16
17
18
19
20
21
22
23
24
25
26

NON-DETERMINISTIC QUASI-POLYNOMIAL TIME IS
AVERAGE-CASE HARD FOR ACC CIRCUITS

LIJIE CHEN*

Abstract. Following the seminal work of [Williams, J. ACM 2014], in a recent breakthrough,
[Murray and Williams, STOC 2018] proved that NQP (non-deterministic quasi-polynomial time)
does not have polynomial-size ACC? circuits (constant-depth circuits consisting of AND/OR/MOD,,
gates for a fixed constant m, a frontier class in circuit complexity).

We strengthen the above lower bound to an average case one, by proving that for all constants c,
there is a language in NQP that cannot be (1/2 4 1/ log® n)-approximated by polynomial-size ACC?
circuits. Our work also improves the average-case lower bound for NEXP against polynomial-size
ACCY circuits by [Chen, Oliveira, and Santhanam, LATIN 2018].

Our new lower bound builds on several interesting components, including:

1. Barrington’s theorem and the existence of an NC'-complete language that is random self-
reducible.

2. The sub-exponential witness-size lower bound for NE against ACC? and the conditional
non-deterministic PRG construction in [Williams, SICOMP 2016].

3. An “almost” almost-everywhere MA average-case lower bound (which strengthens the cor-
responding worst-case lower bound in [Murray and Williams, STOC 2018]).

4. A PSPACE-complete language that is downward self-reducible, same-length checkable,
error-correctable, and paddable. Moreover, all its reducibility properties have correspond-
ing low-depth non-adaptive oracle circuits. Our construction builds on [Trevisan and Vad-
han, Computational Complexity 2007].

Like other lower bounds proved via the “algorithmic approach”, the only property of ACCO
exploited by us is the existence of a non-trivial SAT algorithm for ACC® [Williams, J. ACM 2014].
Therefore, for any typical circuit class €, our results apply to ¢ as well if a non-trivial SAT (in fact,
Gap-UNSAT) algorithm for ¢ is discovered.

Key words. Average-Case Complexity, Circuit Lower Bounds, ACC Circuits

AMS subject classifications. 68Q05, 68Q17

1. Introduction.

1.1. Background and Motivation. Establishing unconditional circuit lower
bounds for explicit functions (with the ultimate goal of proving NP ¢ P, .1,) is one
of the holy grails of theoretical computer science. Back in the 1980s, there was a lot of
significant progress in proving circuit lower bounds for AC® (constant depth circuits
consisting of AND/OR gates of unbounded fan-in) [2, 24, 68, 33] and AC°[p] [49, 55]
(ACO circuits extended with MOD,, gates) for a prime p. But this quick develop-
ment was then met with an obstacle—there was little progress in understanding the
power of AC° [m] for a composite m. In fact, it was a long-standing open question
in computational complexity whether NEXP (non-deterministic exponential time) has
polynomial-size ACC® circuits', until a seminal work by Williams [66] from a decade
ago, which proved NEXP does not have polynomial-size ACCY circuits, via a new
algorithmic approach to circuit lower bounds [64].

This circuit lower bound has been an exciting new development after a long gap,
especially since is believed to bypass all previous known barriers for proving circuits
lower bounds: relativization [11], algebrization [1], and natural proofs [50]. More-
over, the underlying approach, the algorithmic method [64], puts many important
classical complexity results together, ranging from non-deterministic time hierarchy

*Massachusetts Institute of Technology 1ijieche®@mit.edu.

11t had been stressed several times as one of the most embarrassing open questions in complexity
theory, see [7].

This manuscript is for review purposes only.



[
o

—_

ot
w N

~

ot ot gt ot Ut Ot
~J at

68

PREEEN RN BECN IR R |
Y O B W N =

[«

79

81

2 L. CHEN

theorem [52, 69], IP = PSPACE [43, 54], hardness vs randomness [47], to the PCP
Theorem [8, 9].

While the circuit lower bound by Williams is a significant breakthrough after a
long gap, it still has some drawbacks when comparing to the previous lower bounds.
First, it only holds for the gigantic class NEXP, while our ultimate goal is to prove
lower bound for a much smaller class NP. Second, it only proves a worst-case lower
bound, while previous lower bounds and their subsequent extensions often also worked
in the average-case; and it seems hard to adapt the algorithmic approach to the
average-case settings.

Motivated by the above limitations, subsequent works extend the worst-case
NEXP ¢ ACC® lower bound in several ways. In 2012, by refining the connection
between circuit analysis algorithms and circuit lower bounds, Williams [67] proved
that (NEXP N coNEXP),; does not have polynomial-size ACC? circuits. Two years
later, by designing a fast #SAT algorithm for ACCY o THR circuits, Williams [65]
proved that NEXP does not have polynomial-size ACC® o THR circuits. Then in 2017,
building on [67], Chen, Oliveira and Santhanam [20] proved that NEXP cannot be
1/2 + 1/ polylog(n)-approximated by polynomial-size ACC® circuits. Recently, in an
exciting new breakthrough, with a new easy-witness lemma for NQP, Murray and
Williams [46] proved that NQP does not have polynomial-size ACC® o THR circuits.?

1.2. Our Results. In this work, we strengthen all the above results by proving
an average-case lower bound for NQP against ACC® o THR circuits.

THEOREM 1.1. For all a,c > 0, there is an integer b, such that NT/ME[QIOgb”]
cannot be (1/2 + 1/log®n)-approzimated by 2'°" ™ size ACC’ o THR circuits. The

same holds for (NNcoN)TIME[2'98" ) in place of NTIME[2'8" "]?.

In other words, there is a language L in NTII\/IE[21°gb "] that cannot be (1/2 4+
1/log® n)-approximated by 219" " size ACy4[m] o THR circuits, for all constants d,m
(i.e., the language L is fixed and its hardness is against any choice of d and m). We
also remark that our new circuit lower bound builds crucially on another classical
complexity gem: Barrington’s theorem [12] together with a random self-reducible
NC'-complete language [10, 39].

Either NQP ¢ P, or MCSP ¢ ACC’. MCSP is the Minimum Circuit Size
Problem such that, given a truth-table 7': {0,1}?" and an integer 0 < s < 2", asks
whether there is a circuit C' of size at most s that computes the function described
by the truth-table T' (see [5] and the references therein for more information on this
problem).

Applying Theorem 1.1, we also resolve an open question from [30]. [30] proved
(among many other results) that MAJ € (AC®)MCSP and used that together with
NEXP ¢ ACC [66] to prove that either NEXP ¢ P, or MCSP ¢ ACCY. Tt is asked
whether one can further show either NQP ¢ P, 1, or MCSP ¢ ACC°. We answer
that affirmatively by proving the following corollary of Theorem 1.1.

COROLLARY 1.2. Either NQP ¢ P o1y or MCSP ¢ ACC’.
See Appendix D for a proof of the above corollary.

2We also remark that [21] improved the dependence on depth by showing NEXP does not have

ACCO circuits of o(logn/loglogn) depth.
3See Definition 3.11 for a formal definition of (NNcoN)TIME[T'(n)] 1.

This manuscript is for review purposes only.



89
90
91
92
93
94

95

112
113

114
115
116
117
118

119
120
121
122
123
124
125
126
127
128

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 3

From Modest-Improvement on Gap-UNSAT Algorithms to Average-
Case Lower Bounds. Like other lower bounds proved via the “algorithmic ap-
proach” [64], the only property of ACC® o THR circuits exploited by us is the non-
trivial satisfiability algorithm for them [65]. Hence, our results also apply to other
natural circuit classes if corresponding algorithms are discovered.

We say a circuit class € is typical, if it is closed under both negation and projection
(see Subsection 3.1.1 for a formal definition). Also, we say a circuit class € is nice, if
it is typical and either ¥ = Circuit or ¥ is weaker than formula.*

We first define the Gap-UNSAT problem: given a circuit C, the goal is to distin-
guish between the case that C' is unsatisfiable and the case that C has at least 1/3-2"
satisfying assignments.” Next, we define the non-trivial derandomization condition
below.

DEFINITION 1.3 (Non-trivial derandomization condition). For a typical circuit
class €, we say that the non-trivial derandomization condition holds for €, if there
is € € (0,1) such that the Gap-UNSAT problem for 27" _size m-input € circuits can be
solved in 2™ /n®Y) non-deterministic time.

The following theorem generalizes Theorem 1.1 to any nice circuit class € such
that ACy o ¥ admits a non-trivial Gap-UNSAT algorithm.

THEOREM 1.4. Let € be a nice circuit class. Suppose the non-trivial derandom-
ization condition holds for AC; o €. Then for every a,c € N, there is b € N, and
a language L € NTIME[2'°8" "] such that L cannot be (1/2 + 1/log® n)-approzimated
by 2'°8" "_size € circuits. The same holds for (NﬁcoN)T/ME[Qlogb"]/l in place of
NTIME[2'°&" "],

Moreover, our average-case lower bounds can be significantly strengthened if ACyo
MAJ o ¢ admits a non-trivial Gap-UNSAT algorithm.

THEOREM 1.5. Let € be a nice circuit class. Suppose the non-trivial derandom-
ization condition holds for ACso MAJo €. Then for every a,c € N, there isb € N, and
a language L € NT/ME[21°gb "] such that L cannot be (1/2 + 1/2'°8°™)-approzimated
by 292" "_size € circuits. The same holds for (NﬁcoN)T/ME[ZlOgb"]/l in place of
NTIME[2!o¢" 7]

In particular, for € € {TCy, Formula, Circuit}, a non-trivial Gap-UNSAT algorithm
for ¥ circuits implies that NQP is strongly average-case hard against %. Hence,
Theorem 1.4 and Theorem 1.5 essentially strengthen the similar algorithms-to-circuit-
lower-bounds connections in [46] from worst-case lower bounds for NQP to average-
case lower bounds for NQP.

We remark that our connection does not go through an easy-witness lemma, since
it is not clear how can one get an average-case easy witness lemma (i.e., a statement
asserting that if NQP can be approximated by P, .y, then all NQP verifiers have
succinct witnesses). Rather, we use a different approach similar to [67] and prove the
average case lower bound directly, without going through the easy-witness lemma.

4Recall that a circuit class € is weaker than Formula, if there is polynomial p such that every
s-size € circuit has an equivalent p(s)-size formula. We note that most well-studied circuit classes
(AC®, ACC?, TCO, Formula, Circuit) are nice.

5This problem is weaker than both the SAT problem and the CAPP problem. In the CAPP
problem, one is given a circuit C' and the goal is to approximate the acceptance probability of C over
random assignments, within a constant additive error.

This manuscript is for review purposes only.



4 L. CHEN

A Simpler Proof for the New Easy Witness Lemma for NP and NQP
of [46]. As an interesting by-product of our new ideas, we give a simpler proof
for new easy-witness lemma for NP and NQP of [46] (Lemma 1.6 and Lemma 1.7).
The proof from [46] crucially depends on a certain “bootstrapping” argument ([46,
Lemma 3.1]), while we provide a more direct and simpler proof without involving that
bootstrapping. We believe that this new proof is an independent contribution of this
work.

LEMMA 1.6 (Easy-witness lemma for NP, Lemma 1.2 of [46]). For all k € N,
there is b € N such that if NP C SIZE[n¥], then every L € NP has witness circuits® of
size at most n®.”

LEMMA 1.7 (Easy-witness lemma for NQP, Lemma 1.3 of [46]). For all k € N,
there is b € N such that if NQP C SIZE[QIng "], then every L € NQP has witness
circuits of size at most glog"n

Subsequent Work. In the conference version of this paper [17], two open ques-
tions was raised, and were (essentially) resolved by subsequently work. The first open
question was whether the algorithmic approach can be used to construct rigid ma-
trices (i.e., proving average-case lower bounds against low-rank matrices), this was
later answered in the affirmative by Alman and the author [6], whose results was then
significantly simplified and strengthened by Bhangale, Harsha, Paradise, and Tal [14].

The second open question was whether we can strengthen Theorem 1.1 to that
NQP cannot be (1/2 + 1/n~(M)-approximated by ACC® o THR. Such a strengthening
was later proved by the author and Ren [19]. In another follow-up work, the author,
Lyu, and Williams [18] proved that there is a function f € ENP that cannot be
(1/2+2*”D(1))—appr0ximated by ACC® o THR circuits of 2"0(1)—size7 for all large enough
input lengths n. The result of [18] is incomparable to [19], since it established a much
harder function against ACC® o THR but also in a much larger complexity class.

Moreover, one important technical ingredient of this paper, a new PSPACE-
complete language with several useful properties (see Theorem 3.7), is also proven
to be useful in the construction of better pseudodeterministic PRGs by Lu, Oliveira,
and Santhanam [42].

2. Technique Overview. In the following we discuss the intuition behind our
new average-case lower bounds. For simplicity of argument, we will sketch a proof for
NQP cannot be (1—¢)-approximated by polynomial-size ACCY circuits, for a universal
constant ¢ (4 can be thought of as 1/1000).

2.1. Main Difficulty: The Absence of an Easy-Witness Lemma Under
the Approximability Assumption. First, it is instructive to see why it is hard
to generalize the previous proofs for worst-case lower bound against Acc® [66, 46] to
prove an average-case lower bound against ACCC.

The first step of the NQP ¢ ACCY lower bound by Murray and Williams [46], is
applying the so called easy witness lemma. The easy witness lemma states: assuming
NQP c ACC’, for every language L in NQP with a verifier V(x,v), whenever V(z, -)
is satisfiable, it has a succinct witness y that is the truth-table of a small ACC®
circuit. Then they apply a proof by contradiction®: assuming NQP C ACC, they use

6See Definition 3.13 for a formal definition.

"To simplify the presentation, we do not specify the relations between b and k here, but we
nonetheless remark that one can take b = ©(k3), just as in [46].
8 A similar argument is also used in [64, 66].

This manuscript is for review purposes only.



= =
~N N

T o W N

175
176
177
178
179
180
181

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 5

the existence of easy-witness circuits (implied by the easy-witness lemma) together
with the non-trivial SAT algorithm for ACC® circuits in [66] to contradict the non-
deterministic time hierarchy theorem [69].

Now for proving the average-case lower bound for NQP, we can only start with the
assumption that NQP can be (1 — d)-approximated by polynomial-size ACC circuits
(and hope to contradict the non-deterministic time hierarchy theorem). As already
explained by [20], we cannot apply the easy witness lemma even if we start from the
much stronger assumption that NEXP can be (1 — J)-approximated by ACC®: the
proofs of both the original and the new easy-witness lemma [37, 46] completely break
when we only have the approximability assumption.

2.1.1. Review of [20]’s Approach. To get around the difficulty above, [20]
start from a worst-case lower bound against ACC° [67], and then apply a worst-case
to average-case hardness amplification. Their approach works roughly as follows:

1. By [67], there is a language L € (NEXP N coNEXP)/,; that does not have
poly(n)-size ACCY circuits.

2. Using the locally list decodable codes of [29, 32], one can define a language Le
(NEXP N coNEXP) ; that cannot be (1/241/logn)-approximated by poly(n)
size ACCY circuits. That is, we treat the truth-table of L, as a message
z € {0,1}%" of the locally-list-decodable code, and set L,, so that its truth-
table is the codeword of z for an appropriate input length m = m(n). (Note
that here it is important to work with a language L in (NEXP N coNEXP),
as otherwise we do not know how to compute the truth-table of L in NEXP.)

3. In particular, the above Le NEXP ;. They then get rid of the advice bit by
an enumeration trick, and therefore prove the average case lower bound for
NEXP.

Unfortunately, it seems very hard to generalize the approach above to prove an
average-case lower bound for NQP: the second step of the approach above breaks, as
we no longer can afford to compute an error correcting code on the entire truth-table
of a particular input length, which takes (at least) exponential time.

Therefore, we have to take a different approach that proves the average-case
lower bound directly, without going through the worst-case to average-case hardness
amplification. In order to do that, it is helpful to review the proof of the new easy-
witness lemma in [46].

2.2. Easy-Witness Lemma for NQP: “Almost” Almost-Everywhere
(a.a.e.) MA Lower Bounds and i.o. Non-deterministic PRGs (NPRGs).
(An instantiation of) the new easy-witness lemma of [46] states that if NQP C
P/ poly, then all verifiers for NQP languages have succinct (polynomial-size) witness
(Lemma 1.7). For the sake of contradiction, we now suppose that NQP C P, .1, and
some verifier for a language L € NQP does not have poly(n)-size witness circuits. That
is, there is a polynomial-time verifier V(x,y) with || = n and y = 218" " for some
b € N, such that for infinitely many n’s, there is an z,, € {0,1}" such that V(x,,-) is
satisfiable, but for any y,, such that V(x,,y,) = 1, we have SIZE(y,) = n*().

Now, y,, can be interpreted as a truth-table of a function on ¢ = logb n variables,
and we have SIZE(y,,) > gu(e'/"), Therefore, given such a y,,, using the well-known
hardness-to-pseudorandomness connection (see, e.g., [47, 38, 57, 60]), one can con-
struct a pseudorandom generator G, with seed length O(¢), running time 2°(), and
it fools all circuits of size 2‘”1/[7, for all constants a.

Scaling everything properly by setting S = 2“'Z1/b, it follows that for an infinite

This manuscript is for review purposes only.



229
230
231
232
233
234
235
236
237
238
239
240
241
242

243

6 L. CHEN

number of S, if we are given the z,, (of length |z,| = S/¢) as advice, we can guess a
Y, such that V(z,,y,) = 1, and compute the PRG G,,,. Hence, for every a > 1, there

is a non-deterministic PRG that has seed length O(logb S), running time 20(log’ ),
and fools all S-size circuits, and takes S/¢ bits as advice. (See Subsection 3.2 for a
formal definition of NPRGs.)

The key ingredient of [46] is an “almost” almost-everywhere (a.a.e.) MA circuit
lower bound, which builds on the MA circuit lower bound by Santhanam [51].7 For
the simplicity of arguments, we now pretend that we have an almost-everywhere MA
circuit lower bound. Specifically, for each ¢ € N, there is an integer k£ = k(c) and a
language L¢ € MATIME[n*] such that SIZE(LS) > n® for all sufficiently large n.

The crucial idea is that, using the above i.0. NPRG, one can non-deterministically
derandomize L¢ on an infinite number of input length n’s (as the string y, can be
non-deterministically guessed-and-verified). To derandomize MATIME[n*], it suffices
to use the PRG that fools circuits of size S = n?*. Therefore, by setting a = 2k,
we have a language L* € NTIME[20(e"" ™],,,'0 such that it agrees with L¢ on in-
finitely many input lengths. Since ¢ can be an arbitrary integer, we conclude that
NTIME[QO(IOgb“")]/n is not in P, .,. Thus, we obtain a contradiction to our as-
sumption (the n bits of advice can be got rid of easily).!

Digest. To summarize, the proof of new easy witness lemma constructed i.o.
NPRGs from the assumed non-existence of easy witness-circuits, and combined i.o.
NPRG together with a.a.e. MA lower bounds to prove NQP Z P/}, a contradiction
to the assumption that NQP C P, .,. Therefore, NQP must have easy witness-
circuits assuming NQP C P, 1

2.3. Our New Approach: “Almost” Almost-Everywhere Average-Case
MA Lower Bound and i.o. NPRG. As mentioned before, we do not attempt
to prove an average-case version of easy-witness lemma (and we do not know how
to prove such an analogue). Instead, we will directly construct suitable i.o. NPRGs
under the assumption that NQP is average-case easy for ACC’, and combine that
with an appropriate average-case hard language in MA. Derandomization of this
average-case hard MA languages means that NQP is average-case hard for ACC’, a
contradiction to the assumption that NQP is average-case easy for ACCO.

Nevertheless, the detailed implementation of the plan above is quite challenging,
and we will give an outline below.

(i.o. NPRGs) Under the assumption that NQP can be approximated by ACC?, we
construct an i.o. NPRG fooling low-depth circuits.'?
(New a.a.e. MA lower bounds) To complement the above new NPRG, we prove that
there is a hard language L € MAQP = MATIME[2P°¥1o8(")] such that:
1. L is average-case hard against low-depth circuits, and
2. L can be derandomized using an i.o. NPRG into NQP, while retaining
its average-case hardness infinitely often.

9[46, 51]’s lower bounds are actually for MA with advice bits. We ignore the advice bits issue for
the sake of simplicity in the intuition part. See the end of the this section for some discussions on
how to deal with the advice bits.

10By choosing a = 2k, the seed length of the NPRG is bounded by S1/2% = n, hence L* only
needs n bits of advice.

1 Given L € NTIME[2€(log

NTIME[2O<1°gb+1 )] such that on inputs x of length 2n, L’ simulates L on z<,, (the first half of )

with advice being set to x>n (the second half of z). It is easy to see that L’ is not in P/ poly as well.
12We informally use low-depth circuits to mean circuit with polylog(n) depth.

b
i ")]/n that is not in P/ 41y, one can define another language L' e

This manuscript is for review purposes only.



NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 7

(Subsection 5.1) Witness-size lower
bound for NE against ACC® o THR
circuits [67).

This is based on the non-trivial
Gap-UNSAT algorithm for ACC? o
THR in [65].

(Subsection 5.2) i.o. NPRG for low-
depth circuits assuming that NQP
can be approximated by ACCO 6 THR.

(Section 4) NC! C ACO o % if uniform
NC! can be approximated by %.

A

(Section 7) An a.a.e. average-case
A MA language that is hard against

(Subsection 8.1 and 8.2) NQP cannot low-depth circuits and has a low-

be (1 — 6)-approximated by ACCO o depth computable predicate.
THR circuits. This is based on the PSPACE-

complete language with useful prop-

A

erties constructed in Section 9.

Y
(Subsection 8.3) NQP cannot be
(1/2 + 1/ polylog(n))-approximated
by ACCY o THR circuits.

FiG. 1. The structure of the whole argument.

Crucially, the combination of the two components above is enough to conclude
NQP cannot be (1 — ¢§)-approximated by ACC® circuits: assuming otherwise that
NQP can be (1 — §)-approximated by ACC’, we can construct an i.o. NPRG G
fooling low-depth circuits. Next, we use G to derandomize the MAQP average-case
hard language L into NQP, this implies that NQP cannot be approximated by low-
depth circuits, a contradiction to our assumption that NQP can be approximated by
ACC®. See Subsection 8.1 for details on how average-case lower bounds follow from
i.o. NPRGs and new a.a.e. MA lower bounds.

Outline of Subsection 2.4 and Subsection 2.5. In Subsection 2.4, we will
first explain why we can only get an i.o. NPRG fooling low-depth circuits (instead
of general circuits as in [46]) from the assumption that NQP can be approximated
by ACC’. Then we will explain the technical challenges we have overcome in order
to get such an i.o. NPRG. In Subsection 2.5, we explain how to prove the desired
average-case MA lower bound. This part is more technical and contains several steps,
see Subsection 2.5 for details.

See also Figure 1 for the structure of the whole argument.

2.4. i.o. Non-deterministic PRG. Williams [67] proved that assuming P C
ACCY; one can get an i.0o. NPRG with polylog(n) seed length fooling poly-size general
circuits. In this section, we will first explain why the construction of [67] does not

This manuscript is for review purposes only.



8 L. CHEN

directly work in our setting'®. We then show that by lowering our goal to constructing
an NPRG only for low-depth circuits, we can construct such NPRGs using the fact
that NC! has a random self-reducible complete-problem.

2.4.1. The i.o. NPRG construction in [67]. The starting point in [67] is
the (unconditional) witness-size lower bound for NE against ACC’. That is, [67]
proved that there is unary language in NE, whose verifier does not have 2" -size
ACq4, [my] witness (¢ = e(d,, my)). Therefore, let the verifier be V(z,y) with |z| =n
and |y| = 2"; for infinitely many n, V(1™,-) is satisfiable, yet for all y such that
V(1™,y) = 1, y is not the truth-table of a 2" -size ACq, [m,] circuit.

Further assuming P € ACCY, [67] showed that the above implies an i.0. NPRG
for general circuits. Note that P C ACC? implies that the Circuit-Evaluation problem
has an ACC? circuit, and consequently P /poly collapses to ACC°. Therefore, for a y
such that V(1",y) = 1, y cannot be computed by 2" _size general circuits as well,
which means one can substitute y into the known hardness-to-pseudorandomness con-
struction of [47, 60], and get a quasi-polynomial time i.o. NPRG.

However, starting with our assumption that NQP can be (1 — ¢)-approximated by
ACC?, it is not clear how to show that P/ poly collapses to ACC®. So we have to take a
more sophisticated approach. To make the situation worse, performing worst-case to
average-case hardness amplification requires majority [53, 31]**. Since it is not clear
whether ACC® can compute majority, we do not even know how to get a PRG fooling
ACC? circuits, from a truth-table y that is only worst-case hard against ACC°.

2.4.2. i.o. Non-deterministic PRG for Low-Depth Circuits. So we wish
to verify a truth-table y that is hard against a stronger circuit class, for which at least
hardness amplification is possible, like NC'. By an argument similar to that of [67],
if NC' collapses to ACC®, then the verifier V that verifies hard-truth tables for ACC’
also verifies truth-tables that cannot be computed by low-depth circuits.

In more details, from NC! C ACCO, there are d,, my € N such that any depth-d
circuit has an equivalent 2°(¥)-size ACg4, [m,] circuit. Now, get back to the verifier V.
It follows that for an infinite number of n’s, V/(1", ) is satisfiable and for any y such
that V(1",y) = 1, y is not the truth-table of an n°-depth circuit. This is enough to
obtain a quasi-polynomial time i.o. NPRG that fools polylog(n)-depth circuits (see
Theorem 3.3 for details).

So our goal now is to show that NC! collapses to ACC under the assumption
that NQP can be (1 — §)-approximated by ACC°. We call such a statement a collapse
theorem for NC. Fortunately, we are able to prove such a collapse theorem using the
existence of an NC!-complete problem that admits a nice random self-reduction [12,
10, 39]. By our assumption, this problem can be (1 — §)-approximated by ACC’
circuits. Utilizing its random self-reduction and the fact that approximate-majority
can be computed in ACY [2, 62], we can show that this NC'-complete problem has
polynomial-size ACC? circuits. This in particular means that NC! collapses to ACCY.

The above construction of i.0. NPRG for low-depth circuits is detailed in Section 4
(where we prove the collapse theorem for NC') and Section 5 (where we construct the
conditional i.0 NPRGs).

13We can only assume that NQP is average-case easy for ACC?, from which it is not clear how to

derive P C ACCO.
14That is, to get average-case lower bounds against € circuits using hardness amplification, one
needs to start from worst-case lower bounds against MAJ o % circuits.

This manuscript is for review purposes only.



w W W
NN N
w N

~

326
327
328
329
330
331
332
333
334
335
336
337
338
339

340
341
342
343
344
345
346
347
348
349

Tt o= W

w w W
v Qv Ut Ut Ot
co 3 O

w W

360
361
362
363
364
365
366
367
368

369

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 9

2.5. An A.a.e. Average-Case MA Lower Bound. Next we explain how do
we prove a suitable average-case MA lower bound that can be derandomized by our
i.o. NPRGs fooling low-depth circuits.

2.5.1. Our MA Language Needs a Low-Depth Computable Predicate.
We first note that in order to non-deterministically derandomize a general MA al-
gorithm (i.e., put it into NQP), a PRG for polylog(n)-depth circuits is not enough.
Suppose the MA algorithm A takes an input x, guesses a witness string y, and flips
some random coins r; in order to obtain a non-deterministic simulation, we would
need to fool circuits Cy(r) = Pa(z,y,r) for all possible y. Here, Pa(z,y,r) is called
the predicate of the MA algorithm. Since there is no restriction on P4 other than a
bound on its running time, the circuit C} could well be a general circuit that does
not necessarily have low depth.

The above difficulty brings us to our key component—an MA language LM that
has a low-depth computable predicate, and is average-case hard against low-depth
circuits. Now, since P4(x,y,r) has a low-depth circuit, it follows that Cy(r) =
Pa(z,y,r) also has a low-depth circuit, and therefore our i.o. NPRG can be used
to achieve an i.0. derandomization of L', which results in a contradiction to our
assumption.

2.5.2. A.a.e. Average-case MA Lower Bounds from a PSPACE-complete
Language with Nice Properties. Roughly speaking, the MA circuit lower bounds
in [51] and [46] make crucial use of a PSPACE-complete language by [59], which
admits several nice properties, including being same-length checkable, downward self-
reducible, and paddable (see Definition 3.4 for details). We modify the construction
from [59] to obtain a PSPACE-complete language LPSPACE that is also error correctable:
that is, if it is hard in the worst-case, then it is also hard in the average-case. We
think this new language LPSPACE is of independent interest and may be useful for other
problems.

The construction of such an average-case hard MA language is the technical
centerpiece of this paper; the key observation is that all the nice properties of our
PSPACE-complete problem LPSPACE (j ¢ being same-length checkable, downward self-
reducible, and paddable) have low-depth uniform oracle circuits. For instance, the
instance checker in the same-length checkable property (see Definition 3.4), can ac-
tually be implemented by a uniform TC° non-adaptive oracle circuit. Using the exis-
tence of those oracle circuits, together with a careful case-analysis similar to previous
work [51, 46], and some additional new ideas, we are able to construct the desired
average-case hard MA language.

The PSPACE-complete language LPSPACE is constructed in Section 9, and the a.a.e.
average-case MA lower bounds are proved in Section 7.

