 Given an advice integer α = αn ∈ {0, 1};
3 Let m =

⌈
2logc n

⌉
;

4 Let n0 = n0(n) be the largest integer such that 2logc n0 ≤ n;

5 Let m0 = 2logc n0 ;
6 Let ` = n−m0;
7 if α = 0 then
8 Output 0 and terminate

9 if n is a power of 2 then

// We are in the case that DEPTH(LPSPACE
m ) ≤ logb n.

10 Compute a z in 2O(logc n) time such that Ldiag
n (x) = LPSPACE

m (z);

11 Guess a circuit C of logb n depth;

12 Compute in poly(m) time a TC0 oracle circuit Dchecker that implements

the instance checker for LPSPACE
m ;

13 Flip an appropriate number of random coins, let them be r;

14 Output DC
checker(z, r);

15 else

// We are in the case that DEPTH(LPSPACE
m0

) > logb n0 and ` is

the largest integer such that DEPTH(LPSPACE
` ) ≤ logb n0.

16 Let z be the first ` bits of x;

17 Guess a circuit C of logb n0 depth;

18 Compute in poly(`) time a TC0 oracle circuit Dchecker that implements

the instance checker for LPSPACE
` ;

19 Flip an appropriate number of random coins, let them be r;

20 Output DC
checker(z, r);

Proof of Theorem 7.2. Let LPSPACE be the language from Theorem 3.7. Applying1095

Lemma 7.1 with parameter a, there is h ∈ N and a language Ldiag ∈ SPACE(2logh n)1096

such that Avg0.99-DEPTH(Ldiag
n ) > loga n for all sufficiently large n. Since LPSPACE is1097

PSPACE-complete and paddable, there is c1 ∈ N such that Ldiag
n can be reduced to1098

LPSPACE on input length 2logc1 n in 2O(logc1 n) time. We set c = c1 and b = 3ac so that1099

logb n ≥ log2a(2m).1100

The algorithm. Let τ ∈ N be sufficiently large, n = 2τ , and m = 2logc n. We1101

first provide an informal description of the (MA∩ coMA)TIME(2O(logb n))/1 algorithm1102
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Algorithm 7.2: The algorithm Aadv for setting advice bits in Algorithm 7.1

1 All the αn are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;

4 Let m = 2logc n;

5 if DEPTH(LPSPACE
m ) ≤ logb n then

6 Set αn = 1;
7 else

8 Let ` = max{` : DEPTH(LPSPACE
` ) ≤ logb n};

9 Set αm+` = 1;

AL that computes the language L. There are two cases:1103

1. When DEPTH(LPSPACE
m ) ≤ logb n. That is, when LPSPACE

m is easy. In this1104

case, on inputs of length n, we guess-and-verify a circuit for LPSPACE
m of depth1105

logb n, and use that to compute Ldiag
n .1106

2. Otherwise, we know that LPSPACE
m is hard. Let ` be the largest integer such1107

that DEPTH(LPSPACE
` ) ≤ logb n. On input of length m1 = m + `, we guess-1108

and-verify a circuit for LPSPACE
` , and compute LPSPACE

` on the first ` input1109

bits. Note that by Remark 3.5, we have 0 < ` < m and therefore m+ ` is not1110

a power of 2.1111

Intuitively, the AL computes an average-case hard function because either it com-1112

putes the average-case hard language Ldiag
n on inputs of length n, or it computes the1113

average-case hard language LPSPACE
` on inputs of length m (LPSPACE is NC3 weakly1114

error correctable). A formal description of AL is given in Algorithm 7.1, and the1115

algorithm Aadv for setting the advice bits of AL is given in Algorithm 7.2. Since m+ `1116

at Line 9 is never a power of 2, αn can only be set once in Algorithm 7.2.1117

Now we verify that the algorithm above computes a language satisfying our re-1118

quirements.1119

The algorithm satisfies the MA ∩ coMA promise. We first show that AL1120

satisfies the MA∩ coMA promise (Definition 3.9). The intuition is that it only tries to1121

guess-and-verify a circuit for LPSPACE when it exists, and the properties of the instance1122

checker (Definition 3.4) ensure that in this case AL satisfies the MA∩ coMA promise.1123

We state the following claim that summarizes the properties of AL and L that are1124

needed by us.1125

Claim 2. AL with advice set by Aadv is an (MA∩ coMA)TIME(2O(logb n))/1 algo-1126

rithm for a language L such that, for every n ∈ N, Ln is defined as below:1127

1. If αn = 0, then Ln is the all-zero function.1128

2. If αn = 1 and n is a power of 2, then Ln is the same function as Ldiag
n .1129

3. If αn = 1 and n is not a power of 2, then Ln is the n-bit function that1130

computes LPSPACE
` on the first ` bits and ignores the rest of the input.1131

We omit the proof of Claim 2, since it is identical to the proof of Claim 1 in the1132

proof of Lemma 6.1. Also, note that Item (3) of the theorem follows directly from1133

Item (1) of Claim 2.1134

AL computes an “almost” almost everywhere average-case hard lan-1135

guage for low depth circuits. Next, we show that AL indeed computes an average-1136

case hard language. Let τ be a sufficiently large integer, n = 2τ , and m = 2logc n.1137
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According to Algorithm 7.2, there are two cases:1138

1. DEPTH(LPSPACE
m ) ≤ logb n. In this case, Algorithm 7.2 sets αn = 1. By1139

Item(2) of Claim 2 and Lemma 7.1, we have Avg0.99-DEPTH(Ln) > loga n as1140

n is sufficiently large.1141

2. DEPTH(LPSPACE
m ) > logb n. Let ` be the largest integer such that

DEPTH(LPSPACE
` ) ≤ logb n.

By Remark 3.5, we have ` < m. Note that DEPTH(LPSPACE
`+1 ) ≤ d log(`+ 1) +1142

DEPTH(LPSPACE
` ) for a universal constant d.27 Therefore,1143

DEPTH(LPSPACE
` ) ≥ DEPTH(LPSPACE

`+1 )− d log(`+ 1) ≥ Ω(logb n),1144

the last inequality holds since DEPTH(LPSPACE
`+1 ) > logb n, d log(` + 1) ≤1145

O(log `) ≤ O(logm) ≤ O(logc n), and b = 3ac.1146

Now, on inputs of length m1 = m + `, we have αm1
= 1 by Algorithm 7.2.1147

By Item (3) of Claim 2, it follows that1148

Avg0.99-DEPTH(Lm1
) = Avg0.99-DEPTH(LPSPACE

` ).1149

Since LPSPACE is NC3 weakly error correctable and the corresponding NC3
1150

oracle circuit is non-adaptive, there is a universal constant d such that1151

DEPTH(LPSPACE
` ) ≤ d log3 `+ Avg0.99-DEPTH(LPSPACE

` ).1152

Therefore, recall that b = 3ac, it follows1153

Avg0.99-DEPTH(LPSPACE
` ) ≥ DEPTH(LPSPACE

` )− d log3 `1154

≥ Ω(logb n)−O(log3c n) ≥ Ω(logb n).11551156

Finally, note that Ω(logb n) ≥ Ω(log2a(2m)) ≥ loga(m1). We have1157

Avg0.99-DEPTH(Lm1) = Avg0.99-DEPTH(LPSPACE
` ) ≥ loga(m1).1158

This completes the proof of the Item (1) of the theorem.1159

The randomness part of the predicate of L. Finally, we have to show that1160

the randomness part of the predicate of L is computable by O(logb n)-depth circuits1161

(i.e., Item (2) of the theorem). Note that at the end of Algorithm 7.1, given the1162

guessed circuit C and the input x, AL always first computes a circuit DC
checker(z, ·) in1163

2O(logb n) time, and then output DC
checker(z, r).

28 From Definition 3.9, it suffices for1164

us to argue that DC
checker(z, ·) is an O(logn b)-depth circuit, which holds since C is1165

of depth at most logb n and Dchecker is in TC0 (and therefore has an O(log n)-depth1166

circuit).1167

Finally, we remark that from a proof that is identical to the proof of Theorem 7.21168

but working with the complexity measure SIZE instead of the complexity measure1169

DEPTH, the following holds.1170

27Note that LPSPACE is TC0 downward self-reducible, and the corresponding TC0 oracle circuit
is non-adaptive. Also, a TC0 circuit admits an O(logn)-depth circuit since we can replace each
majority gate by an O(logn)-depth circuit.

28Unless αn = 0 and AL simply outputs 0. In this case our claim holds trivially.
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Theorem 7.3. For all a ∈ N, there are b, c ∈ N, and a language L ∈ (MA ∩1171

coMA)TIME(2O(logb n))/1, such that the following hold:1172

1. For all sufficiently large τ ∈ N and n = 2τ , either1173

• Avg0.99-SIZE(Ln) > 2loga n, or1174

• Avg0.99-SIZE(Lm) > 2logam, for an m ∈ (2logc n, 2logc n+1) ∩ N.1175

2. The randomness part of the predicate of L is computable by 2O(logb n)-size1176

circuits.1177

3. For every n ∈ N, if the advice for L on n-bit inputs is 0, then Ln is the1178

all-zero function.1179

8. Average-case circuit lower bounds for NQP. In this section, we first1180

prove that NQP cannot be (1/2 + 1/ polylog(n))-approximated by 2polylog(n)-size1181

ACC0 ◦ THR circuits (Theorem 1.1) by combining the i.o. NPRG construction from1182

Section 5 with the a.a.e. MA lower bounds from Section 7. We then generalize1183

the average-case lower bounds to all typical circuit classes that admit non-trivial1184

Gap-UNSAT algorithms, and prove Theorem 1.4 and Theorem 1.5.1185

Notation. We first introduce some notation. For an integer a ∈ N, we use bin(a)1186

to denote the Boolean string representing a in binary (from the most significant bit1187

to the least significant bit).1188

Given two integers m,n ∈ N, we construct an integer pair(m,n) as follows. First1189

letting ` = |bin(n)|, we duplicate each bit in bin(`) and to get a string zlen of length1190

2 · |bin(`)| (for example, if bin(`) = 101, we get 110011). Then we let z = bin(m) ◦1191

bin(n) ◦ 01 ◦ zlen, where ◦ means concatenation, and define pair(m,n) as the integer1192

with binary representation z.1193

It is easy to see that pair(m,n) ≤ O(mn2). Also, given the integer a = pair(m,n),1194

one can decode the pair of numbers m and n in poly(|bin(a)|) time.1195

8.1. (1 − δ) Average-Case Lower Bounds for NQP from NPRGs and1196

MA Lower Bounds. For a typical circuit class C , we first define the following two1197

conditions.1198

Definition 8.1 (i.o. NPRG condition). For a typical circuit class C , we say1199

that the i.o. NPRG condition holds for C , if for every a ∈ N≥1, there is b ∈ N and1200

an NPRG family G = {Gn} such that1201

1. For infinitely many n and S = 2loga n, Gn is an NPRG for S-size S-input C1202

circuits with error 1/S.1203

2. G is computable in 2logb n time and has seed length logb n.1204

Definition 8.2 (a.a.e. average-case hardness condition). For a typical circuit1205

class C , we say that the a.a.e. average-case hardness condition holds for C , if for1206

every a ∈ N≥1, there are b, c ∈ N and a language L ∈ (MA∩ coMA)TIME(2O(logb n))/11207

such that the following hold:1208

1. For all sufficiently large τ ∈ N and n = 2τ , either1209

• Avg0.99-C -SIZE(Ln) > 2loga n, or1210

• Avg0.99-C -SIZE(Lm) > 2logam for some m ∈ (2logc n, 2logc n+1) ∩ N.1211

2. The randomness part of the predicate of L is computable by 2O(logb n)-size C1212

circuits.1213

3. For every n ∈ N, if the advice for L on n-bit inputs is 0, then Ln is the1214

all-zero function.1215

The following is an immediate corollary of Theorem 7.2 and Theorem 7.3.1216
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Corollary 8.3. For C ∈ {Formula,Circuit}, the a.a.e. average-case hardness1217

condition holds for C .1218

Now we show that the i.o. NPRG condition and a.a.e. average-case hardness1219

condition for a typical circuit class C imply average-case lower bounds against C .1220

Theorem 8.4. For a typical circuit class C , if both the i.o. NPRG condition and1221

the a.a.e. average-case hardness condition hold for C , then for every a ∈ N, there is1222

b ∈ N, a universal constant δ ∈ (0, 1/2), and a language L ∈ (N∩coN)TIME[2logb n]/21223

such that L cannot be (1− δ)-approximated by 2loga n-size C circuits.1224

Proof. Let b be an integer to be specified later and δ = 0.01. Without loss of1225

generality, we can assume that a is large enough.1226

Since the a.a.e average-case hardness condition holds for C . There are b1, c ∈ N1227

and a language Lhard ∈ (MA∩coMA)TIME(2logb1 n)/1 such that for all sufficiently large1228

τ ∈ N and n = 2τ , either1229

• Avg0.99-C -SIZE(Lhard
n ) > 2log2a n, or1230

• Avg0.99-C -SIZE(Lhard
m ) > 2log2am for some m ∈ (2logc n, 2logc n+1) ∩ N.1231

Let T1(n) = 2logb1 n, Ahard(x, y, z) be the predicate of Lhard, and {αhard
n } be the1232

advice sequence of Lhard. Let chard be the constant so that chard · T1(n) is the length1233

of y and z in Ahard. Let nw = nw(n) = chard · T1(n) for convenience.1234

Moreover, since the randomness part of the predicate of Lhard is computable by1235

2O(logb n)-size C circuits (see Definition 3.9), there is an O(2logb1 n)-time algorithm1236

Bhard such that:1237

• Given an input x ∈ {0, 1}n, a witness y ∈ {0, 1}nw(n), and the correct advice1238

α = αhard
n ∈ {0, 1}, Bhard

/α (x, y) outputs an nw(n)-input 2O(logb n)-size C circuit1239

D, such that Ahard
/α (x, y, z) = D(z) for all z ∈ {0, 1}nw(n).291240

Now we try to derandomize Lhard non-deterministically and get a hard language1241

in (N∩coN)TIME[2logb n]/2. In the following we always assume that n is sufficiently1242

large.1243

Let a1 = max(2b1c
2, a) and S = S(n) = 2loga1 n. Since the i.o. NPRG condition1244

holds for C , there is b2 ∈ N and an NPRG family G = {Gn} such that:1245

1. For infinitely many n, Gn is an NPRG for S-size S-input C circuits with error1246

1/S.1247

2. G is computable in 2logb2 n time and has seed length logb2 n.1248

We call an integer n good if the Item (1) above holds for n.1249

Now, fix a good n. Let n1 be the largest power of 2 that is at most n. We first1250

provide an informal description of our (N∩coN)TIME[2logb n]/2 algorithm for our hard1251

language L. There are two cases according to Theorem 7.2.1252

• Case I: Avg0.99-C -SIZE(Lhard
n1

) > 2log2a n1 . In this case, on inputs of length n,1253

we apply the NPRG Gn to compute Lhard
n1

on the first n1 bits in 2O(logb2 n)1254

non-deterministic time.1255

• Case II: Avg0.99-C -SIZE(Lhard
m ) > 2log2am for some m ∈ (2logc n1 , 2logc n1+1) ∩1256

N. In this case, on inputs of length n2 = pair(m,n) ≤ O(mn2), we apply the1257

NPRG Gn to compute Lhard
m on the first m bits in 2O(logb2 n) ≤ 2O(logb2 n2)1258

non-deterministic time.1259

Formally, the algorithm is specified in Algorithm 8.1, with a key subroutine Derand1260

29We use Ahard
/α

and Bhard
/α

to denote that the advice of these two algorithms are set to α.
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given in Algorithm 8.2. The advice bits αn and βn are set by Algorithm 8.3.301261

Algorithm 8.1: The (N∩coN)TIME[2logb n]/2 Algorithm AL

1 Given an input x with length n = |x|;
2 Given advice bits α = αn ∈ {0, 1} and β = βn ∈ {0, 1};
3 if β = 0 then
4 return 0 ;

5 if α = 0 then
6 Let n1 be the largest power of 2 that is at most n;

// α = 0 indicates we are in the case that

Avg0.99-C -SIZE(Lhard
n1

) > 2log2a n1 and n is good.

7 Let w be the first n1 bits of x;
8 return Derand(w, n);

9 else
10 Parse n as two integers (m0, n0) (that is, n = pair(m0, n0));

// α = 1 indicates we are in the case that

Avg0.99-C -SIZE(Lhard
m0

) > 2log2am0 and n0 is good.

