Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Scott Aaronson, Lijie Chen

UT Austin, Tsinghua University \rightarrow MIT

July 7, 2017

Scott Aaronson, Lijie Chen (UT Austin, Tsinghua Uni\Complexity-Theoretic Foundations of Quantum Supren

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

- 2 Random Quantum Circuit Proposal
- 3 Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems
- 4 A glimpse on other results

イロト イヨト イヨト イヨ

Quantum Supremacy

- In this quest, we forget about the applications, only want to find a problem which we can establish a quantum speedup over classical devices as clean as possible.
- The first application of quantum computing:
 - Disprove the QC skeptics!
 - And Extended Church-Turing Thesis.
- An important milestone for QC.

- An ideal way for showing quantum supremacy and convincing the skeptics would be:
 - Implement Shor's algorithm [Sho97].
 - Break RSA.
 - Everyone believe your quantum computer works.
- The only problem is that it needs too many qubits.
 - 40 and 4000 are both O(1) in theory, but
 - could require 50 years in the real world.
- Would it be possible to demonstrate quantum supremacy with much less qubits?

< D > < P > < E > < E</p>

Quantum Supremacy via Sampling Problems

- Probably **YES** with a shift to sampling problem.
- Sampling problem:
 - Given an input x, you are required to take sample from a certain distribution $\mathcal{D}(x)$ over $\{0,1\}^n$.
- Merits comparing to decision problem:
 - Easier to solve with near-future quantum devices:
 - Do some complicated operations \Rightarrow get a highly entangled quantum state \Rightarrow measure it.
 - Naturally induce a sampling problem.
 - Easier to argue are hard for classical computers:
 - ExactSampBPP = ExactSampBQP \Rightarrow PostBQP = PostBPP \Rightarrow PP \subseteq PH \Rightarrow PH collapses.
- Many works alone this line [TD04, BJS10, AA13, MFF14, JVdN14, FH16, ABKM16].

イロト イヨト イヨト イヨ

• While there are many exciting results, there are still some theoretical challenges for us.

• Verification for sampling problem:

- It is not directly verifiable that our algorithm really takes samples from the predicted distributions $\mathcal{D}(x)$.
- We have to consider some statistical tests \mathcal{T} on the obtained samples x_1, x_2, \ldots, x_t .
- $\bullet\,$ But then the hardness assumption should imply no classical algorithm can pass ${\cal T}.$
- That is, we ought to talk about relational problems.

イロト イ団ト イヨト イヨト

• While there are many exciting results, there are still some theoretical challenges for us.

- Supremacy Theorem for Approximate Sampling:
 - PH does not collapse \Rightarrow ExactSampBPP \neq ExactSampBQP.
 - But, real world experiment is **noisy**, hardness for exact version is not convincing enough.
 - Previous results on quantum supremacy for approximate sampling relies on some other unproven conjectures
 - Like in Aaronson and Arkhipov [AA13], they need the hardness of Guassian permanent estimation.
 - Is that necessary? Could there be some simple (relativized) argument for PH does not collapse ⇒ SampBPP ≠ SampBQP?
 - Or is there an oracle for which the above does not hold?
 - An open question raised in [AA13].

イロト イヨト イヨト イヨト

- Random Quantum Circuit Proposal
 - Heavy Output Generation (HOG)
 - QUAtum THreshold assumption (QUATH)
- Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems.
 - There exists an oracle \mathcal{O} , SampBPP^{\mathcal{O}} = SampBQP^{\mathcal{O}} and PH^{\mathcal{O}} is infinite.
 - no relativized way to show quantum supremacy only base on PH doesn't collapse. (unlike the exact version).
- A glimpse on other results.
 - Space-efficient algorithm for simulating quantum algorithm classically.
 - 1 vs. $\Omega(\mathbf{n})$ separation for sampling problems in query complexity.
 - Quantum Supremacy relative to oracles in P/poly.

イロト イヨト イヨト イヨト

Introduction

2 Random Quantum Circuit Proposal

3 Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems

4 A glimpse on other results

イロト イヨト イヨト イヨ

High level picture:

- Generate a random quantum circuit C on $\sqrt{n} \times \sqrt{n}$ grid.
- Apply C to $|0\rangle^{\otimes n}$ for t times to obtain t samples x_1, x_2, \ldots, x_t .
- Apply a statistical test on x_1, \ldots, x_t .
 - This step may takes exponential classical time, but would be OK for $n \approx 40$.
- Publish *C*, to challenge skeptics to pass the same test classically with reasonable amount of time.