2.5.3. A Technicality: Dealing with Advice Bits. In the above discussion,
we (intentionally) omitted a technical detail—the a.a.e. MA lower bound proved in [46]
is actually for MA o(0gn). Therefore our i.o. derandomization of the MA o (10g n)
algorithm also needs O(logn) advice bits. But then, we only have that NQP ;010 n)
is average-case hard for polynomial-size ACC circuits. And the enumeration trick
from [20] requires the advice to be o(logn).

Luckily, we further relax the definition of an “almost” almost-everywhere circuit
lower bound in [46]. Our relaxation is weak enough for us to prove the required MA
average-case lower bound with only one bit of advice, but also strong enough to allow
us to prove the average-case circuit lower bound for NQPo(1). Then we can apply the

This manuscript is for review purposes only.



w
=

UL W N =

=~

W W W W W Ww w w w
oo

N = ~J = 3~ =3 3 3

380
381
382
383
384

385

10 L. CHEN

enumeration trick from [20] to get the desired lower bound for NQP without advice.

3. Preliminaries. We use N to denote all non-negative integers, and N> to
denote all positive integers. We use GF(p") to denote the finite field of size p", where
p is a prime and 7 is an integer. For a set U, we often use x €g U to denote that we
pick an element z from U uniformly at random.

For r,m € N, we use F, », to denote the set of all functions from {0,1}" to {0,1}™.
For a language L: {0,1}* — {0, 1}, we use L,, to denote its restriction on n-bit inputs.
For a function f: {0,1}" — {0,1}, we use tt(f) to denote the truth-table of f (i.e.,
tt(f) is a string of length 2" such that tt(f); is the output of f on the i-th string
from {0,1}" in the lexicographical order). For a string Z: {0,1}2", we use func(Z) to
denote the unique function from F,, ; with the truth-table being Z.

Let ¥ be an alphabet set. For two strings z,y € ¥*, we use z oy to denote their
concatenation. We also use f o g to denote the composition of two functions f and
g. The meaning of the symbol o (concatenation or composition) will always be clear
from the context. We sometimes use & (¥, Z, etc.) to emphasize that & is a vector.
For ¥ € £" for some n € N, we use Z«; and Z<,; to denote its prefix (z1,...,2;-1)
and (x1,...,%;), respectively. We also define #~; and #>; in the same way.

3.1. Complexity Classes and Basic Definitions. We assume knowledge of
basic complexity theory (see [7, 26] for excellent references on this subject).

3.1.1. Basic Circuit Families. Unless otherwise specified, the circuits appear
in this paper are general circuits consisting of fan-in 2 AND/OR gates and fan-in 1
NOT gates.

A circuit family is a collection of circuits {Cy: {0,1}" — {0,1}}nen. A circuit
class is a collection of circuit families. The size of a circuit is the number of gates
in the circuit, and the size of a circuit family is a function of the input length that
upper-bounds the size of circuits in the family. The depth of a circuit is the maximum
number of wires on a path from an input gate to the output gate.

We will mainly consider classes in which the size of each circuit family is bounded
by some polynomial; however, for a circuit class ¢, we will sometimes also abuse
notation by referring to € circuits with various other size or depth bounds.

AC? is the class of circuit families of constant depth and polynomial size, with
AND, OR and NOT gates, where AND and OR gates have unbounded fan-in. For an
integer m, the function MOD,,: {0,1}* — {0,1} is one if and only if the number of
ones in the input is not divisible by m. The class AC[m] is the class of constant-
depth circuit families consisting of polynomially-many unbounded fan-in AND, OR
and MOD,,, gates, along with unary NOT gates. We denote ACC® = U,,>,AC"[m).
We also use AC4 (resp. AC4[m]) to denote the subclass of AC? (resp. AC’[m]) with
depth at most d.

The function majority, denoted as MAJ: {0,1}* — {0,1}, is the function that
outputs 1 if the number of ones in the input is no less than the number of zeros,
and outputs 0 otherwise. TC” is the class of circuit families of constant depth and
polynomial size, with unbounded fan-in MAJ gates. NC* for a constant & is the class
of O(log" n)-depth and poly-size circuit families consisting of fan-in two AND and OR
gates and unary NOT gates.

We say that a circuit family {C),},en is uniform, if there is a deterministic al-
gorithm A, such that A(1™) runs in time polynomial of the size of C,,, and outputs
C’n,-15

15That is, we use the P uniformity by default.

This manuscript is for review purposes only.



417
418
419

425
126
127
428
429
430
431
132
433
434
435

436

456
457
458
459
160

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 11

For a circuit class ¢, we say that a circuit C is a € oracle circuit, if C is also
allowed to use a special oracle gate (which can occur multiple times in the circuit,
but with the same fan-in), in addition to the usual gates allowed by % circuits. We
say that an oracle circuit is non-adaptive, if on any path from an input gate to the
output gate, there is at most one oracle gate.

We say that a circuit class € is typical, if given the description of a circuit C' of
size s, for indices i, j < n and a bit b, the following functions

ﬂC,C’(xl,...,xi_l,mj EBb,a:H_l,...,xn),C'(xl,...,a:i_l,b,xiﬂ,...,xn)

all have € circuits of size s, and their corresponding circuit descriptions can be con-
structed in poly(s) time. That is, € is typical if it is closed under both negation and
projection.

For two circuit class %1 and %,, we say that %) is weaker than %5, if there is
polynomial p such that every s-size € circuit has an equivalent p(s)-size € circuits.

For n € N and ¢ € (0,1/2), we define Approx-MAJ,, . to be the function that
outputs 1 (resp. 0) if at least a (1 — ¢) fraction of the inputs are 1 (resp. 0), and
is undefined otherwise. We also use Approx-MAJ, to denote Approx-MAJ,, ;3 for
simplicity.

The following standard construction for approximate-majority in ACY will be use-
ful for the proofs in this paper.

LEmMA 3.1 ([4, 3, 62]). Approx-MAJ,, can be computed by uniform ACs.

3.1.2. Notation. For an approximation parameter v > 1/2, we say that a circuit
C: {0,1}™ — {0,1} y-approximates a function f: {0,1}" — {0,1}, if C(z) = f(x)
for a  fraction of inputs from {0,1}". For a function f: {0,1}"™ — {0, 1}, we define
SIZE(f) (resp. DEPTH(f)) to be the minimum size (resp. depth) of a circuit comput-
ing f exactly. Similarly, for v > 1/2, we define Avg,-SIZE(f) (resp. Avg,-DEPTH(f))
to be the minimum size (resp. depth) of a circuit that y-approximates f.

We say that a language L can be y(n)-approximated by %, if there is a circuit
family {Cy,}nen € € such that C,, v(n)-approximates L, for all sufficiently large n.
We also say a class of languages £ can be y(n)-approximated by ¢, if all languages
L € Z can be y(n)-approximated by %.

In other words, if a class of languages . cannot be y(n)-approximated by ¥, it
means there exists a language L € % such that, for every {C,}necny € €, there are
infinitely many n’s such that C,, does not v(n)-approximate L,.

3.2. Pseudorandom Generators. We will deal with different types of pseu-
dorandom generators (PRG) throughout the paper. In the following, we recall their
definitions.

PRGs and NPRGs. Let r,m € N and € € (0,1), and let # C F,,, 1 be a set of
functions. We say G € F,. ., is a PRG for H with error ¢, if for every D € H

P D(G =1- P D(z)=1]| <e.
zeR{Or,l}T (G(=)) } ZGR{OI,‘l}Wl (2) l|=e

We also call r the seed length of G.
We also need the notion of non-deterministic PRGs, which is defined as below.
Let w € N. We say a pair of function G = (Gp, Gw) such that Gp € {0,1}" x

{0,1}" — {0,1}™ and Gw € Fy1 is an NPRG for H with error ¢, if the following
hold:

This manuscript is for review purposes only.



161
462
463
464
465
466
167
468
469
470
471
472
473
474
475
476
477
478
179
480
481
482
483
184
485
486
487

488
189
490
191
492
493
494

495
496
497

498
499

—_

=

[ I TN, BN, G, BN}

ut

12 L. CHEN

1. For every u € {0,1}", if Gw(u) = 1, then Gp(u,-) is a PRG for H with error
€.
2. There exists u € {0,1}* such that Gw(u) = 1.
Here, we call r the seed length of G and w the witness length of G.

Although NPRG in general does not compute the same PRG for different witness
u (i.e., Gp(uq,-) and Gp(uz,-) can be two different PRG for #), it is still useful for
many tasks such as the derandomization of MA. The concept of NPRG is implicit in
[37].

Family of PRGs and NPRGs. Most of the time we will be interested in a
family of PRGs (NPRGs) G = {G,,} that fools a family of sets of functions H = {H,, }.
In this case, for seed : N — N, error e: N — (0,1), output length m: N — N and
witness length w: N — N, we say G = {G,} is a PRG (resp. NPRG) family for
H = {Hn} if for every n € N, (1) Hp € Frun)1 (2) G is a PRG (resp. NPRG)
for H,, with error e(n), seed length r(n) (and witness length w(n) for G being an
NPRG). We also say G is an i.0. PRG (resp. i.o. NPRG) family for H if the above
two conditions hold for infinitely many n instead of every m. When the meaning is
clear, sometimes we just say G is a PRG (resp. NPRQG) instead of a PRG (resp.
NPRG) family.

We say that a PRG G = {G,} is computable in T: N — N time, if there is a
uniform algorithm A: N x {0,1}* — {0, 1} such that A,, (meaning the first input of
A is fixed to n) computes G, in T(n) time. Similarly, we say an NPRG G = {G,,} is
computable in T: N — N time, if there are two uniform algorithms Ap: N x {0,1}* x
{0,1}* — {0,1} and Aw: N x {0,1}* — {0,1} such that (Ap), computes (Gp),
and (Aw), computes (Gw)n, both in T'(n) time. Note that a T'(n)-time computable
NPRG G also has witness length at most T'(n). So if we do not specify the witness
length parameter, it is by default the running time 7.

We will need the following PRG construction from [60].

THEOREM 3.2 ([60]). There is a universal constant ¢ € N>1 and an algorithm
G such that:
1. G takes two integers £ and m such that ¢ < m < 2¢/¢, together with two
strings u € {0, 1}25 and z € {0,1}° as inputs, and outputs an m-bit string.
G is also computable in 2°©) time.
2. If f € Fu1 does not have S-size circuits for S > m¢, then Gy, (tt(f), )10 is
a PRG for SY/¢-size m-input circuits with error 1/m and seed length cf.

PRGs for low-depth circuits. The following PRG construction follows directly
from the local-list-decodable codes with low-depth decoder of [36, 29, 32], and the
hardness-to-pseudorandomness transformation of [47].

THEOREM 3.3. Let § € (0,1) be a constant. There are universal constants ¢ €
(0,1) and g > 1, and an algorithm G such that:
1. G takes two integers ¢ and m such that £ < m < 2266, together with two
strings u € {0, 1}21Z and z € {0, 1}” as inputs, and outputs an m-bit string.
G is also computable in 2°0) time.
2. For every large enough £ € N, if f € Fp1 does not have 00 -depth circuits,
then Gom(tt(f),") is a PRG for ¢°-depth m-input circuits with error 1/m
and seed length £9.

16For notational convenience, we use Gy, m to denote that the first two inputs of G are fixed to £
and m.

This manuscript is for review purposes only.



&

-~

(CAIIN, BIKY, e, BN SNV, G, BNG) BN, Se, BNV, G, BNe) BING) BIG), BNe)

NN N
[N}

NN N
(&1 T~ JV)

)
(=]

N N
o

[N}

©

U = W N =

(e

J

oo

Ne)

=R W W W W W W W W W Ww

S
N

NN
(1 TSV

Ut Ut Ot Ot Ot Ot Ot Ot Ot Ut Ot Ot Ot Ot Ot Ut Ot Ot Ot Ot Ot ot ot Ot

=

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 13

We provide a proof for the above theorem in Appendix C for completeness.

3.3. A PSPACE-complete Language with Low-complexity Reducibility
Properties. A fundamental result often used in complexity theory is the existence of
a PSPACE-complete language [59] that is based on the protocol underlying the IP =
PSPACE proof of [43, 54], and satisfies strong reducibility properties. This PSPACE-
complete language has found applications in the time-hierarchy theorem for BPP with
one bit of advice [23], the fixed polynomial circuit lower bound MA ;; C SIZE(n*) for
any k [51], and the recent easy witness lemmas for NQP and NP [46].

The key technical ingredient of our new average-case lower bounds is a modified
construction of the PSPACE-complete language in [59]. Our new construction satisfies
the additional property of being error correctable!” (see Definition 3.4 for the precise
definitions), which is useful for proving average-case lower bounds. Moreover, we
prove that the reductions in these reducibility properties of our PSPACE-complete
languages can be implemented by low-depth circuits classes. We believe this new
construction would be of independent interest, and may be useful for resolving other
open questions in complexity theory.

We first define these reducibility properties.

DEFINITION 3.4. Let L: {0,1}* — {0,1} be a language, we define the following
properties:

1. L is ¥ downward self-reducible if there is a uniform € oracle circuit family
{Cr}nen such that for every large enough n € N and for every x € {0,1}™,
ALn=1(z) = L, (z).

2. L is paddable, if there is a polynomial time computable projection Pad (i.e.,
each output bit is either a constant or only depends on 1 input bit), such that
for all integers 1 < n < m and x € {0,1}", we have x € L if and only if
Pad(xz,1™) € L, where Pad(xz,1™) always has length m.

3. L is € weakly error correctable, if there is a constant ¢ such that for all suf-
ficiently large n, for every oracle O: {0,1}™ — {0,1} that 0.99-approzimates
Ly, there is an n®-size € oracle circuit D, such that D® computes L,, exactly.

4. L is same-length checkable, if there is a randomized oracle algorithm M with
output in {0,1, L} such that, for every input x € {0,1}*,

(a) M asks its oracle queries only of length |z|.
(b) ME~ outputs L., (x) with probability 1.
(c) M© outputs an element in {L(x), L} with probability at least 2/3 for
every oracle O: {0,1}™ — {0, 1}.
We call M an instance checker for L. Moreover, we say that L is € same-
length checkable, if there is an instance checker M that can be implemented
by uniform € oracle circuits.
Additionally, we say that L is non-adaptive € downward self-reducible (weakly
error correctable, same-length checkable), if the corresponding € oracle circuits are
non-adaptive.

REMARK 3.5. The paddable property implies that SIZE(L,) and DEPTH(L,,) are
non-decreasing.

The following PSPACE-complete language is given by [51] (modifying a construc-
tion of Trevisan and Vadhan [59]).

17The error correctable property here is stronger than the piecewise random self-reducible property
in [51].

This manuscript is for review purposes only.



b =

v Ot
ot Ot
no

ot Ot

[S2 BTSNV

ot ot Ot Ot Ot
v Ot

&G
-~

U Ot ot Ut ¢
b IR R e |

a3

LTSN

o 00 2 N N 3 3 33
W N = O O 0w C

v Ov Ot Ot Ot Ot Ot Ot Ot Ot

oo

584
585

586

587
588
589
590
591
592

14 L. CHEN

THEOREM 3.6 ([59, 51]).  There is a PSPACE-complete language L™V that is
paddable, TC° downward self-reducible, and same-length checkable.'®

Based on the above language LTV, we construct a modified PSPACE-complete
language LPSPACE that is also NC* weakly error correctable. Moreover, with a careful
analysis, we prove that the instance checker for LPSPACE can be implemented by uni-
form randomized non-adaptive TC? oracle circuits. That is, LPSPACE is non-adaptive
TC" same length checkable.

THEOREM 3.7. There is a PSPACE-complete language LPSPACE that is paddable,
non-adaptive TC® downward self-reducible, non-adaptive TC° same-length checkable,
and non-adaptive NC* weakly error correctable.

See Section 9 for a proof of Theorem 3.7.

3.4. Average-Case Hard Languages with Low Space. We also need the
following folklore result, which can be proved by a direct diagonalization.

THEOREM 3.8. Let s: N — N be a space-constructible function such that s(n) <

2°") and s(n) > n for every n. There is a universal constant ¢ and a language
L € SPACE[s(n)€] that Avg, g9-SIZE(L,) > s(n) for all sufficiently large n.

Proof. In the following we always assume that n is large enough. Let ¢; > 1 be a
large enough constant and let ¢ = ¢ log s(n). There are 92 = gs(m many functions
in Fp1. Also, there are at most 2s(n)” many {-input s(n)-size circuits. We claim
that there exists a function f € F;; that cannot be 0.99-approximated by s(n)-size
circuits.

To see the claim. Fix an ¢-input s(n)-size circuit C. We draw a random function
f € Fi1. By a Chernoff bound, C' 0.99-approximates f with probability at most
202 < 9= R(s(m)™) < 2_5(”)37 the last inequality follows from the fact that ¢; and
n are large enough. Our claim then follows from a union bound over all 25(n)’ many
(-input s(n)-size circuits.

Now, letting ¢ = 2¢1, our algorithm for L first enumerates all ¢-bit functions
to find the lexicographically first fi, € Fp 1 that cannot be 0.99-approximated by all
s(n)-size circuits. Note that by our claim above, such fy exists for a sufficiently large
n. Then our algorithm computes fo on the first ¢ bits of the input, and ignores the
rest of the input. (Note that here we use the fact that ¢ < O(logs(n)) < o(n).)
This algorithm can be implemented in s(n)¢ space in a straightforward way, and the
average-case hardness for L follows from our construction of fj. 0

3.5. MANcoMA and NP NncoNP Algorithms. We first introduce convenient
definitions of (MA N coMA)TIME[T'(n)] and (NNcoN)TIME[T' (n)] algorithms, which
simplifies the presentation.

DEFINITION 3.9. Let T: N — N be a time-constructible function. A language L is
in (MANcoMA) TIME[T (n)], if there is a constant ¢ > 1 and a deterministic algorithm
A(x,y,z) (which is called the predicate) such that:

o A takes three strings x, y, z such that |x| = n, |y| = |z| = ¢-T(n) as inputs (y
is the witness and z is the collection of random bits), runs in O(T'(n)) time,
and outputs an element from {0,1, L}.

18 [59] does not explicitly state the TCO downward self-reducible property, but it is evident from

their proof.

This manuscript is for review purposes only.



597
598
599
600

601

612

613
614
615
616
617
618
619

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 15

o (Completeness) For every x € {0,1}*, there exists a y such that

Pr{A(z,y,z) = L(z)] = 1.

z

o (Soundness) For every x € {0,1}* and every y,

P;r[A(x,y,z) =1-L(x)] <1/3.

Moreover, let C = {Cp}nen be such that Cy, is a set of ¢ - T(n)-input circuits.
We say that the randomness part of the predicate L is computable by C, if there is
an algorithm B such that for every n € N, given x € {0,1}" and y € {0,1}¢7),
B(z,y) outputs a circuit C € C, in O(T(n)) time such that A(x,y,z) = C(z) for
every z € {0,137,

REMARK 3.10. (MAN coMA) languages with advice are defined similarly, with A
being an algorithm with the corresponding advice.

DEFINITION 3.11. Let T: N — N be a time-constructible function. A language
L is in (NNcoN)TIME[T(n)], if there is an algorithm A(x,y) (which is called the
predicate) such that:
o A takes two inputs x, y such that |x| = n, ly| = O(T(n)) (y is the witness),
runs in O(T'(n)) time, and outputs an element from {0,1, L}.
o (Completeness) For all x € {0,1}*, there exists a y such that

A(z,y) = L(z).
o (Soundness) For all x € {0,1}* and all y,

REMARK 3.12. (NNcoN)TIME[T (n)] languages with advice are defined similarly,
with A being an algorithm with the corresponding advice.

Note that by above definition, the semantic of (MA N coMA)/; is different from
MA/; NcoMA ;. A language in (MA N coMA),; has both an MA ; algorithm and
a coMA /; algorithm, and their advice bits are the same. In contrast, a language in
MA /1 NcoMA ; can have an MA /; algorithm and a coMA /; algorithm with different
advice sequences. Similar a relationship holds for (NP N coNP)/; and NP/, N coNP ;.

3.6. Witness Circuits. Here we provide formal definition regarding witness
circuits. Our definition below is adapted from [46].

DEFINITION 3.13. Let T: N — N be time-constructible, and let L € NTIME[T (n)].
We say an algorithm V is a wverifier for L, if for some £: N — N such that {(n) <
logT(n) + O(1), V takes two inputs x € {0,1}" and y € {0, 1}2£(n) and satisfies the
condition that © € L if and only if there is y € {0, 1}2“‘“) such that V(z,y) = 1.19

We say that V' has witness circuits of size w(n), if for every large enough n € N
and every x € Ly, there is a w(n)-size £(n)-input circuit Cy, such that V(z,tt(Cy)) =
1. And we say that L has witness circuits of size w(n), if every verifier V' for L has
witness circuits of size w(n).

19Note that here we assume the witness length of V to be a power of 2 for simplicity. This
assumption is without loss of generality since a verifier can always ignore part of the witness.

This manuscript is for review purposes only.



630
631
632
633
634
635

637
638
639

640
641
642
643
644
645
646
647
648
649

16 L. CHEN

3.7. Hardness Amplification. We will also need some results in hardness am-
plification.

Forn €N, f € F,1, and k € N, we use f®* to be denote the (kn)-input function
[ (1, ... an) = Biep f(x:), where z; € {0,1}" for every i € [k].

The following Lemma follows from a careful analysis of Levin’s proof of Yao’s
XOR Lemma [41, 28]. We provide a proof in Appendix B for completeness.

LEMMA 3.14. Let € be a typical circuit class. There is a universal constant ¢ > 1
such that, for everyn € N, f € F,1, 6 € (0,0.01), k € N, g, = (1 — )k ! (% —(5)
logs—*

E:

s-0+1, then f®* cannot be (% + e)-approximated by € circuits of size s.

and l = c- , if [ cannot be (1 — 59)-approximated by MAJy o € circuits of size

4. Random self-reduction for NC'. In this section, we prove that NC' col-
lapses to AC® o % if uniform-NC' can be approximated by % circuits (Theorem 4.3,
we also call it a collapse theorem for NC'). In Subsection 4.1 we introduce the NC'-
complete language by Barrington, together with its random self-reduction. Next,
in Subsection 4.2 we define a special encoding of the inputs to that language. The
purpose here is to make sure the random self-reduction can be implemented by a
projection.’’ Finally, in Subsection 4.3, we prove Theorem 4.3.

4.1. A Random Self-reducible NC'-Complete Problem. We first define
the following problem, iterated group product over S5 (the group of all permutations
on [5], we use id to denote the identity permutation), denoted as Wg,, as follows:

Iterated group product over S5 (Wg,)

Given n permutations my, mo,...,m, € S5, compute H?:l ms.

From the classical theorem of Barrington [12], Wg, is NC!-complete under pro-
jections. Formally, we have:

LEMMA 4.1 ([12]). For every depth-d n-input circuit C, there is a projection
P:{0,1}™ — {0, I}ZO(d) such that C(z) = 1 if and only if Ws,(P(x)) = id, for all
xz €{0,1}™.

The above problem is random self reducible [10, 39], which is crucial for the proof
of our collapse theorem. Here we recall its random self-reduction:

The random self-reduction of Wg,

Given an input m = (m1,...,my) € (S5)™ to Wg, and
U= (Upy .., Ups1) € S;’H, we define the following input to Wg,:
Rand(m, @) := (ulmlugl, ungugl7 . ,unmnu;}rl).

For every 17 € (S5)", if we draw @ €g SZ, then Rand(m, @) is distributed as a
uniform random input to Wg,. Moreover, for every 4 € Sg“, we have

W, () = uy " - Wg, (Rand (1, @) - tnt1-

20We remark that projections are required only for proving average-case lower bounds against
ACC? o THR. See Subsection 4.2 for more details.

This manuscript is for review purposes only.



659
660
661
662
663
664
665
666
667
668
669
670

676
677
678
679
680
681

682
683

684
685

686
687
688
689
690
691

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 17

4.2. A Special Encoding. It may seem that Lemma 4.1 and the random self-
reduction of Wg, are already sufficient for proving our collapse theorem for NC!. But
there are still some remaining technical problems.?!

1. First, we have to encode Wg, as a Boolean function. A naive way would be
to construct a bijection between [120] and S5, and then divide the input into
blocks of 7 bits, each representing one element in S5. The problem is that
most of the Boolean inputs would be invalid in this encoding; therefore, this
would make it a promise problem only defined on a negligible fraction of the
inputs, which is not suited for our purpose.

2. Second, a straightforward implementation of the random self-reduction re-
quires NC° circuits, as one needs to implement multiplication of two elements
in S5. This would collapse NC! to ACC® 0o THRoNCP rather than ACC° o THR,
and we currently do not know any non-trivial circuit-analysis algorithms for
ACC” o THR o NC°.22

A special encoding for the second issue. We first deal with the second issue
via a special encoding of the group elements. Note that |S5| = 120. For each i € [120],
let e; € {0,1}12° be the vector with i-th bit being 1 while others are all 0. We identify
S5 with [120] (i.e., we fix a bijection between S5 and [120]), and use e, to represent
the element a € S;5. Now the problem is formally defined as follows:

Iterated group product over S; with Boolean inputs (BWg,)

Given n vectors eg,, ..., eq, € {0,112, compute a =[], a; and output e,.

The advantage of this special encoding is that for all p, g € S5, there is a projection
P,.q: {0,1}12° — {0,1}'2° (in fact, a permutation), such that for alla € S5, P, 4(e,) =
€p.a-g- This is crucial to make sure the random self-reduction can be implemented by
a projection (so we can collapse NC! to ACCY o THR instead of ACC® o THR o NCO).

Note that for a € Ss, (e4)id = 1 if and only if a = id. We also have the following
simple corollary of Lemma 4.1.

COROLLARY 4.2. For every depth-d n-input circuit C, there is a projection P:
{0,1}" — {0, 1}20(d) such that C(x) = BWs, (P(x))iq for every x € {0,1}".

Slightly abusing notation, we sometimes use p-m-q to denote P, ,(m) for p,q € Ss
and m € {0, 1}120,

A redundant encoding for the first issue. The first issue still remains: BWg,
is a promise problem as well, since we require all vectors to be one of the e,’s. We
will use a redundant encoding to make this problem defined on all possible inputs.

Let Sgood be the set of all the e,’s for a € S5 (i.e., all vectors in {0,1}'?" with
hamming weight 1), and Spaq be all other vectors in {0, 1}12.

We define the following problem Redundant-Wg,:

Iterated group product over S; with a redundant encoding

21We remark that similar issues arise in [29] as well.

22This is not an issue if we only wish to prove average-case lower bounds against ACCY, since
ACC? o NCO is contained in ACCO.

This manuscript is for review purposes only.



18 L. CHEN

(Redundant-Wg, )

We are given n? vectors {m; ;} (i j)en]x[n] from {0, 1}12°.
For each i € [n], let j; be the first integer such that m; ;, € Sgood-
e We call the input a bad input, if there is no such j; for some 7, and we
just output the all-zero vector of length 120 in this case.
e Otherwise, we call the input a good input. For every i € [n], let a; € S5
be such that m; j, = eq,. Our goal is to compute a = [\, a; and
output e,.

The definition of Redundant-Wg, above ensures that only a negligible fraction of
the inputs are bad, and resolves our first issue.

We note that Redundant-Wg, is in uniform NC.>* For each i € [120], we use
Redundant—W(S? to denote the Boolean language corresponding to the i-th output bit
of Redundant-Wg.. Formally, given an input z € {0,1}*, Redundant—ng(z) outputs
the i-th bit of Redundant-Wg_(2) if || = 120n? for some n € N, and outputs 0

otherwise. Clearly, for every i € [120], Redundant—Wg? is in also uniform NC.

4.3. NC! Collapses to AC° 0 % if Uniform NC' can be Approximated by
%. Now we are ready to show that for a general circuit class %, NC! collapses to
AC? o %, if uniform NC' can be approximated by €.

THEOREM 4.3. Let € be a typical circuit class, and let S: N — N be a size
parameter. There is a universal constant 6 € (0,1) such that, if for every i € [120]

Redundant—W(;g can be (1 — §)-approzimated by S-size € circuit families, then every
depth-d n-input circuit D inputs has an equivalent poly(S(2°(®), n)-size AC3 o €
circuit.

Proof. Let § = 1/480, and D be a depth-d circuit on n input. By Corol-
lary 4.2, there is a projection P: {0,1}" — {0,1}* where ¢ < 294 such that
D(z) = BWg, (P(2))iq for every xz € {0,1}". Without loss of generality, we can
assume that n is sufficiently large and d > logn.

Construction of the circuit C approximating Redundant-Wg,. Now, let
t =¢/120 (i.e., BWg, on ¢ bits computes the iterated group product of ¢ permutations
from S5). Now we consider the Redundant-Wg, problem on 2 vectors.

From the assumption, there are 120 ¢ circuits {C;};e[120) such that C; (1 — §)-
approximates the i-th output bit of Redundant-Wg,. We also use C(z) € {0,1}'?% to
denote the vector (Cy(z), Ca(x),. .., Ciz0(x)).