11 Let w be the first m0 bits of x;
12 return Derand(w, n0);

Algorithm 8.2: Derand(x, n0)

1 Given an input x with length n = |x|, n0;
// n0 is suppose to be good.

2 Guess an nw(n)-bit witness y and run Bhard
/1 (x, y) to obtain an nw(n)-input

2O(logb1 n)-size C circuit Dx,y;
3 Let (GP, GW) be the pair of algorithm in the NPRG Gn0

;

4 Guess a string yhard ∈ {0, 1}2
logb2 n0

;
5 if GW(yhard) = 0 then
6 return ⊥;

7 for w ∈ {0, 1,⊥} do

8 pw = Pr
r∈R{0,1}log

b2 n0

[
Dx,y(GP(yhard, r)) = w

]
;

9 if p1 > 0.6 then
10 return 1;

11 if p0 > 0.6 then
12 return 0;

13 return ⊥;

Analysis of Derand(x, z, n0). We first prove the following claim regarding the1262

algorithm Derand(x, n0).1263

30Here it is possible that an αn or βn is set twice by Algorithm 8.3, but this does not affect our
analysis.
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Algorithm 8.3: The algorithm Aadv for setting advice bits of Algorithm 8.1

1 All αn’s and βn’s are set to 0 by default;
2 for n = 1→∞ do
3 if n is good then
4 Let n1 be the largest power of 2 that is at most n;

5 if Avg0.99-C -SIZE(Lhard
n1

) > 2log2a n1 then
6 αn = 0;

7 βn = αhard
n1

;

8 else
9 Let m be the smallest integer from (2logc n1 , 2logc n1+1) ∩ N such

that Avg0.99-C -SIZE(Lhard
m ) > 2log2am;

10 n2 = pair(m,n);
11 αn2 = 1;

12 βn2 = αhard
m ;

Claim 3. For n, n0 ∈ N, if n0 is good, αhard
n = 1 and loga1 n0 ≥ logb1+1 n, then1264

for every x ∈ {0, 1}n, Derand(x, n0) computes Lhard(x) with respect to Definition 3.11.1265

Proof. Fix an x ∈ {0, 1}n. Since αhard
n = 1, we have that Bhard

/1 (x, y) outputs1266

an nw(n)-input 2O(logb1 n)-size circuit Dx,y such that Ahard
/1 (x, y, z) = Dx,y(z) for all1267

z ∈ {0, 1}nw(n).1268

Since Ahard(x, y, z) is the predicate of an (MA ∩ coMA)TIME[T1(n)]/1 time algo-1269

rithm for Lhard, we have (1) there exists y ∈ {0, 1}nw(n) such that Dx,y(z) = Lhard(z)1270

for all z ∈ {0, 1}nw(n) and (2) for all y ∈ {0, 1}nw(n), Dx,y(z) = 1 − Lhard(z) happens1271

with probability at most 1/3 over z.1272

Now, since n0 is good, we further know that (1) there is yhard ∈ {0, 1}2
logb2 n0

such1273

that GW(yhard) = 1 and (2) for all yhard such that GW(yhard) = 1, GP(yhard, ·) is a PRG1274

fooling C circuits of 2loga1 n0 ≥ 2logb1+1 n size with error at most 1/100.1275

Finally, we show Derand computes Lhard(x) with respect to Definition 3.11. First,1276

there exists y ∈ {0, 1}nw(n) and yhard ∈ {0, 1}2
logb2 n0

such that Dx,y(z) = Lhard(z) for1277

all z ∈ {0, 1}nw(n) and GW(yhard) = 1. Since Dx,y is of size 2O(logb1 n) ≤ 2logb1+1 n, we1278

know that GP(yhard, ·) fools Dx,y with error at most 1/100.31 This in particular means1279

that pLhard(x) ≥ 0.99, and Derand(x, n0) outputs Lhard(x) on the guess y and yhard.1280

Second, for all y ∈ {0, 1}nw(n) and yhard ∈ {0, 1}2
logb2 n0

. We know that Dx,y(z) =1281

1 − Lhard(z) happens with probability at most 1/3 over z. Now, if GW(yhard) = 0,1282

Derand(x, n0) outputs ⊥ immediately. Otherwise, GW(yhard) = 1, and GP(yhard, ·)1283

fools Dx,y with error at most 1/100. This in particular means that p1−Lhard(x) ≤ 0.35,1284

and hence Derand(x, n0) does not output 1− Lhard(x) on the guess y and yhard.1285

To summarize, for every x ∈ {0, 1}n, (1) there are y ∈ {0, 1}nw(n) and yhard ∈1286

{0, 1}2logb2 n0
such that Derand(x, n0) outputs Lhard(x) and (2) for every y and yhard,1287

Derand(x, n0) ∈ {Lhard(x),⊥}. This completes the proof.1288

Analysis of AL. Next we prove the following claim regarding AL.1289

31More formally, for every w ∈ {0, 1,⊥}, it fools the circuit deciding whether Dx,y(z) = w.
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Claim 4. AL with advice set by Aadv is an (N∩coN)TIME[2logb n]/2 algorithm for1290

a language L defined as follows:1291

1. If βn = 0, then Ln is the all-zero function.1292

2. If βn = 1 and αn = 0, then Ln is the n-input function that computes Lhard
n1

1293

on the first n1 bits and ignores the rest of the input.1294

3. If βn = 1 and αn = 1, then Ln is the n-input function that computes Lhard
m0

1295

on the first m0 bits and ignores the rest of the input.1296

Proof. Item (1) of the theorem follows immediately from Line 4 of Algorithm 8.1.1297

In the following we show Item (2) and Item (3) hold separately.1298

We first consider Item (2). In this case, we have that βn = 1 and αn = 0. By1299

Algorithm 8.3, it follows that n is good and αhard
n1

= 1. Since n1 is the largest power1300

of 2 that is at most n, we have n1 ≤ n. Recall that a1 = max(2b1c
2, a), we have1301

loga1 n ≥ logb1+1 n ≥ logb1+1 n1. Hence, by Claim 3, it follows that Derand(w, n)1302

computes Lhard(w) with respect to Definition 3.11 at Line 8. This proves Item (2).1303

We next consider Item (3). Now we have βn = 1 and αn = 1. By Algorithm 8.3, it1304

follows that (1) n0 is good and αhard
m0

= 1 and (2) m0 ≤ 2logc n0+1. By our choice of a1,1305

we have that loga1 n0 ≥ logb1+1m0. Again by Claim 3, it follows that Derand(w, n0)1306

computes Lhard(w) with respect to Definition 3.11 at Line 12. This proves Item (3).1307

Average-case lower bound. Finally, we are ready to prove that L is average-1308

case hard, which completes the proof.1309

Claim 5. L cannot be (1− δ)-approximated by 2loga n-size C circuits.1310

Proof. Since there are infinitely many good n, either Line 7 or Line 12 of Algo-1311

rithm 8.3 is executed for an infinite number of times. Moreover, from Item (3) of1312

Definition 8.2, it follows that at Line 7 (resp. Line 12), αhard
n1

(resp. αhard
m ) must be1313

1.32 Hence, we know that there are infinitely many n such that βn = 1. We now1314

consider the following two cases.1315

Case I. There are infinitely many n such that βn = 1 and αn = 0. By Algo-
rithm 8.3 and Claim 4, we know that

Avg0.99-C -SIZE(Ln) ≥ Avg0.99-SIZEC (Lhard
n1

) ≥ 2log2a n1 ≥ 2loga n.

The last inequality above follows from the fact that n1 ≥ n/2.1316

Case II. There are infinitely many n such that βn = 1 and αn = 1. By Algo-
rithm 8.3 and Claim 4, we know that

Avg0.99-C -SIZE(Ln) ≥ Avg0.99-C -SIZE(Lhard
m0

) ≥ 2log2am0

. Moreover, from Algorithm 8.3 we also havem0 ≤ n ≤ O(m0n
2
0) andm0 ≥ 2logc(n0/2).1317

Hence, we have m0 ≥ n0.99 and 2log2am0 ≥ 2loga n since a is large enough.1318

Hence, in both cases, we have that Avg0.99-C -SIZE(Ln) ≥ 2loga n for infinitely1319

many n.1320

8.2. (1− δ) Average-Case Lower Bounds for NQP from Non-trivial De-1321

randomization. Recall that for a typical circuit class C , we say the non-trivial1322

derandomization condition holds for C , if there is ε ∈ (0, 1) such that the Gap-UNSAT1323

32Since if αhard
n1

= 0, then Lhard
n1

is the trivial all-zero function. The same holds for αhard
m and Lhard

m
as well.
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problem for 2n
ε

-size n-input C circuits can be solved in 2n/nω(1) non-deterministic1324

time.1325

Recall that a circuit class C is nice, if it is typical and either C = Circuit or C is1326

weaker than Formula.1327

From Theorem 5.4 and Theorem 5.3, we have the following corollary.1328

Corollary 8.5. Let C be a typical circuit class such that the non-trivial deran-1329

domization condition holds for AC5 ◦ C . There is a universal constant δ ∈ (0, 1/2)1330

such that the following hold:1331

1. If uniform NC1 can be (1− δ)-approximated by 2logc n-size C circuit families1332

for some c ∈ N, then the i.o. NPRG condition holds for Formula.1333

2. If C = Circuit, then the i.o. NPRG condition holds for Circuit.1334

Next we show that, for a nice circuit class C , the non-trivial derandomization1335

condition for C implies average-case lower bounds against C .1336

Theorem 8.6. Let C be a nice circuit class. Suppose the non-trivial derandom-1337

ization condition holds for AC5 ◦C . Then for every a ∈ N, there is b ∈ N, a universal1338

constant δ ∈ (0, 1/2), and a language L ∈ (N∩coN)TIME[2logb n]/2 such that L cannot1339

be (1− δ)-approximated by 2loga n-size C circuits.1340

Proof. The case for C = Circuit follows directly from Corollary 8.5, Corollary 8.31341

and Theorem 8.4. So we will focus on the case that C is weaker than Formula. We1342

will consider the following two cases.1343

Case I. If uniform NC cannot be (1− δ)-approximated by 2loga n-size C circuits.1344

In this case, since uniform NC is contained in (N∩coN)TIME[2log2 n]/2, we can simply1345

set b = 2.1346

Case II. If uniform NC can be (1− δ)-approximated by 2loga n-size C circuits. In1347

this case, by Item (1) of Corollary 8.5, the i.o. NPRG condition holds for Formula.1348

Now, by Corollary 8.3 and Theorem 8.4, there is b ∈ N and a language L ∈1349

(N∩coN)TIME[2logb n]/2 that cannot be (1−δ)-approximated by 2loga+1 n-size formulas.1350

Since C is weaker than Formula, it follows that L also cannot be (1−δ)-approximated1351

by 2loga n-size C circuits.1352

Recall the the following SAT algorithm for ACd[m] ◦ THR by [65].1353

Theorem 8.7 ([65]). For every d,m ∈ N, there is an ε = ε(d,m) > 0 such1354

that the satisfiability of a 2n
ε

-size n-input ACd[m] ◦ THR circuit can be determined1355

deterministically in 2n−n
ε

time.1356

In other words, the non-trivial derandomization condition holds for ACd[m]◦THR,1357

for every d,m ∈ N.1358

Combining Theorem 8.7 with Theorem 8.6, we immediately have the following1359

average-case lower bounds against ACd[m] ◦ THR.1360

Corollary 8.8. For every a, d?,m? ∈ N, there is b ∈ N, a universal constant1361

δ > 0, and a language L ∈ (N∩coN)TIME[2logb n]/2 such that L cannot be (1 − δ)-1362

approximated by 2loga n size ACd? [m?] ◦ THR circuits.1363

Next we show Corollary 8.8 indeed imply the following stronger lower bounds.1364

We remark that we cannot directly apply Theorem 8.6 to ACC0 ◦ THR, since the1365

non-trivial derandomization condition does not necessarily hold for ACC0 ◦THR. Our1366

proof below uses a case-analysis to resolve this issue.1367
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Corollary 8.9. For every a ∈ N, there is b ∈ N, a universal constant δ > 0, and1368

a language L ∈ (N∩coN)TIME[2logb n]/2 such that L cannot be (1 − δ)-approximated1369

by 2loga n size ACC0 ◦ THR circuits.331370

Proof. Let b ≥ 1 be an integer to be specified later, and δ be the minimum of the1371

universal constants in Corollary 8.8 and Theorem 4.3.1372

For the sake of contradiction, suppose every language in (N∩coN)TIME[2logb n]/21373

can be (1− δ)-approximated by a 2loga n-size ACC0 ◦ THR circuit family.1374

In particular, there are d◦,m◦ ∈ N such that for every i ∈ [120] Redundant-W
(i)
S5

1375

can be (1 − δ)-approximated by 2loga n-size ACd◦ [m◦] ◦ THR circuits. Therefore, by1376

Theorem 4.3, there is a constant ce ≥ 1 such that any depth-d circuit has an equiv-1377

alent 2ce·d
a

-size ACd◦+3[m◦] ◦ THR circuit. Hence, any depth-log2a n circuit has an1378

equivalent 2ce·log2a2 n-size ACd◦+3[m◦] ◦ THR circuit.1379

Finally, by Corollary 8.8, there is a language L ∈ (N∩coN)TIME[2logb n]/2 (now we1380

set b) such that L cannot be (1−δ)-approximated by 2log2a2+1 n-size ACd◦+3[m◦]◦THR1381

circuits. By the previous discussion, it follows that L cannot be (1− δ)-approximated1382

by log2a n-depth circuits. Consequently, L cannot be (1− δ)-approximated by 2loga n-1383

size ACC0 ◦ THR circuits, a contradiction.1384

8.3. 1/2+1/ polylog(n) Average-Case Lower Bounds against ACC0 ◦THR.1385

Now we are ready to prove our main theorem Theorem 1.1 from Corollary 8.9 and1386

Lemma 3.14.1387

We first prove the following lemma, which gives us a convenient way to apply1388

hardness amplification to languages in (N∩coN)TIME[2logb n]/2.1389

Lemma 8.10. For every b ≥ 2 and every language L ∈ (N∩coN)TIME[2logb n]/2,1390

there is a language L′ ∈ (N∩coN)TIME[2logb n]/2 such that, for every typical circuit1391

class C and two nondecreasing unbounded functions S, ` : N → N such that `(n) ≤1392

2o(n), and for every constant δ0 ∈ (0, 1/2), the following holds:1393

• If L cannot be (1−δ0)-approximated by O(`(n)S(n))-size MAJ`(n)◦C circuits,1394

then L′ cannot be (1/2+`(n1/3)−1/3)-approximated by S(n1/3)-size C circuits.1395

Proof. We first define L′ as follows: Given an input x ∈ {0, 1}n for some n ∈ N.1396

Letting m be the largest integer such that m2 ≤ n, and k = min(n − m2,m), we1397

define L′(x) = L⊕k(x≤km), where x≤km denotes the first km bits of x. (Since k ≤ m,1398

we have km ≤ m2 ≤ n.) Using the straightforward algorithm for computing L′, it1399

follows that L′ ∈ (N∩coN)TIME[2logb n]/2.341400

Now, suppose for a constant δ0 ∈ (0, 1/2), there are infinitely many n such that1401

Ln cannot be (1 − δ0)-approximated by `(n)S(n)-size MAJ`(n) ◦ C circuits. We call1402

these n good. Without loss of generality we can assume δ0 ∈ (0, 0.01). We also set1403

δ = δ0/5.1404

For every sufficiently large good n, we set k = k(n) to be the first k so that1405

ε−1
k ≥ `(n)1/3, where εk = (1 − δ)k−1(1/2 − δ). Let c1 be the universal constant1406

in Lemma 3.14. Since n is sufficiently large and ` is unbounded and nondecreasing,1407

`0 = c1
log δ−1

ε2k
< `(n). Now, by Lemma 3.14 and the fact that Ln cannot be (1− 5δ)-1408

33In other words, L cannot be (1− δ)-approximated by 2log
a n size ACd? [m?] ◦ THR circuits, for

every d?,m? ∈ N.
34We remark that this step crucially uses the fact that L is in (N∩coN)TIME[2log

b n]/2 instead of

NTIME[2log
b n]/2.
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approximated by `0 · S(n) + 1 ≤ `(n) · S(n)-size MAJ`0 ◦ C circuits, it follows that1409

(Ln)⊕k cannot be (1/2 + `(n)−1/3)-approximated (note that εk ≤ `(n)−1/3 from our1410

choice) by S(n)-size C circuits.1411

From our definition of L′, it follows that for infinitely many n, L′n2+k(n) (from1412

our choice of k and the assumption that `(n) = 2o(n), we have that k ≤ n) cannot1413

be (1/2 + `(n)−1/3)-approximated by S(n)-size C circuits, which completes the proof1414

since both S and ` are nondecreasing.1415

Then we apply Lemma 8.10 to amplify the (1 − δ)-average-case lower bound1416

from Corollary 8.9 to a (1/2 + 1/ polylog(n))-average-case lower bound.1417

Lemma 8.11. For every a, c ∈ N, there is b ∈ N and L ∈ (N∩coN)TIME[2logb n]/21418

such that L cannot be (1/2 + 1/ logc n)-approximated by 2loga n-size ACC0 ◦ THR cir-1419

cuits.1420

Proof. Let a1 = max(5c, a+ 1). By Corollary 8.9, there is b1 ∈ N and a language1421

L1 ∈ (N∩coN)TIME[2logb1 n]/2 such that L1 cannot be (1−δ)-approximated by 2loga1 n-1422

size ACC0 ◦ THR circuits, for a universal constant δ ∈ (0, 1/2). Without loss of1423

generality, we can assume that b1, a, c ≥ 2.1424

We apply Lemma 8.10 to L1 to get our language L ∈ (N∩coN)TIME[2logb1 n]/2.1425

We also let `(n) = log4c n and S(n) = 2loga1 n−1. Now, for every d?,m? ∈ N, we note1426

that an MAJ`(n) ◦ ACd? [m?] circuit of size S(n) has an equivalent ACd?+2[m?] circuit1427

of size S(n) + 2`(n) < 2loga1 n, by replacing the top MAJ`(n) gate by an AC2 circuit1428

of size at most 2`(n). Hence, since L1 cannot be (1 − δ)-approximated by 2loga1 n-1429

size ACC0 ◦ THR circuits, it also follows that L1 cannot be (1 − δ)-approximated by1430

S(n)`(n)-size MAJ`(n) ◦ ACd? [m?] ◦ THR circuits. By Lemma 8.10, it follows that L1431

cannot be (1/2 + `(n1/3)−1/3)-approximated by S(n1/3)-size ACd? [m?] circuits.1432

Finally, note that for a sufficiently large n, we have `(n1/3)1/3 ≥ Ω(log4c/3 n) ≥1433

logc n and S(n1/3) ≥ 2Ω(loga1 n) ≥ 2Ω(loga+1 n) ≥ 2loga n. It then follows that L cannot1434

be (1/2 + 1/ logc n)-approximated by 2loga n-size ACd? [m?] circuits, for every d?,m? ∈1435

N. This completes the proof.1436

Next we need the following lemma to get rid or reduce the advice in Lemma 8.11.1437

