Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Scott Aaronson, Lijie Chen
UT Austin, Tsinghua University \rightarrow MIT

July 7, 2017

Section

(1) Introduction

(2) Random Quantum Circuit Proposal

(3) Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems

4 A glimpse on other results

Quantum Supremacy

- In this quest, we forget about the applications, only want to find a problem which we can establish a quantum speedup over classical devices as clean as possible.
- The first application of quantum computing:
- Disprove the QC skeptics!
- And Extended Church-Turing Thesis.
- An important milestone for QC.

Decision Problem vs. Sampling Problem

- An ideal way for showing quantum supremacy and convincing the skeptics would be:
- Implement Shor's algorithm [Sho97].
- Break RSA.
- Everyone believe your quantum computer works.
- The only problem is that it needs too many qubits.
- 40 and 4000 are both $O(1)$ in theory, but
- could require 50 years in the real world.
- Would it be possible to demonstrate quantum supremacy with much less qubits?

Quantum Supremacy via Sampling Problems

- Probably YES with a shift to sampling problem.
- Sampling problem:
- Given an input x, you are required to take sample from a certain distribution $\mathcal{D}(x)$ over $\{0,1\}^{n}$.
- Merits comparing to decision problem:
- Easier to solve with near-future quantum devices:
- Do some complicated operations \Rightarrow get a highly entangled quantum state \Rightarrow measure it.
- Naturally induce a sampling problem.
- Easier to argue are hard for classical computers:
- ExactSampBPP $=$ ExactSampBQP \Rightarrow PostBQP $=$ PostBPP $\Rightarrow P P \subseteq P H \Rightarrow$ PH collapses.
- Many works alone this line
[TD04, BJS10, AA13, MFF14, JVdN14, FH16, ABKM16].

This talk

- While there are many exciting results, there are still some theoretical challenges for us.
- Verification for sampling problem:
- It is not directly verifiable that our algorithm really takes samples from the predicted distributions $\mathcal{D}(x)$.
- We have to consider some statistical tests \mathcal{T} on the obtained samples $x_{1}, x_{2}, \ldots, x_{t}$.
- But then the hardness assumption should imply no classical algorithm can pass \mathcal{T}.
- That is, we ought to talk about relational problems.

This talk

- While there are many exciting results, there are still some theoretical challenges for us.
- Supremacy Theorem for Approximate Sampling:
- PH does not collapse \Rightarrow ExactSampBPP \neq ExactSampBQP.
- But, real world experiment is noisy, hardness for exact version is not convincing enough.
- Previous results on quantum supremacy for approximate sampling relies on some other unproven conjectures
- Like in Aaronson and Arkhipov [AA13], they need the hardness of Guassian permanent estimation.
- Is that necessary? Could there be some simple (relativized) argument for PH does not collapse \Rightarrow SampBPP \neq SampBQP?
- Or is there an oracle for which the above does not hold?
- An open question raised in [AA13].

Talk Outline

- Random Quantum Circuit Proposal
- Heavy Output Generation (HOG)
- QUAtum THreshold assumption (QUATH)
- Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems.
- There exists an oracle \mathcal{O}, SampBPP $^{\mathcal{O}}=\operatorname{SampBQP}{ }^{\mathcal{O}}$ and $\mathrm{PH}^{\mathcal{O}}$ is infinite.
- no relativized way to show quantum supremacy only base on PH doesn't collapse. (unlike the exact version).
- A glimpse on other results.
- Space-efficient algorithm for simulating quantum algorithm classically.
- 1 vs. $\Omega(n)$ separation for sampling problems in query complexity.
- Quantum Supremacy relative to oracles in P/poly.

Section

(1) Introduction

(2) Random Quantum Circuit Proposal

(3) Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy

 Theorems
4 A glimpse on other results

Random Quantum Circuit Proposal

High level picture:

- Generate a random quantum circuit C on $\sqrt{n} \times \sqrt{n}$ grid.
- Apply C to $|0\rangle^{\otimes n}$ for t times to obtain t samples $x_{1}, x_{2}, \ldots, x_{t}$.
- Apply a statistical test on x_{1}, \ldots, x_{t}.
- This step may takes exponential classical time, but would be OK for $n \approx 40$.
- Publish C, to challenge skeptics to pass the same test classically with reasonable amount of time.