By a simple union bound, we have

(4.1) Pr [Redundant-Wg, (2) = C(2)] > 1—4§-120 > 0.75.

zeR{0,1}120f2

On the other hand, note that a random input to Redundant-Wg, is a good input
with probability at least

t
(4.2) 1—t- <|Sbad|) > 0.99,

2120

23We can first compute all the j; for i € [n] in uniform NC!. If any of the j; does not exist, we

output the all-zero vector with length 120. Otherwise, we compute BWs, with inputs being all the
m; j, for i € [n], which can be done in uniform NC! as well.

This manuscript is for review purposes only.



N
N0 N
w N

~

~
N
ut

U W N O © 0 O Ui W+~ O © 0w 3O

~N N T ) )
B R R R R W W W W W W W W W W N NN

~
N
o ~ (=2}

[enlEN

[ S
= e}

ot

T = W N

P BEES IS TS BT N BEES BEEN SRS BN |
JQ

ot ot ot ot ot Ot

oo

~
Ut
=

760
761
762
763
764

765

766

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 19

when n (and therefore ¢) is sufficiently large.

Let RWgood be the set of all good inputs to Redundant-Wg,. Combining (4.1)
and (4.2) and applying another union bound, it follows that
(4.3) ZER%{V@M [Redundant-Wg, (2) = C(2)] > 0.7.

Implementation of the random self-reduction. Now we define the function
First: {0, 11120 — Sp00q U {L}. Given an input m = (my,ma,...,my) € ({0,1}120)¢,
letting j be the first integer that m; € Sgood, we define First(m) = m;. If there is no
such j, we define First(m) = L.

For each m € Sgo0d, We define M,, be the uniform distribution over the set
{z € {0,1}12% : First(z) = m}. Note that a sample from M,, can be generated as
follows:

e For j € [t], let p; be the probability that a random sample @ = (w1, ..., w;)
from M,, satisfies that j is the first integer that w; € Sgood (note that we
must have w; = m).

e We first draw j € [t| according to the probabilities p;’s. Then a sample

W = (w1, wa,...,w) from M,, can be generated as follows: for k € [j — 1],
we set wy, to be a uniform sample from Spaq; we set w; = m; for k € {j +
1,j+2,...,t}, we set wy to be a uniform sample from {0, 1}12°.

Note that when the randomness in the above process is fixed (i.e., j is fixed,
together with wy for k € [t] \ j), then a sample generated as above is a projection of
m. (Indeed, only the j-th part of the sample is now set to m, and other parts are
completely fixed by the randomness.)

Next, given a valid input m = (mq,ma,...,ms) to BWg, (i.e., m € Séood), we
define an input distribution to Redundant-Wg,, denoted by N, generated as follows:

1. We draw @ = (uq,ug, ..., us, Usr1) ER Sé“, and set

¥ = Rand (1, @) = (wymuy ' usmouy ..o ugmpu ).

2. For each i € [t], we draw w; from M,, independently. Then we output
W1, W2, ...,W¢.
We claim that for every m € Séoow Ny is distributed identically to a random
good input to Redundant-Wg,.
To see this, note that for every m € Sf
formly random on the set Sé

wod> U = Rand(mi, @) is distributed uni-
ood- Therefore, the distribution of Ny is identical to
the following distribution: one first draws ¥ €r Sgyoq, and then draws w; from M,,
independently for every ¢ € [t]. By the definition of good inputs to Redundant-Wg._,
the later distribution is identical to the uniform distribution over good inputs to
Redundant-Wg, .

Moreover, for every u € SéH, it holds that

(4.4) BWg, (1) = uy * - BWg, (Rand (7, @)) - sy 1.

Note that a sample of N, is generated from both the randomness over @ € Sé“,
and the randomness used in generating all the w; from M,,. Formally, there is a
set R and a function Gen(m, @, r) (here we use r to denote the randomness used to
generate all the w;), such that Gen(m, @, r) is distributed identically to N when r is
drawn from R and # is drawn from Sg'H.

Finally, applying (4.3) and (4.4), for any m € Sé

od» We have

Pr  Pr [Wg, (1) =u;" - C(Gen(ri, @, 7)) - ugs1] > 0.7.

_ t4+1
GERSLS rerR

This manuscript is for review purposes only.



767
768
769
770
771

772

20 L. CHEN

Construction of the final circuit £. Now, one can see that when # is fized,
Rand(m, @) is a projection of 7 (since uimiui__ﬁl =P, (m;) is a projection of m;).

ui,ui+
And when r is fixed, Gen(m, @, r) is also a projection of Rand(im, @). Therefore, when
both @ and r are fixed, Gen(m, @, r) is a projection of 7.

Next, we pick 7' = 100n i.i.d. samples @, @2,...,a" from StTL and r!,72,... ,r7

good?
from R. For each j € [T], we define the circuit

Ej(@) = ((u]) ™ - C(Gen(P(x), @,19)) - ul.,) .

id
Note that E; can be computed by a € circuit of size S; = poly(S(2°0(4), n).
Moreover, for each x € {0,1}", over the randomness of @/ and 7/, we have

Pr[E;(z) = D(z)] > 0.7.

Therefore, we set our final circuit to be an approximate-majority of these T
circuits Fy, Es, ..., Er. By a simple Chernoff bound, there is a fixed choice of all the
#’s and r7’s, such that the resulting circuit £ computes D exactly. By Lemma 3.1,
Eis an AC3 0 € circuit of size T' - S; + poly(T) < poly(S(2°(4), n), which completes
the proof. ]

The following corollary follows immediately from Theorem 4.3.

COROLLARY 4.4. Let € be a typical circuit class, and let S: N — N be a size
parameter. There is a universal constant § € (0,1) such that, if all languages in
uniform NC' can be (1—0)-approximated by S-size € circuit families, then any depth-d
n-input circuit D has an equivalent poly(S(2°(D), n)-size AC3 0 € circuit.

5. Construction of i.o. NPRG for Low-Depth Circuits. In this section we
construct the required i.o. NPRG for low-depth circuits, under the assumption that
for some typical circuit class €, (1) uniform NC' can be approximated by % circuits
and (2) Gap-UNSAT for ACy o € has a non-trivial algorithm. (See Theorem 5.3 for
details.) We also a non-trivial algorithm for Gap-UNSAT for Circuit implies an i.o.
NPRG for general circuits.

In Subsection 5.1 we show that for every typical circuit class %, witness lower
bounds against € circuits follows from a non-trivial Gap-UNSAT algorithm for AC; 0%
circuits. Then in Subsection 5.2, we construct our conditional i.o. NPRGs.

5.1. Witness-Size Lower Bound for NE. The following lemma is proved by
combining ideas from [67] with the new PCP construction of [13].

LEMMA 5.1. Let € be a typical circuit class. Suppose there is an € € (0,1) such
that the Gap-UNSAT problem for 2" -size n-input ACy o € circuits can be solved in
2" /n® (M) non-deterministic time. Then there is a polynomial-time verifier V(z,v)
with || = n and |y| = 2", such that for infinitely many n, V(1",-) is satisfiable, and
V(1™ y) = 1 implies that func(y) cannot be computed by 27" size € circuits.

To prove Lemma 5.1, we need the following PCP construction from [13].

LEMMA 5.2 ([13]). Let M be an algorithm running in time T = T(n) > n
on inputs of the form (x,y) where || = n. Given x € {0,1}", one can output in
poly(n,logT) time circuits Q: {0,1}" — {0,1}"* for t = poly(r) and R: {0,1}! —
{0,1} such that:

Proof length. 2" < T - polylogT.

This manuscript is for review purposes only.



829

830
831
832
833
834
835
836
837
838
839
840
841
842
843

844

845
846
847
848
849

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 21

Completeness. If there is a y € {0,137 such that M (z,y) accepts then there is a
map 7: {0,1}" — {0,1} such that for all z € {0,1}", R(m(q1),...,7(q)) =1
where (q1,...,q) = Q(2).

Soundness. If no y € {0,137 cquses M(x,y) to accept, then for every map
m:{0,1}" — {0,1}, at most Z—:O many z € {0,1}" have R(7(q1),...,7(q:)) =
1 where (q1,...,q) = Q(2).

Complexity. Q) is a projection, i.e., each output bit of Q is a bit of input, the negation
of a bit, or a constant. R is a 3-CNF.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let L be a unary language such that L € NTIME[2"] \
NTIME[2™/n], whose existence is guaranteed by the non-deterministic time hierarchy
theorem [69].

Given an input 1" to L, we apply Lemma 5.2 to L to obtain a poly(n)-size ACy
oracle circuit VPCP,, that takes ¢(n) = n+O(logn) random bits as input, and queries
an oracle O: {0,1}* — {0,1}. From the complexity part of Lemma 5.2, for a ¢ circuit
C of size S, VPCPTCL is an ACy o & circuit with size at most S - poly(n). Moreover,
from the completeness and soundness part of Lemma 5.2, we have:

(Completeness) If 1" € L, then there is an oracle O: {0,1}¢ — {0,1} such that

Pr [VPCPC(r)=1]=1.
rer{0,1}¢

(Soundness) Otherwise 1™ ¢ L, then for all oracle O: {0,1}* — {0,1}, it holds that

c 10
TGRE’({l}[[VPCPn (r)y=1]1<1/n".

Now we consider the following non-deterministic algorithm Apcp attempting to
solve L: Given an input 1", Apcp guesses a 2% size {-input € circuit C, and runs
the assumed non-deterministic algorithm for Gap-UNSAT on ﬁVPCPg. It accepts if
-VPCP,, is a yes instance of Gap-UNSAT, and rejects if it is a no instance.?*

By previous discussions, VPCPg is an ACy o € circuit of size at most 2¢°, and
therefore Apcp runs in at most 2¢/¢~(1) < 2" /n non-deterministic time.

Since L ¢ NTIME[2"/n], it follows that Apcp does not compute L. From the
soundness property of VPCP, 1™ ¢ L implies that ﬂVPCPS is a no instance of
Gap-UNSAT for every C, and Apcp rejects 1. Hence, for infinitely many n, we
have 1™ € L and yet Apcp rejects 1™. We call these n good.

Now we are ready to define our verifier V(z,y). Without loss of generality we can
assume £(n) is an increasing function. For every a € N, V(1% y) rejects immediately
if there is no n € N such that ¢(n) = «. Otherwise, there is a unique n such that
¢(n) = a, and V (1%, y) accepts if and only if

Pr  [VPCPM W () = 1] =1.
TGR{O,I}Z(“)[ n () =1]
Finally we argue that for every good n, V(lz(”), -) satisfies our requirements. First,
since 1" € L, from the completeness of VPCP, it follows that there is y € {0, 1}2£ such

that V(1¢,%) accepts. Second, since Apcp rejects 17, it means for every 20" size €
circuit C: {0,1}¢ — {0,1}, we must have V(1¢,tt(C)) = 0. Meaning that for every y

such that V(1¢,y) accepts, func(y) cannot be computed by 2% size € circuits. O

24 Apcp may either accept or reject when =VPCP,, is neither a yes instance nor a no instance. We

will see this does not affect our proof.

This manuscript is for review purposes only.



859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
836
887
888
889
890
891
892
893
894
895
896

22 L. CHEN

5.2. The NPRG Construction. Now we are ready to give the construction of
our conditional NPRGs.

THEOREM 5.3. (Conditional i.0. NPRG for low-depth circuits) Let € be a typical
circuit class. There is a universal constant 6 € (0,1) such that, suppose the following
hold

1. there is an e € (0,1) such that the Gap-UNSAT problem for 2" _size n-input
ACs o € circuits can be solved in 2" /n®Y) non-deterministic time, and

2. uniform NC' can be (1—6)-approzimated by 2'°8° "-size € circuit families for
some ¢ € N.

Then for every a € N, there is b € N and an NPRG family G = {G,,} such that

1. For infinitely many n, for S = 21°¢"" G, is an NPRG for S-size log S-depth
circuits with S-bit inputs, with error 1/S.

2. G is computable in 218" time and has seed length logbn.

In other words, let H = {H,} be such that H, is the set of S-size log S-depth
circuits with S-bit inputs. G is an i.0. NPRG for H with error 1/S.

Proof. Let ¢ be the universal constant in Corollary 4.4. Without of loss generality,
we assume that n is a sufficiently large integer. Recall that an NPRG G, is a pair of
functions (Gp), and (Gw),. We will write the pair as GY and G’ for notational
convenience.

Construction of the “hardness certifier” V'’ for low-depth circuits. We
first combine Corollary 4.4 with the witness-size lower bound from Lemma 5.1 to
construct a hardness certifier V'.

Let d = log®n for a constant & to be specified later. By Corollary 4.4 and our
second assumption, we know that a depth-d n-input circuit has an equivalent 264 -
size AC3 o € circuit for a universal constant c,.

Let a1 € N to be specified later. Applying Lemma 5.1 for the circuit class AC30%,
there is a large enough constant b; = by (a;) and a polynomial-time algorithm V'(x, y)
with |z| = log” n, |y| = 21°8" ", such that for infinitely many n’s, we have that
V/(1108" n ) is satisfiable, and V'(11°6"' ™ y) = 1 implies that func(y) cannot be
computed by a 219" "_size AC3 0 € circuit. We will call these n’s good.

Now, we set a; = ck + 1 (hence log™ n > c.log® n = c.d®) so that for a good
n and a string y of length 2108”7 guch that V’(llogb1 " y) =1, we know that func(y)
cannot be computed by depth-d circuits.

Construction of the NPRG. Now we can plug this ¢ into a standard construc-
tion of a PRG. Let c2,¢ and G be the constants and the algorithm in Theorem 3.3.
We also set £ = log” n, w = 2¢, and m = 2!°8" ", Now we are ready to define Gé,")
and G\(,:,l ) as follows:

o G\(,(,L) takes a w-bit string y as input, and outputs V'(1¢,y).
o G,(D”) takes a w-bit string y and an ¢9-bit string z as input, and outputs
Gom(y, 2).

Now we set k = a/cy and verify that G,, = (Gén), G\(,:,l)) is an NPRG for H,, with
error 1/m when n is good.

Since n is good, we know that there exists y € {0,1}" such that G\(,(,L)(y) =1,
and for such y, by previous discussions, func(y) cannot be computed by 1ogk n-depth
circuits. By Theorem 3.3 and the fact that log®* n > log?n, Gom(y,-): {0,1} —
{0,1}™ is a PRG for H,, with error 1/m, and is computable in poly(|y|) < 2°® time.
Finally we set b = b; - g, and this completes the proof. 0

This manuscript is for review purposes only.



897
898
899
900
901

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 23

The following theorem is a direct corollary of Theorem 3.2 and Lemma 5.1.

THEOREM 5.4. Suppose there is an € € (0,1) such that the Gap-UNSAT problem
for 2" -size n-input circuits can be solved in 2" /n®1) non-deterministic time. Then
there is an NPRG family G = {G,} such that

1. For infinitely many n, for S = 298" " G, is an NPRG for S-size S-input
circuits with error 1/S.
2. G 1is computable in 218" time and has seed length logbn.

6. A Simpler Proof for the New Easy Witness Lemma for NP and NQP
of [46]. In this section, we present our simpler proof of the easy-witness lemma for
NP from [46] (it is straightforward to adapt that for NQP). This also serves as a
warm-up for our a.a.e. average-case MA lower bound in 7?7, which is the technical
centerpiece of this paper.

As already discussed in Section 2, the technical centerpiece of the new easy witness
lemma of [46] is an a.a.e. MA circuit lower bound. In Subsection 6.1, we first give
a simpler proof of that MA lower bound. Then in Subsection 6.2, we sketch how to
prove the easy-witness lemma for NP based on that (this is basically an adaption of
the proof of [46, Lemma 4.1]).

We also remark that our proof in fact follows a case-analysis that is similar to the
fixed polynomial-size circuit lower bounds for MA /; in [51], while relying on additional
nice properties (paddability and downwards self-reducibility) of the PSPACE-complete
language LPSPACE from Theorem 3.7.

6.1. A.a.e. Fixed-polynomial Lower Bounds for (MANcoMA) ;. Now we
are ready to prove the a.a.e. fixed-polynomials lower bounds for (MA N coMA) ;.

LEMMA 6.1. For all constants k, there is ¢ € N and a language L € (MAN
coMA) /1, such that for all sufficiently large T € N and n = 27, either
e SIZE(L,) > n* or
e SIZE(L,,) > mF for some m € (n°,2-n°) NN.

Our relaxation of the a.a.e. condition. The statement of Lemma 6.1 also
illustrates our relaxation of the a.a.e. condition that is crucial in the average-case
setting. In [46], the lower bound shows that for almost all n’s and m = n€, either
SIZE(L,) > n* or SIZE(L,,) > m*. This lower bound of [46] only holds for an
MA /0 (10g n) language. Here we relax the a.a.e. condition by only requiring the lower
bound to hold for almost all n that is a power of 2 and some m € (n° 2 - n¢). This
relaxation enables us to prove a lower bound for an (MA N coMA)/; language. In
Subsection 6.2, we show how the simplification above still suffices for the proof of the
easy witness lemma for NP.

Proof of Lemma 6.1. Let LPSPACE be the language specified by Theorem 3.7.
By Theorem 3.8, there is ¢; € N and a language L928 € SPACE(n®) such that
SIZE(Ld28) > n¥ for all sufficiently large n. Since LPSPAE is PSPACE-complete and
paddable, there is ¢ € N such that L4928 can be reduced to LPSPACE on input length
n° in O(n?) time. We set ¢ = cs.

The algorithm. Let 7 € N be sufficiently large. We also let b be a large enough
constant to be specified later (we will make sure b > k). Given an input z of length
n = 27 and for m = n¢, we first provide an informal description of the (MANcoMA) /;
algorithm Ay that computes the language L. There are two cases:

1. When SIZE(LPSPACE) < nb. That is, when LPSPACE is eqsy. In this case, on
inputs of length n, we guess-and-verify a circuit for LPSPACE of size n®, and

This manuscript is for review purposes only.



944
945
946
947
948
949
950
951

952

24

. Otherwise, we know that

L. CHEN

use that to compute L4128

LPSPACE is hard. Let ¢ be the largest integer such
that SIZE(LPSPACE) < 125 On inputs of length m; = m + ¢, we guess-and-
verify a circuit for LESPACE, and compute it (i.e., compute L?SPACE on the

first £ input bits and ignore the rest).?

Intuitively, A, computes a hard function because either it computes the hard

language L9 on inputs of length n, or it computes the hard language L?SPACE on
inputs of length m;. A formal description of Ay is given in Algorithm 6.1, and an
algorithm A,q, for setting the advice sequence of Ay, is given in Algorithm 6.2.

To complete the description of our (MA N coMA)/; algorithm, we claim that an

., can only be set once in Algorithm 6.2. To see this, we first note that Line 5 only
sets a, such that n is a power of 2. And also, whenever one enters Line 8, we have
that (1) m = n° is a power of 2 and (2) 1 < £ < m since SIZE(LFSPACE) > pb and
SIZE(LPSPACE) is nondecreasing. Hence, at Line 8, m + ¢ is never a power of 2. The
above discussions means that an «,, cannot be set by both Line 5 and Line 8. Further
observing that an «,, cannot be set twice by Line 5 or Line 8 finishes the proof of our

claim.

Algorithm 6.1: The (MA N coMA) ; algorithm Ap

o N O UA W=

©

10
11
12
13
14
15

16
17
18
19
20

Given an input x with input length n = |z|;
Given an advice bit a = a,, € {0,1};
Let m = n¢;
Let ng = no(n) be the largest integer such that n§ < n;
Let mp = ng;
Let £ = n — mg;
if @« =0 then
L Output 0 and terminate

if n is a power of 2 then

// We are in the case that SIZE(LPSPACE) < nb.

Compute z € {0,1}™ in O(n¢) time such that L928(x) = LPSPACE(2),
Guess an m-input circuit C' of size at most n?;

Let M be the instance checker for LPSPACE

Flip an appropriate number of random coins, let them be r;

Accept if M€ (z,7) = 1;

Ise

// We are in the case that SIZE(LE,LSUPACE) >nf and ¢ is the
largest integer such that SIZE(LJSPACE) <nb.

Let z € {0,1}* be the first ¢ bits of x;

Guess an f(-input circuit C of size at most ng;

Let M be the instance checker for LPSPACE;

Flip an appropriate number of random coins, let them be r;

Accept if M€ (z,7) = 1;

25Here we have SIZE(LEiﬁACE) > n® by the choice of £. Since LPSPACE is downward self-reducible

and b is a large enough constant, we have SIZE(LESPACE) > nb/2, Therefore, LESPACE is hard as well.
26We choose input length m; = m + £ instead of £ because we wish to show L is hard on an input
length in (n°,2-n¢) NN and ¢ can be smaller than n°.

This manuscript is for review purposes only.



961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982

983
984
985
986
987

988

989
990
991
992
993
994
995

996

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 25

Algorithm 6.2: The algorithm A,q, for setting advice bits

1 All the «, are set to 0 by default;
2 fort=1—o00do

3 Let n = 2" and m = n€;

4 if SIZE(LfnSPACE) < nb then
5 | Set an, =1;

6 else

7

8

Let £ = max{¢ : SIZE(LPSPACE) < nby;
Set amie = 1;

Now it remains to show that (1) Ar satisfies the MA N coMA promise (see Defi-
nition 3.9) and (2) Az computes a hard language.

A satisfies the MANcoMA promise. We first show Ay, satisfies the MANcoMA
promise. The intuition is that Ay, only tries to guess-and-verify a circuit for LPSPACE
when it exists, and the properties of the instance checker (see Definition 3.4) ensure
that in this case Ay, satisfies the MA N coMA promise . There are three cases:

1. a, = 0. In this case, A, computes the all zero function, and clearly satisfies
the promise.

2. ap = 1 and n is a power of 2. In this case, from Algorithm 6.2, we know
that SIZE(LPSPACE) < nb for m = n®. Therefore, at least one guess of the
circuit C' is the correct circuit for LPSPAEand on that guess, A7 outputs
LPSPACE(2) = L4 (x) with probability 1, by the property of the instance
checker (see Definition 3.4). Again by the property of the instance checker,
on all guesses of C, Ay, outputs 1 — LPSPACE(2) = 1 — L9728 () with probability
at most 1/3.

3. a, =1 and n is not a power of 2. In this case, from Algorithm 6.2, we know
that SIZE(LYSPACE) < nf. Therefore, at least one guess of the circuit C' is the
correct circuit for L?SPACE, and on that guess, Ay outputs LESPACE(Z) with
probability 1, again by the property of the instance checker. Similar to the
previous case, on all possible guesses of C', Ay outputs 1 — L?SPACE(Z) with
probability at most 1/3.

To summarize, we have the following claim.

Cra 1. The algorithm Ap with advice set by Aaqy is an (MA N coMA)  algo-
rithm for a language L such that, for every n € N, L,, is defined as below:
1. If a,, =0, then L, is the all-zero function.
2. If o, =1 and n is a power of 2, then L, is the same function as L4,
3. If a, = 1 and n is not a power of 2, then L, is the n-bit function that
computes LESPACE on the first £ bits and ignores the rest of the input.

Ar computes a hard language. Next we show that the algorithm indeed
computes a hard language as stated. Let 7 be a sufficiently large integer, n = 27, and
m = n°. There are two cases:

1. SIZE(LPSPACE) < nb. In this case, we have a,, = 1 by Algorithm 6.2. By
Item (2) of Claim 1, we have that L, is the same function as L2  and
therefore SIZE(L,,) > n*.

2. SIZE(LFSPACE) > nb. Let £ be the largest integer such that SIZE(LPSPACE) <
n®. By Remark 3.5, we have 0 < £ < m.

This manuscript is for review purposes only.



997

998
999

1000
1001
1002
1003

1004

1005
1006

1007
1008
1009
1010

1011
1012

1013
1014
1015
1016
1017
1018
1019
1020
1021

1022
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

26 L. CHEN

Note that SIZE(LFAE) < (¢ +1)4 - SIZE(LFSPACE) for a universal constant
d, because LPSPACE is downward self-reducible. Therefore,

S|ZE(L55PACE) > SlZE(LZS_l;ACE)/(é + l)d > nb/md > nb_c.d.

Now, on inputs of length m; = m + ¢, we have au,, = 1 by Algorithm 6.2
(note that my € (m,2m) as £ € (0,m)). Then by Item (3) of Claim 1, we
have that L,,, is the m;-input function that computes LESPACE on the first £
bits and ignores the last m input bits. Hence, we have

SIZE(L,,,) = SIZE(LYSPACE) > pbed,

We set b such that nb=cd > (2m)k > mk (we can set b = ed + 3 - ck), which
completes the proof. 0

6.2. An Easy-Witness Lemma for NP. Now we sketch the proof for the easy-
witness lemma for NP, which also illustrates why our relaxation of a.a.e. condition is
still enough for the purpose of proving lower bounds.

First we need the following simple lemma.

LEMMA 6.2. For a constant k, if NP,o(,) is not in SIZE[O(n*)], then NP is not
in SIZE[n*].

Proof. We prove the contrapositive. Suppose NP is in SIZE(n*) for an integer
k. Let L € NP, for a constant ¢, and M and {ay,}nen be its corresponding non-
deterministic Turing machine and advice sequence. Let p(n) be a polynomial running
time upper bound of M on inputs of length n.

Now we define a language L’ such that a pair (z,«) € L' if and only if c|z| = |a/
and M accepts x with advice bits set to « in p(|z|) steps. Clearly, L' € NP from
the definition, so it has an n*-size circuit family. Fixing the advice bits to the actual
ay,’s in the circuit family, we have an O(n¥)-size circuit family for L as well. This
completes the proof. 0

Reminder of Lemma 1.6. For all k > 1, there is a constant b such that if
NP C SIZE[n¥], then every L € NP has witness circuits of size at most n®.

Proof Sketch. Fix k > 1, let b = b(k) be a constant to be specified later. We
prove the contrapositive of the lemma: if some L € NP does not have witness circuits
of size at most n®, then NP ¢ SIZE[n"].

Now we assume that there is a language L € NP that does not have n’-size
witness circuits. From definition 3.13, there is a constant a € N, £(n) = [alogn], and
a polynomial-time verifier V(x,y) for L (z € L < Jy V(x,y) = 1) with |z| = n and
ly| = 2" such that for infinite many n € N, there is x,, € L, satisfying that (1)
V(zy,-) is satisfiable and (2) V(x,,y) = 1 implies that func(y) does not have n® size
circuits. We call these n good.

Let ¢; and GY™" be the constant and the algorithm from Theorem 3.2. We
construct an NPRG G,, = (GE,")7 G\(,:})) as follows:

e Both Gé") and G’\(,:}) takes an input z,, € {0,1}" as the advice.
° G\(,Z}) takes a string y € {0, 1}2[(7” as input, and outputs V(z,,y).
o GU takes a string y € {0,1}2"" and a string z € {0,1}“") as input, and

outputs G;;J(:?’”;b/cl (y, 2).

b

This manuscript is for review purposes only.



1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

[ ——

J—

h
J I 3 S
Tl = W N

1076
1077
1078
1079

1080
1081

1083
1084
1085

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 27

From Theorem 3.2, for every good n, there is an advice z, € {0,1}" such that
G, is an NPRG fooling n®/“1-size n/“-input circuits with error 1/10.

Applying Lemma 6.1 with parameter 2k. There are constants ¢,¢ € N and a
language L4 € MATIME[n!] ;1 such that the following holds: For every sufficiently
large 7 € N and n = 27, either SIZE(L"*) > n?* or SIZE(Lhad) > m?2* for some
m € (n° 2n°) NN.

Hence, for a sufficiently large good n, let ny = ni(n) be the smallest power of 2
that is at most n. We have either

(1) SIZE(Lhd) > ni* or

(2) SIZE(Lrrd) > m?* for some m € (n§,2 - ng).

We now set b >t - c- ¢, and consider the following two cases.

(1) holds for infinitely many good n’s. In this case, we define an NP o,
language given by the following algorithms:

1. On an input z € {0,1}". We are given two advice bit a,,, 3, and an advice
input z,, € {0,1}". a, is 1 if n is good and (1) holds for n;, and is 0
otherwise. When «,, = 1, 8,, is supposed to be the advice of L' on nq-bit
inputs, and z,, is supposed to be the advice input such that G,, is an NPRG
fooling n/ “1-size nb/¢1-input circuits with error 1/10.

2. If a; = 0 we simply output 0. Otherwise, we use G, with advice z,,, together
with the advice 8, for L' to compute L"(z<,,) in non-deterministic
poly(n) time. (We can use G, to derandomize the ni-time MA /; algorithm

for L2 because we have set b>> t- ¢ - ¢; and hence n®/¢ > (ny)t.)

(2) holds for infinitely many good n’s. In this case, we define an NP o,
language given by the following algorithms:

1. On an input z € {0,1}™. We are given two advice bit a,,, 8, and an advice
integer n < m and an advice string x,, € {0,1}". a,, is 1 there is a good
n € N such that m € (n§,2-n§) and SIZE(LP) > m*. When a,,, = 1, B,
is supposed to be the advice of L' on m-bit inputs, and z,, is supposed to
be the advice input that G,, is an NPRG fooling n®/“-size n? ¢-input circuits
with error 1/10.

2. If ai, = 0 we simply output 0. Otherwise, we use GG,, with advice z,,, together
with the advice 3,, for L' to compute L' (z) in non-deterministic poly(n)
time. (We can use G, to derandomize the m!-time MA /; algorithm for Lhard
because we have set b > t - ¢ - ¢; and hence n/¢t > (2n1)t¢ > m?.