The same trick was used in [20] as well.1438

Lemma 8.12. For every b ≥ 2 and every language L ∈ (N∩coN)TIME[2logb n]/2,1439

there are languages L1 ∈ NTIME[2logb n] and L2 ∈ (N∩coN)TIME[2logb n]/1 such that1440

the following holds:1441

• For every typical circuit class C , S : N→ N and ε : N→ (0, 1/2), if L cannot1442

be 1/2 + ε(n)-approximated by S(n)-size C circuits, then neither L1 nor L21443

can be 1/2 + ε(bn/4c)-approximated by S(bn/4c)-size C circuits.1444

Proof. Let w0, w1, w2, w3 ∈ {0, 1}2 be an enumeration of the set {0, 1}2. We will1445

prove the lemma for L1 and L2 separately.1446

NQP lower bounds. We first prove the case for L1 ∈ NTIME[2logb n]. We define1447

L1 ∈ NTIME[2logb n] by the following algorithm A1: on an input of length n, let1448

n′ = bn/4c and k = n − 4 · n′; A1 simulates the non-deterministic algorithm for L′n′1449

with the advice wk on the first n′ bits of the input.1450

Since L cannot be 1/2 + ε(n)-approximated by S(n)-size C circuits, there are1451

infinitely many pairs (ni, ai) ∈ N × {0, 1, 2, 3} such that the non-deterministic algo-1452

rithm for Lni with advice wai computes a function that cannot be (1/2 + ε(ni))-1453
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approximated by S(ni)-size C circuits. By the construction of L1, (L1)4ni+ai cannot1454

be (1/2 + ε(ni))-approximated by S(ni)-size C circuits. Therefore, L1 cannot be1455

1/2 + ε(bn/4c)-approximated by S(bn/4c)-size C circuits.1456

(NQP∩ coNQP)/1 lower bounds. Now we define L2 ∈ (N∩coN)TIME[2logb n]/11457

by the following algorithm A2: on an input of length n, let n′ = bn/4c and k = n−4·n′;1458

we set the advice bit αn = 1 if and only if wk is the correct advice for input length1459

n′ of language L; when αn = 1, A2 simulates Ln′ with the advice wk on the first n′1460

bits of the input; otherwise, A2 simply outputs 0. A similar argument as that of the1461

previous case completes the proof.1462

Now, Theorem 1.1 follows as a direct corollary of Lemma 8.12 and Lemma 8.11.1463

8.4. Generalization to Other Natural Circuit Classes. Finally, we gen-1464

eralize our average-case lower bounds to other natural circuits C if the non-trivial1465

derandomization condition holds for them.1466

Reminder of Theorem 1.4. Let C be a nice circuit class. Suppose the non-1467

trivial derandomization condition holds for AC7 ◦ C . Then for every a, c ∈ N, there1468

is b ∈ N, and a language L ∈ NTIME[2logb n] such that L cannot be (1/2 + 1/ logc n)-1469

approximated by 2loga n-size C circuits. The same holds for (N∩coN)TIME[2logb n]/11470

in place of NTIME[2logb n].1471

Proof. We set a1 = 3(a+ 1)(c+ 1). Let C1 = AC2 ◦ C . Note that C1 is also nice1472

since C is nice. From our assumption, it follows that the non-trivial derandomization1473

condition holds for AC5◦C1. By Theorem 8.6, there is a universal constant δ ∈ (0, 1/2),1474

b1 ∈ N, and a language L1 ∈ (N∩coN)TIME[2logb1 n]/2 such that L1 cannot be (1− δ)-1475

approximated by 2loga1 n-size AC2 ◦ C circuits.1476

Again, we apply Lemma 8.10 to L1 to get L ∈ (N∩coN)TIME[2logb1 n]/2. We also1477

let `(n) = log4(c+1) n and S(n) = 2loga1 n−1. Now applying an identical argument as in1478

the proof of Lemma 8.11, it follows that L cannot be (1/2+1/ logc+1 n)-approximated1479

by 2loga+1 n-size C circuits. Applying Lemma 8.12 completes the proof.1480

Reminder of Theorem 1.5. Let C be a nice circuit class. Suppose the non-trivial1481

derandomization condition holds for AC5 ◦MAJ ◦ C . Then for every a, c ∈ N, there1482

is b ∈ N, and a language L ∈ NTIME[2logb n] such that L cannot be (1/2 + 1/2logc n)-1483

approximated by 2loga n-size C circuits. The same holds for (N∩coN)TIME[2logb n]/11484

in place of NTIME[2logb n].1485

Proof. Let C1 = MAJ ◦ C . We set a1 = 3(a + 1)(c + 1). Note that C1 is also1486

nice since C is nice and the non-trivial derandomization condition holds for AC5 ◦C1.1487

By Theorem 8.6, there is a universal constant δ ∈ (0, 1/2), b1 ∈ N, and a language1488

L1 ∈ (N∩coN)TIME[2logb1 n]/2 such that L1 cannot be (1−δ)-approximated by 2loga1 n-1489

size MAJ ◦ C circuits.1490

Again, we apply Lemma 8.10 to L1 to get L ∈ (N∩coN)TIME[2logb1 n]/2. We also1491

let `(n) = 2log4(c+1) n and S(n) = 2loga1 n−1. Now applying an identical argument as in1492

the proof of Lemma 8.11, it follows that L cannot be (1/2+1/2logc+1 n)-approximated1493

by 2loga+1 n-size C circuits. Applying Lemma 8.12 completes the proof.1494
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9. A PSPACE-complete Language with Nice Reducibility Properties.1495

In this section, we construct a PSPACE-complete language with the needed nice re-1496

ducibility properties, and prove Theorem 3.7.1497

In Subsection 9.1, we introduce the necessary technical preliminaries. In Subsec-1498

tion 9.2, we review the original construction in [59]. In Subsection 9.2.1, we briefly1499

discuss what adaptions are required to make it suitable for our purpose, and we prove1500

some additional properties of the construction of [59] in Subsection 9.2.2. In Subsec-1501

tion 9.3, we construct the needed PSPACE-complete language.1502

9.1. Preliminaries.1503

9.1.1. Finite Fields. To avoid confusion, we often use bold letters (e.g., x,y)1504

to emphasize that they are formal variables.1505

Throughout this section, we will only consider finite fields of the form GF(22·3`)1506

for some ` ∈ N, since they enjoy a simple representation that will be useful for us.1507

For every ` ∈ N, we set pw` = 2 · 3` and use F(`) to denote GF(2pw`).1508

Let n = pw` = 2 · 3` for some ` ∈ N. We will always represent F(`) = GF(2n)1509

as F2[x]/(xn + xn/2 + 1).35 That is, we identify an element of GF(2n) with an F2[x]1510

polynomial with degree less than n. To avoid confusion, given a polynomial P (x) ∈1511

F2[x] with degree less than n, we will use (P (x))F(`) to denote the unique element in1512

F(`) identified with P (x).1513

The most important property of the fields {F(`)}`∈N is that, there is a very simple1514

embedding τ` of F(`) into F(`+1): τ` maps (x)F(`) to (x3)F(`+1) (this induces a mapping1515

from F(`) to F(`+1)).36 We sometimes abuse notation and identify F(`) as a subset of1516

F(`+1) via the embedding τ`, and omit the subscript of (x)F(`+1) when the underlying1517

field is clear from the context.1518

Let `1, `2 ∈ N be such that `1 < `2, we use τ`1→`2 to denote the composed mapping1519

τ`2−1 ◦ · · · ◦ τ`1+1 ◦ τ`1 . That is, τ`1→`2 is an embedding of F(`1) into F(`2).1520

Let n ∈ N and p : (F(`1))n → F(`1) be a polynomial with degree less than |F(`1)|.1521

For every i ∈ {0, 1, . . . , n}, there is a unique polynomial p′ : (F(`2))i × (F(`1))n−i →1522

F(`2) that agrees with p on all points in (F(`1))n (here we identify (F(`1))n as a subset1523

of (F(`2))n via the embedding τ`1→`2) and has the same degree of p. We call p′ the1524

unique extension of p to the domain (F(`2))i × (F(`1))n−i.371525

Let κ(`) be the natural bijection between {0, 1}n and F(`) = GF(2n): for every1526

a ∈ {0, 1}n, κ(`)(a) =
(∑

i∈[n] ai · xi−1
)
F(`)

. We always use κ(`) to encode elements1527

from F(`) by Boolean strings. That is, whenever we say that an algorithm takes1528

an input from F(`), we mean it takes a string x ∈ {0, 1}pw` and interprets it as an1529

element of F(`) via κ(`). Similarly, whenever we say that an algorithm outputs an1530

element from F(`), we mean it outputs a string {0, 1}pw` encoding that element via1531

κ(`). For simplicity, sometimes we use (a)F(`) to denote κ(`)(a). Also, when we say the1532

i-th element in F(`), we mean the element in F(`) encoded by the i-th lexicographically1533

smallest Boolean string in {0, 1}pw` .1534

The following lemma will be very useful for us.1535

Lemma 9.1. Let ` ∈ N and n = pw`. There are poly(n)-time computable projec-1536

tions Emd` : {0, 1}n → {0, 1}3n and Emd−1
` : {0, 1}3n → {0, 1}n such that:1537

35xn + xn/2 + 1 ∈ F2[x] is irreducible, see [61, Theorem 1.1.28].
36To see this, note that the mapping x 7→ x3 maps xn + xn/2 + 1 to x3n + x3n/2 + 1.
37In more details, p′ is obtained by evaluating the polynomial p on the domain (F(`2))i×(F(`1))n−i.

Although p has coefficients in F(`1), we can interpret its coefficients as elements in F(`2) via the
mapping τ`1→`2 for evaluating p′.
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1. τ`((b)F(`)) = (Emd`(b))F(`+1) for every b ∈ {0, 1}n.1538

2. Emd−1
` ◦ Emd` is the identity function on {0, 1}n.1539

For `1, `2 ∈ N such that `1 < `2, we also use Emd`1→`2 to denote the com-1540

position Emd`2−1 ◦ Emd`2−2 ◦ · · · ◦ Emd`1 , and Emd`2→`1 to denote the composition1541

Emd−1
`1
◦ · · ·Emd−1

`2−2 ◦ Emd−1
`2−1. From Lemma 9.1, both Emd`1→`2 and Emd`2→`1 are1542

poly(pw`2)-time computable projections.1543

In other words, Emd`1→`2 transforms the Boolean encoding of β ∈ F(`1) into the1544

Boolean encoding of τ`1→`2(β) ∈ F(`2); Emd`2→`1 takes the Boolean encoding of an1545

element τ`1→`2(β) ∈ F(`2) for β ∈ F(`1), and outputs the Boolean encoding of β. Also1546

note that Emd` = Emd`→`+1, Emd−1
` = Emd`+1→`, and Emd`2→`1 ◦ Emd`1→`2 is the1547

identity function on {0, 1}pw`1 .1548

Proof of Lemma 9.1. Given b ∈ {0, 1}n, from the definition of τ`, we have1549

τ`((b)F(`)) =

n∑
i=1

bi · x3(i−1).1550

From the above equation, we can simply define Emd`(b) ∈ {0, 1}3n such that for each1551

j ∈ [3n],1552

(Emd`(b))j =

{
bj/3 3 divides j,

0 otherwise.
1553

Item (1) of the lemma then follows immeidately. We also define Emd−1
` : {0, 1}3n →1554

{0, 1}n as follows: for every a ∈ {0, 1}3n and every j ∈ [n], (Emd−1
` (a))j = a3j . It is1555

straightforward to verify that Emd−1
` ◦ Emd` is the identity function on {0, 1}n. This1556

proves Item (2) of the lemma.1557

Finally, for each n ∈ N, we set `n to be the smallest integer such that pw`n ≥ n.1558

We also let szn = pw`n = 2 · 3`n , Fn = F(`n) = GF(2szn), and κn = κ(`n). Note that1559

2n ≤ |Fn| ≤ 23n.1560

9.1.2. Uniform TC0 Circuits for Arithmetic Operations over Fn. We will1561

need the uniform TC0 circuits for arithmetic operations over Fn in [35, 34].1562

Lemma 9.2 ([35, 34]). Let n ∈ N. There are uniform TC0 circuits for the1563

following three tasks:1564

1. Iterated addition: given a list a1, . . . , at ∈ Fn, compute
∑
i∈[t] ai.1565

2. Iterated multiplication: given a list a1, . . . , at ∈ Fn, compute
∏
i∈[t] ai.1566

3. Division: Given a, b ∈ Fn such that b 6= 0, compute a/b.381567

Corollary 9.3. There is an algorithm Dintp satisfying the following:1568

1. Dintp takes n ∈ N, t ∈ [|Fn|], a list (a1, b1), . . . , (at, bt) ∈ Fn×Fn with distinct1569

ai’s, and an element x ∈ Fn as input, and outputs an element from Fn.1570

2. Let p(x) : Fn → Fn is the unique polynomial with degree at most t − 1 such1571

that p(ai) = bi for every i ∈ [t]. Dintp outputs p(x).1572

3. Dintp can be implemented by a uniform TC0 circuit family.1573

Proof. For every i ∈ [t], we define a polynomial ei(x) : Fn → Fn as follows:1574

ei(x) =
∏

j∈[n]\{i}

x− aj
ai − aj

.1575

38[34] gave a uniform TC0 circuit family computing xt given x ∈ Fn and an integer t encoded in
binary. This allows us to compute the inverse x−1 = x|Fn|−2 given x ∈ Fn by a uniform TC0 circuit
family.
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We have that p(x) =
∑
i∈[n] ei(x) · bi. Using Item (2) of Lemma 9.2, ei(x) can be1576

computed by uniform TC0 circuits given input x ∈ Fn and the list {(ai, bi)}i∈[t]. Then1577

using Item (1) of Lemma 9.2, p(x) can be computed in uniform TC0 given x ∈ Fn and1578

the list {(ai, bi)}i∈[t]. This completes the proof.1579

9.2. Review of the Construction in [59]. We need the following lemma1580

from [59], which builds on the proof of IP = PSPACE theorem [43, 54].1581

Lemma 9.4 (Adapted from [59, Lemma 4.1]). There is a collection of polynomi-1582

als FTV = {fn,i : Fnn → Fn}n∈N≥1,i∈[n] with the following properties:1583

1. (Self-reducibility) There is an algorithm Red satisfying the following:1584

(a) Red takes n, i ∈ N≥1 such that i < n, and ~x ∈ Fnn as input, and a1585

function h : Fnn → Fn as oracle.1586

(b) Red
fn,i+1

n,i computes fn,i.1587

(c) Red can be implemented by a uniform non-adaptive TC0 oracle circuit1588

family.1589

2. (Base-case) There is an algorithm Base satisfying the following:1590

(a) Base takes n ∈ N≥1 and ~x ∈ Fnn as input, and outputs fn,n(~x).1591

(b) Base can be implemented by a uniform TC0 circuit family.1592

3. (PSPACE-hardness) For every L ∈ PSPACE, there is a pair of algorithm1593

(Alen
L , A

red
L ) satisfying the following:1594

(a) Alen
L takes n ∈ N≥1 as input and outputs an integer in poly(n) time;1595

Ared
L takes x ∈ {0, 1}∗ as input, and outputs a vector ~z ∈ Fmm for m =1596

Alen
L (|x|).1597

(b) For every n ∈ N≥1, Alen
L (n) ≤ cL ·ncL for some constant cL that depends1598

on L, and for every x ∈ {0, 1}n, it holds that L(x) = fm,1(~z), where1599

m = Alen
L (|x|) and ~z = Ared

L (x).391600

4. (Low degree) For every n ∈ N≥1 and i ∈ [n], fn,i has degree at most n.1601

5. (Instance checker) There is a randomized algorithm IC such that, IC takes1602

n, i ∈ N≥1 such that i ≤ n, and ~x ∈ Fn as input, and n − i + 1 functions1603

f̃i, f̃i+1, . . . , f̃n : Fnn → Fn as oracles, and outputs an element in Fn ∪ {⊥}.1604

The following properties hold for IC:1605

(a) If f̃j = fn,j for every j ∈ {i, . . . , n}, then ICf̃i,...,f̃nn,i (~x) outputs fn,i(~x)1606

with probability 1 for every ~x ∈ Fnn.1607

(b) For every f̃i, f̃i+1, . . . , f̃n : Fnn → Fn and every ~x ∈ Fnn, ICf̃i,...,f̃nn,i (~x) ∈1608

{fn,i(~x),⊥} with probability 2/3, over the internal randomness of IC.1609

For completeness, we will prove Lemma 9.4 together with some additional prop-1610

erties of FTV in Section 9.2.2.1611

9.2.1. Technical Challenges in Adapting [59] for Our Purpose. The orig-1612

inal language in [59] just computes fn,i in the order of first increasing in n and then1613

decreasing in i. By Lemma 9.4, this direct construction gives a PSPACE-complete1614

language that is both downward self-reducible and error correctable (as polynomials1615

are error correctable). To make it further paddable, [23, 51] used a padding construc-1616

tion such that on inputs of an appropriate length en,i, the new language L encodes1617

fn,i and all polynomials that come before it as subfunctions. However, as we will see,1618

such a direct construction does not have error correctability.1619

39i.e., fm,1(~z) = (L(x))Fn .
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Error correctability and paddability. We first describe the technical chal-1620

lenges we need to overcome for constructing a PSPACE-complete language that is both1621

error correctable and paddable.1622

The construction of [23, 51] gives us a PSPACE-complete language that encodes1623

not a single polynomial, but many different polynomials on a single input length.1624

This ruins the error correctability so we need to do some interpolation combine these1625

many polynomials into a single polynomial again. One obvious problem is that these1626

polynomials are over different fields and may have different numbers of variables, we1627

resolve that by a careful choice of the fields (for all n < m, Fn is a subfield of Fm)1628

and adding dummy variables.1629

An immediate idea is to use the following direct interpolation: for some field F,1630

suppose we have k polynomials g1, g2, . . . , gk : Fn → F of degree n; we then construct1631

a single polynomial Gk : Fn+1 → F with degree n + k, such that Gk(wi, x) = gi(x)1632

via a simple interpolation, where wi is the i-th element in F. The issue here is that1633

then Gk−1 cannot be reduced to Gk easily (so it is not paddable). Therefore, we1634

make a different choice of interpolation that allows us to preserve the paddability.1635