The Heavy Output Generation Problem

More specifically:

Problem (HOG, or Heavy Output Generation)

Given as input a random quantum circuit C (will be specified later), generate output strings x_{1}, \ldots, x_{k}, at least a $2 / 3$ fraction of which have greater than the median probability in C's output distribution.

- The verification can be done in exponential time classically.
- We want to find a clean assumption that implies HOG is hard.

The Random Circuit Distribution

We use $\mu_{\text {grid }}^{n, m}$ to denote the following distribution of random circuit on $\sqrt{n} \times \sqrt{n}$ with m gates. (Assuming $m \gg n$).

- A gate can only act on two adjacent qubits.
- For each $t \leq n$, we pick the t-th qubit and a random neighbor of it. (The purpose here is to make sure that there is a gate on every qubit.)
- For each $t>n$, we pick a uniform random pair of adjacent qubits in the grid.
- In either case, we set the t-th gate to be a uniform random 2-qubit gate.

Some notations: Heavy Output, and adv(|u〉)

- For a pure state $|u\rangle$ on n qubits, we define $\operatorname{probList}(|u\rangle)$ to be the list consisting of 2^{n} numbers, $|\langle u \mid x\rangle|^{2}$ for each $x \in\{0,1\}^{n}$.
- Given N real numbers $a_{1}, a_{2}, \ldots, a_{N}$, we use uphalf $\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ to denote the sum of the largest $N / 2$ numbers among them, and we let

$$
\operatorname{adv}(|u\rangle)=\operatorname{uphalf}(\operatorname{probList}(|u\rangle)) .
$$

- We say that an output $z \in\{0,1\}^{n}$ is heavy for a quantum circuit C, if it is greater than the median of probList $\left(C\left|0^{n}\right\rangle\right)$.
- We abbreviate $\operatorname{adv}\left(C\left|0^{n}\right\rangle\right)$ as $\operatorname{adv}(C)$.
- The simple quantum algorithm's output is heavy w.p. $\operatorname{adv}(C)$.

Lower bound on $\operatorname{adv}(C)$

- What we can prove, is that the expectation of $\operatorname{adv}(C)$ is high.

Lemma

For $n \geq 2$ and $m \geq n$:

$$
\underset{C \leftarrow \mu_{\mathrm{grid}}^{n, m}}{\mathbb{E}}[\operatorname{adv}(C)] \geq \frac{5}{8}
$$

- But we conjecture that $\operatorname{adv}(C)$ is large with an overwhelming probability.

Conjecture

For $n \geq 2$ and $m \geq n^{2}$, and for all constants $\varepsilon>0$,

$$
\underset{C \leftarrow \mu_{\text {grid }}^{n, m}}{\operatorname{Pr}_{n}}\left[\operatorname{adv}(C)<\frac{1+\ln 2}{2}-\varepsilon\right]<\exp \{-\Omega(n)\} .
$$

Lower bound on $\operatorname{adv}(C)$

- But we conjecture that $\operatorname{adv}(C)$ is large with an overwhelming probability.

Conjecture

For $n \geq 2$ and $m \geq n^{2}$, and for all constants $\varepsilon>0$,

$$
\underset{\substack{\leftarrow \leftarrow \mu_{\mathrm{grid}}^{n, m}}}{\operatorname{Pr}^{2}}\left[\operatorname{adv}(C)<\frac{1+\ln 2}{2}-\varepsilon\right]<\exp \{-\Omega(n)\} .
$$

- Basically, the above inequality holds when C is replaced by a uniform random unitary on n qubits.
- So what we conjecture is that a random quantum circuit is pseudo-random in a certain sense.
- We provide some evidence by numeric simulation in the Appendix.
- In the following we will assume this conjecture.

Easiness for Quantum Algorithm

We are going to argue that HOG problem is a good quantum supremacy experiment.

Proposition

There is a quantum algorithm that succeeds at HOG with probability $1-\exp \{-\Omega(\min (n, k))\}$.

- From the conjecture, w.h.p., $\operatorname{adv}(C)>0.7$.
- In that case, A random sample from C is heavy w.p. 0.7.
- Then a Chernoff bound suffices.