We can see that in both cases above, there is an NP ,o(,) language that cannot
be computed by Q(n2¥)-size circuits. By Lemma 6.2, we have NP ¢ SIZE[n*] and this
completes the proof. O

7. Average-Case “Almost” Almost Everywhere Lower Bounds for MAN
coMA. In this section, we prove the average-case circuit lower bounds for MANcoMA,
which is the most important technical component of the paper.

We will need the following lemma, which is a direct corollary of Theorem 3.8.

LEMMA 7.1. For all a € N, there is h € N and a language L9728 ¢ SPACE(QIOgh”)
such that for all sufficiently large n,

AVg, 09-SIZE(LY2€) > 218" ™ 4nd  Avg, go-DEPTH(LY?8) > log® n.

Now we are ready to prove the technical centerpiece of the paper, an (MA N
coMA) 1 language that has a low-depth computable predicate and is average-case
hard for low-depth circuits.

This manuscript is for review purposes only.



1086
1087
1088
1089
1090
1091
1092
1093
1094

1095
1096
1097
1098
1099
1100
1101
1102

28

L. CHEN

THEOREM 7.2. For all a € N, there are b,c € N and a language L € (MAN

coMA) TIME(2000e" ™) .\ such that the following hold:

1. For all sufficiently large 7 € N and n = 27, either
o Avgy 99-DEPTH(L,,) > log®n, or
o Avgy 9o-DEPTH(L,,) > log”m, for an m € (2'°&" " 2lg"n+1) AN,

2. The randomness part of the predicate of L is computable by O(logb n)-depth

circuits.

3. For every n € N, if the advice for L on n-bit inputs is 0, then L, is the

all-zero function.

Algorithm 7.1: The (MAN coMA)TIME(QO(IOgb ™)1 algorithm Ay

o N O Uk W N

©

10
11
12

13
14
15

16
17
18

19
20

Given an input = with length n = |z;

Given an advice integer o = a,, € {0,1};

Let m = (QIOgC ”-‘;

Let ng = ng(n) be the largest integer such that 21°8° "0 < n;

Let mg = 2'°8" o,

Let £ = n — mg;

if @« =0 then
L Output 0 and terminate

if n is a power of 2 then

// We are in the case that DEPTH(LPSPACE) <loghn.

Compute a z in 200°8"™) time such that L928(x) = LPSPACE(2).

Guess a circuit C' of 1ogb n depth;

Compute in poly(m) time a TC? oracle circuit Dchecker that implements
the instance checker for LPSPACE.

Flip an appropriate number of random coins, let them be r;

Output Do (25 7);

else

// We are in the case that DEPTH(LPSPACE) > log’ng and ¢ is

the largest integer such that DEPTH(LPSPACE) < log’ny.

Let z be the first ¢ bits of z;

Guess a circuit C' of logb ng depth;

Compute in poly(¢) time a TC oracle circuit Dehecker that implements
the instance checker for L?SPACE;

Flip an appropriate number of random coins, let them be r;

Output DY . (2,7);

checker

Proof of Theorem 7.2. Let LPSPACE be the language from Theorem 3.7. Applying

Lemma 7.1 with parameter a, there is & € N and a language L4 € SPACE(208" n)
such that Avg, go-DEPTH(L428) > log” n for all sufficiently large n. Since LPSPACE ig
PSPACE-complete and paddable, there is ¢; € N such that L4928 can be reduced to
LPSPACE o1 input length 2'°8™ ™ in 20008 ) time  We set ¢ = ¢; and b = 3ac so that
1ogb n > log2“(2m).

The algorithm. Let 7 € N be sufficiently large, n = 27, and m = 298", We

first provide an informal description of the (MAN coMA)TIME(2O(1°gb "))/1 algorithm

This manuscript is for review purposes only.



NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 29

Algorithm 7.2: The algorithm A,q4, for setting advice bits in Algorithm 7.1

All the a, are set to 0 by default;
for r=1— oo do
Let n =27,
Let m = 210836";
if DEPTH(LPSPACE) < log”n then
‘ Set a,, = 1;
else
L Let ¢ = max{¢ : DEPTH(L}SPACE) < log” n};
Set apye = 1;

© 00 N OO A W N

Ay, that computes the language L. There are two cases:

1. When DEPTH(LFPSPACE) < 1og¥n. That is, when LPSPACE is eqsy. In this
case, on inputs of length n, we guess-and-verify a circuit for LPSPACE of depth
1ogb n, and use that to compute L4128

2. Otherwise, we know that LPSPACE is hard. Let £ be the largest integer such
that DEPTH(LFSPACE) < log”n. On input of length my = m + £, we guess-
and-verify a circuit for L?SPACE, and compute LESPACE on the first £ input
bits. Note that by Remark 3.5, we have 0 < £ < m and therefore m + £ is not
a power of 2.

Intuitively, the Ay, computes an average-case hard function because either it com-
putes the average-case hard language L8 on inputs of length n, or it computes the
average-case hard language LZPSPACE on inputs of length m (LPSPACE ig NC? weakly
error correctable). A formal description of Ay, is given in Algorithm 7.1, and the
algorithm A,q, for setting the advice bits of Ay, is given in Algorithm 7.2. Since m+/
at Line 9 is never a power of 2, a,, can only be set once in Algorithm 7.2.

Now we verify that the algorithm above computes a language satisfying our re-
quirements.

The algorithm satisfies the MA N coMA promise. We first show that Aj,
satisfies the MANcoMA promise (Definition 3.9). The intuition is that it only tries to
guess-and-verify a circuit for LPSPACE when it exists, and the properties of the instance
checker (Definition 3.4) ensure that in this case Ay, satisfies the MA N coMA promise.
We state the following claim that summarizes the properties of Ay and L that are
needed by us.

CLAaIM 2. Ap with advice set by Aaqy 18 an (MAN coMA) TIIVIE(ZO(IOgb ”))/1 algo-
rithm for a language L such that, for every n € N, L,, is defined as below:
1. If a, =0, then L, is the all-zero function.
2. If o, = 1 and n is a power of 2, then L, is the same function as L4,
3. If a, = 1 and n is not a power of 2, then L, is the n-bit function that

computes LESPACE on the first £ bits and ignores the rest of the input.

We omit the proof of Claim 2, since it is identical to the proof of Claim 1 in the
proof of Lemma 6.1. Also, note that Item (3) of the theorem follows directly from
Item (1) of Claim 2.

Ap computes an “almost” almost everywhere average-case hard lan-
guage for low depth circuits. Next, we show that Ay indeed computes an average-
case hard language. Let 7 be a sufficiently large integer, n = 27, and m = 218",

This manuscript is for review purposes only.



1138
1139
1140
1141

1142
1143

1144

1145
1146
1147
1148

1149

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

30 L. CHEN

According to Algorithm 7.2, there are two cases:
1. DEPTH(LPSPACE) < log®n. In this case, Algorithm 7.2 sets o, = 1. By
Item(2) of Claim 2 and Lemma 7.1, we have Avg, go-DEPTH(L,,) > log® n as
n is sufficiently large.
2. DEPTH(LFPSPACE) > 1og® n. Let £ be the largest integer such that

DEPTH(L}SPACE) < logh n.

By Remark 3.5, we have £ < m. Note that DEPTH(LP?TAE) < dlog(¢+1) +
DEPTH(LFSPACE) for a universal constant d.?” Therefore,

DEPTH(L}SPAE) > DEPTH(LITHAE) — dlog(£ + 1) > Q(log”n),

the last inequality holds since DEPTH(LPSFAE) > log’n, dlog(¢ + 1) <
O(log¢) < O(logm) < O(log®n), and b = 3ac.

Now, on inputs of length m; = m + ¢, we have a,,, = 1 by Algorithm 7.2.
By Item (3) of Claim 2, it follows that

AVgq 9o-DEPTH(L,y,, ) = Avg, go-DEPTH(LPSPACE),

Since LPSPACE js NC? weakly error correctable and the corresponding NC?
oracle circuit is non-adaptive, there is a universal constant d such that

DEPTH(LFSPAE) < dlog® £ + Avg go-DEPTH(LFSPACE),
Therefore, recall that b = 3ac, it follows

Avg 9o-DEPTH(LYSPACE) > DEPTH(LPSPACE) — dlog® ¢
> Q(log” n) — O(log® n) > Q(log” n).

Finally, note that Q(log”n) > Q(log>*(2m)) > log®(m1). We have
AVE( 99-DEPTH(L,,,) = Avgy 9o-DEPTH(LISPACE) > 10g(m,).

This completes the proof of the Item (1) of the theorem.

The randomness part of the predicate of L. Finally, we have to show that
the randomness part of the predicate of L is computable by O(log® n)-depth circuits
(i.e., Item (2) of the theorem). Note that at the end of Algorithm 7.1, given the
guessed circuit C' and the input z, Ay always first computes a circuit Dg]ecker(z, ) in
20(10g” n) time, and then output DS (2,7).%® From Definition 3.9, it suffices for

checker
us to argue that DS .. (z,-) is an O(log" b)-depth circuit, which holds since C' is
of depth at most logbn and Dehecker is in TCY (and therefore has an O(logn)-depth
circuit). d

Finally, we remark that from a proof that is identical to the proof of Theorem 7.2
but working with the complexity measure SIZE instead of the complexity measure
DEPTH, the following holds.

27Note that LPSPACE js TCO downward self-reducible, and the corresponding TC oracle circuit
is non-adaptive. Also, a TCO circuit admits an O(log n)-depth circuit since we can replace each
majority gate by an O(logn)-depth circuit.

28Unless o, = 0 and Aj, simply outputs 0. In this case our claim holds trivially.

This manuscript is for review purposes only.



1171
1172
1173
1174
1175
1176
1177
1178
1179

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

1196
1197
1198

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 31

THEOREM 7.3. For all a € N, there are b,c € N, and a language L € (MAN
coMA) TIME(20U0e" ™)\ - such that the following hold:
1. For all sufficiently large 7 € N and n = 27, either
o Avgy g9-SIZE(L,) > 2'8" " or
o Avgy g9-SIZE(L,,) > 298" ™ for an m € (298" " 28" n+1) O N,
2. The randomness part of the predicate of L is computable by 90(0g" n)_gize
circuits.
3. For every n € N, if the advice for L on n-bit inputs is 0, then L, is the
all-zero function.

8. Average-case circuit lower bounds for NQP. In this section, we first
prove that NQP cannot be (1/2 4 1/polylog(n))-approximated by 2P°Wlos(n)_gize
ACC® o THR circuits (Theorem 1.1) by combining the i.o. NPRG construction from
Section 5 with the a.a.e. MA lower bounds from Section 7. We then generalize
the average-case lower bounds to all typical circuit classes that admit non-trivial
Gap-UNSAT algorithms, and prove Theorem 1.4 and Theorem 1.5.

Notation. We first introduce some notation. For an integer a € N, we use bin(a)
to denote the Boolean string representing a in binary (from the most significant bit
to the least significant bit).

Given two integers m,n € N, we construct an integer pair(m,n) as follows. First
letting ¢ = |bin(n)|, we duplicate each bit in bin(¢) and to get a string ze, of length
2 - |bin(¢)| (for example, if bin(¢) = 101, we get 110011). Then we let z = bin(m) o
bin(n) o 01 o ze,, where o means concatenation, and define pair(m,n) as the integer
with binary representation z.

It is easy to see that pair(m,n) < O(mn?). Also, given the integer a = pair(m,n),
one can decode the pair of numbers m and n in poly(|bin(a)|) time.

8.1. (1 — ¢) Average-Case Lower Bounds for NQP from NPRGs and
MA Lower Bounds. For a typical circuit class €, we first define the following two
conditions.

DEFINITION 8.1 (i.o. NPRG condition). For a typical circuit class €, we say
that the i.0. NPRG condition holds for €, if for every a € N>y, there is b € N and
an NPRG family G = {G,} such that

1. For infinitely many n and S = 218" " G,, is an NPRG for S-size S-input €
circuits with error 1/S.
2. G is computable in 218" time and has seed length logbn.

DEFINITION 8.2 (a.a.e. average-case hardness condition). For a typical circuit
class €, we say that the a.a.e. average-case hardness condition holds for €, if for
every a € N>1, there are b,c € N and a language L € (MAN coMA) TIME(QO(IOgb ")
such that the following hold:

1. For all sufficiently large 7 € N and n = 27, either
o Avg gg-€-SIZE(L,) > 2'°8" " or
o Avgy g9-€-SIZE(L,,) > 218" ™ for some m € (2!°8° " 2log n+1) NN,
2. The randomness part of the predicate of L is computable by 90(08"n) _gjre @
circuits.
3. For every n € N, if the advice for L on n-bit inputs is 0, then L, is the
all-zero function.

The following is an immediate corollary of Theorem 7.2 and Theorem 7.3.

This manuscript is for review purposes only.



1217
1218

1219
1220

1221
1222
1223
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

(Sl
.l_.

= =
NN
ot

1256
1257
1258
1259
1260

32 L. CHEN

COROLLARY 8.3. For € € {Formula, Circuit}, the a.a.e. average-case hardness
condition holds for €.

Now we show that the i.o. NPRG condition and a.a.e. average-case hardness
condition for a typical circuit class ¥ imply average-case lower bounds against %

THEOREM 8.4. For a typical circuit class €, if both the i.0o. NPRG condition and
the a.a.e. average-case hardness condition hold for €, then for every a € N, there is
b e N, a universal constant § € (0,1/2), and a language L € (NﬂcoN)TII\/IE[QIOgb " /2
such that L cannot be (1 — 0)-approzimated by 2log” n_gize € circuits.

Proof. Let b be an integer to be specified later and 6 = 0.01. Without loss of
generality, we can assume that a is large enough.

Since the a.a.e average-case hardness condition holds for €. There are by,c € N
and a language LM ¢ (MAﬁcoMA)TIME(Q10gbl ") /1 such that for all sufficiently large
7 € N and n = 27, either

o Avg go-%-SIZE(Lard) > glog™ n_op
o Avg go-%-SIZE(LP2rd) > 2108™ m for some m € (2l08"n 2loe® nt1) AN,

Let Ty(n) = 28" n Aghard(z 4 2) be the predicate of L' and {ah2} be the
advice sequence of L. Let c"® be the constant so that ¢ . T} (n) is the length
of y and z in A", Let n,, = ny,(n) = "9 . T;(n) for convenience.

Moreover, since the randomness part of the predicate of L' is computable by
20(108" 1) _gize % circuits (see Definition 3.9), there is an O(210gb1 ™)-time algorithm
Bh2rd such that:

e Given an input = € {0,1}", a witness y € {0,1}™(™ and the correct advice
a=ahrd e {0,1}, B'/‘f;d (z,y) outputs an n,,(n)-input 20(108" 1) _gize ¢ circuit
D, such that A'/‘f;d(x, y,z) = D(z) for all z € {0, 1} 29

Now we try to derandomize LM non-deterministically and get a hard language
in (NﬂcoN)TIME[QlOgb "] /2. In the following we always assume that n is sufficiently
large.

Let a; = max(2b;c?,a) and S = S(n) = 298" . Since the i.o. NPRG condition
holds for €, there is b2 € N and an NPRG family G = {G,,} such that:

1. For infinitely many n, G, is an NPRG for S-size S-input % circuits with error
1/8.
2. G is computable in 2108”7 time and has seed length logb2 n.

We call an integer n good if the Item (1) above holds for n.

Now, fix a good n. Let ni be the largest power of 2 that is at most n. We first
provide an informal description of our ( NﬁcoN)TIME[QlOgb "] /2 algorithm for our hard
language L. There are two cases according to Theorem 7.2.

o Case I: Avg g9-€-SIZE(L}) > 210" 1 I this case, on inputs of length n,
we apply the NPRG G,, to compute Lt‘lalrd on the first ny bits in 90(10g"2 n)
non-deterministic time.

o Case II: Avgy go-€-SIZE(Lhad) > 218 ™ for some m € (218" m1 glos"mi+l) 0
N. In this case, on inputs of length ny = pair(m,n) < O(mn?), we apply the
NPRG G, to compute L' on the first m bits in 20(log" n) < 90(log" n2)
non-deterministic time.

Formally, the algorithm is specified in Algorithm 8.1, with a key subroutine Derand

29We use A'}zd and B?Z’d to denote that the advice of these two algorithms are set to a.

This manuscript is for review purposes only.



NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 33

1261 given in Algorithm 8.2. The advice bits a,, and 3, are set by Algorithm 8.3.%°

Algorithm 8.1: The (NNcoN)TIME glog’ n o Algorithm Ap,
/

1 Given an input z with length n = |z|;
2 Given advice bits a« = a, € {0,1} and 8 = 8, € {0,1};
3 if 5 =0 then
4 L return 0 ;
5 if a =0 then
6 Let nq be the largest power of 2 that is at most n;
// a=0 indicates we are in the case that
Avgg go-€-SIZE(LH) > 2log™ "1 and n is good.
Let w be the first ny bits of x;
8 return Derand(w, n);
9 else
10 Parse n as two integers (mg, ng) (that is, n = pair(mg, ng));
// a =1 indicates we are in the case that
Avg go-€-SIZE(Lhd) > 20" mo and g is good.
11 Let w be the first mq bits of x;
12 return Derand(w, ng);

Algorithm 8.2: Derand(z,no)
1 Given an input = with length n = |z, no;
// mg is suppose to be good.
2 Guess an ny,(n)-bit witness y and run B;‘i’rd (z,y) to obtain an n(n)-input
90008 1)_gize € circuit Dy s
3 Let (Gp, Gw) be the pair of algorithm in the NPRG G,,;

2logb2 ng

4 Guess a string ynard € {0,1} ;
5 if Gw(Yhara) = 0 then
L return |;

7 for w € {0,1, L} do
8 t Pw = PrreR{0,1}1°€b2 no | Doy (Gp(Yhara; 7)) = w}i

9 if p; > 0.6 then
10 | return 1;

11 if pg > 0.6 then
12 L return 0;

13 return 1;

1262 Analysis of Derand(z, z,n9). We first prove the following claim regarding the
1263 algorithm Derand(x, ng).

30Here it is possible that an oy, or B, is set twice by Algorithm 8.3, but this does not affect our
analysis.

This manuscript is for review purposes only.



1289

34 L. CHEN

Algorithm 8.3: The algorithm A,q, for setting advice bits of Algorithm 8.1

1 All a,’s and B,,’s are set to 0 by default;

2 forn=1—ocodo

3 if n is good then

4 Let nq be the largest power of 2 that is at most n;
5 if Avgy gg-¢-SIZE(Lhd) > 21°5*" "1 then

6 a, = 0;

7
8
9

_ hard.
/871 - anl )

else

Let m be the smallest integer from (2!°8° 71, 210" m1+1) | N such
that Avg, go-€-SIZE(LMd) > 2log™ m.

10 ng = pair(m, n);

11 Qp, = 1;

12 5712 — ahard.

m

CLAIM 3. For n,ng € N, if ng is good, o' =1 and log™ ny > log” ™t n, then
for every x € {0,1}", Derand(z,ng) computes L' (x) with respect to Definition 3.11.

Proof. Fix an = € {0,1}". Since o™ = 1, we have that B'/‘i'd(x,y) outputs

an ny,(n)-input 200°8" ™) _gize circuit D, such that A?ird(m,y,z) = D, ,(z) for all
z € {0,1}m(™),

Since A" (xz,y, z) is the predicate of an (MA N coMA)TIME[T(n)],; time algo-
rithm for LM we have (1) there exists y € {0, 1}™() such that D, ,(z) = L"d(z)
for all z € {0,1}™() and (2) for all y € {0,1}™(), D, ,(2) = 1 — L""(z) happens
with probability at most 1/3 over z.

Now, since ng is good, we further know that (1) there is ynard € {0, 1}210gb2 "% such
that Gw(yhara) = 1 and (2) for all yparg such that Gw (yhard) = 1, Gp(Yhard, -) is a PRG
fooling € circuits of 21°8"* "0 > 20e" ' 1 gize with error at most 1/100.

Finally, we show Derand computes L"(z) with respect to Definition 3.11. First,

ogb2 n
there exists y € {0,1}™ ) and yparg € {0, 1}21 7" such that D, (z) = Lhrd(2) for
all z € {0, 1}"""(") and Gw(yhara) = 1. Since D, ,, is of size 20(log" n) < glog" *! " we
know that Gp(Ynard, -) fools D, , with error at most 1/100.%" This in particular means

that prne(y) > 0.99, and Derand(x,ng) outputs LMd(z) on the guess y and Ypard-

logh2 n

Second, for all y € {0, 1}™() and yhara € {0,1}2™ ™. We know that D, ,(z) =
1 — LMrd(2) happens with probability at most 1/3 over z. Now, if Gw(Yhard) = 0,
Derand(z,ng) outputs L immediately. Otherwise, Gw (Yhard) = 1, and Gp(Yhard, -)
fools Dy, with error at most 1/100. This in particular means that D1 phed(z) < 0.35,
and hence Derand(z,ng) does not output 1 — L"(z) on the guess y and Ypard-

To summarize, for every = € {0,1}", (1) there are y € {0,1}™™ and ypaq €
{0, 1}21%1}2 " such that Derand(x,ng) outputs L"(z) and (2) for every y and Yhard,
Derand(z,ng) € {LM(x), L}. This completes the proof. |

Analysis of A;. Next we prove the following claim regarding Ay,.

31More formally, for every w € {0, 1, L}, it fools the circuit deciding whether Dy y(2) = w.

This manuscript is for review purposes only.



1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

1308
1309

1311
1312
1313
1314

1315

1316

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 35

CLAIM 4. Ap with advice set by Asay is an (NNcoN) TIME[21°8" "] 2 algorithm for
a language L defined as follows:
1. If B, =0, then L, is the all-zero function.
2. If B, = 1 and oy, = 0, then L, is the n-input function that computes LL‘f’l'd
on the first ny bits and ignores the rest of the input.
3. If B, =1 and o, = 1, then L, is the n-input function that computes L,hjj;d
on the first mqg bits and ignores the rest of the input.

Proof. Ttem (1) of the theorem follows immediately from Line 4 of Algorithm 8.1.
In the following we show Item (2) and Item (3) hold separately.

We first consider Item (2). In this case, we have that 8, = 1 and a,, = 0. By
Algorithm 8.3, it follows that n is good and ozzalrd = 1. Since n; is the largest power
of 2 that is at most n, we have n; < n. Recall that a; = max(2b;c?,a), we have
log™ n > log” ™' n > log” " ny. Hence, by Claim 3, it follows that Derand(w,n)
computes L' (w) with respect to Definition 3.11 at Line 8. This proves Item (2).

We next consider Item (3). Now we have 3, = 1 and a, = 1. By Algorithm 8.3, it
follows that (1) ng is good and /2 = 1 and (2) mg < 2'°8""0*+1. By our choice of a1,
we have that log® ng > log” ™1 mg. Again by Claim 3, it follows that Derand(w, ng)
computes L' (w) with respect to Definition 3.11 at Line 12. This proves Item (3).0

Average-case lower bound. Finally, we are ready to prove that L is average-
case hard, which completes the proof.

CLAIM 5. L cannot be (1 — 8)-approzimated by 2'°8° "-size € circuits.

Proof. Since there are infinitely many good n, either Line 7 or Line 12 of Algo-
rithm 8.3 is executed for an infinite number of times. Moreover, from Item (3) of
Definition 8.2, it follows that at Line 7 (resp. Line 12), ah® (resp. of2) must be
1.%2 Hence, we know that there are infinitely many n such that 8, = 1. We now

consider the following two cases.

Case I. There are infinitely many n such that 8, = 1 and «a,, = 0. By Algo-
rithm 8.3 and Claim 4, we know that

AVE( 99-B-SIZE(Ly,) > Avg go-SIZEG (L) > log™ ni > glog”n

The last inequality above follows from the fact that ny > n/2.

Case II. There are infinitely many n such that g, = 1 and «,, = 1. By Algo-
rithm 8.3 and Claim 4, we know that

AVg g9-C-SIZE(Ly) > Avgy g9-€-SIZE(Li) > olog® ma

. Moreover, from Algorithm 8.3 we also have mg < n < O(mgn3) and mg > log®(no/2)
Hence, we have mg > n%9 and 2log>* mo > 2l0g” 7 gince ¢ is large enough.

Hence, in both cases, we have that Avg, go-%-SIZE(L,) > 2'°8"™ for infinitely
many n. O

8.2. (1 —J) Average-Case Lower Bounds for NQP from Non-trivial De-
randomization. Recall that for a typical circuit class €, we say the non-trivial
derandomization condition holds for €, if there is € € (0,1) such that the Gap-UNSAT

hard

hard
pard and La"

328ince if at‘f{d =0, then L?Lal"d is the trivial all-zero function. The same holds for «
as well.

This manuscript is for review purposes only.



1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

36 L. CHEN

problem for 2" -size n-input € circuits can be solved in 2" /n“(") non-deterministic
time.

Recall that a circuit class € is nice, if it is typical and either ¥ = Circuit or % is
weaker than Formula.

From Theorem 5.4 and Theorem 5.3, we have the following corollary.

COROLLARY 8.5. Let € be a typical circuit class such that the non-trivial deran-
domization condition holds for ACs o €. There is a universal constant § € (0,1/2)
such that the following hold:

L. If uniform NC' can be (1 — 6)-approzimated by 2'°8° "-size € circuit families
for some ¢ € N, then the i.0. NPRG condition holds for Formula.
2. If € = Circuit, then the i.0. NPRG condition holds for Circuit.

Next we show that, for a nice circuit class %, the non-trivial derandomization
condition for ¢ implies average-case lower bounds against €.

THEOREM 8.6. Let € be a nice circuit class. Suppose the non-trivial derandom-
ization condition holds for AC50%. Then for every a € N, there is b € N, a universal
constant § € (0,1/2), and a language L € (NNcoN)TIME[2!°%" "] 2 such that L cannot

be (1 — 6)-approzimated by 2'°8" "-size € circuits.

Proof. The case for ¥ = Circuit follows directly from Corollary 8.5, Corollary 8.3
and Theorem 8.4. So we will focus on the case that ¥ is weaker than Formula. We
will consider the following two cases.

Case I. If uniform NC cannot be (1 — §)-approximated by 298" "-size ¢ circuits.

In this case, since uniform NC is contained in (NNcoN)TIME[2!8® "] /2, we can simply
set b= 2.

Case II. If uniform NC can be (1 — §)-approximated by 2!°8" "-size € circuits. In
this case, by Item (1) of Corollary 8.5, the i.o. NPRG condition holds for Formula.

Now, by Corollary 8.3 and Theorem 8.4, there is b € N and a language L €
(NﬂcoN)TIME[QlOgb "] /2 that cannot be (1—0)-approximated by 2108 n_gize formulas.
Since ¥ is weaker than Formula, it follows that L also cannot be (1 —d)-approximated
by 2'°8" "_size € circuits. 0

Recall the the following SAT algorithm for AC4[m] o THR by [65].

THEOREM 8.7 ([65]). For every d,m € N, there is an ¢ = e(d,m) > 0 such
that the satisfiability of a 2" -size n-input ACylm] o THR circuit can be determined
deterministically in 2"~ time.

In other words, the non-trivial derandomization condition holds for AC4[m]oTHR,
for every d,m € N.

Combining Theorem 8.7 with Theorem 8.6, we immediately have the following
average-case lower bounds against AC4[m] o THR.

COROLLARY 8.8. For every a,d,,my, € N, there is b € N, a universal constant
0 > 0, and a language L € (NﬂcoN)TIME[QlOgb"]/g such that L cannot be (1 — 0)-
approzimated by 2'°8" " size ACy, [m,] o THR circuits.

Next we show Corollary 8.8 indeed imply the following stronger lower bounds.
We remark that we cannot directly apply Theorem 8.6 to ACCY o THR, since the
non-trivial derandomization condition does not necessarily hold for ACC® o THR. Our
proof below uses a case-analysis to resolve this issue.

This manuscript is for review purposes only.



1368
1369
1370
1371
1372

1379
1380
1381
1382
1383

1384

1385
1386
1387
1388
1389

1390
1391
1392
1393
1394
1395

1396
1397
1398
1399
1400
1401
1402
1403
1404
140:
1406
1407
1408

)

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 37

COROLLARY 8.9. For every a € N, there is b € N, a universal constant 6 > 0, and
a language L € (NﬂcoN)TIME[QIOgb "2 such that L cannot be (1 — 0)-approvimated
by 218" " gsize ACC® o THR circuits.>

Proof. Let b > 1 be an integer to be specified later, and § be the minimum of the
universal constants in Corollary 8.8 and Theorem 4.3.

For the sake of contradiction, suppose every language in (NﬂcoN)TIME[QlOgb "2
can be (1 — §)-approximated by a 218" "-size ACC” o THR circuit family.

In particular, there are d,, m, € N such that for every ¢ € [120] Redundant—ng
can be (1 — §)-approximated by 2!°8" "-size ACy,_[m.] o THR circuits. Therefore, by
Theorem 4.3, there is a constant ¢, > 1 such that any depth-d circuit has an equiv-
alent 2°%"_size ACy,43[mo] o THR circuit. Hence, any depth-log>* n circuit has an

equivalent 2¢08™" _gjze ACg4, +3[mo] o THR circuit.
Finally, by Corollary 8.8, there is a language L € (NﬂcoN)TIME[ZIOgb "] /2 (now we

set b) such that L cannot be (1—¢)-approximated by glog® 1 n_gi, o ACg, t+3[mo]oTHR
circuits. By the previous discussion, it follows that L cannot be (1 — §)-approximated
by log?® n-depth circuits. Consequently, L cannot be (1—¢)-approximated by log” n_
size ACCY o THR circuits, a contradiction. a

8.3. 1/2+1/ polylog(n) Average-Case Lower Bounds against ACC o THR.
Now we are ready to prove our main theorem Theorem 1.1 from Corollary 8.9 and
Lemma 3.14.