Specifically, we define Gk : Fn × Fk → F as1636

(9.1) Gk(x, y1, y2, . . . , yk) :=

k∑
i=1

gi(x) · yi.1637

In more details, we will set g1, . . . , gk be (padded and extended versions of) the first1638

k polynomials in the sequence1639

f1,1, f2,2, . . . , f2,1, f3,3, . . . , f3,1, . . . , fn,n, . . . , fn,1, . . . ,1640

and define Gk as in (9.1). See (9.9) for a formal definition.1641

Finally, the polynomials are over a large alphabet Fn, and we have to convert1642

them into Boolean functions. This step is a standard application of Walsh-Hadamard1643

codes.1644

The next step is to verify all the reducibility properties from Theorem 3.7 holds1645

for our new PSPACE-complete language, and the corresponding reductions have im-1646

plementations by low-depth oracle circuits.1647

For the paddability it is straightforward from our definition. For the weakly error1648

correctability, it is still relatively straightforward from the local decoders of Reed-1649

Muller codes and Walsh-Hadamard codes. The main difficulty here is to verify same-1650

length checkability and downward self-reducibility, and construct low-depth reductions1651

for them.1652

Same-length checkability. Here we need to argue the instance-checker in [59,1653

23, 51] can be implemented in TC0. This looks counter-intuitive at first—the instance1654

checker in [59, 23, 51] simulates the interactive proof protocol for PSPACE [43, 54].1655

Since it is an interactive proof protocol, it appears that this instance-checker should1656

proceed one step after another step (i.e., it is highly sequential), and it should not1657

have a low-depth implementation such as a non-adaptive TC0 oracle circuit family.1658

Recall the reason why the IP = PSPACE protocol has to be adaptive: the verifier1659

does not want the prover’s answer to her current question depends on her future1660

questions.40 The crucial observation here is that: in the instance-checker setting, the1661

40If the prover in a standard sum-check protocol can know in advance all verifier’s questions, then
it can easily cheat.
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prover’s strategy is already committed to the given oracle, so the issue above would1662

not arise. This enables us to check different stages of the interactive proof protocol in1663

the same time, and from which we can construct a TC0 oracle circuit for the instance1664

checker. See Algorithm 9.1 and Lemma 9.8 for more details.1665

Downward self-reducibility. Establishing the downward self-reducibility is not1666

obvious. Here we wish to compute Gk+1 given oracle access to Gk, for every k ∈ N.411667

When Gk and Gk+1 are over the same field, downward self-reducibility follows1668

from the way that the fn,i’s are constructed. But when Gk and Gk+1 are over different1669

fields Fold and Fnew (Fold is a subfield of Fnew), it is not clear how to evaluate Gk+1 given1670

an oracle access to Gk. To circumvent this issue, suppose Gk : Fn+k
old → Fold is a degree1671

d ≤ poly(n) polynomial, we wish to extent it to a polynomial Hk : Fn+k
new → Fnew.1672

For this purpose, we construct n+k+1 intermediate polynomials H int
0 , . . . ,H int

n+k,1673

such that H int
i : Finew × Fn+k−i

old → Fnew is constructed by extending Gk to the do-1674

main Finew × Fn+k−i
old . Note that H int

n+k = Hk. We simply insert the polynomials1675

H int
0 , H int

2 , . . . ,H int
n+k between Gk and Gk+1. Note that for each i ∈ [n + k], given1676

oracle access to H int
i−1, it is easy to evaluate H int

i by interpolation. Also, Gk+1 can be1677

evaluated easily given oracle access to Hk, as now they are over the same field Fnew,1678

and H int
0 can be easily evaluated given oracle access to Gk. To summarize, inserting1679

H int
0 , . . . ,H int

n+k between Gk and Gk+1 restore the downward self-reducibility.1680

It remains to ensure that adding these H int
i ’s does not hurt other properties we1681

want. It is relatively straightforward (but a bit tedious) to verify that paddability,1682

weakly error correctability still holds. To prove that the H int
i ’s are also same-length1683

checkable, we use an extension checker. See Lemma 9.9 and the proof of Lemma 9.151684

for more details.1685

9.2.2. Additional properties of FTV and a proof of Lemma 9.4. For a1686

vector ~x ∈ Fnn and i ∈ [n], we use ~xi←z to denote the vector obtained from ~x by1687

changing xi to z. We first state the following lemma, which gives details on how the1688

self-reduction Red in Lemma 9.4 is implemented.1689

Lemma 9.5 (Self-reduction for FTV). Let FTV = {fn,i : Fnn → Fn}n∈N≥1,i∈[n]1690

be as in Lemma 9.4. For every n, i ∈ N≥1 such that i < n, one can compute an1691

index J = Jn,i ∈ [n] and a type Q = Qn,i ∈ {∃,∀, LIN} in poly(n) time such that the1692

following hold for every vector ~x ∈ Fnn:1693

1. If Q = ∀, then1694

fn,i(~x) = fn,i+1(~xJ←0) · fn,i+1(~xJ←1).1695

2. If Q = ∃, then1696

fn,i(~x) = 1− (1− fn,i+1(~xJ←0)) · (1− fn,i+1(~xJ←1)).1697

3. If Q = LIN, then1698

fn,i(~x) = xj · fn,i+1(~xJ←1) + (1− xj) · fn,i+1(~xJ←0).1699

To simplify our presentation, we further define three polynomials S∃, S∀, SLIN as1700

1. S∀(x, y0, y1) = y0 · y1.1701

2. S∃(x, y0, y1) = 1− (1− y0) · (1− y1).1702

3. SLIN(x, y0, y1) = xy1 + (1− x)y0.1703

41This is different than the self-reducibility in Lemma 9.4, where we only have self-reducibility
within the sequence fn,1, fn,2, . . . , fn,n for every fixed n ∈ N.
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Now the three cases in Lemma 9.5 can be succinctly written as1704

(9.2) fn,i(~x) = SQ(xj , fn,i+1(~xJ←0), fn,i+1(~xJ←1)).1705

We also give a detailed implementation of the instance checker IC in Lemma 9.41706

in Algorithm 9.1.1707

Algorithm 9.1: The instance checker IC from Lemma 9.4

1 Given n, i ∈ N≥1 such that i ≤ n, and ~x ∈ Fn as the input;

2 Given n− i+ 1 functions f̃i, f̃i+1, . . . , f̃n : Fnn → Fn as the oracles;
3 Let ~αi = ~x;
4 for j ∈ {i, i+ 1, . . . , n− 1} do
5 Compute J = Jn,j and Q = Qn,j from Lemma 9.5;
6 Let w1, . . . , wn+1 be the first n+ 1 elements in Fn;

7 Set b` = f̃j+1((~αj)
J←w`) for every ` ∈ [n+ 1];

8 Let L = {(w`, b`)}`∈[n+1];

9 if f̃j(~αj) 6= SQ((~αj)J , D
intp
n,n+1(L, 0), Dintp

n,n+1(L, 1)) then
10 return ⊥;

11 Draw zj ∈R Fn;

12 Set ~αj+1 = (~αj)
J←zj ;

13 if f̃n(~αn) = Basen(~αn) then

14 return f̃i(~x);
15 else
16 return ⊥;

In the following, we include a proof of Lemma 9.4 to verify the extra properties1708

that is not stated in [59].1709

We first introduce the following variants of the TQBF (True Quantified Boolean1710

Formula) problem, which is also used in [59].1711

Definition 9.6. The TQBFU problem42 takes two matrices ~y, ~z ∈ {0, 1}n×n as1712

input, and the goal is to decide whether the following quantified Boolean formula holds1713

(9.3) Q1x1Q2x2 · · ·Qnxn
∧
j∈[n]

∨
k∈[n]

(yj,k ∧ xk) ∨ (zj,k ∧ ¬xk),1714

where Qi equals ∃ for odd i, and ∀ for even i. We use TQBFUn to denote the TQBFU1715

problem with parameter n (and input length 2n2).1716

We first show that TQBFU is still PSPACE-complete.1717

Lemma 9.7. TQBFU is PSPACE-complete.1718

Proof. Recall that the TQBF problem is defined as follows: given an n-variable1719

m-clause CNF φ(~x) as input, the goal is to decide whether Q1x1Q2 · · ·Qnxnφ(~x) holds,1720

where Qi equals ∃ for odd i, and ∀ for even i. By adding dummy variables or dummy1721

clauses, we can assume that n = m.1722

42U stands for universal, since here we have a universal formula in (9.3) that can simulate every
n-clause n-variable CNF.
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For every j ∈ [n], letting Cj(~x) be the j-th clause in φ(~x), we set yj,k to be 1 if Cj1723

contains the variable xk, and 0 otherwise. Similarly, we set zj,k to be 1 if Cj contains1724

the negated variable ¬xk, and 0 otherwise. Now we can verify that TQBFU(~y, ~z) =1725

TQBF(φ) from (9.3). This proves the PSPACE-completeness of TQBFU as TQBF is1726

PSPACE-complete [56] (see also [7, Theorem 4.13]).1727

Now we are ready to prove Lemma 9.4 and Lemma 9.5. Our proof follows closely1728

the proof sketch of [59, Lemma 4.1].431729

Proof of Lemma 9.4 and Lemma 9.5. Let n ∈ N, and let m be the largest integer1730

such that 6m3 ≤ n. We will use {fn,i}i∈[n] to encode the problem TQBFUm. When1731

n < 6, we simply set fn,i to be the zero n-variate polynomial for all i ∈ [n]. So we1732

can assume m ≥ 1.1733

We first arithmetize the formula in (9.3) to get the following polynomial P : Fmn ×1734

Fm2

n × Fm2

n → Fn1735

(9.4) P (~x, ~y, ~z) =
∏
j∈[m]

1−
∏
k∈[m]

(1− p(xk, yj,k, zj,k))

 ,1736

where p : F3
n → F is defined as p(x, y, z) = xy+(1−x)z. One can verify that p(x, y, z)1737

agrees with (y∧x)∨(z∧¬x) over all Boolean inputs x, y, z ∈ {0, 1}, and also P (~x, ~y, ~z)1738

agrees with1739 ∧
j∈[n]

∨
k∈[n]

(yj,k ∧ xk) ∨ (zj,k ∧ ¬xk)1740

on every ~x ∈ {0, 1}n and every ~y, ~z ∈ {0, 1}n×n. Since p has degree 2, P has degree1741

2m2.1742

Now we make a list L consisting of pairs from N× {∃,∀, LIN}:1743

1. For every integer i from m down to 1:1744

(a) We append (i, Qi) to the end of the list L.1745

(b) For every integer j from 1 to 2m2 +m, we append (j, LIN) to the end of1746

the list L.1747

2. We append n−m · (2m2 +m+ 1)− 1 copies of (1, LIN) to the end of the list1748

L. (Note that m · (2m2 +m+ 1) + 1 ≤ 6m3 ≤ n for m ≥ 1.)1749

From the construction above, it is easy to see that |L| = n−1. Now we are ready1750

to define our polynomials {fn,i}i∈[n].1751

1. We set fn,n(~x) = P (~x≤m+2m2), where ~x≤m+2m2 is the (m + 2m2)-length1752

prefix of ~x.1753

2. For every i from 1 to n− 1, let (Ji, Qi) be the i-th element of the list L. We1754

set1755

(9.5) fn,n−i(~x) = SQi(xJi , fn,n−i+1(~xJi←0), fn,n−i+1(~xJi←1))1756

for every ~x ∈ Fnn.1757

Now we verify each item of Lemma 9.4 separately.1758

First, Lemma 9.5 and Item (1) of Lemma 9.4 follows immediately from our def-1759

inition of fn,n−i in (9.5) and Lemma 9.2. The base case (Item (2) of Lemma 9.4)1760

also follows directly from fn,n(~x) = P (~x≤m+2m2), the definition of P in (9.4), and1761

Lemma 9.2.1762

43We also refer readers to [7, Section 8.3] and [26, Section 9.1.3] for expositions on the celebrated
proof of IP = PSPACE [44, 54].
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Item (3) and Item (5) of Lemma 9.4 can be established identically as in [59] (these1763

essentially follows from the same argument as in the proof of IP = PSPACE. We added1764

some dummy (1, LIN) so that we have exactly n polynomials, but these do not affect1765

the argument.) The instance checker IC in Item (5) is described in Algorithm 9.1.1766

To see Item (4) of Lemma 9.4, note that fn,n has the same degree of P , which1767

is 2m2. For every i ∈ [n − 1] such that Qi ∈ {∃,∀}, since S∃ and S∀ has degree1768

2, we have deg(fn,n−i) ≤ 2 deg(fn,n−i+1). Also, (ji, Qi) in L then is followed by a1769

sequence (1, LIN), (2, LIN), · · · , (2m2 + m, LIN), which reduces the degree back to at1770

most 2m2 + m. Hence, we can see the degree is at most 4m2 + 2m ≤ 6m3 ≤ n for1771

every fn,i.1772

Finally, as discussed in Section 9.2.1, we next show the instance checker IC in1773

Item (5) of Lemma 9.4 can indeed be implemented by a randomized uniform non-1774

adaptive TC0 circuit family.1775

Lemma 9.8. The instance checker IC from Lemma 9.4 can be implemented a ran-1776

domized uniform non-adaptive TC0 circuit family.1777

Proof. The crucial observation here is that we can first draw zi, . . . , zn−1 ∈R Fn1778

beforehand and run each iteration of the for loop in Algorithm 9.1 in parallel (and1779

return ⊥ if any of the check on Line 9 fails). Note that for each j ∈ {i, . . . , n} and1780

` ∈ [n], we have1781

(9.6) (~αj)` =

{
x` there is no j′ < j s.t. Jn,j′ = `

zjmax otherwise,
1782

where jmax is the maximum j′ < j s.t. Jn,j′ = `.1783

Using (9.6), for every j ∈ {i, . . . , n}, we can compute ~αj in uniform TC0 given1784

~x, zi, . . . , zn−1. It then follows from Algorithm 9.1, Corollary 9.3, and Item (2) of1785

Lemma 9.2 that IC can be implemented by a randomized uniform non-adaptive TC0
1786

circuit family.1787

9.3. Construction of The PSPACE-complete Language. In this section, we1788

prove Theorem 3.7. We will first construct a PSPACE-complete language LPSPACE, and1789

then prove it satisfies all the desired properties stated in Theorem 3.7.1790

9.3.1. Extension checker. We will need the following extension checker that1791

checks whether a polynomial f : Finew×Fm−iold → Fnew is the correct extension of another1792

polynomial g : Fmold → Fold. Our construction is a simple adaption of the sum-check1793

protocol.1794

Lemma 9.9. There is an algorithm Ext-C such that:1795

1. Ext-C takes two integers n1, n2 ∈ N such that n1 < n2 as two parameters. We1796

set Fold = Fn1
and Fnew = Fn2

.1797

2. Ext-C takes m, i, d ∈ N such that i ≤ m and d ≤ |Fold|−1 and ~z ∈ Finew×Fm−iold1798

as input, and two functions f : Finew × Fm−iold → Fnew and g : Fmold → Fold as1799

oracles.1800

3. Suppose g is a polynomial with degree at most d and let g′ be the unique1801

extension of g to the domain Finew × Fm−iold . The following two statements1802

hold:1803

(a) If f = g′, then Ext-Cn1,n2,m,i,d(~z)
f,g outputs g′(~z) with probability 1 for1804

every ~z ∈ Finew × Fm−iold .1805

(b) For every oracle f and every ~z ∈ Finew × Fm−iold , Ext-Cn1,n2,m,i,d(~z)
f,g1806

outputs an element from {g′(~z),⊥} with probability at least 1− m·d
|Fold| .1807
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4. Ext-C can be implemented by a randomized uniform non-adaptive TC0 circuit1808

family that queries g at most once (but can query f many times).1809

Algorithm 9.2: The extension checker Ext-Cn1,n2,m,i,d

1 Given ~x ∈ Finew and ~y ∈ Fm−iold as input, and f : Finew × Fm−iold → Fnew and
g : Fmold → Fold as oracles;

2 Draw a random vector ~β ∈ Fiold;
3 Let w1, . . . , wd+1 be the first d+ 1 elements in Fold;
4 for µ ∈ {1, 2 . . . , i} do

5 Let ~α = ~β<µ ◦ ~x≥µ ◦ ~y;
6 For every η ∈ [d+ 1], set bη = f(~αµ←wη );
7 Let L = {(wη, bη)}η∈[d+1];

8 if Dintp
n2,d+1(L, βµ) 6= f(~αµ←βµ) or Dintp

n2,d+1(L, αµ) 6= f(~α) then

9 return ⊥;

10 if g(~β ◦ ~y) = f(~β ◦ ~y) then
11 return f(~x ◦ ~y);
12 else
13 return ⊥;

Proof of Lemma 9.9. The algorithm of Ext-Cn1,n2,m,i,d (we will denote it by Ext-C1810

below for simplicity) is described in Algorithm 9.2.1811

To see Item (4) of the lemma, all the iterations of the for loop in Algorithm 9.21812

can be implemented in parallel. Since Dintp
n2,d+1 can be implemented by uniform TC0,1813

it follows that Ext-C can be implemented by non-adaptive uniform TC0. It is also1814

clear that Ext-C queries g at most once in Algorithm 9.2 (it only queries g at Line 10).1815

Now we show that if f = g′, then Ext-C outputs g′(~z) (Here ~z = ~x ◦ ~y) with1816

probability 1 (i.e., Item (3.a) of the lemma). Note that since f = g′ is the unique1817

extension of g to the domain Finew × Fm−iold and deg(f) = deg(g) ≤ d. It follows from1818

the definition of the bη’s that1819

Dintp
n2,d+1({(wη, bη)}η∈[d+1], ξ) = f(~αµ←ξ)1820

for every ξ ∈ Fnew. Hence the check at Line 8 passes for every µ ∈ [i]. Moreover, since1821

f is the unique extension of g, the check at Line 10 passes as well. To summarize, it1822

follows that Ext-C outputs f(~z) = g′(~z) with probability 1.1823

Next we prove Item (3.b) of the lemma. We first note that if f(~z) = g′(~z), then1824

since Algorithm 9.2 either outputs f(~z) or ⊥, Item (3.b) holds with probability 1.1825