イロト イポト イヨト イヨ

More specifically:

Problem (HOG, or Heavy Output Generation)

Given as input a random quantum circuit C (will be specified later), generate output strings x_1, \ldots, x_k , at least a 2/3 fraction of which have greater than the median probability in C's output distribution.

- The verification can be done in exponential time classically.
- We want to find a clean assumption that implies HOG is hard.

• • • • • • • • • • • •

We use $\mu_{\text{grid}}^{n,m}$ to denote the following distribution of random circuit on $\sqrt{n} \times \sqrt{n}$ with *m* gates. (Assuming $m \gg n$).

- A gate can only act on two adjacent qubits.
- For each *t* ≤ *n*, we pick the *t*-th qubit and a random neighbor of it. (The purpose here is to make sure that there is a gate on every qubit.)
- For each t > n, we pick a uniform random pair of adjacent qubits in the grid.
- In either case, we set the *t*-th gate to be a uniform random 2-qubit gate.

イロト イ団ト イヨト イヨト

Some notations: Heavy Output, and $adv(|u\rangle)$

- For a pure state |u⟩ on n qubits, we define probList(|u⟩) to be the list consisting of 2ⁿ numbers, |⟨u|x⟩|² for each x ∈ {0,1}ⁿ.
- Given N real numbers a_1, a_2, \ldots, a_N , we use uphalf (a_1, a_2, \ldots, a_N) to denote the sum of the largest N/2 numbers among them, and we let

 $adv(|u\rangle) = uphalf(probList(|u\rangle)).$

- We say that an output z ∈ {0,1}ⁿ is *heavy* for a quantum circuit C, if it is greater than the median of probList(C|0ⁿ)).
- We abbreviate $\operatorname{adv}(C|0^n\rangle)$ as $\operatorname{adv}(C)$.
- The simple quantum algorithm's output is heavy w.p. adv(C).

・ロト ・ 同ト ・ ヨト ・ ヨ

• What we can prove, is that the expectation of adv(C) is high.

Lemma

For $n \geq 2$ and $m \geq n$:

$$\mathbb{E}_{\leftarrow \mu_{\mathsf{grid}}^{n,m}}[\mathsf{adv}(\mathcal{C})] \geq \frac{5}{8}.$$

• But we conjecture that adv(C) is large with an *overwhelming* probability.

Conjecture

For $n \ge 2$ and $m \ge n^2$, and for all constants $\varepsilon > 0$,

$$\Pr_{\boldsymbol{\mathcal{K}} \leftarrow \boldsymbol{\mu}_{\mathsf{grid}}^{n,m}} \left[\mathsf{adv}(\boldsymbol{\mathcal{C}}) < \frac{1 + \ln 2}{2} - \varepsilon \right] < \exp\left\{ - \Omega(\boldsymbol{n}) \right\}.$$

イロト イ団ト イヨト イヨト

Lower bound on adv(C)

• But we conjecture that adv(C) is large with an *overwhelming* probability.

Conjecture

For $n \ge 2$ and $m \ge n^2$, and for all constants $\varepsilon > 0$,

$$\Pr_{\mathsf{C} \leftarrow \mu_{\mathrm{grid}}^{n,m}} \left[\mathrm{adv}(\mathsf{C}) < \frac{1 + \ln 2}{2} - \varepsilon \right] < \exp\left\{ - \Omega(\mathsf{n}) \right\}.$$

- Basically, the above inequality holds when *C* is replaced by a uniform random unitary on *n* qubits.
- So what we conjecture is that a random quantum circuit is pseudo-random in a certain sense.
- We provide some evidence by numeric simulation in the Appendix.
- In the following we will assume this conjecture.

We are going to argue that HOG problem is a good quantum supremacy experiment.

Proposition

There is a quantum algorithm that succeeds at HOG with probability $1 - \exp\{-\Omega(\min(n, k))\}$.

- From the conjecture, w.h.p., adv(C) > 0.7.
- In that case, A random sample from C is heavy w.p. 0.7.
- Then a Chernoff bound suffices.