We first prove the following lemma, which gives us a convenient way to apply
hardness amplification to languages in (NﬂcoN)TIME[?logb "] /2.

LEMMA 8.10. For every b > 2 and every language L € (NﬂcoN)TIME[Qlogb "2,

there is a language L' € (NﬂcoN)TII\/IE[QIOgb”]/g such that, for every typical circuit

class € and two nondecreasing unbounded functions S,€: N — N such that £(n) <
2°(") " and for every constant &y € (0,1/2), the following holds:

e If L cannot be (1—do)-approzimated by O(£(n)S(n))-size MAJy,) o€ circuits,

then L' cannot be (1/2+0(n/3)~Y/3)-approzimated by S(n'/?)-size € circuits.

Proof. We first define L’ as follows: Given an input x € {0,1}" for some n € N.
Letting m be the largest integer such that m? < n, and k = min(n — m?,m), we
define L'(x) = L®* (2 <), where x<,, denotes the first km bits of z. (Since k < m,
we have km < m? < n.) Using the straightforward algorithm for computing L', it
follows that L' € (NNcoN)TIME[2108" 7] 5 34

Now, suppose for a constant dy € (0,1/2), there are infinitely many n such that
Ly, cannot be (1 — &p)-approximated by £(n)S(n)-size MAJy,y 0 € circuits. We call
these n good. Without loss of generality we can assume Jy € (0,0.01). We also set
d = do/5.

For every sufficiently large good n, we set k = k(n) to be the first k so that
et > £(n)Y/3, where gy = (1 — §)*71(1/2 — §). Let c¢; be the universal constant
in Lemma 3.14. Since n is sufficiently large and ¢ is unbounded and nondecreasing,
b =c1 1og55*1 < £(n). Now, by Lemma 3.14 and the fact that L,, cannot be (1 — 54)-

2
k

33In other words, L cannot be (1 — §)-approximated by 2log® 1 gize ACq4, [m«] o THR circuits, for
every dy,my € N.
34We remark that this step crucially uses the fact that L is in (NﬂcoN)TIME[QlOgb "] /2 instead of

NTIME[2'08" 7] .

This manuscript is for review purposes only.



1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453

38 L. CHEN

approximated by £p - S(n) +1 < €(n) - S(n)-size MAJy, o € circuits, it follows that
(L,)®* cannot be (1/2 4 £(n)~/3)-approximated (note that 5 < £(n)~'/3 from our
choice) by S(n)-size € circuits.

From our definition of L', it follows that for infinitely many n, L’

n2+k(n)
our choice of k and the assumption that £(n) = 2°(™), we have that k < n) cannot
be (1/2 + £(n)~'/3)-approximated by S(n)-size € circuits, which completes the proof
since both S and ¢ are nondecreasing. ]

(from

Then we apply Lemma 8.10 to amplify the (1 — d)-average-case lower bound
from Corollary 8.9 to a (1/2 4+ 1/ polylog(n))-average-case lower bound.

LEMMA 8.11. For every a,c € N, there isb € N and L € (NﬂcoN)TIl\/IE[QlOgb " /2
such that L cannot be (1/2 + 1/ log® n)-approzimated by 2'°8° "-size ACC° o THR cir-
cuits.

Proof. Let a1 = max(5¢,a+1). By Corollary 8.9, there is b; € N and a language
Ly € (NNcoN) TIME[2'°8”! "]/ such that L; cannot be (1—§)-approximated by 21°8"* -
size ACC” o THR circuits, for a universal constant § € (0,1/2). Without loss of
generality, we can assume that by,a,c > 2.

We apply Lemma 8.10 to L; to get our language L € (NﬂcoN)TIME[21°gbl "] /2.
We also let £(n) = log**n and S(n) = 2'°&" "~1. Now, for every d,, m, € N, we note
that an MAJ,,,) o ACq, [m,] circuit of size S(n) has an equivalent ACq, 42[m,] circuit
of size S(n) + 24" < 218" n by replacing the top MAJy ) gate by an ACy circuit
of size at most 2¢(™). Hence, since L; cannot be (1 — §)-approximated by Qlog™t n_
size ACC® o THR circuits, it also follows that L; cannot be (1 — §)-approximated by
S(n)l(n)-size MAJy(y o ACq, [my] o THR circuits. By Lemma 8.10, it follows that L
cannot be (1/2 + £(n'/3)~1/3)-approximated by S(n'/?)-size ACq, [m,] circuits.

Finally, note that for a sufficiently large n, we have £(n'/3)1/3 > Q(log‘lc/3 n) >
log®n and S(n1/3) > of(log™ 1) > 992(log™* n) > 2log” Tt then follows that L cannot
be (1/2+ 1/ log® n)-approximated by 2!°%" "-size AC4, [m,] circuits, for every d,,m, €
N. This completes the proof. 0

Next we need the following lemma to get rid or reduce the advice in Lemma 8.11.
The same trick was used in [20] as well.

LEMMA 8.12. For every b > 2 and every language L € (NﬂcoN)TIl\/IE[Togb "] /2,

there are languages Ly € NTIME[2°8" "] and L, € (NNcoN) TIME[2'°8’ "]/1 such that
the following holds:
e For every typical circuit class €, S: N — N ande: N — (0,1/2), if L cannot
be 1/2 + e(n)-approximated by S(n)-size € circuits, then neither L1 nor Lo
can be 1/2 + (| n/4])-approzimated by S(|n/4])-size € circuits.

Proof. Let wg,wy,ws, w3 € {0,1}? be an enumeration of the set {0,1}2. We will
prove the lemma for L and Ly separately.

NQP lower bounds. We first prove the case for L; € NTIME[QIOgb "]. We define
Ly € NTIME[QlOgb”] by the following algorithm A;: on an input of length n, let

n' = |n/4] and k =n —4-n'; A; simulates the non-deterministic algorithm for L,
with the advice wy on the first n’ bits of the input.

Since L cannot be 1/2 4 e(n)-approximated by S(n)-size € circuits, there are
infinitely many pairs (n;,a;) € N x {0,1,2,3} such that the non-deterministic algo-
rithm for L,,, with advice w,, computes a function that cannot be (1/2 + (n;))-

This manuscript is for review purposes only.



1454
1455
1456
1457
1458
1459
1460
1461
1462
1463

1464
1465
1466

1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480

1481
1482
1483
1484

1485

1486
1487
1488
1489
1490
1491
1492
1493
1494

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 39

approximated by S(n;)-size € circuits. By the construction of Ly, (L1)4n,+q, cannot
be (1/2 + e(n;))-approximated by S(n;)-size € circuits. Therefore, L; cannot be
1/2 4 e(|n/4])-approximated by S(|n/4])-size € circuits.

(NQP N coNQP),; lower bounds. Now we define L, € (NﬂcoN)TII\/IE[21°gb " n
by the following algorithm As: on an input of length n, let n’ = [n/4] and k = n—4-n’;
we set the advice bit a,, = 1 if and only if wy is the correct advice for input length
n' of language L; when o, = 1, Ay simulates L, with the advice wy, on the first n’
bits of the input; otherwise, Ay simply outputs 0. A similar argument as that of the
previous case completes the proof. ]

Now, Theorem 1.1 follows as a direct corollary of Lemma 8.12 and Lemma 8.11.

8.4. Generalization to Other Natural Circuit Classes. Finally, we gen-
eralize our average-case lower bounds to other natural circuits € if the non-trivial
derandomization condition holds for them.

Reminder of Theorem 1.4. Let € be a nice circuit class. Suppose the non-
trivial derandomization condition holds for AC; o €. Then for every a,c € N, there
is b € N, and a language L € NTIME[QIOgb"] such that L cannot be (1/2 + 1/logn)-
approzimated by 2'°8" "-size € circuits. The same holds for (NﬂcoN)Tl/\/lE[Qlogb "n

in place of NTII\/IE[QIOgb .

Proof. We set a1 = 3(a+1)(c+1). Let 6 = AC2 0 €. Note that 4 is also nice
since € is nice. From our assumption, it follows that the non-trivial derandomization
condition holds for AC50%7. By Theorem 8.6, there is a universal constant § € (0,1/2),
by € N, and a language L; € (NNcoN)TIME[2!os™ "] 2 such that L; cannot be (1 —4)-
approximated by 298" "_size ACy 0 € circuits.

Again, we apply Lemma 8.10 to Ly to get L € (NﬁcoN)TIME[QlOgb1 "] /2. We also
let £(n) = log*“*Y p and S(n) = 298" »=1 Now applying an identical argument as in
the proof of Lemma 8.11, it follows that L cannot be (1/241/log""" n)-approximated
by 2108 n_gize ¢ circuits. Applying Lemma 8.12 completes the proof. a0

Reminder of Theorem 1.5. Let % be a nice circuit class. Suppose the non-trivial
derandomization condition holds for ACs o MAJo €. Then for every a,c € N, there
isb e N, and a language L € NTIME[QIOgb " such that L cannot be (1/2 + 1/2198"m)-
approzimated by 2'°8" "-size € circuits. The same holds for (NﬂcoN)TI/\/IE[2logb "N

in place of NTIME[2!°8" "].

Proof. Let €4 = MAJo%. We set a; = 3(a + 1)(c+ 1). Note that & is also
nice since % is nice and the non-trivial derandomization condition holds for AC5 0 %7.
By Theorem 8.6, there is a universal constant § € (0,1/2), b1 € N, and a language
L, e (NﬁcoN)TIME[Zlogb1 "] /2 such that L; cannot be (1—§)-approximated by 2!°8™ "
size MAJ o & circuits.

Again, we apply Lemma 8.10 to L1 to get L € (NﬂcoN)TIME[QlOgb1 "] /2. We also
let ¢(n) = 2log" "V n and S(n) = 2'°8"' »=1 Now applying an identical argument as in
the proof of Lemma 8.11, it follows that L cannot be (1/2+ 1/210gCJrl ™)-approximated
by 208" n_gize & circuits. Applying Lemma 8.12 completes the proof. ]

This manuscript is for review purposes only.



1495
1496
1497
1498
1499
1500
1501
1502

—_ =

v Ot Ot Ot Ot Ot ot Ot

40 L. CHEN

9. A PSPACE-complete Language with Nice Reducibility Properties.
In this section, we construct a PSPACE-complete language with the needed nice re-
ducibility properties, and prove Theorem 3.7.

In Subsection 9.1, we introduce the necessary technical preliminaries. In Subsec-
tion 9.2, we review the original construction in [59]. In Subsection 9.2.1, we briefly
discuss what adaptions are required to make it suitable for our purpose, and we prove
some additional properties of the construction of [59] in Subsection 9.2.2. In Subsec-
tion 9.3, we construct the needed PSPACE-complete language.

9.1. Preliminaries.

9.1.1. Finite Fields. To avoid confusion, we often use bold letters (e.g., x,y)
to emphasize that they are formal variables.

Throughout this section, we will only consider finite fields of the form GF(22'38)
for some ¢ € N, since they enjoy a simple representation that will be useful for us.
For every £ € N, we set pw, = 2 - 3% and use F() to denote GF(2P").

Let n = pw, = 2 -3¢ for some ¢ € N. We will always represent F(¥) = GF(2")
as Fa[x]/(x™ + x"/2 +1).° That is, we identify an element of GF(2") with an Fy[x]
polynomial with degree less than n. To avoid confusion, given a polynomial P(x) €
Fy[x] with degree less than n, we will use (P(x))pw to denote the unique element in
F®) identified with P(x).

The most important property of the fields {F(“)},cy is that, there is a very simple
embedding 7, of F®) into F+V: 7, maps (X)pe to (x%)pee+1) (this induces a mapping
from F(®) to F+1)) 36 We sometimes abuse notation and identify F(*) as a subset of
F(+1D) via the embedding 77, and omit the subscript of (X)pee+1y when the underlying
field is clear from the context.

Let ¢1,¢2 € N be such that ¢; < {5, we use 7¢, ¢, to denote the composed mapping
Tgy—1 0+ 0Tg +10Te,. That is, 7, ¢, is an embedding of F(1) into F¢2),

Let n € N and p: (F))» — F(1) be a polynomial with degree less than |[F(1)],
For every i € {0,1,...,n}, there is a unique polynomial p’: (F(¢2))? x (F(t))n—
F(*2) that agrees with p on all points in (F(1))™ (here we identify (F(“1))" as a subset
of (F(*2))" via the embedding 7, r,) and has the same degree of p. We call p’ the
unique extension of p to the domain (F(¢2))? x (F(¢1))n—i 37

Let £ be the natural bijection between {0,1}" and F(®) = GF(2"): for every
a €{0,1}", k¥ (a) = (Zie[n] a; ~Xi_1)]F(/). We always use ) to encode elements
from F) by Boolean strings. That is, whenever we say that an algorithm takes
an input from F) we mean it takes a string z € {0,1}P¢ and interprets it as an
element of F® via x(®). Similarly, whenever we say that an algorithm outputs an
element from F(), we mean it outputs a string {0, 1}P"¢ encoding that element via
x(®). For simplicity, sometimes we use (a)pc) to denote () (a). Also, when we say the
i-th element in F®), we mean the element in F(©) encoded by the i-th lexicographically
smallest Boolean string in {0, 1}P"e.

The following lemma will be very useful for us.

LEMMA 9.1. Let £ € N and n = pw,. There are poly(n)-time computable projec-
tions Emd,: {0,1}" — {0,1}*" and Emd,": {0,1}*" — {0,1}" such that:

35x™ 4 x/2 £ 1 € Fa[z] is irreducible, see [61, Theorem 1.1.28].

36To see this, note that the mapping x — x> maps x™ + x™/2 41 to x3" 4 x317/2 4 1.

37In more details, p’ is obtained by evaluating the polynomial p on the domain (F(£2))?x (F(1))n—7,
Although p has coefficients in F(1)| we can interpret its coefficients as elements in F(*2) via the
mapping 7y, ¢, for evaluating .

This manuscript is for review purposes only.



—

o Ov Ot Ot

o v Ov Ot

pEGL BTSN

3

1563
1564
1565

1566

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 41

1. 7e((b)gey) = (Emdy(b))peerry for every b € {0,1}™.
2. Emd[1 o Emdj is the identity function on {0,1}".

For ¢1,¢, € N such that ¢; < {5, we also use Emdy, 4, to denote the com-
position Emdy,_; o Emdg,_9 0 --- 0 Emdy,, and Emdy,_,s, to denote the composition
Emd[l1 0. Emd[;_2 o Emdz;_l. From Lemma 9.1, both Emdy, .4, and Emd,,_,,, are
poly(pw,, )-time computable projections.

In other words, Emdy, s, transforms the Boolean encoding of § € F) into the
Boolean encoding of 74, ¢, (8) € F2); Emd,, s, takes the Boolean encoding of an
element 74, ¢,(8) € F(2) for B € F() and outputs the Boolean encoding of 8. Also
note that Emd, = Emdy_ 411, Emd[1 = Emdyy1¢, and Emdg, ¢, 0 Emdy, 4, is the
identity function on {0,1}”"4.

Proof of Lemma 9.1. Given b € {0,1}", from the definition of 7, we have
Tg((b)F(e)) = Z b; - x30=1),
i=1

From the above equation, we can simply define Emd,(b) € {0,1}3" such that for each
J € [3n],

b; 3 divides j
Emde(b)); = 7/ ’
(Emde(b)); {O otherwise.

Item (1) of the lemma then follows immeidately. We also define Emd;,": {0,1}?" —
{0,1}™ as follows: for every a € {0,1}>" and every j € [n], (Emd, '(a)); = az;. It is
straightforward to verify that Emd[1 o Emd, is the identity function on {0, 1}"™. This
proves Item (2) of the lemma. |

Finally, for each n € N, we set £,, to be the smallest integer such that pw, > n.
We also let sz, = pw, =23 F, =F) = GF(2%"), and k,, = k). Note that
2" < |F,| < 237,

9.1.2. Uniform TC' Circuits for Arithmetic Operations over F,. We will
need the uniform TC? circuits for arithmetic operations over F,, in [35, 34].

LeMMA 9.2 ([35, 34]). Let n € N. There are uniform TC® circuits for the
following three tasks:
1. Tterated addition: giwen a list aq,...,a; € F,,, compute ZiG[t]
2. Tterated multiplication: given a list a1,...,a; € Fy, compute [
3. Division: Given a,b € F,, such that b # 0, compute a/b.>®

COROLLARY 9.3. There is an algorithm D™P satisfying the following:
1. D" takesn € N, t € [|F,.|], a list (a1,b1),...,(as, b)) € F,, x F,, with distinct
a;’s, and an element x € F,, as input, and outputs an element from F,,.
2. Let p(x): F,, — F,, is the unique polynomial with degree at most t — 1 such
that p(a;) = b; for every i € [t]. D™ outputs p(x).
3. D™P can be implemented by a uniform TC circuit family.

Q;.

ieft] Yi-

Proof. For every i € [t], we define a polynomial e;(x): F,, — F,, as follows:

ao= [[ =

jelnhgiy Y

38[34] gave a uniform TCY circuit family computing z* given z € F,, and an integer ¢ encoded in
binary. This allows us to compute the inverse z—! = z!"=!=2 given € F,, by a uniform TC circuit
family.

This manuscript is for review purposes only.



1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609

1610
1611

1612
1613
1614
1615
1616
1617
1618
1619

42 L. CHEN

We have that p(x) = 3 ¢, €i(x) - b;. Using Item (2) of Lemma 9.2, e;(x) can be
computed by uniform TC circuits given input z € F,, and the list {(as, bi)}ie)- Then

using Item (1) of Lemma 9.2, p(z) can be computed in uniform TC® given z € F,, and
the list {(as, bi)}ie[g. This completes the proof. d

9.2. Review of the Construction in [59]. We need the following lemma
from [59], which builds on the proof of IP = PSPACE theorem [43, 54].

LEMMA 9.4 (Adapted from [59, Lemma 4.1]). There is a collection of polynomi-
als F™NV = {fn;: F* — Frfnens, i) with the following properties:

1. (Self-reducibility) There is an algorithm Red satisfying the following:

(a) Red takes n,i € N>1 such that i < n, and £ € F! as input, and a
function h: F} — F,, as oracle.

(b) Redf:f“ computes fr ;.

(¢) Red can be implemented by a uniform non-adaptive TC oracle circuit
family.

2. (Base-case) There is an algorithm Base satisfying the following:

(a) Base takes n € N>y and & € F} as input, and outputs fp, »(Z).
(b) Base can be implemented by a uniform TC circuit family.

3. (PSPACE-hardness) For every L € PSPACE, there is a pair of algorithm
(Alen Ared) satisfying the following:

(a) A% takes n € N>q as input and outputs an integer in poly(n) time;
A% takes x € {0,1}* as input, and outputs a vector 7 € F™ for m =
Al ([a]).

(b) For everyn € Nsy, A®¥"(n) < cr,-n°t for some constant cr, that depends
on L, and for every x € {0,1}", it holds that L(x) = fm1(Z), where
m = A" (|z|) and 7= A (z).>

4. (Low degree) For every n € N>1 and i € [n], fn; has degree at most n.

5. (Instance checker) There is a randomized algorithm |C such that, IC takes
n,% € N>1 such that i < n, and & € F,, as input, and n — i + 1 functions
f,',f;-_H, N F? — T, as oracles, and outputs an element in F,, U {L}.
The following properties hold for I1C: o

(a) If f; = fuj for every j € {i,...,n}, then Iij’;'”’f”(f) outputs fr (%)
with probability 1 for every & € F).

(b) For every Fir fitts oo fn: F} — F,, and every ¥ € F}, ICfLi’i”"f"(f) €
{fni(Z), L} with probability 2/3, over the internal randomness of 1C.

For completeness, we will prove Lemma 9.4 together with some additional prop-
erties of .Z TV in Section 9.2.2.

9.2.1. Technical Challenges in Adapting [59] for Our Purpose. The orig-
inal language in [59] just computes f, ; in the order of first increasing in n and then
decreasing in i. By Lemma 9.4, this direct construction gives a PSPACE-complete
language that is both downward self-reducible and error correctable (as polynomials
are error correctable). To make it further paddable, [23, 51] used a padding construc-
tion such that on inputs of an appropriate length e,, ;, the new language L encodes
fn,i and all polynomials that come before it as subfunctions. However, as we will see,
such a direct construction does not have error correctability.

C e, fna(2) = (L)), .

This manuscript is for review purposes only.



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636

1637

1638
1639

1640

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 43

Error correctability and paddability. We first describe the technical chal-
lenges we need to overcome for constructing a PSPACE-complete language that is both
error correctable and paddable.

The construction of [23, 51] gives us a PSPACE-complete language that encodes
not a single polynomial, but many different polynomials on a single input length.
This ruins the error correctability so we need to do some interpolation combine these
many polynomials into a single polynomial again. One obvious problem is that these
polynomials are over different fields and may have different numbers of variables, we
resolve that by a careful choice of the fields (for all n < m, F,, is a subfield of F,,)
and adding dummy variables.

An immediate idea is to use the following direct interpolation: for some field F,
suppose we have k polynomials g1, ¢ga,...,gr: F* — F of degree n; we then construct
a single polynomial Gy : F"*! — F with degree n + k, such that Gy(w;, =) = g;(x)
via a simple interpolation, where w; is the i-th element in F. The issue here is that
then Gjp_1 cannot be reduced to Gy easily (so it is not paddable). Therefore, we
make a different choice of interpolation that allows us to preserve the paddability.
Specifically, we define G}, : F* x F¥ — T as

k
(9.1) Gr(@, 1,2, uk) = Y gi@) - i
i=1
In more details, we will set g1,...,gr be (padded and extended versions of) the first

k polynomials in the sequence

f1,17f2,2a"'7f2717f3,3a"'7f3,1a"'7fn,n7"'afn,1a"'7

and define Gy, as in (9.1). See (9.9) for a formal definition.

Finally, the polynomials are over a large alphabet F,,, and we have to convert
them into Boolean functions. This step is a standard application of Walsh-Hadamard
codes.

The next step is to verify all the reducibility properties from Theorem 3.7 holds
for our new PSPACE-complete language, and the corresponding reductions have im-
plementations by low-depth oracle circuits.

For the paddability it is straightforward from our definition. For the weakly error
correctability, it is still relatively straightforward from the local decoders of Reed-
Muller codes and Walsh-Hadamard codes. The main difficulty here is to verify same-
length checkability and downward self-reducibility, and construct low-depth reductions
for them.

Same-length checkability. Here we need to argue the instance-checker in [59,
23, 51] can be implemented in TCP. This looks counter-intuitive at first—the instance
checker in [59, 23, 51] simulates the interactive proof protocol for PSPACE [43, 54].
Since it is an interactive proof protocol, it appears that this instance-checker should
proceed one step after another step (i.e., it is highly sequential), and it should not
have a low-depth implementation such as a non-adaptive TCY oracle circuit family.

Recall the reason why the IP = PSPACE protocol has to be adaptive: the verifier
does not want the prover’s answer to her current question depends on her future
questions.?® The crucial observation here is that: in the instance-checker setting, the

407Tf the prover in a standard sum-check protocol can know in advance all verifier’s questions, then

it can easily cheat.

This manuscript is for review purposes only.



1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695

1696

1697

1698

1699

44 L. CHEN

prover’s strategy is already committed to the given oracle, so the issue above would
not arise. This enables us to check different stages of the interactive proof protocol in
the same time, and from which we can construct a TC? oracle circuit for the instance
checker. See Algorithm 9.1 and Lemma 9.8 for more details.

Downward self-reducibility. Establishing the downward self-reducibility is not
obvious. Here we wish to compute G given oracle access to Gy, for every k € N.4!

When Gy and Gjy1 are over the same field, downward self-reducibility follows
from the way that the f, ;’s are constructed. But when G, and G are over different
fields Foig and Fpew (Foig is a subfield of Fyey ), it is not clear how to evaluate G41 given
an oracle access to G. To circumvent this issue, suppose G : ngk — Foiq is a degree
d < poly(n) polynomial, we wish to extent it to a polynomial Hj: F'tF — F ..

For this purpose, we construct n+k+ 1 intermediate polynomials HiM™, ... H ;{‘jr L
such that Hl'!"t: Ff]ew X ngkii — Frew is constructed by extending Gj to the do-
main Fi,, x F"*~" Note that H™, = Hj. We simply insert the polynomials
HP HY® ... HIM™, between Gj and Giiq. Note that for each i € [n + k], given
oracle access to Hi™, | it is easy to evaluate Hi"* by interpolation. Also, Gjy1 can be
evaluated easily given oracle access to Hy, as now they are over the same field Few,
and Hi™ can be easily evaluated given oracle access to G. To summarize, inserting
Hg‘t, ... ,H;[‘_f_k between Gy and G restore the downward self-reducibility.

It remains to ensure that adding these H""’s does not hurt other properties we
want. It is relatively straightforward (but a bit tedious) to verify that paddability,
weakly error correctability still holds. To prove that the Hi"’s are also same-length
checkable, we use an extension checker. See Lemma 9.9 and the proof of Lemma 9.15

for more details.

9.2.2. Additional properties of .#"V and a proof of Lemma 9.4. For a
vector ¥ € F? and i € [n], we use #*“* to denote the vector obtained from Z by
changing x; to z. We first state the following lemma, which gives details on how the
self-reduction Red in Lemma 9.4 is implemented.

LEMMA 9.5 (Self-reduction for Z ™). Let FTV = {fni: F¥ = Fplnens, icn]
be as in Lemma 9.4. For every n,i € N>1 such that ¢ < n, one can compute an
index J = Jy,; € [n] and a type Q = Qn; € {3,V,LIN} in poly(n) time such that the
following hold for every vector & € F}}:

1. If Q =V, then
Fri(®) = fris1 (@) - frira (7).

2. If Q =3, then

Fui@) = 1= (U= fuir (@) - (1= frimn (@),
3. 1/ Q =LIN, then

Fai(@) = 5 foinr (@) + (L= 25) - fria (7).

To simplify our presentation, we further define three polynomials S35, Sy, Syin as
L. Sy(w,y0,y1) = Yo - Y1-
2. S3(z,y0,91) =1 — (1 —yo) - (1 — 1)
3. Sun(z,y0,1) = 21 + (1 — x)yo.

41This is different than the self-reducibility in Lemma 9.4, where we only have self-reducibility
within the sequence fr 1, fn,2,..., fn,n for every fixed n € N.

This manuscript is for review purposes only.



1708
1709
1710
1711
1712
1713

1714

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 45

Now the three cases in Lemma 9.5 can be succinctly written as

(92) fn,i(f) = SQ(J;J'?fn,i-l-l(f‘](ﬁ()%fmi_;,_l(f‘]el))_

We also give a detailed implementation of the instance checker |C in Lemma 9.4
in Algorithm 9.1.

Algorithm 9.1: The instance checker IC from Lemma 9.4

1 Given n,i € N>; such that i <n, and & € F,, as the input;
2 Given n — i + 1 functions ﬁ, fi+1, ceey fn: F?» — F,, as the oracles;
3 Let d; = &

4 forje{i,i+1,...,n—1} do

5 Compute J = J,, ; and @ = @y, ; from Lemma 9.5;

6 Let wq,...,w,41 be the first n 4+ 1 elements in F,;

7 Set by = fj+1((@;)7< ™) for every £ € [n + 1];

8 Let~£ = {(we, be) Feepnr1); _

o | if f;(d)) # Sq((d)) s, Dypi1(£,0), Dyih 1 (£,1)) then
10 L return ;

11 Draw z; cr Fy;

12 | Set 07]’-{-1 = (d‘j)Jez_,»;
13 if f,(@,) = Base,(d,) then

14 ‘ return f;(Z);
15 else

16 L return |;

In the following, we include a proof of Lemma 9.4 to verify the extra properties
that is not stated in [59].

We first introduce the following variants of the TQBF (True Quantified Boolean
Formula) problem, which is also used in [59)].

DEFINITION 9.6. The TQBFU problem® takes two matrices i,z € {0,1}"*" as
input, and the goal is to decide whether the following quantified Boolean formula holds

(9-3) Q171Q272 - - - Qny /\ \/ (Yje Azk) V (256 A "),

j€[n] k€n]
where Q; equals 3 for odd i, and ¥ for even i. We use TQBFU,, to denote the TQBFU
problem with parameter n (and input length 2n?).
We first show that TQBFU is still PSPACE-complete.
LEMMA 9.7. TQBFU is PSPACE-complete.

Proof. Recall that the TQBF problem is defined as follows: given an n-variable
m-clause CNF ¢(Z) as input, the goal is to decide whether Q121Q2 - - - Qnx, ¢(Z) holds,
where @; equals 3 for odd 4, and V for even i. By adding dummy variables or dummy
clauses, we can assume that n = m.

42U stands for universal, since here we have a universal formula in (9.3) that can simulate every

n-clause n-variable CNF.

This manuscript is for review purposes only.