The Quantum Threshold Assumption

Assumption (QUATH, or the QUAntum THreshold assumption)

There is no polynomial-time classical algorithm that takes as input a description of a random quantum circuit C, and that guesses whether $\left.\left|\left\langle 0^{n}\right| C\right| 0^{n}\right\rangle\left.\right|^{2}$ is greater or less than the median of all 2^{n} of the $\left.\left|\left\langle 0^{n}\right| C\right| x\right\rangle\left.\right|^{2}$ values, with success probability at least $\frac{1}{2}+\Omega\left(\frac{1}{2^{n}}\right)$ over the choice of C.

Hardness for Classical Algorithm : Proof Sketch

Theorem

Assuming QUATH, no polynomial-time classical algorithm can solve HOG with probability at least 0.99.

- Suppose for contradiction that there exists such an algorithm A, we construct an algorithm to violate QUATH.
- Given a circuit C.
- Apply a random "xor"-mask z on C to get a circuit C ' such that $\langle 0| C^{\prime}|z\rangle=\langle 0| C|0\rangle$.
- i.e. Hide the amplitude we care about.
- Run A on C^{\prime}, to get a list of outputs $x_{1}, x_{2}, \ldots, x_{t}$, pick one of them x_{i} at uniformly random.
- We guess it's greater than median, if $z=x_{i}$.
- Take a uniform random guess otherwise.
- Violates QUATH.

Section

(1) Introduction

(2) Random Quantum Circuit Proposal

(3) Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems

4 A glimpse on other results

SampBPP and SampBQP

Definition (Sampling Problems, SampBPP, and SampBQP)

- A sampling problem S is a collection of probability distributions $\left(\mathcal{D}_{x}\right)_{x \in\{0,1\}^{*}}$, one for each input string $x \in\{0,1\}^{n}$, where \mathcal{D}_{x} is a distribution over $\{0,1\}^{p(n)}$, for some fixed polynomial p.
- Then SampBPP is the class of sampling problems $S=\left(\mathcal{D}_{x}\right)_{x \in\{0,1\}^{*}}$ for which there exists a probabilistic polynomial-time algorithm B that, given $\left\langle x, 0^{1 / \varepsilon}\right\rangle$ as input, samples from a probability distribution \mathcal{C}_{x} such that $\left\|\mathcal{C}_{x}-\mathcal{D}_{x}\right\| \leq \varepsilon$.
- SampBQP is defined the same way, except that B is quantum now.

Our goal and what we have

- Our goal is to construct an oracle \mathcal{O} such that:
- $\mathrm{PH}^{\mathcal{O}}$ is infinite.
- $\operatorname{SampBPP}{ }^{\mathcal{O}}=$ SampBQP ${ }^{\mathcal{O}}$.
- What we know is:
- For a random oracle $\mathcal{O}, \mathrm{PH}^{\mathcal{O}}$ is infinite by Rossman, Servedio and Tan [RST15].
- For a PSPACE-complete language L, SampBPP ${ }^{L}=$ SampBQP ${ }^{L}$.

Intuition

- Naive idea:
- Simply let our oracle be a combination of both a PSPACE-complete language and a random oracle.
- Problem: SampBPP and SampBQP now get access to a random oracle, it can be proved they are not equal in this case.
- Trying to fix it, can we somehow hide the random oracle so that:
- An algorithm in PH has access to it, so PH is still infinite.
- SampBQP algorithm cannot access it (or with very small probability), so SampBQP and SampBPP are not re-separated.

Construction

- Given a string $w \in\{0,1\}^{N}$, we hide it in a random matrix \mathcal{M}_{w} of $\{0,1\}^{N \times N}$ as follows:
- If $w_{i}=1$, a uniform random position of i-th row is 1 , other positions are 0 .
- If $w_{i}=0$, the entire i-th row is 0 .
- A random oracle \mathcal{O} can be viewed as a list of functions

$$
\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n=1}^{\infty}
$$

- Or a list of strings

$$
\left\{w_{n}:\{0,1\}^{2^{n}} \rightarrow\{0,1\}\right\}_{n=1}^{\infty}
$$

- By hiding each w_{n} into a random matrix of $\{0,1\}^{2^{n} \times 2^{n}}$, we can obtain another oracle $\mathcal{M}_{\mathcal{O}}$ (actually a distribution on oracles).

Construction

- $\mathcal{M}_{\mathcal{O}}$ is just what we want:
- An algorithm in PH can recover w from \mathcal{M}_{w} (simply by a OR layer), hence PH is still infinite.
- Meanwhile, since OR is hard for quantum algorithms [BBBV97], use a BBBV-type argument, one can show that essentially a quantum algorithm with oracle accesses to $\mathcal{M}_{\mathcal{O}}$ can be simulated efficiently by a classical randomized algorithm.
- Need to work out many technical details, but the idea is very clean.