So in the following we assume that f(~z) 6= g′(~z). For every µ ∈ {0, 1, . . . , i}, we let1826

~αµ = ~β≤µ ◦ ~x>µ ◦ ~y (hence, ~α at Line 5 during the µ-th iteration equals ~αµ−1) and1827

let Eµ be the event that either f(~αµ) 6= g′(~αµ) or Ext-C returns ⊥ during the first µ1828

iterations of the for loop in Algorithm 9.2.1829

We first note that by definition, Eµ only depends on ~z≤µ. Also, from our assump-1830

tion, we have Pr[E0] = 1. We need the following claim.1831

Claim 6. For every µ ∈ [i], Pr[Eµ|Eµ−1] ≥ 1− d
|Fold| .1832
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Proof. It suffices to show that conditioning on that Ext-C reaches the µ-th it-1833

eration of the for loop and f(~αµ−1) 6= g′(~αµ−1), Eµ holds with probability at least1834

1− d
|Fold| .1835

Now, let P : Fnew → Fnew be the unique polynomial such that P (wη) = (bη) for1836

every η ∈ [d+1] and deg(P ) ≤ d, andQ : Fnew → Fnew be the restriction of g′ defined by1837

Q(v) = g′(~αµ←vµ−1 ) = g′(~β≤µ−1 ◦v ◦~x>µ ◦~y). Note that deg(Q) ≤ deg(g′) = deg(g) ≤ d.1838

There are two cases:1839

1. P 6= Q. In this case, since βµ distributed uniformly random from Fold and is1840

independent from P and Q, we have P (βµ) 6= Q(βµ) with probability at least1841

1− d/|Fold|, since there at most d roots of P −Q.1842

Next we show that P (βµ) 6= Q(βµ) implies that Eµ holds. There are two1843

subcases:1844

(a) P (βµ) 6= f(~αµ). In this case, we have1845

P (βµ) = Dintp
n2,d+1(L, βµ) 6= f(~αµ←βµ) = f(~αµ).1846

Hence Ext-C returns ⊥ at Line 9, and Eµ holds.1847

(b) P (βµ) 6= Q(βµ). In this case, note that f(~αµ) = P (βµ) and g′(~αµ) =1848

Q(βµ), we have1849

f(~αµ 6= g′(~αµ),1850

and Eµ holds.1851

Putting the above two subcases together, we have that Eµ holds with proba-1852

bility 1− d/|Fold| in this case.1853

2. P = Q. In this case, we have1854

P ((~αµ−1)µ) = Q(~αµ−1)µ) = g′(~αµ−1) 6= f(~αµ−1),1855

where the last inequality follows from our assumption. So Ext-C returns ⊥ at1856

Line 9 and Eµ holds with probability 1.1857

Finally, we show that Claim 6 implies Item (3.b) of the lemma. From 6, we have1858

that Pr[Ei] ≥ 1 − i·d
|Fold| ≥ 1 − m·d

|Fold| . Item (3.b) then follows from the fact that Ext-C1859

always returns ⊥ under Ei, since either (1) Ext-C returns ⊥ during the for loop or (2)1860

f(~β ◦ ~y) = f(~αi) 6= g′(~αi) = g(~β ◦ ~y) and Ext-C returns ⊥ at Line 13.1861

9.3.2. The Language LPSPACE. To construct our PSPACE-complete language1862

LPSPACE, we carefully modify the PSPACE-complete language in [59, Theorem 4.3], and1863

combine that with an application of Walsh-Hadamard codes to turn the polynomials1864

into Boolean functions.1865

Let FTV = {fn,i : Fnn → Fn}n∈N≥1,i∈[n] be as in Lemma 9.4. First, we list all1866

polynomials in FTV in the following order1867

(9.7) f1,1, f2,2, . . . , f2,1, f3,3, . . . , f3,1, . . . , fn,n, . . . , fn,1, . . . .1868

For every k ∈ N, we let gk be the k-th polynomial in (9.7). We also set nk and ik1869

so that gk = fnk,ik , and define G TV = {gi}i∈[n].1870

For every k ∈ N and j ∈ [k], we define hk,j : Fnn → Fn as the following polynomial:1871

• Let h′k,j : Fnjn → Fn be the unique extension of the polynomial gj : Fnjnj → Fnj .1872

• We set hk,j(~x) = h′k,j(~x≤nj ). (i.e., hk,j evaluates h′k,j on its first nj inputs1873

and ignores the rest.)1874
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The following lemma shows that, using the extension checker from Lemma 9.9,1875

the non-adaptive instance checker for FTV (Lemma 9.8) can be converted into a1876

non-adaptive instance-checker for the hk,j ’s.1877

Lemma 9.10. There is a randomized algorithm h-IC such that, h-IC takes k, j ∈1878

N≥1 such that j ≤ k, ε ∈ (0, 1/2), and ~x ∈ Fnn (here n = nk) as input, and j functions1879

h̃1, h̃2, . . . , h̃j : Fnn → Fn as oracles, and outputs an element in Fn∪{⊥}. The following1880

properties hold for h-IC:1881

1. If h̃` = hk,` for every ` ∈ [j], then h-IC
h̃1,...,h̃j
k,j,ε (~x) outputs hk,j(~x) with proba-1882

bility 1 for every ~x ∈ Fnn.1883

2. For every h̃1, h̃2, . . . , h̃j : Fnn → Fn and every ~x ∈ Fnn, h-IC
h̃1,...,h̃j
k,j,ε (~x) ∈1884

{hk,j(~x),⊥} with probability 1− ε, over the internal randomness of h-IC.1885

3. h-IC can be implemented by a poly(k · log ε−1)-size randomized uniform non-1886

adaptive TC0 oracle circuit family.1887

Proof. Recall that gj = fnj ,ij is a polynomial from Fnjnj to Fnj . In the following1888

we use i to denote ij and m to denote nj for simplicity. We will assume m ≥ 10 since1889

otherwise we can simply compute hk,j(~x) by interpolating fm,i(~x) directly without1890

using any oracles.1891

We first define the following oracles f̃i, f̃i+1, . . . , f̃m : Fmm → Fm to the instance-1892

checker ICm,i from Lemma 9.4: for every ` ∈ {i, i+ 1, . . . ,m}, letting k′ be such that1893

gk′ = fm,` (note that k′ ≤ j from (9.7)), we set1894

(9.8) f̃`(~x) = h̃k′(~x, 0, . . . , 0).1895

As a Boolean function, (9.8) implicitly uses Emd`m→`n to convert ~x into a vector in1896

Fmn , and Emd`n→`m to interpret h̃k′(~x, 0, . . . , 0) ∈ Fn as an element of Fm. Since1897

Emd`m→`n and Emd`n→`m are both poly(n)-time computable projections, simulating1898

f̃` via (9.8) does not affect the circuit complexity of ICm,i.1899

Applying Lemma 9.4, there is a randomized uniform TC0 oracle circuit D1 such1900

that:1901

1. If h̃` = hk,` for every ` ∈ [j], then D
h̃1,...,h̃j
1 (~x) outputs fm,m(~x) with proba-1902

bility 1 for every ~x ∈ Fmm.441903

2. For every h̃1, . . . , h̃j , D
h̃1,...,h̃j
1 (~x) outputs an element from {fm,m(~x),⊥} with1904

probability at least 9/10.451905

We next run Ext-Cm,n,m,m,m from Lemma 9.9 with oracle access to r : Fmn → Fn1906

defined by r(~x) = h̃j(~x, 0, 0, . . . , 0) and D
h̃1,...,h̃j
1 , we also modify it slightly so that1907

whenever D
h̃1,...,h̃j
1 returns ⊥, Ext-C returns ⊥ as well.1908

Note that Ext-Cm,n,m,m,m only queries D
h̃1,...,h̃j
1 at most once. By a union bound1909

and Lemma 9.9, it holds that Ext-C outputs hk,j(~x) with probability 1 if h̃` = hk,` for1910

every ` ∈ [j], and for every possible oracles h̃1, . . . , h̃j , Ext-C outputs an element from1911

{hk,j(~x),⊥} with probability at least 9/10 − m2

|Fm| ≥ 2/3. The last inequality holds1912

since m ≥ 10 and |Fm| ≥ 2m.1913

Finally, we can repeat the algorithm above O(log ε−1) times to amplify the 2/31914

success probability to 1 − ε. Our final instance-checker has a randomized uniform1915

non-adaptive TC0 circuit family since Ext-C does. This completes the proof.1916

44This holds since by (9.8), we have f̃` = fm,` for every ` ∈ {i, i+ 1, . . . ,m}.
45The success probability of 2/3 in Lemma 9.4 can be boosted to any constant via running IC

multiple times with independent randomness. This do no affect the circuit complexity of IC.
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Construction of the interpolated polynomial Gk. We now define the fol-1917

lowing polynomial Gk : Fnn × Fkn → Fn:1918

(9.9) Gk(~x, ~y) :=
∑
j∈[k]

hk,j(x) · yj ,1919

where ~x ∈ Fnn and ~y ∈ Fkn.1920

Since all the hk,j have degree at most n, Gk has degree at most n+ 1.1921

Construction of field-transferring polynomials H int
k,j . We call an integer k1922

special, if Fnk 6= Fnk+1
. For a special k ∈ N≥1, we next define n+k+1 field-transferring1923

polynomials H int
k,0, H

int
k,1, . . . ,H

int
k,n+k.1924

Since Fnk 6= Fnk+1
, from the definition of nk’s and the sequence in (9.7), it must1925

be the case that nk+1 = nk + 1. From now on we use n to denote nk for simplicity.1926

Also, from the definition of Fn and Fn+1, we must have szn+1 = 3szn.1927

Let Fold = Fn = GF(2szn) and Fnew = Fn+1 = GF(23szn). Slightly abusing no-1928

tation, in the following we use the embedding τ`n to identify Fold with the unique1929

subfield of Fnew that is isomorphic to Fold. Formally, for every u ∈ Fold, we identify it1930

with the element τ`n(u) ∈ Fnew.1931

Let Hk : Fd+k
new → Fnew be the unique extension of Gk : Fn+k

old → Fold. For every1932

j ∈ {0, 1, . . . , n+ k}, we also let H int
k,j : Fjnew×Fn+k−j

old → Fnew be the unique extension1933

of Gk to the domain Fjnew × Fn+k−j
old . Note that1934

(9.10) H int
k,j(~x, ~y) = Hk(~x, ~y)1935

for every ~x ∈ Fjnew and ~y ∈ Fn+k−j
old (i.e., H int

k,j is the restriction of Hk on the domain1936

Fjnew × Fn+k−j
old ). Note that H int

k,0 is simply Gk with outputs embedded in Fnew.1937

The following claim shows that the the sequence {H int
k,j} satisfies TC0 downward1938

self-reducibility.1939

Claim 7 (Downward self-reduction for {H int
k,j}). There is an algorithm H-Red1940

satisfying the following:1941

1. H-Red takes k ∈ N≥1, j ∈ [n + k], and (~y, ~z) ∈ Fjnew × Fn+k−j
old as input, and1942

an oracle h : Fj−1
new × Fn+k−j+1

old → Fnew, and outputs an element in Fnew.1943

2. For every k ∈ N≥1 and j ∈ [n+ k], H-Red
H int
k,j−1

k,j computes H int
k,j.1944

3. H-Red can be implemented by a uniform non-adaptive TC0 oracle circuit fam-1945

ily.1946

Proof. Note that deg(Hk) = deg(Gk) = n+ 1. We set D = n+ 1. In particular,1947

let (~y, ~z) ∈ Fjnew×Fn+k−j
old be an input to H-Redk,j (and H int

k,j). We define the following1948

polynomial1949

P (x) = Hk(~y<j ,x, ~z).1950

Clearly P (x) has degree at most D. Let w1, . . . , wD+1 be the first D + 1 elements in1951

Fold. Our algorithm H-Redk,j first queries the oracle h to compute bi = h((~y<i, wi, ~z))1952

for every i ∈ [D+1], and then runs Dintp
n+1,D+1 with the list {(wi, bi)}i∈[D+1] (wi ∈ Fold1953

is interpreted as an element of Fnew via τ`n) and the input yj , and finally returns the1954

output of Dintp
n+1,D+1.1955

Item (1) of the claim follows directly from Corollary 9.3. To see Item (2) holds,1956

we note that when h = H int
k,j−1, by the definition of P (x), we have that bi = P (wi) for1957

every i ∈ [D + 1]. Since P (x) has degree at most D, H-Redk,j returns P (yj), which1958

equals Hk(~y, ~z) = Hk,j(~y, ~z) by definition.1959
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Converting Gk and H int
k,j into Boolean functions via Walsh-Hadamard1960

codes. Next, we convert the polynomials Gk and H int
k,i into Boolean functions by1961

applying Walsh-Hadamard codes.1962

We define Fk : Fn+k
n × {0, 1}szn → {0, 1} as1963

(9.11) Fk(~z, ~r) := 〈κ−1
n (Gk(~z)), ~r〉,1964

where 〈κ−1
n (Gk(~z)), ~r〉 denotes the inner product between the two vectors over GF(2).1965

Fk can be interpreted as a function from {0, 1}ek to {0, 1}, where ek = (nk + k+1966

1) · szn (we write nk instead of n to emphasize that it is a function of k).1967

Recall that an integer k is special if Gk and Gk+1 are over different fields. In1968

this case, we know that Fn+1 = GF(23szn), and H int
k,j is from Fjn+1 × Fn+k−j

n → Fn+1.1969

Similarly, for every j ∈ {0, 1, . . . , n+k}, we define F trans
k,j : Fjn+1×Fn+k−j

n ×{0, 1}3szn →1970

{0, 1} as1971

(9.12) F trans
k,j (~z, ~r) := 〈κ−1

n+1(H int
k,j(~z)), ~r〉.1972

F trans
k,j can be interpreted as a Boolean function on {0, 1}ek,j , where ek,j = (nk +1973

k + j + 3) · szn.1974

The following claim is useful.1975

Claim 8. For every k ∈ N≥1, it holds that ek < ek+1. Moreover, the following1976

holds for every special k:1977

ek < ek,0 < ek,1 < . . . < ek,nk+k−1 < ek,nk+k < ek+1.1978

The language LPSPACE. Now we are ready to define LPSPACE via the following1979

algorithm.

Algorithm 9.3: Algorithm APSPACE for LPSPACE

1 Given an input x ∈ {0, 1}m for some m ∈ N;
2 if m < e1 then
3 return 0

4 Let k be the largest integer such that ek ≤ m;
5 if k is not speical then
6 return Fk(x≤ek);

7 if m < ek,0 then
8 return Fk(x≤ek);

9 Let j be the largest non-negative integer such that ek,j ≤ m;
10 j ← min(j, nk + k);
11 return F trans

k,j (x≤ek,j );

1980

From Claim 8 and Algorithm 9.3, the following claim is immediate.1981

Claim 9. For every k ∈ N≥1, LPSPACE
ek

equals Fk. For every special k and every1982

j ∈ {0, 1, . . . , nk + k}, LPSPACE
ek,j

equals F trans
k,j .1983

9.3.3. Verifying Properties of LPSPACE. Next, we verify that LPSPACE has all1984

the desired properties stated in Theorem 3.7.1985

Lemma 9.11. LPSPACE is paddable and non-adaptive TC0 downward self-reducible.1986
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Proof. We first note that to show LPSPACE is paddable, it suffices to verify its1987

paddability from input length m to m + 1. Hence in the following, we prove the1988

paddability and downward self-reducibility for every input length m ∈ N≥1 and m+1.1989

When APSPACE
m and APSPACE

m+1 (we use APSPACE
m to denote the restriction of APSPACE1990

on m-bit inputs) computes the same function on their prefixes, one can simply define1991

Pad(x, 1m+1) = x ◦ 0 to establish paddability, and the self-reducibility follows from1992

the fact that LPSPACE
m+1 (x) = LPSPACE

m (x≤m) for every x ∈ {0, 1}m+1. Hence, according1993

to Algorithm 9.3, there are following four non-trivial cases:461994

1. APSPACE
m computes Fk and APSPACE

m+1 computes Fk+1.1995

2. APSPACE
m computes F trans

k,nk+k, APSPACE
m+1 computes Fk+1 for a special k.1996

3. APSPACE
m computes Fk, APSPACE

m+1 computes F trans
k,0 for a special k.1997

4. APSPACE
m computes F trans

k,j , APSPACE
m+1 computes F trans

k,j+1 for a special k and j ∈1998

{0, 1, . . . , nk + k − 1}.1999

Now we discuss these four cases separately. In the rest of the proof we always2000

use n to denote nk for simplicity. We first note that to verify paddability and self-2001

reduction in Case 1, it suffices to verify that there is a projection that reduces Fk2002

to Fk+1 and a uniform non-adaptive TC0 circuit computing Fk+1 given oracle to Fk.2003

Similarly, to verify paddability and self-reduction in Case 2, 3, and 4, it suffices to2004

establish the desired reductions between (1) Fk,nk+k and Fk+1, (2) Fk and F trans
k,0 , and2005

(3) F trans
k,j and F trans

k,j+1.2006

Case 1 and Case 2. We will handle these two cases together. To do so, we2007

begin by setting up some notation. We first set Fnew = Fn+1. We also set Gold and2008

Fold depending on whether we are in Case 1 and Case 2 as follows:2009

1. In Case 1, we set Gold = Gk and Fold = Fk;2010

2. In Case 2, we set Gold = H int
k,nk+k and Fold = F trans

k,nk+k.2011

Our goal now (for both cases) is to verify the paddability from Fold to Fk+1, and2012

the downward self-reducibility from Fk+1 to Fold.2013

From Algorithm 9.3, we can see that the polynomials Gold and Gk+1 are over the2014

same field Fnew. We first verify the paddability. From the definition of Gk and Gk+12015

in (9.9) (Case 1) and the definition of H int
k,n+k in (9.10) (Case 2), we have2016