[S1 BTG JV)

e e e
~N N ~J 3
(=]

NN N

3

1736

46 L. CHEN

For every j € [n], letting C;(Z) be the j-th clause in ¢(Z), we set y; & to be 1 if C;
contains the variable xy, and 0 otherwise. Similarly, we set z; 1 to be 1 if C; contains
the negated variable -z, and 0 otherwise. Now we can verify that TQBFU(y, 2) =
TQBF(¢) from (9.3). This proves the PSPACE-completeness of TQBFU as TQBF is
PSPACE-complete [56] (see also [7, Theorem 4.13]). 0

Now we are ready to prove Lemma 9.4 and Lemma 9.5. Our proof follows closely
the proof sketch of [59, Lemma 4.1].%3

Proof of Lemma 9.4 and Lemma 9.5. Let n € N, and let m be the largest integer
such that 6m3 < n. We will use {fn,i}icmn) to encode the problem TQBFU,,. When
n < 6, we simply set f,; to be the zero n-variate polynomial for all i € [n]. So we
can assume m > 1.

We first arithmetize the formula in (9.3) to get the following polynomial P: F7 x
Fm° x F™° - F,

(94) P(f7 y, E) = H 1- H (1 _p(mkayﬂkvzj,k)) s

jE€[m] ke[m]
where p: F3 — F is defined as p(z,y, 2) = 2y + (1 —2)z. One can verify that p(x,y, 2)
agrees with (yAz)V (zA—z) over all Boolean inputs z,y, z € {0,1}, and also P(Z, ¥, 2)

agrees with
/\ \/ (yj’k A\ xk) V (Zjﬁk A\ ﬂxk)
Jj€[n] k€[n]

}’I’LXTL

on every & € {0,1}" and every ¢, % € {0,1 . Since p has degree 2, P has degree
2m=.
Now we make a list £ consisting of pairs from N x {3,V,LIN}:
1. For every integer ¢ from m down to 1:
(a) We append (i, Q;) to the end of the list L.
(b) For every integer j from 1 to 2m? +m, we append (j, LIN) to the end of
the list L.
2. We append n —m - (2m? + m + 1) — 1 copies of (1,LIN) to the end of the list
L. (Note that m - (2m? + m + 1) +1 < 6m?® <n for m > 1.)
From the construction above, it is easy to see that |£] = n—1. Now we are ready
to define our polynomials {fy.i}icjn]-
1. We set fnn(Z) = P(Z<miamz2), where T<yyiom2 is the (m + 2m?)-length

prefix of Z.

2. For every i from 1 to n — 1, let (J;, Q;) be the i-th element of the list £. We
set
(95) fn,n—Z(f) = SQi (mefn,n—i-&-l(fJieo)a fn,n—i-l—l(fjigl))

for every & € FJ.

Now we verify each item of Lemma 9.4 separately.

First, Lemma 9.5 and Ttem (1) of Lemma 9.4 follows immediately from our def-
inition of f,, ,—; in (9.5) and Lemma 9.2. The base case (Item (2) of Lemma 9.4)
also follows directly from f,, ,,(¥) = P(Z<y42m2), the definition of P in (9.4), and
Lemma 9.2.

43We also refer readers to [7, Section 8.3] and [26, Section 9.1.3] for expositions on the celebrated

proof of IP = PSPACE (44, 54].

This manuscript is for review purposes only.



1763
1764
1765
1766
1767
1768
1769
1770
1771

1772

1782

1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 47

Ttem (3) and Item (5) of Lemma 9.4 can be established identically as in [59] (these
essentially follows from the same argument as in the proof of IP = PSPACE. We added
some dummy (1, LIN) so that we have exactly n polynomials, but these do not affect
the argument.) The instance checker IC in Item (5) is described in Algorithm 9.1.

To sce Item (4) of Lemma 9.4, note that f, , has the same degree of P, which
is 2m?. For every i € [n — 1] such that Q; € {3,V}, since S3 and Sy has degree
2, we have deg(fnn—i) < 2deg(fnn—it1). Also, (ji;,Q;) in L then is followed by a
sequence (1,LIN), (2,LIN),---,(2m? 4+ m, LIN), which reduces the degree back to at
most 2m? + m. Hence, we can see the degree is at most 4m?2 + 2m < 6m> < n for
every fni. 0

Finally, as discussed in Section 9.2.1, we next show the instance checker IC in
Item (5) of Lemma 9.4 can indeed be implemented by a randomized uniform non-
adaptive TC? circuit family.

LEMMA 9.8. The instance checker |C from Lemma 9.4 can be implemented a ran-
domized uniform non-adaptive TC® circuit family.

Proof. The crucial observation here is that we can first draw z;,..., 2,1 €r Fp
beforehand and run each iteration of the for loop in Algorithm 9.1 in parallel (and
return L if any of the check on Line 9 fails). Note that for each j € {i,...,n} and
¢ € [n], we have
(9.6) () — {xe there is. no j' <jst. Jy =4«

Zjnn Otherwise,

where jmax is the maximum j' < j s.t. J,, j = £.

Using (9.6), for every j € {i,...,n}, we can compute &; in uniform TC? given
Z, 2y, 2n—1. It then follows from Algorithm 9.1, Corollary 9.3, and Item (2) of
Lemma 9.2 that IC can be implemented by a randomized uniform non-adaptive TC°
circuit family. 0

9.3. Construction of The PSPACE-complete Language. In this section, we
prove Theorem 3.7. We will first construct a PSPACE-complete language LPSPACE and
then prove it satisfies all the desired properties stated in Theorem 3.7.

9.3.1. Extension checker. We will need the following extension checker that
checks whether a polynomial f: F?_, x Ff)'fd_i — Fhew is the correct extension of another
polynomial g: FJ}; — Fog. Our construction is a simple adaption of the sum-check
protocol.

LEMMA 9.9. There is an algorithm Ext-C such that:

1. Ext-C takes two integers ni,ne € N such that ny < ny as two parameters. We
set Foig = Fp, and Frew =F,,.

2. Ext-C takes m,i,d € N such thati < m and d < |Fei|—1 and 7 € Fi,, xFo
as input, and two functions f: Fho, X Foii" — Frew and g: Foly — Foq as
oracles.

3. Suppose g is a polynomial with degree at most d and let g’ be the unique
extension of g to the domain Fi,, X Fgfd_i. The following two statements
hold:

(a) If f = ¢, then Ext-Cp, ny.m.i.a(2)59 outputs g'(Z) with probability 1 for
every 7 € Fi,, x FiL-t.
(b) For every oracle f and every z € Fi, x FI 0 Ext-Cpy nym.ia(2)9

outputs an element from {g'(Z), L} with probability at least 1 — ﬁ.

W

This manuscript is for review purposes only.



1808
1809

1810
1811
1812
1813

1814
1815
1816
1817
1818
1819

1820

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

1832

48 L. CHEN

4. Ext-C can be implemented by a randomized uniform non-adaptive TC circuit
family that queries g at most once (but can query f many times).

Algorithm 9.2: The extension checker Ext-C,,, 5 m,i.d

1 Given ¥ € Fi,,, and § € F/\;" as input, and f: Fi , x F7" — Frew and

g: Flly — Fog as oracles;

Draw a random vector 3 € Fig;

Let wy, ..., w411 be the first d 4+ 1 elements in Foq4;

for pe{1,2...,i} do
Let @ = §<H 0 Z>y 0,
For every n € [d + 1], set b, = f(a*<");
Let £ = {(wy,by) }efas; .
if DI (L,B,) # f(@"<Pm) or DI, (L, a,) # f(&) then

L return 1;

10 if g(Boy) = f(Boy) then
11 | return f(Zo§);

12 else

13 L return |;

© ® N o ook W N

(=]

Proof of Lemma 9.9. The algorithm of Ext-Cy,, 1, m.i,a (we will denote it by Ext-C
below for simplicity) is described in Algorithm 9.2.

To see Item (4) of the lemma, all the iterations of the for loop in Algorithm 9.2
can be implemented in parallel. Since Di;:f’d 41 can be implemented by uniform TCY,

it follows that Ext-C can be implemented by non-adaptive uniform TCY. Tt is also
clear that Ext-C queries g at most once in Algorithm 9.2 (it only queries ¢ at Line 10).

Now we show that if f = ¢/, then Ext-C outputs ¢'(2) (Here Z = & o ¢) with
probability 1 (i.e., Item (3.a) of the lemma). Note that since f = ¢’ is the unique
extension of g to the domain Fi,, x F/" and deg(f) = deg(g) < d. It follows from
the definition of the b,’s that

Dirr:;?clﬂ({(wna by) tnea+1),§) = f(ares)

for every £ € Few. Hence the check at Line 8 passes for every u € [i]. Moreover, since
f is the unique extension of g, the check at Line 10 passes as well. To summarize, it
follows that Ext-C outputs f(Z) = ¢/(Z) with probability 1.

Next we prove Item (3.b) of the lemma. We first note that if f(2) = ¢'(2), then
since Algorithm 9.2 either outputs f(2) or L, Item (3.b) holds with probability 1.
So in the following we assume that f(2) # ¢'(Z). For every p € {0,1,...,i}, we let
a, = ,BHSM o &5, oy (hence, & at Line 5 during the p-th iteration equals &,_1) and
let £, be the event that either f(&,) # ¢’(d,) or Ext-C returns L during the first p
iterations of the for loop in Algorithm 9.2.

We first note that by definition, &, only depends on Z<,. Also, from our assump-
tion, we have Pr[£y] = 1. We need the following claim.

CLAIM 6. For every p € [i], Pr[€,|€,-1] > 1 — ﬁ,

This manuscript is for review purposes only.



1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845

1846

1847
1848
1849
1850

1851
1852
1853

1854

1858
1859
1860
1861

1862
1863
1864
1865
1866
1867

1868

1869
1870
1871
1872
1873
1874

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 49

Proof. Tt suffices to show that conditioning on that Ext-C reaches the p-th it-
eration of the for loop and f(&,—1) # ¢'(du—1), &, holds with probability at least
1— 5

1‘\Tox!v, let P: Frew — Fnew be the unique polynomial such that P(w,) = (b,) for
every 1 € [d+1] and deg(P) < d, and Q: Fpew — Fpew be the restriction of ¢’ defined by
Q(v) = g'(a)) = g'(B<p—10v0d>, 0F). Note that deg(Q) < deg(g') = deg(g) < d.
There are two cases:

1. P # Q. In this case, since §,, distributed uniformly random from Fqq and is
independent from P and @, we have P(5,,) # Q(5,,) with probability at least
1 —d/|Fy4l, since there at most d roots of P — Q.
Next we show that P(3,) # Q(B,) implies that &, holds. There are two
subcases:
(a) P(B,) # f(dy). In this case, we have

P(ﬂ,u) = Dl:;?d+1(£a 5#) # f(&'u%ﬁu) = f(&u)'

Hence Ext-C returns L at Line 9, and &, holds.
(b) P(B,) # Q(B.). In this case, note that f(d,) = P(B,) and ¢'(d,) =
Q(B,), we have
flau #g' (@),

and &, holds.
Putting the above two subcases together, we have that &, holds with proba-
bility 1 — d/|Foiq| in this case.
2. P = Q. In this case, we have

P((&u—l),u) = Q(&u—l)u) = g/(&u—l) # f(&u—l)a
where the last inequality follows from our assumption. So Ext-C returns L at
Line 9 and &, holds with probability 1. 0

Finally, we show that Claim 6 implies Item (3.b) of the lemma. From 6, we have
that Pr[&] > 1 — &4 > 1 — &”T;i. Ttem (3.b) then follows from the fact that Ext-C

[Fora| = \
always returns | under &;, since either (1) Ext-C returns L during the for loop or (2)
f(Boy) = f(a;) # ¢'(d;) = g(f og) and Ext-C returns L at Line 13. |

9.3.2. The Language LPSPACE, To construct our PSPACE-complete language
LPSPACE "we carefully modify the PSPACE-complete language in [59, Theorem 4.3], and
combine that with an application of Walsh-Hadamard codes to turn the polynomials
into Boolean functions.

Let WV = {f,.i: F? — Fp tnena,,icin) be as in Lemma 9.4. First, we list all
polynomials in .Z ™V in the following order

(97) f1,17f2,27"'af2,1af3,37"'7f3,17"'afn,na"'vfn,lv"' .

For every k € N, we let gi be the k-th polynomial in (9.7). We also set ng and ik
so that gr = fu,.i., and define 9TV = {gi}icm)-
For every k € N and j € [k], we define hy, ;: F]! — F,, as the following polynomial:
o Let ;i F,,’ — F, be the unique extension of the polynomial g; : Fﬁj — Fy,.
o We set hy ;(Z) = hy ;(Z<n;). (i.e., hi; evaluates h ; on its first n; inputs
and ignores the rest.)

This manuscript is for review purposes only.



1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894

1895

1896
1897
1898
1899

1909
1910
1911
1912
1913
1914
1915
1916

50 L. CHEN

The following lemma shows that, using the extension checker from Lemma 9.9,
the non-adaptive instance checker for .ZTV (Lemma 9.8) can be converted into a
non-adaptive instance-checker for the hy ;’s.

LEMMA 9.10. There is a randomized algorithm h-1C such that, h-IC takes k,j €
N>y such that j <k, £ € (0,1/2), and & € F}; (here n = ny) as input, and j functions
hl, hg, .. h F? — F,, as oracles, and outputs an element in F,U{L}. The following
pmpertzes hold for h-IC:

1. If hy = hi.¢ for every ¢ € [j], then h-IC
bility 1 for every & € ).

2. For every Bl,ﬁg,...,ﬁj: F' — F,, and every ¥ € T}, h- ICZIJ’E’ (Z) €
{hi;(Z), L} with probability 1 — ¢, over the internal randomness of h-1C.

3. h-IC can be implemented by a poly(k - loge~1)-size randomized uniform non-
adaptive TC® oracle circuit family.

hi,.

k.j, a7 (Z) outputs hy ;(Z) with proba-

Proof. Recall that g; = f,, i, is a polynomial from IFZ; to ;. In the following
we use ¢ to denote i; and m to denote n; for simplicity. We will assume m > 10 since
otherwise we can simply compute hy, ;(Z) by interpolating f,, ;(Z) directly without
using any oracles.

We first define the following oracles f;, ﬁ+1, U F" — F,, to the instance-
checker I1C,, ; from Lemma 9.4: for every ¢ € {i,i+ 1,...,m}, letting &’ be such that
gk = fm,e (note that &' < j from (9.7)), we set

(9.8) fo(@) = h (7,0,...,0).
As a Boolean function, (9.8) implicitly uses Emdy,, ¢, to convert Z into a vector in
F7, and Emdy, ¢, to interpret hy (Z,0,...,0) € F,, as an element of F,,. Since

Emd,,, ¢, and Emdg, _¢, are both poly(n)-time computable projections, simulating
fe via (9.8) does not affect the circuit complexity of 1C,, ;.
Applying Lemma 9.4, there is a randomized uniform TCY oracle circuit D; such
that: ~
1. If hy = hy ¢ for every ¢ € [j], then Dhl’ o (_’) outputs f, m(Z) with proba-
bility 1 for every ¥ € Fm. 4
2. For every hy, .. hJ, Dhl’
probability at least 9/10.%
We next run Ext-C,, . m,m from Lemma 0 9 with oracle access to r: F;* — I,
defined by r(¥) = h;(7,0,0,...,0) and Dhl’ ol

e .7

b 7(Z) outputs an element from { f,, ,n (Z), L} with

, we also modify it slightly so that

whenever Di”’ returns L, Ext-C returns L as well.

Note that Ext-Cy, 1 m,m,m only queries Dll’ " at most once. By a union bound
and Lemma 9.9, it holds that Ext-C outputs h;w-(f) with probability 1 if ke = hy, ¢ for
every ¢ € [4], and for every possible oracles iLl, ..., hj, Ext-C outputs an element from
{h,;(Z), L} with probability at least 9/10 — | 2 2/3. The last inequality holds
since m > 10 and |F,,| > 2™.

Finally, we can repeat the algorithm above O(loge™!) times to amplify the 2/3
success probability to 1 — e. Our final instance-checker has a randomized uniform
non-adaptive TC? circuit family since Ext-C does. This completes the proof. ]

44This holds since by (9.8), we have fo= fm,e for every £ € {i,i+1,...,m}.
45The success probability of 2/3 in Lemma 9.4 can be boosted to any constant via running 1C
multiple times with independent randomness. This do no affect the circuit complexity of IC.

This manuscript is for review purposes only.



1917
1918

1919

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 51

Construction of the interpolated polynomial G;. We now define the fol-
lowing polynomial Gj: F* x Fk — T,

(9.9) Gi(E,9) =Y hij(@) - y;,

where 7 € F? and i € Fk.

Since all the hy_ ; have degree at most n, G has degree at most n + 1.

Construction of field-transferring polynomials H '”E We call an integer k
special, if Fr,, # Fp, .. For aspecial k € N>1, we next define n+k-+1 field-transferring
polynomials H;", H)"Y, ..., H, ,'C"tn K

Since Fy,, # Fp, ., from the definition of n;’s and the sequence in (9.7), it must
be the case that ngy1 = ni + 1. From now on we use n to denote ny for simplicity.
Also, from the definition of F,, and F, 11, we must have sz, 11 = 3sz,,.

Let Foq = F,, = GF(2%") and Fpe,, = F, 41 = GF(2%%). Slightly abusing no-
tation, in the following we use the embedding 7y, to identify Foq4 with the unique
subfield of F e, that is isomorphic to Fy4. Formally, for every u € Foq, we identify it
with the element 74, (¢) € Frew-

Let Hy: Fétk 5 F.. be the unique extension of Gy : IF;Lljk — Fog. For every

new

J€{0,1,...,n+k}, we also let Hy": F,, x ngkij — Fpew be the unique extension

of G}, to the domain F/,,, x FI+F~ J. Note that
(9.10) H'(Z,§) = Hy(Z,7)

n+k—j

for every ¥ € Fi,,, and § € F.,| (i.e., H,'C”B is the restriction of Hy on the domain

new
Fi,, % ngk J) Note that H'"t is simply G}, with outputs embedded in Fey.

The following claim shows that the the sequence {H '”t} satisfies TC® downward
self-reducibility.

Cram 7 (Downward self-reduction for {H}"}). There is an algorithm H-Red
satisfying the following: _
1. H-Red takes k € N>y, j € [n+ k], and (,7) € Flo, x FLi*7 as input, and

j—1 n+k: Jj+1
new X F

2. For every k € N> andj € [n+ k], H-Red, A J Y computes H'”t
3. H-Red can be implemented by a uniform non- adaptwe T omcle circuit fam-
ily.
Proof. Note that deg(Hy) = deg(Gx) =n+1. We set D = n + 1. In particular,

let (7, %) € Fi,, x F"0"~7 be an input to H-Redy, ; (and H™). We define the following
polynomial

an oracle h: F — Frew, and outputs an element in Foey.

JD(X) ::]1k(g%jvxa27'

Clearly P(x) has degree at most D. Let wy,...,wpy1 be the first D + 1 elements in
Foig. Our algorithm H-Redy, ; first queries the oracle & to compute b; = h((F<i, ws, 2))
for every ¢ € [D+1], and then runs DnJrl 41 with the list {(wi, b;) }icip41) (wi € Foig
is interpreted as an element of Fyey via 7¢,) and the input y;, and finally returns the
output of D';jrpl D1

Item (1) of the claim follows directly from Corollary 9.3. To see Item (2) holds,
we note that when h = Hy", |, by the definition of P(x), we have that b; = P(w;) for
every ¢ € [D + 1]. Since P(x) has degree at most D, H-Redy_ ; returns P(y;), which
equals Hy (Y, 2) = Hy ; (¥, Z) by definition. d

This manuscript is for review purposes only.



1960
1961
1962
1963

1964

1965
1966
1967
1968
1969
1970
1971

1972

1973
1974
1975
1976
1977

1978

1979

1980
1981
1982
1983
1984
1985

1986

52 L. CHEN

Converting G, and H ;C"E into Boolean functions via Walsh-Hadamard
codes. Next, we convert the polynomials Gy and H ,;“E into Boolean functions by
applying Walsh-Hadamard codes.

We define Fj,: F7tF x {0,1}% — {0,1} as

(9.11) Fi(2,7) = (k" (Gi(2), ),

where (k1 (Gx(Z)),7) denotes the inner product between the two vectors over GF(2).

F}, can be interpreted as a function from {0,1}°* to {0,1}, where e, = (ny + k +
1) - sz, (we write ng instead of n to emphasize that it is a function of k).

Recall that an integer k is special if Gy and_ GJ41 are over different fields. In
this case, we know that F,, 11 = GF(2%%"), and H}"S is from FI L x Frtk=d 5 Fpyq.
?imil}arly7 for every j € {0,1,...,n+k}, we define F{a": F; | x k=75 {0, 1}% —

0,1} as

(9.12) F5™(2.7) = (10 (H)5(2)), 7).

Fjram can be interpreted as a Boolean function on {0, 1}¢+4, where ey j = (ny, +
k+j+3)-sz,.
The following claim is useful.

CLAIM 8. For every k € N>q, it holds that ey, < egx41. Moreover, the following
holds for every special k:

e <ego <ep1 <...<e€knpg+tk-1<Chkngt+k < €ktl-

J,PSPACE [ PSPACE

The language
algorithm.

. Now we are ready to define via the following

Algorithm 9.3: Algorithm APSPACE for [ PSPACE

1 Given an input x € {0,1}™ for some m € N;
2 if m < e; then
3 L return 0

I

Let k be the largest integer such that ep < m;
if k is not speical then
L return F(z<.,);

o o

iK1

if m < e then
L return Fj(z<.,);

®

©

Let j be the largest non-negative integer such that ey ; < m;
10 j < min(j, ng + k);
11 return Fi"¥"(z <., );

From Claim 8 and Algorithm 9.3, the following claim is immediate.

CLAIM 9. For every k € N>, LePSPACE equals Fy. For every special k and every
7 €01, .. g + kY, LEPAE equals Frare.

9.3.3. Verifying Properties of LPSPACE, Next, we verify that LPSPACE has all
the desired properties stated in Theorem 3.7.

LEMMA 9.11. LPSPACE s paddable and non-adaptive TC° downward self-reducible.

This manuscript is for review purposes only.



1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

2009
2010
2011
2012
2013
2014
2015
2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 53

Proof. We first note that to show LPSPACE is paddable, it suffices to verify its
paddability from input length m to m + 1. Hence in the following, we prove the
paddability and downward self-reducibility for every input length m € N>; and m+1.

When APSPACE and APSPACE (we use APSPACE 1o denote the restriction of APSPACE
on m-bit inputs) computes the same function on their prefixes, one can simply define
Pad(z,1™%!) = 2 00 to establish paddability, and the self-reducibility follows from
the fact that LESPACE(2) = LESPACE(2_) for every € {0,1}™F!. Hence, according
to Algorithm 9.3, there are following four non-trivial cases:*¢

1. AEISPACE computes Fj and APSE?CE computes Fy1.

2. Af’nSPACE computes F; ,grinks e AE&%CE computes Fj11 for a special k.
3. APSPACE computes Fy, AP>PICE computes Fi3"™ for a special k.

PSPACE PSPACE
4. A7S

computes F3", A;PME computes 3%, for a special k and j €
{0,1,...,np + k — 1}.

Now we discuss these four cases separately. In the rest of the proof we always
use n to denote ny for simplicity. We first note that to verify paddability and self-
reduction in Case 1, it suffices to verify that there is a projection that reduces Fj
to Fi41 and a uniform non-adaptive TC® circuit computing Fi 1 given oracle to F.
Similarly, to verify paddability and self-reduction in Case 2, 3, and 4, it suffices to
establish the desired reductions between (1) Fy, , +% and Fyy1, (2) Fy and F,ﬁrgns, nd

t t
(3) Firs and Fy2rs,.

Case 1 and Case 2. We will handle these two cases together. To do so, we
begin by setting up some notation. We first set Fpew = Fp 1. We also set Goq and
F,q depending on whether we are in Case 1 and Case 2 as follows:

1. In Case 1, we set Goig = G and Foq = Fj;
2. In Case 2, we set Gog = Hk roar and Fog = F,'érfL”SJrk

Our goal now (for both cases) is to verify the paddability from Fyq4 to Fj11, and
the downward self-reducibility from Fj41 to Fyyq.

From Algorithm 9.3, we can see that the polynomials Goq and Gy1 are over the
same field Fey. We first verify the paddability From the definition of Gy and Gj1

n (9.9) (Case 1) and the definition of H;C"nJrk in (9.10) (Case 2), we have

God(Z,Y) = Gi1(Z, ¥, (0)F,.,.)

for every ¥ € F, and i € FX_ . Hence, by the definition of Fyq and Fj11, we have
Fou(Z,9,2) = Fit1(2, 9, (0)r,,, 2)

for every # € B, if € FE and 7 € {0, 1}1°82Frev| Hence, the projection (7, 7, 2)
(Z, 9, (0)F,.,, Z) is the required reduction from Fug to Fj41.

Next we verify the downward self-reducibility, for which we have to show how to
compute Fj1 using a uniform non-adaptive TC circuit with an Fyg oracle. We first
note that by the definition of Gj and Gy in (9.9) (Case 1) and the definition of
H)™ 4 in (9.10) (Case 2), we have

(9.13) Grr1(7, ) = Gold(T, Y<i) + gr+1(T) - k1
for every & € Fnex! and i € FE+1

new

46For convenience, we will simply say that ATPTLSPACE computes Fy, (resp. F;;'?"S) when it computes
Fy, (resp. Flg”}“s) on its prefix of length ey, (resp. ey ;).

This manuscript is for review purposes only.



2028
2029
2030
2031
2032
2033
2034

2035

2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049

2059

2060
2061
2062
2063

2064

2065

2066
2067
2068
2069
2070
2071

54 L. CHEN

We first show how to compute Gi11 with oracle access to Gog. From (9.13), it
suffices to compute gx+1(Z) with oracle access to Golg. Recall that gxr1 = Srnin v
We first note that if /Lk+1 = Nk11, then by Item (2) of Lemma 9.4, we can compute
gk+1(Z) by a uniform TC? circuit directly without oracle access to Go|d

So we can assume that i1 < ng41. In this case, we also have n = ng = ngyq
and iy = ix41 + 1 from (9.7). In other words, k is not special and we are in Case 1.
(So Golg = Gi.) Note that

(9.14)  Gr(Z,2) = fni, (&) for Z=(0,0,...,0,1) € F¥_ and every ¥ € 7,

Therefore, to compute Gi41(Z, ) according to (9.13), we first compute G (Z, y<x)
via an oracle call to Gy, and then compute gry1(Z) = fn,., (%) by applying the
algorithm Red,, ; ., with the oracle to f, ;, simulated by G} using (9.14). Finally,
we compute Gi(Z,§<k) + gr+1(Z) - Yr+1 using the algorithm from Lemma 9.2. A
straightforward implementation gives a uniform non-adaptive TC? circuit computing
G+1 given oracle to Gy.

Finally, note that a single query to Goig can be simulated by log |Frew| queries to
Foiq and recall the definition of Fyq in (9.11), we can obtain the desired oracle circuit
computing Fj1 given oracle to Fyg.

Notation. In the next two cases, k is special and we recall some notation for
convenience. Since k is special, we have that ng41 = ng+1 =n+1 and sz,,41 = 3-s2,,.
We let Foiq = I, and still set Fpew = Fri1.

Case 3. Recall the definition of H,'C”0 in (9.10) and that H}C”B' ngk — Frew 18

simply Gy : IFZ,;F — Foiq with outputs embedded in Fy,. To compute G (2) given an
int

oracle to H}', we simply apply Emdé to the Boolean encoding of H'nt 5(2). Similarly,
to compute H ,'C"B( Z) given an oracle to G, we simply apply Emd,, to the Boolean
encoding of G(Z). Finally, using a similar argument as in Case 1 and 2, we can lift
these reductions between Gy and Hy '"t into the required reductions between Fj and

th"’“s This completes the proof for thls case.

Case 4. Similar to the three cases above, it suffices to establish the paddability
from Hj '"t to H ,':B 41 and the downward Self—redumblhty from Hi" kg1 tO Hi™. Note
that the requlred downward self-reducibility follows directly from Claim 7. To see the
paddability, note that

HP (<> yi41, 2) = HY'S 1 (<im0, (Y41), 2) 0
for every i € Fl,, and 7 € IE‘lekfj. Recall that 7, (y;4+1) can be computed by

applying the polynomial-time computable projection Emd, (see Lemma 9.1) on the
Boolean encoding of y; 1. Hence (¥<j,yj+1,2) = (§<j, 7, (Yj+1), Z) is the desired
projection padding from Hy"; to H, ,'C"E +1- This completes the whole proof.

Next we show the PSPACE-completeness of LPSPACE,
LEMMA 9.12. LPSPACE s PSPACE-complete.

Proof. We first note that LPSPACE ¢ PSPACE since every downward self-reducible
language is in PSPACE (see, e.g., [7, Exercise 8.9]).
Let L € SPACE, and let (A's", A%9) be the pair of algorithms in Lemma 9.4. The
following is a polynomial-time reduction Ry, from L to LPSPACE:
1. Given an input = € {0,1}" for n € N, let m = A'$"(n).
2. Compute Z = A% (z) and let k € N be such that g = fn 1.

This manuscript is for review purposes only.