Section

(1) Introduction
 (2) Random Quantum Circuit Proposal
 (3) Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems

(4) A glimpse on other results

Space-efficient algorithm for simulating quantum algorithm classically

- Given a n qubit and m gates circuit, how to simulate it classically and efficiently?
- "Schrodinger way":
- Store the whole wave-function.
- $O\left(m 2^{n}\right)$ time and $O\left(2^{n}\right)$ space.
- "Feynman way":
- Sum over paths.
- $O\left(4^{m} 1\right)$ time and $O(m+n)$ space.
- We show:
- "Savitch way": $O\left((2 d)^{n}\right)$ time and poly space, (d is the depth).
- Can be further improved on circuit on grids.
- Trade-off between space and time:
- A d factor in time \Leftrightarrow a 2 factor in space.

1 vs $\Omega(n)$ Separation in query complexity

- Here we consider sampling problems in query complexity.
- The Fourier Sampling problem introduced by Aaronson and Ambainis [AA14], requires only 1 query for a quantum algorithm.
- It is also shown in [AA14] that it requires $\Omega(N / \log N)$ queries for classical randomized algorithms.
- We improve it by showing that Fourier Sampling requires $\Omega(N)$ queries in fact.
- Hence, in the world of query complexity, classical and quantum sampling algorithm has the maximum possible separation.

Quantum Supremacy with respect to oracles in P /poly

- We ask: is there an oracle \mathcal{O} in $\mathrm{P} /$ poly, such that $\mathrm{BQP}^{\mathcal{O}} \neq \mathrm{BPP}^{\mathcal{O}}$?
- An intermediate case between black-box (oracle separation) and non-black-box arguments (real world, no oracle) by requiring the oracle to "exist in real world".
- Previous works [Zha12, SG04] imply that the answer is YES when one-way function exist.
- We show that at least some computational assumptions are needed by proving that the answer is NO if SampBPP $=$ SampBQP and NP $\subseteq B P P$.

Any Questions?

Thank you

S．Aaronson and A．Arkhipov．
The computational complexity of linear optics．
Theory of Computing，9（4）：143－252， 2013.
Earlier version in Proc．ACM STOC＇2011．ECCC TR10－170，arXiv：1011．3245．
國 S．Aaronson and A．Ambainis．
Forrelation：a problem that optimally separates quantum from classical computing．
arXiv：1411．5729， 2014.
国 Scott Aaronson，Adam Bouland，Greg Kuperberg，and Saeed Mehraban．
The computational complexity of ball permutations．
arXiv preprint arXiv：1610．06646， 2016.
囲 C．Bennett，E．Bernstein，G．Brassard，and U．Vazirani．
Strengths and weaknesses of quantum computing．
SIAM J．Comput．，26（5）：1510－1523， 1997.
quant－ph／9701001．
囯 M．Bremner，R．Jozsa，and D．Shepherd．
Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy．
Proc．Roy．Soc．London，A467（2126）：459－472， 2010.
arXiv:1005.1407.
Edward Farhi and Aram W Harrow.
Quantum supremacy through the quantum approximate optimization algorithm.
arXiv preprint arXiv:1602.07674, 2016.
R Richard Jozsa and Marrten Van den Nest.
Classical simulation complexity of extended clifford circuits. Quantum Information \& Computation, 14(7\&8):633-648, 2014.

Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. Hardness of classically simulating the one-clean-qubit model. Physical review letters, 112(13):130502, 2014.
國 Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. An average-case depth hierarchy theorem for boolean circuits. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1030-1048. IEEE, 2015.
R Rocco A Servedio and Steven J Gortler.
Equivalences and separations between quantum and classical learnability.
SIAM Journal on Computing, 33(5):1067-1092, 2004.
P P. W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26(5):1484-1509, 1997.
Earlier version in Proc. IEEE FOCS'1994. quant-ph/9508027.
目
B. M. Terhal and D. P. DiVincenzo.

Adaptive quantum computation, constant-depth circuits and Arthur-Merlin games.
Quantum Information and Computation, 4(2):134-145, 2004.
quant-ph/0205133.
围
Mark Zhandry.
How to construct quantum random functions.
In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 679-687. IEEE, 2012.