Gold(~x, ~y) = Gk+1(~x, ~y, (0)Fnew)2017

for every ~x ∈ Fnnew and ~y ∈ Fknew. Hence, by the definition of Fold and Fk+1, we have2018

Fold(~x, ~y, ~z) = Fk+1(~x, ~y, (0)Fnew , ~z)2019

for every ~x ∈ Fnnew, ~y ∈ Fknew and ~z ∈ {0, 1}log2 |Fnew|. Hence, the projection (~x, ~y, ~z) 7→2020

(~x, ~y, (0)Fnew , ~z) is the required reduction from Fold to Fk+1.2021

Next we verify the downward self-reducibility, for which we have to show how to2022

compute Fk+1 using a uniform non-adaptive TC0 circuit with an Fold oracle. We first2023

note that by the definition of Gk and Gk+1 in (9.9) (Case 1) and the definition of2024

H int
k,nk+k in (9.10) (Case 2), we have2025

(9.13) Gk+1(~x, ~y) = Gold(~x, ~y≤k) + gk+1(~x) · yk+12026

for every ~x ∈ Fnk+1
new and ~y ∈ Fk+1

new .2027

46For convenience, we will simply say that APSPACE
m computes Fk (resp. F trans

k,j ) when it computes

Fk (resp. F trans
k,j ) on its prefix of length ek (resp. ek,j).
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We first show how to compute Gk+1 with oracle access to Gold. From (9.13), it2028

suffices to compute gk+1(~x) with oracle access to Gold. Recall that gk+1 = fnk+1,ik+1
.2029

We first note that if ik+1 = nk+1, then by Item (2) of Lemma 9.4, we can compute2030

gk+1(~x) by a uniform TC0 circuit directly without oracle access to Gold.2031

So we can assume that ik+1 < nk+1. In this case, we also have n = nk = nk+12032

and ik = ik+1 + 1 from (9.7). In other words, k is not special and we are in Case 1.2033

(So Gold = Gk.) Note that2034

(9.14) Gk(~x, ~z) = fn,ik(~x) for ~z = (0, 0, . . . , 0, 1) ∈ Fknew and every ~x ∈ Fnnew.2035

Therefore, to compute Gk+1(~x, ~y) according to (9.13), we first compute Gk(~x, ~y≤k)2036

via an oracle call to Gk, and then compute gk+1(~x) = fn,ik+1
(~x) by applying the2037

algorithm Redn,ik+1
with the oracle to fn,ik simulated by Gk using (9.14). Finally,2038

we compute Gk(~x, ~y≤k) + gk+1(~x) · yk+1 using the algorithm from Lemma 9.2. A2039

straightforward implementation gives a uniform non-adaptive TC0 circuit computing2040

Gk+1 given oracle to Gk.2041

Finally, note that a single query to Gold can be simulated by log |Fnew| queries to2042

Fold and recall the definition of Fk+1 in (9.11), we can obtain the desired oracle circuit2043

computing Fk+1 given oracle to Fold.2044

Notation. In the next two cases, k is special and we recall some notation for2045

convenience. Since k is special, we have that nk+1 = nk+1 = n+1 and szn+1 = 3·szn.2046

We let Fold = Fn and still set Fnew = Fn+1.2047

Case 3. Recall the definition of H int
k,0 in (9.10) and that H int

k,0 : Fn+k
old → Fnew is2048

simply Gk : Fn+k
old → Fold with outputs embedded in Fnew. To compute Gk(~z) given an2049

oracle to H int
k,0, we simply apply Emd−1

`n
to the Boolean encoding of H int

k,0(~z). Similarly,2050

to compute H int
k,0(~z) given an oracle to G, we simply apply Emd`n to the Boolean2051

encoding of G(~z). Finally, using a similar argument as in Case 1 and 2, we can lift2052

these reductions between Gk and H int
k,0 into the required reductions between Fk and2053

F trans
k,0 . This completes the proof for this case.2054

Case 4. Similar to the three cases above, it suffices to establish the paddability2055

from H int
k,j to H int

k,j+1 and the downward self-reducibility from H int
k,j+1 to H int

k,j . Note2056

that the required downward self-reducibility follows directly from Claim 7. To see the2057

paddability, note that2058

H int
k,j(~y≤j , yj+1, ~z) = H int

k,j+1(~y≤j , τ`n(yj+1), ~z)2059

for every ~y ∈ Fjnew and ~z ∈ Fn+k−j
old . Recall that τ`n(yj+1) can be computed by2060

applying the polynomial-time computable projection Emd` (see Lemma 9.1) on the2061

Boolean encoding of yj+1. Hence (~y≤j , yj+1, ~z) 7→ (~y≤j , τ`n(yj+1), ~z) is the desired2062

projection padding from H int
k,j to H int

k,j+1. This completes the whole proof.2063

Next we show the PSPACE-completeness of LPSPACE.2064

Lemma 9.12. LPSPACE is PSPACE-complete.2065

Proof. We first note that LPSPACE ∈ PSPACE since every downward self-reducible2066

language is in PSPACE (see, e.g., [7, Exercise 8.9]).2067

Let L ∈ SPACE, and let (Alen
L , A

red
L ) be the pair of algorithms in Lemma 9.4. The2068

following is a polynomial-time reduction RL from L to LPSPACE:2069

1. Given an input x ∈ {0, 1}n for n ∈ N, let m = Alen
L (n).2070

2. Compute ~z = Ared
L (x) and let k ∈ N be such that gk = fm,1.2071
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3. Let ~y ∈ Fkm be such that yk = 1 and yj = 0 for j ∈ [k − 1], and ~u ∈ {0, 1}szn2072

be the vector that u1 = 1 and uj = 0 for j > 1.2073

4. Output LPSPACE
ek

(~z, ~y, ~u).2074

By Lemma 9.4, we have fm,1(~z) = (L(x))Fm . Since L(x) ∈ {0, 1} and we encode2075

Fm as a Boolean string in {0, 1}szm via κm. One can see that2076

(9.15)
(
κ−1
m (fm,1(~z))

)
1

= L(x).2077

Now, by the definition of Gk in (9.9), we have that Gk(~z, ~y) = gk(~z) = fm,1(~z).2078

Then by the definition of Fk, Claim 9 and (9.15), we have2079

LPSPACE
ek

(~z, ~y, ~u) = Fk(~z, ~y, ~u) =
(
κ−1
m (fm,1(~z))

)
1

= L(x).2080

Therefore, LPSPACE is PSPACE-complete.2081

Next we prove that LPSPACE is weakly error correctable. We need the following2082

local decoding procedure for Reed-Muller codes from [25].2083

Lemma 9.13. Let n,m, d ∈ N such that m, d ≤ 2n2. Let Fold = Fn and Fnew =2084

F(`n+1). For every i ∈ {0, 1 . . . ,m}, there is a randomized algorithm RM-Decn,m,i2085

satisfying the following:2086

1. RM-Decn,m,i takes ~x ∈ Finew and ~y ∈ Fm−iold as input, and a function f : Finew×2087

Fm−iold → Fnew as oracle, and outputs an element of Fnew.2088

2. If there is a degree-d polynomial P : Fmnew → Fnew that agrees with f on a 0.92089

fraction of the inputs from Finew × Fm−iold , then2090

Pr[RM-Decfn,m,i(~x, ~y) = P (~x, ~y)] ≥ 2/32091

for every ~x ∈ Finew and ~y ∈ Fm−iold .2092

3. RM-Dec can be implemented by a randomized uniform non-adaptive NC3 or-2093

acle circuit family.2094

For completeness, we provide a proof of Lemma 9.13 in Appendix A.2095

Lemma 9.14. LPSPACE is non-adaptive NC3 weakly error correctable.2096

Proof. Let m ∈ N be an input length. If m < e1, then according to Algorithm 9.3,2097

LPSPACE
m is the all-zero function and the lemma holds trivially. So we assume m ≥ e1.2098

Now there are two cases: (1) APSPACE
m computes Fk on its length-ek prefix for2099

some k ∈ N and (2) APSPACE
m computes F trans

k,j on its length-ek,j prefix for some special2100

k ∈ N and j ∈ {0, 1, . . . , nk +k}. To prove the lemma, it suffices to show weakly error2101

correctability for Fk in Case 1 and and F trans
k,j in Case 2.2102

Case 2. We will first focus on Case 2 and then discuss how to deal with Case 1.2103

In the following, we use n to denote nk for simplicity, and we let Fold = Fn and Fnew =2104

F(`n+1). Recall that Hk : Fn+k
new → Fnew is a degree-(n+ 1) polynomial, and H int

k,j is the2105

restriction of Hk to the domain Fjold×Fn+k−j
new . Also, F trans

k,j : Fjnew×Fn+k−j
old ×{0, 1}3szn2106

(9.12) is obtained by encoding the output of H int
k,j via Walsh-Hadamard codes as2107

follows2108

F trans
k,j (~z, ~r) := 〈κ−1

n+1(H int
k,j(~z)), ~r〉.2109

Let f : Fjold × Fn+k−j
new × {0, 1}3szn × {0, 1} be an oracle that agrees with F trans

k,j2110

on a 0.99 fraction of inputs. (f and F trans can be interpreted as Boolean functions2111
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via κn and κn+1.) We first show that there is a non-adaptive TC0 oracle circuit2112

D1 : Fjnew×Fn+k−j
old → Fnew such that Df

1 agrees with H int
k,j on a 0.9 fraction of inputs.2113

This can be done by the local decoding algorithm of Walsh-Hadamard codes [27]2114

(see also [7, Theorem 19.18]). By a Markov inequality, for at least a 0.95 fraction2115

of ~x ∈ Fjnew × Fn+k−j
old , f(~x, ~z) = F trans

k,j (~x, ~z) holds for at least a 0.8 fraction of ~z ∈2116

{0, 1}3szn . We call such ~x good. We first consider the following randomized oracle2117

circuit D2:2118

1. Let c1 ∈ N be a sufficiently large constant. Draw z1, . . . , zc1 ∈R {0, 1}3szn2119

independently. For every j ∈ [3szn], let ej ∈ {0, 1}3szn be the string that2120

(ej)j = 1 and (ej)` = 0 for ` 6= j.2121

2. Given ~x ∈ Fjnew×Fn+k−j
old as input, for every j ∈ [3szn], set bj as the majority2122

of {f(~x, z`)⊕ f(~x, z` ⊕ ej)}`∈[c1].2123

3. Output the string b1, b2, . . . , b3szn . (Interpreted as an element of Fnew via2124

κn+1.)2125

A standard argument (see [7, Theorem 19.18]) shows that for every good ~x,2126

Df
2 (~x) = H int

k,j(~x) with probability at least 1 − 2−Ω(c1) ≥ 0.99 (since c1 is sufficiently2127

large). Hence, by an averaging argument, we can fix the randomness in D2 to obtain2128

a (deterministic) oracle circuit D1 such that Df
1 agrees with H int

k,j on a 0.9 fraction2129

of inputs. Also, we can see that D1 (and thus also D2) can be implemented by a2130

non-adaptive TC0 circuit.2131

Next, we apply Lemma 9.13 with parameter (n,m, d, i) = (n, n+ k, n+ 1, j) and2132

polynomial P = Hk.47 It follows that2133

Pr
[
RM-Dec

Df1
n,n+k,j(~x) = H int

k,j(~x)
]
≥ 2/32134

for every ~x ∈ Fjnew × Fn+k−j
old .2135

The success probability above can be amplified to 1− 1
2|Fnew|n+k by repeating the2136

algorithm poly(m, szn) ≤ poly(n) times with independently randomness, and taking2137

a majority of the outputs. We denote the resulting randomized oracle algorithm by2138

D3. By a union bound over every input in Finew×Fm−iold and an averaging principle, we2139

can fix the randomness in D3 to obtain a nonadaptive NC3 oracle circuit D4
48 such2140

that D
Df1
4 agrees with H int

k,j on every input. Since both D1 and D4 are non-adaptive2141

NC3 oracle circuits, we can collapse them in D
Df1
4 to obtain a non-adaptive NC3 oracle2142

circuit E1 such that Ef1 = H int
k,j . Finally, using the definition of F trans

k,j , from E1 we can2143

construct a non-adaptive NC3 oracle circuit E2 such that Ef2 = F trans
k,j . This completes2144

the proof for Case 2.2145

Case 1. Here Fk is obtained by encoding the output of Gk : Fn+k
n → Fn via2146

Walsh-Hadamard codes. We note that this is identical to the subcase of Case 2 where2147

j = n + k (and H int
k,j is from Fn+k

new to Fnew), and we can establish the weakly error2148

correctability for Fk in exactly the same way.2149

Lemma 9.15. LPSPACE is non-adaptive TC0 same-length checkable.2150

Proof. Let m ∈ N be an input length. Similar to the proof of Lemma 9.14 we2151

assume m ≥ e1, and there are two cases (1) APSPACE
m computes Fk on its length-ek2152

47From the definition of nk (see (9.7)), it holds that nk + k ≤ 2 · n2
k for k ∈ N≥1.

48NC3 is closed under taking a majority and RM-Decn,n+k,j can be implemented by non-adaptive

NC3 oracle circuits by Lemma 9.13.
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prefix for some k ∈ N and (2) APSPACE
m computes F trans

k,j on its length-ek,j prefix for2153

some special k ∈ N and j ∈ {0, 1, . . . , nk + k}. To prove the lemma, it suffices to2154

establish the same-length checkability for Fk in Case 1 and for F trans
k,j in Case 2.2155

As before, in the following we will also use n to denote nk.2156

Case 1: Instance checker for Gk. We focus on Case 1 first. We first show2157

how to establish an instance checker G-IC for Gk.2158

Recall that2159

(9.16) Gk(~x, ~y) =
∑
j∈[k]

hk,j(~x) · yj2160

for every ~x ∈ Fnn and every ~y ∈ Fkn.2161

Note that for every j ∈ [k], by setting ~rj such that rjj = 1 and rj` = 0 for ` 6= j,2162

we have2163

(9.17) hk,j(~x) = Gk(~x,~rj) for every ~x ∈ Fnn,2164

meaning that the oracle access to hk,j can be simulated by the oracle access to Gk.2165

G-IC works as follows:2166

1. Given ~x ∈ Fnn and ~y ∈ Fkn as input, and access to an oracle G̃ : Fn+k
n → Fn2167

that is supposed to compute Gk.2168

2. For every j ∈ [k], letting ε = 1/3k, for every j ∈ [k], G-IC runs h-ICk,j,ε2169

(from Lemma 9.10) on input ~x with oracle access to h̃1, . . . , h̃j−1 simulated2170

by G̃ via (9.17) to obtain an output uj ∈ Fn ∪ {⊥}.492171

3. If any of the uj equals ⊥, we output ⊥. Otherwise, we output
∑
j∈[k] uj · yj .2172

Since h-ICk,j,ε can be implemented by a randomized uniform non-adaptive TC0
2173

oracle circuit, so can G-IC.2174

Now we show that when G̃ = Gk, G-IC outputs Gk(~x, ~y) with probability 1. Note2175

that for every j ∈ [k], since G̃ = Gk, we have h̃` = hk,` for every ` ∈ [j−1] from (9.17).2176

Applying Lemma 9.10, it holds that with probability 1, uj = hk,j(~x) for every j ∈ [k].2177

Therefore, with probability 1, G-IC outputs
∑
j∈[k] uj · yj , which equals Gk(~x, ~y) by2178

definition.2179

Next we show that for every oracle G̃, with probability at least 2/3, G-ICG̃ outputs2180

either Gk(~x, ~y) or ⊥. We first note that by Lemma 9.10 and a union bound, with2181

probability at least 2/3, uj ∈ {hk,j(~x),⊥} for every j ∈ [k], which implies that G-IC2182

outputs either Gk(~x, ~y) (when no uj equals ⊥) or ⊥ (when some uj equals ⊥). This2183

completes the construction of the instance checker G-IC for Gk.2184

Case 1: Instance checker for Fk. Next we show how to construct the desired2185

instance checker F-IC for Fk:2186

1. Given ~x ∈ Fn+k
n and ~z ∈ {0, 1}szn as input, and access to an oracle F̃ : Fn+k

n ×2187

{0, 1}szn → {0, 1} that is supposed to compute Fk.2188

2. F-IC simulates G-IC on input ~x given oracle access to the function502189

~x 7→ F̃ (~x,~e1) ◦ F̃ (~x,~e2) ◦ · · · ◦ F̃ (~x,~eszn),2190

to obtain an output u ∈ Fn ∪ {⊥}.2191

3. F-IC outputs ⊥ if u equals ⊥ and outputs 〈κ−1
n (u), ~z〉 (inner product is over2192

GF(2)) otherwise.2193

49That is, h̃`(~x) = G̃(~x, ~r`) for every ` ∈ [j − 1].
50Below ~e` denotes the szn-bit vector with every entry being 0 except for the `-th entry being 1
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Since we encode an element of Fn via κn, when F̃ = Fk, G-IC above indeed gets2194

access to Gk, and hence Fk outputs 〈κ−1
n (Gk(~x)), ~z〉 = Fk(~x, ~z). Also, for every oracle2195

F̃ , from the promise of G-IC, we know that G-IC outputs an element in {Gk(~x),⊥} with2196

probability at least 2/3. This implies that F-IC outputs an element in {Fk(~x, ~z),⊥}2197

with probability at least 2/3 as well. Therefore, F-IC is an instance checker for Fk.2198