2090

2091

2092
2093
2094

2095
2096

2097
2098
2099
2100
2101
2102

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 55

3. Let i € F%, be such that y,, = 1 and y; = 0 for j € [k — 1], and @ € {0, 1}
be the vector that u; =1 and u; = 0 for j > 1.
4. Output LEPAE(Z, 77 7).
By Lemma 9.4, we have f, 1(2) = (L(2))r,,. Since L(z) € {0,1} and we encode
F,, as a Boolean string in {0,1}**" via k,,. One can see that

(9.15) (5 (fma(2) . = L(@).
1
Now, by the definition of Gy in (9.9), we have that Gx(Z,9) = gx(2) = fim.1(2).
Then by the definition of Fy, Claim 9 and (9.15), we have

LPSPACE (2 i) = Fy(, 3, @) = (m;}( fm,l(z)))1 = L(x).

Therefore, LPSPACE is PSPACE-complete. 0

Next we prove that LPSPACE ig weakly error correctable. We need the following
local decoding procedure for Reed-Muller codes from [25].

LEMMA 9.13. Let n,m,d € N such that m,d < 2n?. Let Foq = F,, and Fpew =
Fnt)  For every i € {0,1...,m}, there is a randomized algorithm RM-Dec, p, ;
satisfying the following:

1. RM-Decy, 1 i takes T € Fie,, and ij € F'" as input, and a function f: Fi,, x
Fli " — Frew as oracle, and outputs an element of Frew.

2. If there is a degree-d polynomial P: F, — Frew that agrees with f on a 0.9
fraction of the inputs from Fi,, x ]F;Td_i, then

Pr[RM-Dec!, ,, .(,7) = P(Z.7)] > 2/3
for every ¥ € Fi,, and j € FI".

3. RM-Dec can be implemented by a randomized uniform non-adaptive NC or-
acle circuit family.

For completeness, we provide a proof of Lemma 9.13 in Appendix A.
LEMMA 9.14. LPSPACE s non-adaptive NC* weakly error correctable.

Proof. Let m € N be an input length. If m < ey, then according to Algorithm 9.3,
LfnSPACE is the all-zero function and the lemma holds trivially. So we assume m > e;.

Now there are two cases: (1) APSPACE computes Fj on its length-e), prefix for
some k € N and (2) APSPACE computes F| ,H;“S on its length-ey, ; prefix for some special
keNand je{0,1,...,nt+k}. To prove the lemma, it suffices to show weakly error
correctability for Fj in Case 1 and and F; ,:;-”S in Case 2.

Case 2. We will first focus on Case 2 and then discuss how to deal with Case 1.
In the following, we use n to denote ny, for simplicity, and we let Foq = F,, an(_l Frew =
F(n+1) . Recall that Hy: F2tF — Foey is a degree-(n + 1) polynomial, and H}™ is the

new
restriction of Hy to the domain 2, x Fpth=7. Also, Firans: F,,, x FI7 < {0,135

(9.12) is obtained by encoding the output of H, };‘tj via Walsh-Hadamard codes as
follows

F5™(2,7) = (1 (H)5(2)), 7).

Let f: Féd x Froth=i » {0,1}3%% x {0,1} be an oracle that agrees with Fjfrans

new 7j
on a 0.99 fraction of inputs. (f and F'" can be interpreted as Boolean functions

This manuscript is for review purposes only.



2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133

2134

56 L. CHEN

via K, and Kpi1. ) We first show that there is a non-adaptive TCY oracle circuit
Dq: IE‘new ngk I Frew such that Df agrees with H'”t on a 0.9 fraction of inputs.
This can be done by the local decodlng algorithm of Walsh Hadamard codes [27]
(see also [7, Theorem 19.18]). By a Markov inequality, for at least a 0.95 fraction
of @ € Fi,, x FiF=1 (7, 2) = Fya(7, Z) holds for at least a 0.8 fraction of 2 €
{0, 1}352”. We call such ¥ good. We first consider the following randomized oracle
circuit Ds:

1. Let ¢; € N be a sufficiently large constant. Draw z1,...,2., €r {0,1}3
independently. For every j € [3sz,], let e; € {0,1}%" be the string that

(ej); =1 and (ej), =0 for £ # j.

2. Given ¥ € Fi, x ]Fgljk 7 as input, for every j € [3sz,,], set b; as the majority
of {f(Z,20) ® f(Z, 20 D €;) }eecr]-

3. Output the string by, bo,...,b3s;,. (Interpreted as an element of Fpe, via
/Qn+1~)

A standard argument (see [7, Theorem 19.18]) shows that for every good Z,
Dg (%) = H'"t( ¥') with probability at least 1 — 27¢1) > 0.99 (since ¢; is sufficiently
large). Hence by an averaging argument, we can fix the randomness in Dy to obtain

a (deterministic) oracle circuit Dy such that D! agrees with H '";- on a 0.9 fraction
of inputs. Also, we can see that D; (and thus also Ds) can be implemented by a
non-adaptive TCO circuit.

Next, we apply Lemma 9.13 with parameter (n,m,d,i) = (n,n + k,n+1,7) and
polynomial P = Hy.*" It follows that

Pr [RM-Dec”! |, (&) = H'”t(f)} >2/3

— ; n+k—j
for every & € FJ,, x F .

The success probability above can be amplified to 1 — % by repeating the

2[Fnew

algorithm poly(m,sz,) < poly(n) times with independently randomness, and taking
a majority of the outputs. We denote the resulting randomized oracle algorithm by
D3. By a union bound over every input in [}, x Fyi~ ¢ and an averaging pr1nc1ple we

can fix the randomness in D3 to obtain a nonadaptlve NC? oracle circuit D4*® such

pf
that D4 ! agrees with H ,'C"; on every input. Since both D; and D, are non-adaptive

f
NC? oracle circuits, we can collapse them in Dfl to obtain a non-adaptive NC? oracle
circuit E; such that E{ = Hp '”t . Finally, using the definition of F;"3", from Ey we can
construct a non-adaptive NC? oracle circuit Fs such that Eg =F ,E'j“s This completes
the proof for Case 2.

Case 1. Here F} is obtained by encoding the output of G: F'tF — F, via
Walsh-Hadamard codes. We note that this is identical to the subcase of Case 2 where
j=n+k (and H, '"E- is from F"F to Foew), and we can establish the weakly error

new
correctability for Fj in exactly the same way. ]

LEMMA 9.15. LPSPACE is non-adaptive TC® same-length checkable.
Proof. Let m € N be an input length. Similar to the proof of Lemma 9.14 we

assume m > ej, and there are two cases (1) APSPACE computes F), on its length-ey,

4"From the definition of ny, (see (9.7)), it holds that ny + k < 2-n2 for k € N>.
48NC3 is closed under taking a majority and RM-Dec,, ,t%,; can be implemented by non-adaptive
NC3 oracle circuits by Lemma 9.13.

This manuscript is for review purposes only.



2153
2154
2155
2156
2157
2158
2159

2160

2161
2162
2163

2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

2190

2191

2192
2193

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 57
prefix for some k& € N and (2) APSPACE computes F{rans on its length-ey, ; prefix for
some special k € N and j € {0,1,...,n; + k}. To prove the lemma, it suffices to
establish the same-length checkability for [}, in Case 1 and for F; ttjns in Case 2.

As before, in the following we will also use n to denote ny.

Case 1: Instance checker for Gj. We focus on Case 1 first. We first show
how to establish an instance checker G-1C for Gj.
Recall that

(9.16) R @) =) ()

JE[k]

for every Z € F? and every ¢ € F¥. . .
Note that for every j € [k], by setting 7 such that ri =1and r; = 0 for £ # j,
we have

(9.17) hyj(Z) = G(%,7) for every ¥ € F7,

meaning that the oracle access to hy ; can be simulated by the oracle access to Gy..
G-IC works as follows:
1. Given Z € F? and ¢ € F% as input, and access to an oracle G': F'tF —
that is supposed to compute Gj.
2. For every j € [k], letting ¢ = 1/3k, for every j € [k], G-IC runs h-ICy ;.
(from Lemma 9.10) on input & with oracle access to hi,..., }Nlj_l simulated
by G via (9.17) to obtain an output u; € F,, U {L}.*
3. If any of the u; equals L, we output L. Otherwise, we output Zje[k] Uj - Yy

Since h-IC j . can be implemented by a randomized uniform non-adaptive TC°
oracle circuit, so can G-IC.

Now we show that when G = Gy, G-IC outputs G (7, %) with probability 1. Note
that for every j € [k], since G = G}, we have hy = hy ¢ for every £ € [j—1] from (9.17).
Applying Lemma 9.10, it holds that with probability 1, u; = hy ;(Z) for every j € [k].
Therefore, with probability 1, G-IC outputs Zje[k] uj - y;, which equals Gi(Z,9) by
definition. ~

Next we show that for every oracle G, with probability at least 2 /3, G-1CY outputs
either G (&, ) or L. We first note that by Lemma 9.10 and a union bound, with
probability at least 2/3, u; € {h ;(Z), L} for every j € [k], which implies that G-1C
outputs either G (%, %) (when no u; equals L) or L (when some u; equals L). This
completes the construction of the instance checker G-1C for Gy.

Case 1: Instance checker for Fj. Next we show how to construct the desired
instance checker F-IC for Fj:
1. Given Z € F?+* and 7 € {0,1}%" as input, and access to an oracle F': F**F x
{0,1}*>» — {0, 1} that is supposed to compute F}.
2. F-IC simulates G-IC on input & given oracle access to the function®®

T F(,€)) 0 F(Z,8) 0 o F(&,e,),
to obtain an output v € F,, U {L}.

3. F-IC outputs L if u equals L and outputs (k,,'(u), Z) (inner product is over
GF(2)) otherwise.

49That is, he(Z) = G(Z,7) for every £ € [j — 1].

50Below €, denotes the sz,-bit vector with every entry being 0 except for the ¢-th entry being 1

This manuscript is for review purposes only.



2194
2195
2196
2197
2198
2199
2200

58 L. CHEN

Since we encode an element of F,, via k,, when F = F},, G-IC above indeed gets
access to Gy, and hence Fy, outputs (k' (Gy(%)), Z) = Fi(Z, Z). Also, for every oracle
F, from the promise of G-I1C, we know that G-1C outputs an element in {Gy (%), L} with
probablhty at least 2/3. This implies that F-IC outputs an element in {Fy(Z, 2), L}
with probability at least 2/3 as well. Therefore, F-IC is an instance checker for Fj.
Since G-1C can be implemented by a randomized uniform non-adaptive TCY oracle
circuit, so can F-IC.

Case 2: Instance checker for H) i”t . We note that similar to Case 1, it suffices
to construct an instance checker H-IC for Hy '”t

In this case k is special. Let Foq = ]Fn and Fpew = Fpp1 = F¢+1) Recall
that H ,'C”B Fl.., ¥ IF:ljk I 3 Fpew is the unique extension of Gy : ngk — Foiq to the
domain Fl,,, x 577 H-IC works as follows:
1. H-IC takes Z € ]F,{eWxIFgljk 7 as input, and an oracle H : B, xFIF7 5 F o,

that is supposed to compute H, ,'C"E We let G: IFZ,;F’“ — Foig be the simulated
oracle to G-1C such that if H = H,'C”; then G = Gj,.%!

2. H-IC runs Ext-Cp i 1.nikjmt1(Z) with H and G- ICY as oracles.
Since both G-IC and Ext-C can be implemented by a randomized uniform TC°
circuit family, so can H-IC. Moreover, it is straightforward to verify that H™ is an
instance-checker for H '”t, using the fact that G-1C is an instance-checker for Gy and

H,'C”E is the unique extension of Gy, to Fi_, x IFZ,:k J (so we can apply Lemma 9.9).

This completes the proof for Case 2. 0

Appendix A. Low-depth Decoders for Reed-Muller Codes.
In this section, we prove Lemma 9.13 (restated below).

Reminder of Lemma 9.13. Let n,m,d € N such that m,d < 2n?. Let Foq = F,,
and Frew = FEtD - For every i € {0,1...,m}, there is a randomized algorithm
RM-Dec;, ;i satisfying the following:
1. RM-Dec,, i takes & € Fl,, and i € F" as input, and a function f: Fi,, x
Foi ™ = Frew as oracle, and outputs an element of Frew.
2. If there is a degree-d polynomial P: Fyg,, — Frey that agrees with f on a 0.9
fraction of the inputs from F,, x FI.7", ¢ then
Pr{RM-Dec), ,, ,(Z,7) = P(Z,7)] > 2/3
for every T € F,, and § € IFOld
3. RM-Dec can be implemented by a randomized uniform non-adaptive NC* or-
acle circuit family.
We first need the following standard unique decoding for Reed-Solomon (RS)
codes from [63] (see also [7, Theorem 19.15]).
LEMMA A1 ([63]). Forn,d,m € N, there is an algorithm RS-Dec,, 4., that takes
a list (a1,b1), ..., (Qm,bm) € Fy, x By, as input and satisfies the following:
1. If there is a degree-d polynomial G: F,, — F,, satisfying G(a;) = b; for at
least t > 3 + % of the numbers i € [m], then RS-Dec,, 4.m outputs G.
2. RS-Dec can be implemented by uniform NC°.

51Tn more details, for Z € ]FZJ we set G(Z) = H(Zgj, Z~j), where Z<; is interpreted as a vector
in Fi,,, via the embedding ¢,

This manuscript is for review purposes only.



2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250

o N N b
o NN
> N =

=

N
N NN
v Ot Ut Ut Ot
C w

NN

99ER

Do
[\

1

Do

225
25
25

Q

N
Qo

¢

N

)

59
2260
2261

)

2262
2263
2264
2265
2266
2267
2268
2269
2270
2271

2272

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 59

Proof. To see that RS-Dec can be implemented by NC3. We note that the compu-
tational bottleneck of the algorithm from [63] (see also the proof of [7, Theorem 19.15])
is finding a solution (that is guaranteed to exist under the assumption on t) to a sys-
tem of linear equations and computing the division of two polynomials over FF,,. Now
we show that both tasks can be done in uniform NC?:

1. Chistov [22] (see also [40, Section 32]) gave a uniform O(log? n)-depth arith-

metic circuit family that computes the determinant of a square matrix over
every field. Replacing all field operations by corresponding TC circuits from
Lemma 9.2, we get a uniform NC? circuit family that computes the determi-
nant over F,,. Also, Mulmuley [45] gave a uniform O(log? n)-depth arithmetic
circuit family that computes the rank of a matrix over every field. Similarly,
we get a uniform NC? circuit family that computes the rank over F,,.
Using the reduction of [15, Theorem 5] (see also [40, Section 34]) from solving
a system of linear equations to computing both rank and determinant, we
obtain a uniform NC? circuit family for solving a system of linear equations
over IF,,.

2. We show that computing the division of two polynomials f, g € F,,[x] can be
reduced to solving a system of linear equations.

Without loss of generality, we can assume that 1 < deg(g) < deg(f). Our goal
now is to find a degree-(deg(f) — deg(g)) polynomial ¢ € F,[x] and another
polynomial r € F,, [x] with degree at most deg(g) — 1 such that

(A1) f(x) = g(x)q(x) + r(x).

We create a system of linear equations with deg(f) + 1 unknown variables
corresponding to coefficients in ¢(x) and r(x), and deg(f) 4+ 1 equations cor-
responding to taking the coefficients of x? on each side of (A.1) for every
i€{0,1,...,deg(f)}. Then we can apply the aforementioned NC* algorithm
for solving a system of linear equations over [F,,. ]

Proof of Lemma 9.13. Let M = 20d and D = Fi,, x F7 " Given an input
Z € D, RM-Decy, ,,,; draws @ €g D, and queries the oracle f on the input-set Lz ; =
{(Z 4+ w; - @)}iciar, where w; is the i-th non-zero element in Foq. We note that
since @ € D and w; € Foq, we have Lz z C D. Our algorithm RM-Dec,, ., ; then
runs RS-Dec,, 4. on the list of pairs {(¢, f(¥)): ¥ € Lz} to obtain a polynomial
Q: Frew — Frew and outputs Q(0).

For every ¢ € [M], since 4 is drawn uniformly random from D, it follows that
Z + w; - U is also distributed uniformly random over . Let Ez; be the number of
y € Lz g such that f(7) = Q(%). Since f agrees on a 0.9 fraction with a degree-d
polynomial P on D, by the linearity of expectation, it follows that

E [Ezq]>09- M.
uerD

Therefore, by a Markov inequality, with probability at least 2/3 over the choice

of @, we have Ez 7 > 0.7- M. Note that

0.7-M > 0.5M + d/2

by our choice M = 20d. Let Q: Fnew — Fpew be such that Q(z) = P(Z + z - 4).
Note that @ has degree d as well. Hence, by Lemma A.1, it follows that RS-Dec,, g, ar
recovers ) and outputs Q(0) = P(Z) with probability at least 2/3 over the choice of

—

u.

This manuscript is for review purposes only.



2280
2281
2282

2283
2284
2285
2286

2287
2288
2289
2290
2291

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301

2303

2304
2305
2306
2307
2308

2316

60 L. CHEN

Finally, note that outputting @Q(0) means outputs the constant term in the poly-
nomial @ and RS-Dec, 4 can be implemented by uniform NC3, it follows that
RM-Decy, i can be implemented by randomized non-adaptive NC? oracle circuits. O

Appendix B. An Xor Lemma from Average-Case Hardness against
MAJ o € Circuits.

In this section, we provide a self-contained proof of Lemma 3.14. Our proof below
follows a similar structure of the proof of [18, Lemma 3.8].

Reminder of Lemma 3.14 Let € be a typical circuit class. There is a universal
constant ¢ > 1 such that, for every n € N, f € F,1, 6 € (0,0.01), k € N, ¢, =

(1-6)F1 (L —6) andt =c- 1og5*1’ if f cannot be (1 —50)-approximated by MAJyo %

B
circuits of size s - £+ 1, then fO* cannot be (% + e )-approximated by € circuits of
size S.

Proof. Let ¢ > 1 be a large enough constant. Fix n € N, f € F, 1, and § €
(0,0.01). We will prove the following contrapositive of the lemma.

CLAIM 10. For every k € N, g = (1 — 0)F! (% —5), and ¢, = c- “’gi_l, if

€k

fEF can be (3 + ep)-approzimated by a € circuit of size s, then f can be (1 — 56)-
approzimated by an MAJy, o € circuit of size s - £, + 1.

Note that Claim 10 holds trivially when & = 1. In the following we prove Claim 10
by an induction on k.

Let k € N be such that & > 2. For an input = to f®*, we write 2 = yz such that
lyl = n,|z| = (k — 1)n. Letting C be a size-s € circuit that (1/2 + ¢j)-approximates
f®* and assuming that Claim 10 holds for k — 1, we consider the following two cases.

Case 1. Suppose for some y € {0,1}", we have

1 Ek 1
Pr[f®k =C — = =(1-6"2(=-6)=cr1.
f Ny, 2) = Cly,2)] = 5| > 75 = (1-9) 5 Ek—1
Then, we fix one such y, and note that since ¢ is typical, either circuit C'(z) := C(y, 2)
or ~C’(z) is a size-s € circuit that (1/2 4+ e;_1)-approximates f®*~1). Hence, from
our induction hypothesis, f can be (1 — 5d)-approximated by an MAJ,, _, o € circuit
of size s - £y_1 4+ 1. This proves Claim 10 for k since £j_1 < {k.

Case 2. Otherwise, for all y € {0,1}", it holds that

Ek
1-6"

(B.1) Py, 2) = O, 2)] 5| <
From now on, we will use € to denote ¢ for simplicity. We define
T, :=Pr[C(y, 2) = [*(y, )]
=Pr[C(y,2) = f(y) & f**D(2)]
=Pr(f(y) = Cly.z) & 2D (2)].
From the definition of T}, and (B.1), it follows that for every y € {0,1}", we have

1
-}«

€
1-46°

(B.2)

This manuscript is for review purposes only.



2322

2323
2324

2325

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 61

Also, since C' (1 + ¢)-approximates f®*, we have

(B.3) lg[Ty] >1/2 4.

We need the following claim first.
CramM 11. For at least a 1—49 fraction of y € {0,1}", it holds that T,, > 1/2+¢/2.
Proof. For every y € {0,1}", we set

€ 1
h i (n-d),

From (B.2) and (B.3), we have U, > 0 for all y and E,[U,] < 155 — ¢ < 2d¢, where
the last inequality follows from our assumption that § € (0,0.01).

By a Markov inequality, we have

E,[U,]
> < ZYLTYL <46,
Er[Uy*1/2€]* /2 <46

The claim then follows from the fact that U, < 1/2¢ implies T}, > 1/2 + ¢/2. d

Recall that £, = ¢- 1°i i_l , where c is sufficiently large universal constant. In the

following we will use ¢ to Iaenote ¢ for simplicity.
Now for each i € [{], we draw Z; €g {0,1}"*~1) independently. We then define

(B.4) T,= E [/)=Cly,2) @ 250(z))].

i< [£]

Since c is large enough, by a Chernoff bound, it follows that for every y € {0, 1},

|

T, T,
{Zi} Yy Yy

>e/ 6] < 4.
By an averaging principle, we can fix an assignment to all the Z;’s so that
(B.5) ’Ty - Ty’ <¢/6

holds for at least a 1 — ¢ fraction of y € {0, 1}".

Combining (B.5) and Claim 11, it follows that for at least a 1 — 56 fraction of
y € {0,1}", we have Ty > 1/2 +¢/3. We then construct an MAJ, o ¢ E by applying
MAJ, to {C(y, Z;) & f®* =1 (Z;)}icig. Note that since fP*~1)(Z;) is a constant and
€ is typical, each C(y, Z;)® f®k=1)(Z;) is a € circuit of size at most s. Also, by (B.4),
E(y) = f(y)if T, >1/2+¢/3.

To summarize, E is an MAJ; o € circuit of size at most £ - s + 1 that (1 — 50)-
approximates f. This proves Claim 10 for k. The lemma then follows from an
induction on k. O

Appendix C. PRG Construction for Low-Depth Circuits.

In this section, we prove Theorem 3.3. Our proof is a simple combination of the
local-list deocdable codes in [32] and the Nisan-Wigderson PRG construction [47].

We first state the needed black-box hardness amplification result from [32].

THEOREM C.1 ([32, Theorem 8]). There is a universal constant ¢ € N>y such
that there are two oracle algorithms Amp and Dec satisfying the following:

This manuscript is for review purposes only.



t

DN DN NN
W W W W W W w
(=)

or Ot Ot Ut Ut Ut Ot
=~

3

Do
o
ot
Qo

2359

2360

2366

2367
2368

N NN
W W Ww w w w
T3 3 338

=

NSRS

2375
2376

2377
2378
2379
2380
2381
2382
2383
2384

2385
2386
2387
2388
2389
2390
2391
2392

62 L. CHEN

1. Amp takesn € N, € € (0,1/2), and x € {0,1}°™ as input, o function f € F,1
as an oracle, and outputs a single output bit in 20 time.

2. Dec takes n € N, ¢ € (0,1/2), and = € {0,1}" as input, an O(loge~!)-bit
string o as advice, a function h € Fep 1 as an oracle, and outputs a single bit.
Moreover, Dec can be implemented by a TC° oracle circuit of size poly(n,e~1).

3. For every large enough n € N and for every e € (2-V"/¢1/2), for every pair
of f € Fna and h € Fen1 such that

Pr  [h(z) = Amp/ (n,e,z)] > 1/2+¢,
z€r{0,1}en

there is an advice string o € {0,1}°0°8¢™") such, that
f(x) = Dec"(n, e, z, a)

for every x € {0,1}™.

We also need the following refined analysis of the Nisan-Wigderson PRG construc-
tion [47]. Let .# be a collection of function, we use .% o Junta, to denote the collection
of function g € F,; for some n € N such that g(x) = f(Ji1(x), Jo(x), ..., Je(x)) for
every x € {0,1}", where each J;(x) is a function that depends on at most a bits of x
and f € .% N Fy,; for some £.

LEMMA C.2. Let € be a typical circuit class. There is a universal constant ¢ €
N> and an algorithm G such that:
1. G takes £,m € N such that logm < { <m,Y € {0,1}2[ and z € {0,1}" as
input, where t = c - £, and outputs an m-bit string. G is also computable in
200 time.
2. Foreveryl,m,e N, Y € {0, 1}22 ande € (0,0.5), let F C Fp 1 be a collection
of functions, if func(Y') cannot be (1/2+¢/m)-approzimated by .F oJuntaiog m,
then Ggm(Y,-) is a PRG fooling all functions in % with error .

Before proving Lemma C.2, we show it together with Theorem C.1 implies The-
orem 3.3 (restated below).

Reminder of Theorem 3.3. Let 6 € (0,1) be a constant. There are universal
constants ¢ € (0,1) and g > 1, and an algorithm G such that:
1. G takes two integers { and m such that £ < m < 2265, together with two
strings u € {0, 1}2£ and z € {0, 1}” as inputs, and outputs an m-bit string.
G is also computable in 2°0) time.
2. For every large enough £ € N, if f € Fp1 does not have 00 -depth circuits,
then Gym(tt(f),-) is a PRG for £°-depth m-input circuits with error 1/m
and seed length £9.

Proof. We set ¢ = 1/3 and g = 3. Let f € Fy1 be such that f does not have
¢°-depth circuits. Let ¢; be the universal constant in Theorem C.1. We also set
e=1/m%

In the following we assume that ¢ is large enough. Note that ¢ > 272 >
2-20'" > o=Vi/er We set g = Amp’ (£,¢,-) to be a function in F.,p;. From Theo-
rem C.1, it follows that g cannot be (1/2+4¢)-approximated by ¢%/2-depth circuit, since
otherwise f can be computed by a circuit of depth O(log /4loge ') +0(£%/2) = o(£%),
contradicting to our hardness assumption on f.

05/3

This manuscript is for review purposes only.



2393
2394
2395
2396
2397
2398
2399

2400
2401

2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417

2418

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 63

Let G™ be the algorithm in Lemma C.2. We set Gy, (tt(f), 2) = GoyY . (tt(g), 2),
where 2 is of length O(¢?), which is at most ¢9 = £3 since / is large enough.

Now we set .Z be the set of all m-input £°/3-depth circuits. Applying Lemma C.2
with # and note that all .# o Juntajsg,, functions have circuits of depth at most
0% 4 m = O(/3), it follows that Gy, (tt(f),-) is a PRG for m-input circuits of
depth £%/3 = (% with error 1/m. Combining the running time of Amp in Theorem C.1
and G"™ in Lemma C.2, it follows that G is computable in 2°() time. 0

To prove Lemma C.2, we need the following construction of sets with small pair-
wise intersections, a.k.a. designs.

LEMMA C.3 ([58, Lemma 2.5]). There is a universal constant ¢ € N1 such
that, for all integers m,t such that logm < ¢ < m, there is a family of m sets
S1,82,...,8m, C[t] (denoted as an (m,t,£,logm)-design), such that

1. t=c- 02
2. for every i, |Si| = ¢;
3. for everyi#j, |S;NS;| <logm.
Moreover, the family is constructible in deterministic poly(m) time.

Now we are ready to prove Lemma C.2.

Proof. Let ¢ be the universal constant in Lemma C.3. Given m, ¢ € N such that
logm < ¢ <m,Y € {0, 1}2e, and z € {0,1}!, where t = ¢- ¢?. Let S1,S52,...,Sm be
the (m,t,£,logm)-design specified in Lemma C.3, and let f = func(Y). We define G
as

Gl,m(yv Z) = f(Z|S1) © f(z|52) O---0 f(Z|Sm)»

where z|g is the |S]-bit string obtained by taking the bits in z with indices in S.
We let G(-) = Gy, ¢(Y, ) for simplicity. Suppose for the sake of contradiction that
G is a not a PRG for a function C € .% with error €. In other words, we have

C(z))- E [CG .
z€r{0,1}™ : ZGR{O,l}t[ (G(2))]| >«

In the following we will use bold font letters such as X to denote random variables.
We also use U,, to denote the uniform distribution over {0,1}". Let w ~ U;. A
standard hybrid argument implies that there is some i € [m] such that C distinguishes
the following two distributions with advantage at least e/m:

Di—l :f(w|51) © f(w|52) ©:--0 f(W Si_1) OUm—i+1, and
D; =f(wls,) o f(wls,) o0 f(wls;) o Un—i.

Note that % is closed under negations since it is typical, we may assume that

Pr[C(D;_1) =1] > Pr[C(D;) = 1] + ¢/m.

We now construct a randomized .# o Juntajg,,, function C’ that (1/2 + ¢/m)-
approximates f, contradicting the hardness of Y. Given a random input x €g {0, 1},
we fix a random seed w as follows. We let w|g, = x and the other bits of w are
independent and uniform random bits. It is easy to see that w distributes uniformly
random over {0,1}¢. We also pick z €g {0,1}™ 1 to form an input

input = f(wls,) o f(wls,) o --- o f(w]s,_,) oz

Then we let C'(x) = C(input) @ z,.

This manuscript is for review purposes only.



2435
2436
2437

2438
2439
2440
2441
2442

2443

4
2445

2446
2447
2448
2449

2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470

64 L. CHEN

We show that C’ computes f correctly with probability at least > 1/2 4+ ¢/m,
where the probability space is over both the random input x and the internal ran-
domness of C' (i.e., w|y\ s, and z). Let

Dright = Pr[C(input) =1 | z; = f(x)]v and Pwrong = Pr[C(input) =1 | Z; 7é f(X)]

By the definition of D; and D;_1, we have

1
Pr[C(DZ) = 1] = Dright, and Pr[C(Di—1> = ] = E(pwrong +pright)7

and

PHC(x) = £()] = 7wons + 51~ Pign)

= % +Pr[C(D;-1) = 1] = Pr[C(D;) = 1]

S 1
23 +e/m.

By an averaging principle, we can fix the internal randomness of C’ to obtain
a deterministic circuit C’ that (1/2 + ¢/m)-approximates f. Since for each j < 4,
|S; NS;| < logm, each bit of input depends on at most logm bits in x. It follows
that C’ is in .% o Juntajeg m, contradicting the hardness of f. 1]

Appendix D. Either NQP ¢ NQP or MCSP ¢ ACC’.

In this section, we prove Corollary 1.2. We will need the following lemma that is
implicit in [16].

LEmMMA D.1 ([16]). For every large enough n,s € N such that s > n, and for
every n-input s-size circuit C, there is a (TCY)MCSP circuit C' of poly(s) size that
0.99-approzimates C.

In the following we provide a proof for Lemma D.1 for completeness. We first
need the following lemma from [48].%%

LeEmMMA D.2 ([48, Corollary 66]). There exists a constant ¢ > 1 such that, for
every large enough n,s € N such that s > n, and for every n-input s-size circuit C,
there is an (AC°)YMESP circuit C of poly(s) size that (1/2 4 1/s¢)-approzimates C.

Lemma D.1 is then proved by combining Lemma D.2 and Lemma 3.14.

Proof of Lemma D.1. Let C be an n-input s-size circuit, and let k¥ € N be a
parameter to be specified later. Note that C®¥ is a (kn)-input 10ks-size circuit. By
Lemma D.2, there is a universal constant ¢ > 1 such that C®* can be (1/241/(10ks)¢)-
approximated by a poly(ks)-size (AC4)MESP circuit for a constant d € N. We also set
§=0.01/5.

Now, we set k = c; - log s for a large enough constant ¢; so that e, = (1 —§)*~!.
(1/2 —6) < 1/(10ks)°. Applying (the contrapositive of) Lemma 3.14 and note that
(AC4)MCSP i a typical circuit class, it follows that there is an MAJo (AC4)MSP circuit
that (1 — 58)-approximates f and has size O(poly(ks) -logd~! -, %). From our choice

521n [48], it is stated as (1/2 + 1/s¢)-approximating C' AC-reduces via tt-reductions to MCSP,

which can be interpreted as a non-adaptive (AC°)MCSP circuit that (1/2+1/s¢)-approximates C. We
do not state this non-adaptive property in Lemma D.2 since it is not important for our proof. We
also note in [48, Corollary 66], one can always consider f € Circuit[n] by adding dummy inputs, and
therefore here we can take ¢ to be universal constant. The proof of [48, Corollary 66] builds on [16].

This manuscript is for review purposes only.



2474

2475
2476
2477
2478
2479
2480

2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497

[\ v}

NN NN DN NN
at

[\ o}
ot

NN NN DNNDN
ot y

NN DN

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 65

of § and k, we have 1 — 56 = 0.99 and logd—! - 6;2 < poly(s), which completes the
proof. 0

Now we are ready to prove Corollary 1.2.

Reminder of Corollary 1.2 FEither NQP ¢ P, o1, or MCSP ¢ ACC.

Proof. For the sake of contradiction, suppose NQP C P, 51, and MCSP € ACCO.

By [30, Corollary 5.1], we have that MAJ € (AC°)MSSP and therefore (TC?)MESP C
(AC®MCSP c ACC?, since MCSP e ACC’.

From the assumption NQP C P, 1y, Lemma D.1, and the inclusion (TC?)MESP C
ACC?, it follows that NQP can be 0.99-approximated by ACC®, a contradiction to
Theorem 1.1. Hence, we must have either NQP ¢ P, or MCSP ¢ ACC’. ]

Acknowledgment. This work is supported by NSF CCF-1741615 (CAREER:
Common Links in Algorithms and Complexity). This work was done while the author
was visiting the Simons Institute for the Theory of Computing.

I would like to thank my advisor, Ryan Williams, for his continuing support and
countless valuable discussions during this work, for his suggestion to use a random
self-reducible NC!-complete problem to simplify the proof, also for many comments
on an early draft of this paper.

I am grateful to Roei Tell for several detailed discussions on the proof and helpful
suggestions on the presentation. I am also grateful to Chi-Ning Chou for suggestions
on an early draft of this paper, and Mrinal Kumar for discussions on the complexity
of the local-list decoder of Reed Solomon codes. I also would like to thank Hanlin Ren
for catching an issue in the previous construction of the PSPACE-complete language.

I would like to thank the anonymous SICOMP reviewers whose detailed com-
ments significantly improved the presentation of the paper. I also want to thank
Josh Alman, Chi-Ning Chou, Shuichi Hirahara, Xuangui Huang, Nutan Limaye, Igor
Carboni Oliveira, Zhao Song and Emanuele Viola for helpful discussions during this
work, and the anonymous FOCS reviewers for useful comments.

REFERENCES

[1] S. AARONSON AND A. WIGDERSON, Algebrization: A new barrier in complezity theory, TOCT,
1 (2009), pp. 2:1-2:54, https://doi.org/10.1145/1490270.1490272, http://doi.acm.org/10.
1145/1490270.1490272.

[2] M. Aytal, Z%—formulae on finite structures, Annals of Pure and Applied Logic, 24 (1983),
pp. 1-48.

[3] M. Ajtal, Approzimate counting with uniform constant-depth circuits, in Advances In Com-
putational Complexity Theory, Proceedings of a DIMACS Workshop, New Jersey, USA,
December 3-7, 1990, 1990, pp. 1-20.

[4] M. AjTal AND M. BEN-OR, A theorem on probabilistic constant depth computations, in Pro-
ceedings of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2,
1984, Washington, DC, USA, 1984, pp. 471-474, https://doi.org/10.1145/800057.808715,
https://doi.org/10.1145/800057.808715.

[5] E. ALLENDER, The new complezity landscape around circuit minimization, in Language and
Automata Theory and Applications - 14th International Conference, LATA 2020, Milan,
Italy, March 4-6, 2020, Proceedings, vol. 12038 of Lecture Notes in Computer Science,
Springer, 2020, pp. 3-16, https://doi.org/10.1007/978-3-030-40608-0-1, https://doi.org/
10.1007/978-3-030-40608-0_1.

[6] J. ALMAN AND L. CHEN, Efficient construction of rigid matrices using an NP oracle, in 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, IEEE Computer Society, 2019, pp. 1034-1055,
https://doi.org/10.1109/FOCS.2019.00067, https://doi.org/10.1109/FOCS.2019.00067.

This manuscript is for review purposes only.


https://doi.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
http://doi.acm.org/10.1145/1490270.1490272
https://doi.org/10.1145/800057.808715
https://doi.org/10.1145/800057.808715
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1007/978-3-030-40608-0_1
https://doi.org/10.1109/FOCS.2019.00067
https://doi.org/10.1109/FOCS.2019.00067

Sl
ot Ot C
RS

BN~ O

ot

v Ot
v

at
[S))

NN NN
T Ot
ot
o Ot

ot

~

N DN

ot

oo

Ot

100 N0 10 10 N0 1o

RV

ot C

N CECECEN

ot
J 9
N

RN}
S
~
Ut W

ot Ot
[«

99
-3

NN DN NN
[@3
~
oo

at

% 3

DN N
ot Ot
) ©

o

66 L. CHEN

[7] S. ArROrA AND B. BARAK, Computational Complexity - A Modern Approach, Cam-
bridge University Press, 2009, http://www.cambridge.org/catalogue/catalogue.asp?ishn=
9780521424264.

[8] S. ArRORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501-555, https://doi.org/10.
1145/278298.278306, http://doi.acm.org/10.1145/278298.278306.

[9] S. ARORA AND S. SAFRA, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70-122, https://doi.org/10.1145/273865.273901, http://doi.acm.org/
10.1145/273865.273901.

[10] L. BaBAIL, Random oracles separate PSPACE from the polynomial-time hierarchy, Inf. Process.
Lett., 26 (1987), pp. 51-53, https://doi.org/10.1016/0020-0190(87)90036-6, https://doi.
org/10.1016,/0020-0190(87)90036-6.

[11] T. P. BAKER, J. GILL, AND R. SOLOVAY, Relativizations of the P =% NP question, SIAM
J. Comput., 4 (1975), pp. 431-442, https://doi.org/10.1137/0204037, https://doi.org/10.
1137,/0204037.

[12] D. A. M. BARRINGTON, Bounded-width polynomial-size branching programs recognize exractly
those languages in NC*, J. Comput. Syst. Sci., 38 (1989), pp. 150-164, https://doi.org/10.
1016,/0022-0000(89)90037-8, https://doi.org/10.1016,/0022-0000(89)90037-8.

[13] E. BEN-SASSON AND E. VioLa, Short peps with projection queries, in Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part I, 2014, pp. 163-173, https://doi.org/10.1007/
978-3-662-43948-7_14, https://doi.org/10.1007/978-3-662-43948-7_14.

[14] A. BHANGALE, P. HARSHA, O. PARADISE, AND A. TAL, Rigid matrices from rectangular pcps
or: Hard claims have complex proofs, in 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE,
2020, pp. 858-869, https://doi.org/10.1109/FOCS46700.2020.00084, https://doi.org/10.
1109/FOCS46700.2020.00084.

[15] A. BORODIN, J. VON ZUR GATHEN, AND J. E. HOPCROFT, Fast parallel matriz and GCD com-
putations, Inf. Control., 52 (1982), pp. 241-256, https://doi.org/10.1016/S0019-9958(82)
90766-5, https://doi.org/10.1016/S0019-9958(82)90766-5.

[16] M. L. CARMOSINO, R. IMPAGLIAZZO, V. KABANETS, AND A. KOLOKOLOVA, Learning algorithms
from matural proofs, in 31st Conference on Computational Complexity, CCC 2016, May
29 to June 1, 2016, Tokyo, Japan, 2016, pp. 10:1-10:24, https://doi.org/10.4230/LIPIcs.
CCC.2016.10, https://doi.org/10.4230/LIPIcs.CCC.2016.10.

[17] L. CHEN, Non-deterministic quasi-polynomial time is average-case hard for ACC circuits, in
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Balti-
more, Maryland, USA, November 9-12, 2019, IEEE Computer Society, 2019, pp. 1281-1304,
https://doi.org/10.1109/FOCS.2019.00079, https://doi.org/10.1109/FOCS.2019.00079.

(18] L. CHEN, X. Lyu, anDp R. R. WIiLLIAMS, Almost-everywhere circuit lower bounds from
non-trivial derandomization, in 61lst IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, IEEE,
2020, pp. 1-12, https://doi.org/10.1109/FOCS46700.2020.00009, https://doi.org/10.1109/
FOCS46700.2020.00009.

[19] L. CHEN AND H. REN, Strong average-case lower bounds from non-trivial derandomization,
in Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, ACM, 2020, pp. 1327-1334, https://doi.
org/10.1145/3357713.3384279, https://doi.org/10.1145/3357713.3384279.

[20] R. CHEN, I. C. OLIVEIRA, AND R. SANTHANAM, An average-case lower bound against ACC?, in
LATIN 2018: Theoretical Informatics - 13th Latin American Symposium, Buenos Aires,
Argentina, April 16-19, 2018, Proceedings, 2018, pp. 317-330, https://doi.org/10.1007/
978-3-319-77404-6-24, https://doi.org/10.1007/978-3-319-77404-6_24.

[21] S. CHEN AND P. A. PAPAKONSTANTINOU, Depth-reduction for composites, in IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, 2016, pp. 99-108, https://doi.org/10.1109/
FOCS.2016.20, https://doi.org/10.1109/FOCS.2016.20.

[22] A. L. CHISTOV, Fast parallel calculation of the rank of matrices over a field of arbitrary char-
acteristic, in International Conference on Fundamentals of Computation Theory, Springer,
1985, pp. 63-69.

(23] L. FORTNOW AND R. SANTHANAM, Hierarchy theorems for probabilistic polynomial time, in 45th
Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome,
Italy, Proceedings, 2004, pp. 316324, https://doi.org/10.1109/FOCS.2004.33, https://doi.
org/10.1109/FOCS.2004.33.

This manuscript is for review purposes only.


http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
http://doi.acm.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
http://doi.acm.org/10.1145/273865.273901
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1007/978-3-662-43948-7_14
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1109/FOCS46700.2020.00084
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1109/FOCS.2019.00079
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1007/978-3-319-77404-6_24
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2016.20
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/FOCS.2004.33

2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643

(24]

[25]

(32]

(38]

39]

[40]

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 67

M. L. FursT, J. B. SAXE, AND M. SIPSER, Parity, circuits, and the polynomial-time hierarchy,
Mathematical Systems Theory, 17 (1984), pp. 13-27, https://doi.org/10.1007/BF01744431,
https://doi.org/10.1007/BF01744431.

P. GeEmMELL, R. J. LiproN, R. RUBINFELD, M. SUDAN, AND A. WIGDERSON, Self-
testing/correcting for polynomials and for approzimate functions, in Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Or-
leans, Louisiana, USA, ACM, 1991, pp. 32-42, https://doi.org/10.1145/103418.103429,
https://doi.org/10.1145/103418.103429.

O. GOLDREICH, Computational complexity - a conceptual perspective, Cambridge University
Press, 2008.

O. GOLDREICH AND L. A. LEVIN, A hard-core predicate for all one-way functions, in Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA, 1989, pp. 25-32, https://doi.org/10.1145/73007.73010, https://doi.org/
10.1145/73007.73010.

O. GOLDREICH, N. NIsAN, AND A. WIGDERSON, On yao’s zor-lemma, Electron. Colloquium
Comput. Complex., (1995), https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050/
index.html.

S. GOLDWASSER, D. GUTFREUND, A. HEALY, T. KAUFMAN, AND G. N. ROTHBLUM, Verifying
and decoding in constant depth, in Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, 2007, pp. 440—449,
https://doi.org/10.1145,/1250790.1250855, https://doi.org/10.1145/1250790.1250855.

A. GOLOVNEV, R. ILANGO, R. IMPAGLIAZZO, V. KABANETS, A. KOLOKOLOVA, AND A. TAL,
AGolp] lower bounds against MCSP via the coin problem, in 46th International Collo-
quium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Pa-
tras, Greece, vol. 132 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019,
pp. 66:1-66:15, https://doi.org/10.4230/LIPIcs.ICALP.2019.66, https://doi.org/10.4230/
LIPIcs.ICALP.2019.66.

A. GRINBERG, R. SHALTIEL, AND E. VIOLA, Indistinguishability by adaptive procedures with ad-
vice, and lower bounds on hardness amplification proofs, in 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, 2018,
pp. 956-966, https://doi.org/10.1109/FOCS.2018.00094, https://doi.org/10.1109/FOCS.
2018.00094.

D. GUTFREUND AND G. N. ROTHBLUM, The complexity of local list decoding, in Approxima-
tion, Randomization and Combinatorial Optimization. Algorithms and Techniques, 11th
International Workshop, APPROX 2008, and 12th International Workshop, RANDOM
2008, Boston, MA, USA, August 25-27, 2008. Proceedings, 2008, pp. 455-468, https:
//doi.org/10.1007/978-3-540-85363-3_36, https://doi.org/10.1007/978-3-540-85363-3_36.

J. HASTAD, Almost optimal lower bounds for small depth circuits, Advances in Computing
Research, 5 (1989), pp. 143-170

A. HEALY AND E. ViovLa, Constant-depth circuits for arithmetic in finite fields of characteristic
two, in STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science,
Marseille, France, February 23-25, 2006, Proceedings, 2006, pp. 672-683, https://doi.org/
10.1007/11672142_55, https://doi.org/10.1007/11672142_55.

W. HESsE, E. ALLENDER, AND D. A. M. BARRINGTON, Uniform constant-depth threshold cir-
cuits for division and iterated multiplication, J. Comput. Syst. Sci., 65 (2002), pp. 695-716,
https://doi.org/10.1016/S0022-0000(02)00025-9, https://doi.org/10.1016,/S0022-0000(02)
00025-9.

R. IMPAGLIAZZO, R. JAISWAL, V. KABANETS, AND A. WIGDERSON, Uniform direct product the-
orems: Simplified, optimized, and derandomized, SIAM J. Comput., 39 (2010), pp. 1637—
1665, https://doi.org/10.1137/080734030, https://doi.org/10.1137/080734030.

R. IMPAGLIAZZO, V. KABANETS, AND A. WIGDERSON, In search of an easy witness: exponential
time vs. probabilistic polynomial time, J. Comput. Syst. Sci., 65 (2002), pp. 672-694,
https://doi.org/10.1016/S0022-0000(02)00024-7, https://doi.org/10.1016/S0022-0000(02)
00024-7

R. IMPAGLIAZZO AND A. WIGDERSON, P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma, in Proceedings of the T'wenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, ACM, 1997, pp. 220229,
https://doi.org/10.1145/258533.258590, https://doi.org/10.1145/258533.258590.

J. KILIAN, Founding cryptography on oblivious transfer, in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, 1988,
pp. 20-31, https://doi.org/10.1145/62212.62215, https://doi.org/10.1145,/62212.62215.

D. C. KOzEN, Design and Analysis of Algorithms, Texts and Monographs in Computer

This manuscript is for review purposes only.


https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/BF01744431
https://doi.org/10.1145/103418.103429
https://doi.org/10.1145/103418.103429
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/73007.73010
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050/index.html
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050/index.html
https://eccc.weizmann.ac.il/eccc-reports/1995/TR95-050/index.html
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/11672142_55
https://doi.org/10.1007/11672142_55
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1137/080734030
https://doi.org/10.1137/080734030
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/258533.258590
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705

68

(43]

[44]

[45]

[46]

(47)

(48]

[57)

(58]

[59]

L. CHEN

Science, Springer, 1992, https://doi.org/10.1007/978-1-4612-4400-4, https://doi.org/10.
1007/978-1-4612-4400-4.

. A. LEVIN, One-way functions and pseudorandom generators, Comb., 7 (1987), pp. 357363,
https://doi.org/10.1007/BF02579323, https://doi.org/10.1007/BF02579323.

. Lu, I. C. OLIVEIRA, AND R. SANTHANAM, Pseudodeterministic algorithms and the structure
of probabilistic time, in STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory
of Computing, Virtual Event, Italy, June 21-25, 2021, S. Khuller and V. V. Williams,
eds., ACM, 2021, pp. 303-316, https://doi.org/10.1145/3406325.3451085, https://doi.org/
10.1145/3406325.3451085.

C. Lunp, L. ForrNnow, H. J. KARLOFF, AND N. NisAN, Algebraic methods for interactive
proof systems, J. ACM, 39 (1992), pp. 859-868, https://doi.org/10.1145/146585.146605,
https://doi.org/10.1145/146585.146605.

C. Lunp, L. Forrnow, H. J. KARLOFF, AND N. NisAN, Algebraic methods for interactive
proof systems, J. ACM, 39 (1992), pp. 859-868, https://doi.org/10.1145/146585.146605,
http://doi.acm.org/10.1145/146585.146605.

. MULMULEY, A fast parallel algorithm to compute the rank of a matriz over an arbitrary
field, Comb., 7 (1987), pp. 101-104, https://doi.org/10.1007/BF02579205, https://doi.org/
10.1007/BF02579205.

C. MURRAY AND R. R. WiLLIAMS, Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP, in Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, 2018, pp. 890-901, https://doi.org/10.1145/3188745.3188910, https:
//doi.org/10.1145/3188745.3188910.

. N1saN AND A. WIGDERSON, Hardness vs randomness, J. Comput. Syst. Sci., 49 (1994),
pp. 149-167, https://doi.org/10.1016/S0022-0000(05)80043-1, https://doi.org/10.1016/
S0022-0000(05)80043-1.

I. C. OLIVEIRA AND R. SANTHANAM, Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness, in 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, vol. 79 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2017, pp. 18:1-18:49, https://doi.org/10.4230/LIPIcs.CCC.2017.18, https:
//doi.org/10.4230/LIPIcs.CCC.2017.18.

A. A. RAZBOROV, Lower bounds on the size of bounded depth circuits over a complete basis
with logical addition, Mathematical Notes of the Academy of Sciences of the USSR, 41
(1987), pp. 333-338

A. A. RAZBOROV AND S. RUDICH, Natural proofs, J. Comput. Syst. Sci., 55 (1997), pp. 24-35,
https://doi.org/10.1006/jcss.1997.1494, https://doi.org/10.1006/jcss.1997.1494.

R. SANTHANAM, Circuit lower bounds for merlin—arthur classes, SIAM J. Comput., 39 (2009),
pp. 1038-1061, https://doi.org/10.1137/070702680, https://doi.org/10.1137/070702680.

J. I. SEIFERAS, M. J. FISCHER, AND A. R. MEYER, Separating nondeterministic time complexity
classes, J. ACM, 25 (1978), pp. 146-167, https://doi.org/10.1145/322047.322061, https:
//doi.org/10.1145/322047.322061.

R. SHALTIEL AND E. VioLA, Hardness amplification proofs require majority, SIAM J. Com-
put., 39 (2010), pp. 3122-3154, https://doi.org/10.1137/080735096, https://doi.org/10
1137,/080735096

A. SHAMIR, IP = PSPACE, J. ACM, 39 (1992), pp. 869-877, https://doi.org/10.1145/146585.
146609, https://doi.org/10.1145/146585.146609.

R. SMOLENSKY, Algebraic methods in the theory of lower bounds for boolean circuit complexity,
in Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, 1987, pp. 77-82, https://doi.org/10.1145/28395.28404, https://doi.
org/10.1145/28395.28404.

L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential time, in Proceed-
ings of the 5th Annual ACM Symposium on Theory of Computing, April 30 - May 2,
1973, Austin, Texas, USA, ACM, 1973, pp. 1-9, https://doi.org/10.1145/800125.804029,
https://doi.org/10.1145/800125.804029.

M. SupAN, L. TREVISAN, AND S. P. VADHAN, Pseudorandom generators without the XOR
lemma, J. Comput. Syst. Sci., 62 (2001), pp. 236-266, https://doi.org/10.1006/jcss.2000
1730, https://doi.org/10.1006/jcss.2000.1730.

L. TREVISAN, Extractors and pseudorandom generators, J. ACM, 48 (2001), pp. 860-879, https:
//doi.org/10.1145/502090.502099, https://doi.org/10.1145/502090.502099.

L. TREVISAN AND S. P. VADHAN, Pseudorandomness and average-case complexity via uniform
reductions, Computational Complexity, 16 (2007), pp. 331-364, https://doi.org/10.1007/
s00037-007-0233-x, https://doi.org/10.1007/s00037-007-0233-x.

jul

N

=

Z,

This manuscript is for review purposes only.


https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1007/BF02579323
https://doi.org/10.1007/BF02579323
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1145/3406325.3451085
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
http://doi.acm.org/10.1145/146585.146605
https://doi.org/10.1007/BF02579205
https://doi.org/10.1007/BF02579205
https://doi.org/10.1007/BF02579205
https://doi.org/10.1007/BF02579205
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1137/070702680
https://doi.org/10.1137/070702680
https://doi.org/10.1145/322047.322061
https://doi.org/10.1145/322047.322061
https://doi.org/10.1145/322047.322061
https://doi.org/10.1145/322047.322061
https://doi.org/10.1137/080735096
https://doi.org/10.1137/080735096
https://doi.org/10.1137/080735096
https://doi.org/10.1137/080735096
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
https://doi.org/10.1145/502090.502099
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x

NN
B ® =

NN NN
N = O

RN}
> UL W

DN DN DN DN DN NN NN NN NN

N N

NQP IS AVERAGE-CASE HARD FOR ACC CIRCUITS 69

[60] C. UMmANS, Pseudo-random generators for all hardnesses, J. Comput. Syst. Sci., 67 (2003),
pp. 419-440, https://doi.org/10.1016/S0022-0000(03)00046-1, https://doi.org/10.1016/
S0022-0000(03)00046-1.
H. VAN LINT, Introduction to coding theory, vol. 86, Springer-Verlag Berlin Heidelberg, 1999.
. VioLA, On approxzimate majority and probabilistic time, Computational Complexity, 18
(2009), pp. 337-375, https://doi.org/10.1007 /s00037-009-0267-3, https://doi.org/10.1007/
s00037-009-0267-3.
(63] L. R. WELCH AND E. R. BERLEKAMP, Error correction for algebraic block codes, U.S. Patent 4
633 470, 1986.

[64] R. WILLIAMS, Improving ezhaustive search implies superpolynomial lower bounds, STAM Jour-
nal on Computing, 42 (2013), pp. 1218-1244.

[65] R. WiLLIAMS, New algorithms and lower bounds for circuits with linear threshold gates, in
Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, 2014, pp. 194-202, https://doi.org/10.1145/2591796.2591858, http://doi.acm.
org/10.1145/2591796.2591858.

[61]
(62]

el

[66] R. WiLLIAMS, Nonuniform ACC circuit lower bounds, Journal of the ACM (JACM), 61 (2014),
p- 2.

[67] R. WILLIAMS, Natural proofs versus derandomization, SIAM J. Comput., 45 (2016), pp. 497—
529, https://doi.org/10.1137/130938219, https://doi.org/10.1137/130938219.

[68] A. C. YAO, Separating the polynomial-time hierarchy by oracles (preliminary version), in 26th
Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, 1985, pp. 1-10, https://doi.org/10.1109/SFCS.1985.49, https://doi.org/10.
1109/SFCS.1985.49.

[69] S. ZAK, A turing machine time hierarchy, Theor. Comput. Sci., 26 (1983), pp. 327-333, https:

//doi.org/10.1016/0304-3975(83)90015-4, https://doi.org/10.1016/0304-3975(83)90015-4.

This manuscript is for review purposes only.


https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1007/s00037-009-0267-3
https://doi.org/10.1007/s00037-009-0267-3
https://doi.org/10.1007/s00037-009-0267-3
https://doi.org/10.1007/s00037-009-0267-3
https://doi.org/10.1145/2591796.2591858
http://doi.acm.org/10.1145/2591796.2591858
http://doi.acm.org/10.1145/2591796.2591858
http://doi.acm.org/10.1145/2591796.2591858
https://doi.org/10.1137/130938219
https://doi.org/10.1137/130938219
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1016/0304-3975(83)90015-4
https://doi.org/10.1016/0304-3975(83)90015-4

	Introduction
	Background and Motivation
	Our Results

	Technique Overview
	Main Difficulty: The Absence of an Easy-Witness Lemma Under the Approximability Assumption
	Review of ChenOS18's Approach

	Easy-Witness Lemma for NQP: ``Almost'' Almost-Everywhere (a.a.e.) MA Lower Bounds and i.o. Non-deterministic PRGs (NPRGs)
	Our New Approach: ``Almost'' Almost-Everywhere Average-Case MA Lower Bound and i.o. NPRG
	i.o. Non-deterministic PRG
	The i.o. NPRG construction in Williams16Derand
	i.o. Non-deterministic PRG for Low-Depth Circuits

	An A.a.e. Average-Case MA Lower Bound
	Our MA Language Needs a Low-Depth Computable Predicate
	A.a.e. Average-case MA Lower Bounds from a PSPACE-complete Language with Nice Properties
	A Technicality: Dealing with Advice Bits


	Preliminaries
	Complexity Classes and Basic Definitions
	Basic Circuit Families
	Notation

	Pseudorandom Generators
	A PSPACE-complete Language with Low-complexity Reducibility Properties
	Average-Case Hard Languages with Low Space
	MA coMA and NP coNP Algorithms
	Witness Circuits
	Hardness Amplification

	Random self-reduction for NC 1
	A Random Self-reducible NC 1-Complete Problem
	A Special Encoding
	NC 1 Collapses to AC0 C if Uniform NC 1 can be Approximated by C

	Construction of i.o. NPRG for Low-Depth Circuits
	Witness-Size Lower Bound for NE
	The NPRG Construction

	A Simpler Proof for the New Easy Witness Lemma for NP and NQP of Murray-Williams17
	A.a.e. Fixed-polynomial Lower Bounds for (MA coMA)/1
	An Easy-Witness Lemma for NP

	Average-Case ``Almost'' Almost Everywhere Lower Bounds for MA coMA
	Average-case circuit lower bounds for NQP
	(1-) Average-Case Lower Bounds for NQP from NPRGs and MA Lower Bounds
	(1-) Average-Case Lower Bounds for NQP from Non-trivial Derandomization
	1/2 + 1/polylog(n) Average-Case Lower Bounds against ACC0 THR
	Generalization to Other Natural Circuit Classes

	A PSPACE-complete Language with Nice Reducibility Properties
	Preliminaries
	Finite Fields
	Uniform TC0 Circuits for Arithmetic Operations over Fn

	Review of the Construction in TrevisanV07
	Technical Challenges in Adapting TrevisanV07 for Our Purpose
	Additional properties of FTV and a proof of lm:TV-lemma

	Construction of The PSPACE-complete Language
	Extension checker
	The Language LPSPACE
	Verifying Properties of LPSPACE


	Appendix A. Low-depth Decoders for Reed-Muller Codes
	Appendix B. An Xor Lemma from Average-Case Hardness against MAJC Circuits
	Appendix C. PRG Construction for Low-Depth Circuits
	Appendix D. Either NQPNQP or MCSPACC0
	Acknowledgment
	References