Since G-IC can be implemented by a randomized uniform non-adaptive TC0 oracle2199

circuit, so can F-IC.2200

Case 2: Instance checker for H int
k,j . We note that similar to Case 1, it suffices2201

to construct an instance checker H-IC for H int
k,j .2202

In this case k is special. Let Fold = Fn and Fnew = Fn+1 = F(`n+1). Recall2203

that H int
k,j : Fjnew × Fn+k−j

old → Fnew is the unique extension of Gk : Fn+k
old → Fold to the2204

domain Fjnew × Fn+k−j
old . H-IC works as follows:2205

1. H-IC takes ~z ∈ Fjnew×F
n+k−j
old as input, and an oracle H̃ : Fjnew×F

n+k−j
old → Fnew2206

that is supposed to compute H int
k,j . We let G̃ : Fn+k

old → Fold be the simulated2207

oracle to G-IC such that if H̃ = H int
k,j then G̃ = Gk.512208

2. H-IC runs Ext-Cn,n+1,n+k,j,n+1(~z) with H̃ and G-ICG̃ as oracles.2209

Since both G-IC and Ext-C can be implemented by a randomized uniform TC0
2210

circuit family, so can H-IC. Moreover, it is straightforward to verify that H int is an2211

instance-checker for H int
k,j , using the fact that G-IC is an instance-checker for Gk and2212

H int
k,j is the unique extension of Gk to Fjnew × Fn+k−j

old (so we can apply Lemma 9.9).2213

This completes the proof for Case 2.2214

Appendix A. Low-depth Decoders for Reed-Muller Codes.2215

In this section, we prove Lemma 9.13 (restated below).2216

Reminder of Lemma 9.13. Let n,m, d ∈ N such that m, d ≤ 2n2. Let Fold = Fn2217

and Fnew = F(`n+1). For every i ∈ {0, 1 . . . ,m}, there is a randomized algorithm2218

RM-Decn,m,i satisfying the following:2219

1. RM-Decn,m,i takes ~x ∈ Finew and ~y ∈ Fm−iold as input, and a function f : Finew×2220

Fm−iold → Fnew as oracle, and outputs an element of Fnew.2221

2. If there is a degree-d polynomial P : Fmnew → Fnew that agrees with f on a 0.92222

fraction of the inputs from Finew × Fm−iold , then2223

Pr[RM-Decfn,m,i(~x, ~y) = P (~x, ~y)] ≥ 2/32224

for every ~x ∈ Finew and ~y ∈ Fm−iold .2225

3. RM-Dec can be implemented by a randomized uniform non-adaptive NC3 or-2226

acle circuit family.2227

We first need the following standard unique decoding for Reed-Solomon (RS)2228

codes from [63] (see also [7, Theorem 19.15]).2229

Lemma A.1 ([63]). For n, d,m ∈ N, there is an algorithm RS-Decn,d,m that takes2230

a list (a1, b1), . . . , (am, bm) ∈ Fn × Fn as input and satisfies the following:2231

1. If there is a degree-d polynomial G : Fn → Fn satisfying G(ai) = bi for at2232

least t > m
2 + d

2 of the numbers i ∈ [m], then RS-Decn,d,m outputs G.2233

2. RS-Dec can be implemented by uniform NC3.2234

51In more details, for ~z ∈ Fn+kold , we set G̃(~z) = H̃(~z≤j , ~z>j), where ~z≤j is interpreted as a vector

in Finew via the embedding τ`n .
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Proof. To see that RS-Dec can be implemented by NC3. We note that the compu-2235

tational bottleneck of the algorithm from [63] (see also the proof of [7, Theorem 19.15])2236

is finding a solution (that is guaranteed to exist under the assumption on t) to a sys-2237

tem of linear equations and computing the division of two polynomials over Fn. Now2238

we show that both tasks can be done in uniform NC3:2239

1. Chistov [22] (see also [40, Section 32]) gave a uniform O(log2 n)-depth arith-2240

metic circuit family that computes the determinant of a square matrix over2241

every field. Replacing all field operations by corresponding TC0 circuits from2242

Lemma 9.2, we get a uniform NC3 circuit family that computes the determi-2243

nant over Fn. Also, Mulmuley [45] gave a uniform O(log2 n)-depth arithmetic2244

circuit family that computes the rank of a matrix over every field. Similarly,2245

we get a uniform NC3 circuit family that computes the rank over Fn.2246

Using the reduction of [15, Theorem 5] (see also [40, Section 34]) from solving2247

a system of linear equations to computing both rank and determinant, we2248

obtain a uniform NC3 circuit family for solving a system of linear equations2249

over Fn.2250

2. We show that computing the division of two polynomials f, g ∈ Fn[x] can be2251

reduced to solving a system of linear equations.2252

Without loss of generality, we can assume that 1 ≤ deg(g) ≤ deg(f). Our goal2253

now is to find a degree-(deg(f) − deg(g)) polynomial q ∈ Fn[x] and another2254

polynomial r ∈ Fn[x] with degree at most deg(g)− 1 such that2255

(A.1) f(x) = g(x)q(x) + r(x).2256

We create a system of linear equations with deg(f) + 1 unknown variables2257

corresponding to coefficients in q(x) and r(x), and deg(f) + 1 equations cor-2258

responding to taking the coefficients of xi on each side of (A.1) for every2259

i ∈ {0, 1, . . . ,deg(f)}. Then we can apply the aforementioned NC3 algorithm2260

for solving a system of linear equations over Fn.2261

Proof of Lemma 9.13. Let M = 20d and D = Finew × Fm−iold . Given an input2262

~z ∈ D, RM-Decn,m,i draws ~u ∈R D, and queries the oracle f on the input-set L~z,~u =2263

{(~z + wi · ~u)}i∈[M ], where wi is the i-th non-zero element in Fold. We note that2264

since ~u ∈ D and wi ∈ Fold, we have L~z,~u ⊆ D. Our algorithm RM-Decn,m,i then2265

runs RS-Decn,d,M on the list of pairs {(~y, f(~y)) : ~y ∈ L~z,~u} to obtain a polynomial2266

Q : Fnew → Fnew and outputs Q(0).2267

For every i ∈ [M ], since ~u is drawn uniformly random from D, it follows that2268

~z + wi · ~u is also distributed uniformly random over D. Let E~z,~u be the number of2269

~y ∈ L~z,~u such that f(~y) = Q(~y). Since f agrees on a 0.9 fraction with a degree-d2270

polynomial P on D, by the linearity of expectation, it follows that2271

E
~u∈RD

[E~z,~u] ≥ 0.9 ·M.2272

Therefore, by a Markov inequality, with probability at least 2/3 over the choice2273

of ~u, we have E~z,~u ≥ 0.7 ·M . Note that2274

0.7 ·M > 0.5M + d/22275

by our choice M = 20d. Let Q : Fnew → Fnew be such that Q(x) = P (~z + x · ~u).2276

Note that Q has degree d as well. Hence, by Lemma A.1, it follows that RS-Decn,d,M2277

recovers Q and outputs Q(0) = P (~z) with probability at least 2/3 over the choice of2278

~u.2279
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Finally, note that outputting Q(0) means outputs the constant term in the poly-2280

nomial Q and RS-Decn,d,M can be implemented by uniform NC3, it follows that2281

RM-Decn,m,i can be implemented by randomized non-adaptive NC3 oracle circuits.2282

Appendix B. An Xor Lemma from Average-Case Hardness against2283

MAJ ◦ C Circuits.2284

In this section, we provide a self-contained proof of Lemma 3.14. Our proof below2285

follows a similar structure of the proof of [18, Lemma 3.8].2286

Reminder of Lemma 3.14 Let C be a typical circuit class. There is a universal2287

constant c ≥ 1 such that, for every n ∈ N, f ∈ Fn,1, δ ∈ (0, 0.01), k ∈ N, εk =2288

(1−δ)k−1
(

1
2 − δ

)
and ` = c · log δ−1

ε2k
, if f cannot be (1−5δ)-approximated by MAJ` ◦C2289

circuits of size s · ` + 1, then f⊕k cannot be ( 1
2 + εk)-approximated by C circuits of2290

size s.2291

Proof. Let c ≥ 1 be a large enough constant. Fix n ∈ N, f ∈ Fn,1, and δ ∈2292

(0, 0.01). We will prove the following contrapositive of the lemma.2293

Claim 10. For every k ∈ N, εk = (1 − δ)k−1
(

1
2 − δ

)
, and `k = c · log δ−1

ε2k
, if2294

f⊕k can be ( 1
2 + εk)-approximated by a C circuit of size s, then f can be (1 − 5δ)-2295

approximated by an MAJ`k ◦ C circuit of size s · `k + 1.2296

Note that Claim 10 holds trivially when k = 1. In the following we prove Claim 102297

by an induction on k.2298

Let k ∈ N be such that k ≥ 2. For an input x to f⊕k, we write x = yz such that2299

|y| = n, |z| = (k − 1)n. Letting C be a size-s C circuit that (1/2 + εk)-approximates2300

f⊕k and assuming that Claim 10 holds for k− 1, we consider the following two cases.2301

Case 1. Suppose for some y ∈ {0, 1}n, we have2302 ∣∣∣∣Pr
z

[f⊕k(y, z) = C(y, z)]− 1

2

∣∣∣∣ > εk
1− δ

= (1− δ)k−2 ·
(

1

2
− δ
)

= εk−1.2303

Then, we fix one such y, and note that since C is typical, either circuit C ′(z) := C(y, z)2304

or ¬C ′(z) is a size-s C circuit that (1/2 + εk−1)-approximates f⊕(k−1). Hence, from2305

our induction hypothesis, f can be (1− 5δ)-approximated by an MAJ`k−1
◦ C circuit2306

of size s · `k−1 + 1. This proves Claim 10 for k since `k−1 ≤ `k.2307

Case 2. Otherwise, for all y ∈ {0, 1}n, it holds that2308

(B.1)

∣∣∣∣Pr
z

[f⊕k(y, z) = C(y, z)]− 1

2

∣∣∣∣ ≤ εk
1− δ

.2309

From now on, we will use ε to denote εk for simplicity. We define2310

Ty := Pr
z

[C(y, z) = f⊕k(y, z)]2311

= Pr
z

[C(y, z) = f(y)⊕ f⊕(k−1)(z)]2312

= Pr
z

[f(y) = C(y, z)⊕ f⊕(k−1)(z)].2313
2314

From the definition of Ty and (B.1), it follows that for every y ∈ {0, 1}n, we have2315

(B.2)

∣∣∣∣Ty − 1

2

∣∣∣∣ ≤ ε

1− δ
.2316
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Also, since C ( 1
2 + ε)-approximates f⊕k, we have2317

(B.3) E
y
[Ty] ≥ 1/2 + ε.2318

We need the following claim first.2319

Claim 11. For at least a 1−4δ fraction of y ∈ {0, 1}n, it holds that Ty > 1/2+ε/2.2320

Proof. For every y ∈ {0, 1}n, we set2321

Uy =
ε

1− δ
−
(
Ty −

1

2

)
.2322

From (B.2) and (B.3), we have Uy ≥ 0 for all y and Ey[Uy] ≤ ε
1−δ − ε ≤ 2δε, where2323

the last inequality follows from our assumption that δ ∈ (0, 0.01).2324

By a Markov inequality, we have2325

Pr
y

[Uy ≥ 1/2ε] ≤ Ey[Uy]

1/2ε
≤ 4δ.2326

The claim then follows from the fact that Uy < 1/2ε implies Ty > 1/2 + ε/2.2327

Recall that `k = c · log δ−1

ε2k
, where c is sufficiently large universal constant. In the2328

following we will use `k to denote ` for simplicity.2329

Now for each i ∈ [`], we draw Zi ∈R {0, 1}n(k−1) independently. We then define2330

(B.4) T̃y := E
i←[`]

[
f(y) = C(y, Zi)⊕ f⊕(k−1)(Zi)

]
.2331

Since c is large enough, by a Chernoff bound, it follows that for every y ∈ {0, 1}n,2332

Pr
{Zi}

[∣∣∣Ty − T̃y∣∣∣ ≥ ε/6] ≤ δ.2333

By an averaging principle, we can fix an assignment to all the Zi’s so that2334

(B.5)
∣∣∣Ty − T̃y∣∣∣ < ε/62335

holds for at least a 1− δ fraction of y ∈ {0, 1}n.2336

Combining (B.5) and Claim 11, it follows that for at least a 1 − 5δ fraction of2337

y ∈ {0, 1}n, we have T̃y > 1/2 + ε/3. We then construct an MAJ` ◦ C E by applying2338

MAJ` to {C(y, Zi)⊕ f⊕(k−1)(Zi)}i∈[`]. Note that since f⊕(k−1)(Zi) is a constant and2339

C is typical, each C(y, Zi)⊕f⊕(k−1)(Zi) is a C circuit of size at most s. Also, by (B.4),2340

E(y) = f(y) if T̃y > 1/2 + ε/3.2341

To summarize, E is an MAJ` ◦ C circuit of size at most ` · s + 1 that (1 − 5δ)-2342

approximates f . This proves Claim 10 for k. The lemma then follows from an2343

induction on k.2344

Appendix C. PRG Construction for Low-Depth Circuits.2345

In this section, we prove Theorem 3.3. Our proof is a simple combination of the2346

local-list deocdable codes in [32] and the Nisan-Wigderson PRG construction [47].2347

We first state the needed black-box hardness amplification result from [32].2348

Theorem C.1 ([32, Theorem 8]). There is a universal constant c ∈ N≥1 such2349

that there are two oracle algorithms Amp and Dec satisfying the following:2350
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1. Amp takes n ∈ N, ε ∈ (0, 1/2), and x ∈ {0, 1}cn as input, a function f ∈ Fn,12351

as an oracle, and outputs a single output bit in 2O(n) time.2352

2. Dec takes n ∈ N, ε ∈ (0, 1/2), and x ∈ {0, 1}n as input, an O(log ε−1)-bit2353

string α as advice, a function h ∈ Fcn,1 as an oracle, and outputs a single bit.2354

Moreover, Dec can be implemented by a TC0 oracle circuit of size poly(n, ε−1).2355

3. For every large enough n ∈ N and for every ε ∈ (2−
√
n/c, 1/2), for every pair2356

of f ∈ Fn,1 and h ∈ Fcn,1 such that2357

Pr
x∈R{0,1}cn

[h(x) = Ampf (n, ε, x)] ≥ 1/2 + ε,2358

there is an advice string α ∈ {0, 1}O(log ε−1) such that2359

f(x) = Dech(n, ε, x, α)2360

for every x ∈ {0, 1}n.2361

We also need the following refined analysis of the Nisan-Wigderson PRG construc-2362

tion [47]. Let F be a collection of function, we use F ◦Juntaa to denote the collection2363

of function g ∈ Fn,1 for some n ∈ N such that g(x) = f(J1(x), J2(x), . . . , J`(x)) for2364

every x ∈ {0, 1}n, where each Ji(x) is a function that depends on at most a bits of x2365

and f ∈ F ∩ F`,1 for some `.2366

Lemma C.2. Let C be a typical circuit class. There is a universal constant c ∈2367

N≥1 and an algorithm G such that:2368

1. G takes `,m ∈ N such that logm ≤ ` ≤ m, Y ∈ {0, 1}2` and z ∈ {0, 1}t as2369

input, where t = c · `2, and outputs an m-bit string. G is also computable in2370

2O(`) time.2371

2. For every `,m,∈ N, Y ∈ {0, 1}2` and ε ∈ (0, 0.5), let F ⊆ Fm,1 be a collection2372

of functions, if func(Y ) cannot be (1/2+ε/m)-approximated by F ◦Juntalogm,2373

then G`,m(Y, ·) is a PRG fooling all functions in F with error ε.2374

Before proving Lemma C.2, we show it together with Theorem C.1 implies The-2375

orem 3.3 (restated below).2376

Reminder of Theorem 3.3. Let δ ∈ (0, 1) be a constant. There are universal2377

constants c ∈ (0, 1) and g > 1, and an algorithm G such that:2378

1. G takes two integers ` and m such that ` ≤ m ≤ 2`
cδ

, together with two2379

strings u ∈ {0, 1}2` and z ∈ {0, 1}`g as inputs, and outputs an m-bit string.2380

G is also computable in 2O(`) time.2381

2. For every large enough ` ∈ N, if f ∈ F`,1 does not have `δ-depth circuits,2382

then G`,m(tt(f), ·) is a PRG for `cδ-depth m-input circuits with error 1/m2383

and seed length `g.2384

Proof. We set c = 1/3 and g = 3. Let f ∈ F`,1 be such that f does not have2385

`δ-depth circuits. Let c1 be the universal constant in Theorem C.1. We also set2386

ε = 1/m2.2387

In the following we assume that ` is large enough. Note that ε ≥ 2−2`δ/3 ≥2388

2−2`1/3 ≥ 2−
√
`/c1 . We set g = Ampf (`, ε, ·) to be a function in Fc1`,1. From Theo-2389

rem C.1, it follows that g cannot be (1/2+ε)-approximated by `δ/2-depth circuit, since2390

otherwise f can be computed by a circuit of depth O(log `+log ε−1)+O(`δ/2) = o(`δ),2391

contradicting to our hardness assumption on f .2392
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Let Gnw be the algorithm in Lemma C.2. We set G`,m(tt(f), z) = Gnw
c1`,m

(tt(g), z),2393

where z is of length O(`2), which is at most `g = `3 since ` is large enough.2394

Now we set F be the set of all m-input `δ/3-depth circuits. Applying Lemma C.22395

with F and note that all F ◦ Juntalogm functions have circuits of depth at most2396

`δ/3 + m = O(`δ/3), it follows that G`,m(tt(f), ·) is a PRG for m-input circuits of2397

depth `δ/3 = `cδ with error 1/m. Combining the running time of Amp in Theorem C.12398

and Gnw in Lemma C.2, it follows that G is computable in 2O(`) time.2399

To prove Lemma C.2, we need the following construction of sets with small pair-2400

wise intersections, a.k.a. designs.2401

Lemma C.3 ([58, Lemma 2.5]). There is a universal constant c ∈ N≥1 such2402

that, for all integers m, ` such that logm ≤ ` ≤ m, there is a family of m sets2403

S1, S2, . . . , Sm ⊆ [t] (denoted as an (m, t, `, logm)-design), such that2404

1. t = c · `2;2405

2. for every i, |Si| = `;2406

3. for every i 6= j, |Si ∩ Sj | ≤ logm.2407

Moreover, the family is constructible in deterministic poly(m) time.2408

Now we are ready to prove Lemma C.2.2409

Proof. Let c be the universal constant in Lemma C.3. Given m, ` ∈ N such that2410

logm ≤ ` ≤ m, Y ∈ {0, 1}2` , and z ∈ {0, 1}t, where t = c · `2. Let S1, S2, . . . , Sm be2411

the (m, t, `, logm)-design specified in Lemma C.3, and let f = func(Y ). We define G2412

as2413

G`,m(Y, z) = f(z|S1
) ◦ f(z|S2

) ◦ · · · ◦ f(z|Sm),2414

where z|S is the |S|-bit string obtained by taking the bits in z with indices in S.2415

We let G(·) = Gm,`(Y, ·) for simplicity. Suppose for the sake of contradiction that2416

G is a not a PRG for a function C ∈ F with error ε. In other words, we have2417 ∣∣∣∣ E
z∈R{0,1}m

[C(z)]− E
z∈R{0,1}t

[C(G(z))]

∣∣∣∣ > ε.2418

In the following we will use bold font letters such as X to denote random variables.2419

We also use Un to denote the uniform distribution over {0, 1}n. Let w ∼ Ut. A2420

standard hybrid argument implies that there is some i ∈ [m] such that C distinguishes2421

the following two distributions with advantage at least ε/m:2422

Di−1 =f(w|S1) ◦ f(w|S2) ◦ · · · ◦ f(w|Si−1) ◦ Um−i+1, and2423

Di =f(w|S1) ◦ f(w|S2) ◦ · · · ◦ f(w|Si) ◦ Um−i.24242425

Note that C is closed under negations since it is typical, we may assume that2426

Pr[C(Di−1) = 1] ≥ Pr[C(Di) = 1] + ε/m.2427

We now construct a randomized F ◦ Juntalogm function C′ that (1/2 + ε/m)-2428

approximates f , contradicting the hardness of Y . Given a random input x ∈R {0, 1}`,2429

we fix a random seed w as follows. We let w|Si = x and the other bits of w are2430

independent and uniform random bits. It is easy to see that w distributes uniformly2431

random over {0, 1}t. We also pick z ∈R {0, 1}m−i+1, to form an input2432

input = f(w|S1
) ◦ f(w|S2

) ◦ · · · ◦ f(w|Si−1
) ◦ z.2433

Then we let C′(x) = C(input)⊕ zi.2434
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We show that C′ computes f correctly with probability at least ≥ 1/2 + ε/m,2435

where the probability space is over both the random input x and the internal ran-2436

domness of C′ (i.e., w|[t]\Si and z). Let2437

pright = Pr[C(input) = 1 | zi = f(x)], and pwrong = Pr[C(input) = 1 | zi 6= f(x)].2438

By the definition of Di and Di−1, we have2439

Pr[C(Di) = 1] = pright, and Pr[C(Di−1) = 1] =
1

2
(pwrong + pright),2440

and2441

Pr[C′(x) = f(x)] =
1

2
pwrong +

1

2
(1− pright)2442

=
1

2
+ Pr[C(Di−1) = 1]− Pr[C(Di) = 1]2443

≥ 1

2
+ ε/m.2444

2445

By an averaging principle, we can fix the internal randomness of C′ to obtain2446

a deterministic circuit C ′ that (1/2 + ε/m)-approximates f . Since for each j < i,2447

|Sj ∩ Si| ≤ logm, each bit of input depends on at most logm bits in x. It follows2448

that C ′ is in F ◦ Juntalogm, contradicting the hardness of f .2449

Appendix D. Either NQP 6⊂ NQP or MCSP 6⊂ ACC0.2450

In this section, we prove Corollary 1.2. We will need the following lemma that is2451

implicit in [16].2452

Lemma D.1 ([16]). For every large enough n, s ∈ N such that s ≥ n, and for2453

every n-input s-size circuit C, there is a (TC0)MCSP circuit C of poly(s) size that2454

0.99-approximates C.2455

In the following we provide a proof for Lemma D.1 for completeness. We first2456

need the following lemma from [48].522457

Lemma D.2 ([48, Corollary 66]). There exists a constant c ≥ 1 such that, for2458

every large enough n, s ∈ N such that s ≥ n, and for every n-input s-size circuit C,2459

there is an (AC0)MCSP circuit C of poly(s) size that (1/2 + 1/sc)-approximates C.2460

Lemma D.1 is then proved by combining Lemma D.2 and Lemma 3.14.2461

Proof of Lemma D.1. Let C be an n-input s-size circuit, and let k ∈ N be a2462

parameter to be specified later. Note that C⊕k is a (kn)-input 10ks-size circuit. By2463

Lemma D.2, there is a universal constant c ≥ 1 such that C⊕k can be (1/2+1/(10ks)c)-2464

approximated by a poly(ks)-size (ACd)
MCSP circuit for a constant d ∈ N. We also set2465

δ = 0.01/5.2466

Now, we set k = c1 · log s for a large enough constant c1 so that εk = (1− δ)k−1 ·2467

(1/2 − δ) ≤ 1/(10ks)c. Applying (the contrapositive of) Lemma 3.14 and note that2468

(ACd)
MCSP is a typical circuit class, it follows that there is an MAJ◦ (ACd)

MCSP circuit2469

that (1− 5δ)-approximates f and has size O(poly(ks) · log δ−1 · ε−2
k ). From our choice2470

52In [48], it is stated as (1/2 + 1/sc)-approximating C AC0-reduces via tt-reductions to MCSP,
which can be interpreted as a non-adaptive (AC0)MCSP circuit that (1/2+1/sc)-approximates C. We
do not state this non-adaptive property in Lemma D.2 since it is not important for our proof. We
also note in [48, Corollary 66], one can always consider f ∈ Circuit[n] by adding dummy inputs, and
therefore here we can take c to be universal constant. The proof of [48, Corollary 66] builds on [16].
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of δ and k, we have 1 − 5δ = 0.99 and log δ−1 · ε−2
k ≤ poly(s), which completes the2471

proof.2472

Now we are ready to prove Corollary 1.2.2473

Reminder of Corollary 1.2 Either NQP 6⊂ P/ poly or MCSP /∈ ACC0.2474

Proof. For the sake of contradiction, suppose NQP ⊂ P/ poly and MCSP ∈ ACC0.2475

By [30, Corollary 5.1], we have that MAJ ∈ (AC0)MCSP and therefore (TC0)MCSP ⊆2476

(AC0)MCSP ⊆ ACC0, since MCSP ∈ ACC0.2477

From the assumption NQP ⊂ P/ poly, Lemma D.1, and the inclusion (TC0)MCSP ⊆2478

ACC0, it follows that NQP can be 0.99-approximated by ACC0, a contradiction to2479

Theorem 1.1. Hence, we must have either NQP 6⊂ P/ poly or MCSP /∈ ACC0.2480

Acknowledgment. This work is supported by NSF CCF-1741615 (CAREER:2481

Common Links in Algorithms and Complexity). This work was done while the author2482

was visiting the Simons Institute for the Theory of Computing.2483

I would like to thank my advisor, Ryan Williams, for his continuing support and2484

countless valuable discussions during this work, for his suggestion to use a random2485

self-reducible NC1-complete problem to simplify the proof, also for many comments2486

on an early draft of this paper.2487

I am grateful to Roei Tell for several detailed discussions on the proof and helpful2488

suggestions on the presentation. I am also grateful to Chi-Ning Chou for suggestions2489

on an early draft of this paper, and Mrinal Kumar for discussions on the complexity2490

of the local-list decoder of Reed Solomon codes. I also would like to thank Hanlin Ren2491

for catching an issue in the previous construction of the PSPACE-complete language.2492

I would like to thank the anonymous SICOMP reviewers whose detailed com-2493

ments significantly improved the presentation of the paper. I also want to thank2494

Josh Alman, Chi-Ning Chou, Shuichi Hirahara, Xuangui Huang, Nutan Limaye, Igor2495

Carboni Oliveira, Zhao Song and Emanuele Viola for helpful discussions during this2496

work, and the anonymous FOCS reviewers for useful comments.2497

REFERENCES2498

[1] S. Aaronson and A. Wigderson, Algebrization: A new barrier in complexity theory, TOCT,2499
1 (2009), pp. 2:1–2:54, https://doi.org/10.1145/1490270.1490272, http://doi.acm.org/10.2500
1145/1490270.1490272.2501

[2] M. Ajtai, Σ1
1-formulae on finite structures, Annals of Pure and Applied Logic, 24 (1983),2502

pp. 1–48.2503
[3] M. Ajtai, Approximate counting with uniform constant-depth circuits, in Advances In Com-2504

putational Complexity Theory, Proceedings of a DIMACS Workshop, New Jersey, USA,2505
December 3-7, 1990, 1990, pp. 1–20.2506

[4] M. Ajtai and M. Ben-Or, A theorem on probabilistic constant depth computations, in Pro-2507
ceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2,2508
1984, Washington, DC, USA, 1984, pp. 471–474, https://doi.org/10.1145/800057.808715,2509
https://doi.org/10.1145/800057.808715.2510

[5] E. Allender, The new complexity landscape around circuit minimization, in Language and2511
Automata Theory and Applications - 14th International Conference, LATA 2020, Milan,2512
Italy, March 4-6, 2020, Proceedings, vol. 12038 of Lecture Notes in Computer Science,2513
Springer, 2020, pp. 3–16, https://doi.org/10.1007/978-3-030-40608-0 1, https://doi.org/2514
10.1007/978-3-030-40608-0 1.2515

[6] J. Alman and L. Chen, Efficient construction of rigid matrices using an NP oracle, in 60th2516
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,2517
Maryland, USA, November 9-12, 2019, IEEE Computer Society, 2019, pp. 1034–1055,2518
https://doi.org/10.1109/FOCS.2019.00067, https://doi.org/10.1109/FOCS.2019.00067.2519

This manuscript is for review purposes only.

https://doi.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
https://doi.org/10.1145/800057.808715
https://doi.org/10.1145/800057.808715
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1109/FOCS.2019.00067
https://doi.org/10.1109/FOCS.2019.00067


66 L. CHEN

[7] S. Arora and B. Barak, Computational Complexity - A Modern Approach, Cam-2520
bridge University Press, 2009, http://www.cambridge.org/catalogue/catalogue.asp?isbn=2521
9780521424264.2522

[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the2523
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555, https://doi.org/10.2524
1145/278298.278306, http://doi.acm.org/10.1145/278298.278306.2525

[9] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.2526
ACM, 45 (1998), pp. 70–122, https://doi.org/10.1145/273865.273901, http://doi.acm.org/2527
10.1145/273865.273901.2528

[10] L. Babai, Random oracles separate PSPACE from the polynomial-time hierarchy, Inf. Process.2529
Lett., 26 (1987), pp. 51–53, https://doi.org/10.1016/0020-0190(87)90036-6, https://doi.2530
org/10.1016/0020-0190(87)90036-6.2531

[11] T. P. Baker, J. Gill, and R. Solovay, Relativizations of the P =? NP question, SIAM2532
J. Comput., 4 (1975), pp. 431–442, https://doi.org/10.1137/0204037, https://doi.org/10.2533
1137/0204037.2534

[12] D. A. M. Barrington, Bounded-width polynomial-size branching programs recognize exactly2535
those languages in NC1, J. Comput. Syst. Sci., 38 (1989), pp. 150–164, https://doi.org/10.2536
1016/0022-0000(89)90037-8, https://doi.org/10.1016/0022-0000(89)90037-8.2537

[13] E. Ben-Sasson and E. Viola, Short pcps with projection queries, in Automata, Languages,2538
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-2539
mark, July 8-11, 2014, Proceedings, Part I, 2014, pp. 163–173, https://doi.org/10.1007/2540
978-3-662-43948-7 14, https://doi.org/10.1007/978-3-662-43948-7 14.2541

[14] A. Bhangale, P. Harsha, O. Paradise, and A. Tal, Rigid matrices from rectangular pcps2542
or: Hard claims have complex proofs, in 61st IEEE Annual Symposium on Foundations2543
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE,2544
2020, pp. 858–869, https://doi.org/10.1109/FOCS46700.2020.00084, https://doi.org/10.2545
1109/FOCS46700.2020.00084.2546

[15] A. Borodin, J. von zur Gathen, and J. E. Hopcroft, Fast parallel matrix and GCD com-2547
putations, Inf. Control., 52 (1982), pp. 241–256, https://doi.org/10.1016/S0019-9958(82)2548
90766-5, https://doi.org/10.1016/S0019-9958(82)90766-5.2549

[16] M. L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova, Learning algorithms2550
from natural proofs, in 31st Conference on Computational Complexity, CCC 2016, May2551
29 to June 1, 2016, Tokyo, Japan, 2016, pp. 10:1–10:24, https://doi.org/10.4230/LIPIcs.2552
CCC.2016.10, https://doi.org/10.4230/LIPIcs.CCC.2016.10.2553

[17] L. Chen, Non-deterministic quasi-polynomial time is average-case hard for ACC circuits, in2554
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Balti-2555
more, Maryland, USA, November 9-12, 2019, IEEE Computer Society, 2019, pp. 1281–1304,2556
https://doi.org/10.1109/FOCS.2019.00079, https://doi.org/10.1109/FOCS.2019.00079.2557

[18] L. Chen, X. Lyu, and R. R. Williams, Almost-everywhere circuit lower bounds from2558
non-trivial derandomization, in 61st IEEE Annual Symposium on Foundations of2559
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE,2560
2020, pp. 1–12, https://doi.org/10.1109/FOCS46700.2020.00009, https://doi.org/10.1109/2561
FOCS46700.2020.00009.2562

[19] L. Chen and H. Ren, Strong average-case lower bounds from non-trivial derandomization,2563
in Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,2564
STOC 2020, Chicago, IL, USA, June 22-26, 2020, ACM, 2020, pp. 1327–1334, https://doi.2565
org/10.1145/3357713.3384279, https://doi.org/10.1145/3357713.3384279.2566

[20] R. Chen, I. C. Oliveira, and R. Santhanam, An average-case lower bound against ACC0, in2567
LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires,2568
Argentina, April 16-19, 2018, Proceedings, 2018, pp. 317–330, https://doi.org/10.1007/2569
978-3-319-77404-6 24, https://doi.org/10.1007/978-3-319-77404-6 24.2570

[21] S. Chen and P. A. Papakonstantinou, Depth-reduction for composites, in IEEE 57th Annual2571
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt2572
Regency, New Brunswick, New Jersey, USA, 2016, pp. 99–108, https://doi.org/10.1109/2573
FOCS.2016.20, https://doi.org/10.1109/FOCS.2016.20.2574

[22] A. L. Chistov, Fast parallel calculation of the rank of matrices over a field of arbitrary char-2575
acteristic, in International Conference on Fundamentals of Computation Theory, Springer,2576
1985, pp. 63–69.2577

[23] L. Fortnow and R. Santhanam, Hierarchy theorems for probabilistic polynomial time, in 45th2578
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,2579
Italy, Proceedings, 2004, pp. 316–324, https://doi.org/10.1109/FOCS.2004.33, https://doi.2580
org/10.1109/FOCS.2004.33.2581

This manuscript is for review purposes only.

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
http://doi.acm.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33


NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 67

[24] M. L. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,2582
Mathematical Systems Theory, 17 (1984), pp. 13–27, https://doi.org/10.1007/BF01744431,2583
https://doi.org/10.1007/BF01744431.2584

[25] P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-2585
testing/correcting for polynomials and for approximate functions, in Proceedings of the2586
23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Or-2587
leans, Louisiana, USA, ACM, 1991, pp. 32–42, https://doi.org/10.1145/103418.103429,2588
https://doi.org/10.1145/103418.103429.2589

[26] O. Goldreich, Computational complexity - a conceptual perspective, Cambridge University2590
Press, 2008.2591

[27] O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions, in Proceedings2592
of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,2593
Washigton, USA, 1989, pp. 25–32, https://doi.org/10.1145/73007.73010, https://doi.org/2594
10.1145/73007.73010.2595

[28] O. Goldreich, N. Nisan, and A. Wigderson, On yao’s xor-lemma, Electron. Colloquium2596
Comput. Complex., (1995), https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050/2597
index.html.2598

[29] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Rothblum, Verifying2599
and decoding in constant depth, in Proceedings of the 39th Annual ACM Symposium on2600
Theory of Computing, San Diego, California, USA, June 11-13, 2007, 2007, pp. 440–449,2601
https://doi.org/10.1145/1250790.1250855, https://doi.org/10.1145/1250790.1250855.2602

[30] A. Golovnev, R. Ilango, R. Impagliazzo, V. Kabanets, A. Kolokolova, and A. Tal,2603
AC0[p] lower bounds against MCSP via the coin problem, in 46th International Collo-2604
quium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Pa-2605
tras, Greece, vol. 132 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,2606
pp. 66:1–66:15, https://doi.org/10.4230/LIPIcs.ICALP.2019.66, https://doi.org/10.4230/2607
LIPIcs.ICALP.2019.66.2608

[31] A. Grinberg, R. Shaltiel, and E. Viola, Indistinguishability by adaptive procedures with ad-2609
vice, and lower bounds on hardness amplification proofs, in 59th IEEE Annual Symposium2610
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018,2611
pp. 956–966, https://doi.org/10.1109/FOCS.2018.00094, https://doi.org/10.1109/FOCS.2612
2018.00094.2613

[32] D. Gutfreund and G. N. Rothblum, The complexity of local list decoding, in Approxima-2614
tion, Randomization and Combinatorial Optimization. Algorithms and Techniques, 11th2615
International Workshop, APPROX 2008, and 12th International Workshop, RANDOM2616
2008, Boston, MA, USA, August 25-27, 2008. Proceedings, 2008, pp. 455–468, https:2617
//doi.org/10.1007/978-3-540-85363-3 36, https://doi.org/10.1007/978-3-540-85363-3 36.2618
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