< D > < P > < E > < E</p>

Assumption (QUATH, or the QUAntum THreshold assumption)

There is no polynomial-time classical algorithm that takes as input a description of a random quantum circuit C, and that guesses whether $|\langle 0^n | C | 0^n \rangle|^2$ is greater or less than the median of all 2^n of the $|\langle 0^n | C | x \rangle|^2$ values, with success probability at least $\frac{1}{2} + \Omega\left(\frac{1}{2^n}\right)$ over the choice of C.

Hardness for Classical Algorithm : Proof Sketch

Theorem

Assuming QUATH, no polynomial-time classical algorithm can solve HOG with probability at least 0.99.

- Suppose for contradiction that there exists such an algorithm *A*, we construct an algorithm to violate QUATH.
- Given a circuit *C*.
- Apply a random "xor"-mask z on C to get a circuit C' such that $\langle 0|C'|z\rangle = \langle 0|C|0\rangle$.
 - i.e. Hide the amplitude we care about.
- Run A on C', to get a list of outputs $x_1, x_2, ..., x_t$, pick one of them x_i at uniformly random.
 - We guess it's greater than median, if $z = x_i$.
 - Take a uniform random guess otherwise.
- Violates QUATH.

イロト イヨト イヨト イヨト

Introduction

- 2 Random Quantum Circuit Proposal
- Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems

・ロト ・回 ト ・ ヨト ・

Definition (Sampling Problems, SampBPP, and SampBQP)

- A sampling problem S is a collection of probability distributions $(\mathcal{D}_x)_{x \in \{0,1\}^*}$, one for each input string $x \in \{0,1\}^n$, where \mathcal{D}_x is a distribution over $\{0,1\}^{p(n)}$, for some fixed polynomial p.
- Then SampBPP is the class of sampling problems S = (D_x)_{x∈{0,1}*} for which there exists a probabilistic polynomial-time algorithm B that, given ⟨x,0^{1/ε}⟩ as input, samples from a probability distribution C_x such that ||C_x D_x|| ≤ ε.
 SampBQP is defined the same way, except that B is quantum now.

・ロト ・ 同ト ・ ヨト ・ ヨト

- \bullet Our goal is to construct an oracle ${\mathcal O}$ such that:
 - PH^O is infinite.
 - SampBPP^O = SampBQP^O.

- What we know is:
 - For a random oracle \mathcal{O} , $\mathsf{PH}^{\mathcal{O}}$ is infinite by Rossman, Servedio and Tan [RST15].
 - For a PSPACE-complete language L, $SampBPP^{L} = SampBQP^{L}$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intuition

- Naive idea:
 - Simply let our oracle be a combination of both a PSPACE-complete language and a random oracle.
 - Problem: SampBPP and SampBQP now get access to a random oracle, it can be proved they are not equal in this case.

- Trying to fix it, can we somehow hide the random oracle so that:
 - An algorithm in PH has access to it, so PH is still infinite.
 - SampBQP algorithm cannot access it (or with very small probability), so SampBQP and SampBPP are not re-separated.

Construction

- Given a string $w \in \{0,1\}^N$, we hide it in a random matrix \mathcal{M}_w of $\{0,1\}^{N \times N}$ as follows:
 - If $w_i = 1$, a uniform random position of *i*-th row is 1, other positions are 0.
 - If $w_i = 0$, the entire *i*-th row is 0.
- \bullet A random oracle ${\cal O}$ can be viewed as a list of functions

$${f_n: \{0,1\}^n \to \{0,1\}\}_{n=1}^\infty}$$

• Or a list of strings

$$\{w_n: \{0,1\}^{2^n} \to \{0,1\}\}_{n=1}^{\infty}$$

• By hiding each w_n into a random matrix of $\{0,1\}^{2^n \times 2^n}$, we can obtain another oracle $\mathcal{M}_{\mathcal{O}}$ (actually a distribution on oracles).

イロト イヨト イヨト イヨ

- $\mathcal{M}_{\mathcal{O}}$ is just what we want:
 - An algorithm in PH can recover w from \mathcal{M}_w (simply by a OR layer), hence PH is still infinite.
 - Meanwhile, since OR is hard for quantum algorithms [BBBV97], use a BBBV-type argument, one can show that essentially a quantum algorithm with oracle accesses to $\mathcal{M}_{\mathcal{O}}$ can be simulated efficiently by a classical randomized algorithm.
- Need to work out many technical details, but the idea is very clean.

< D > < P > < E > < E</p>

Introduction

- 2 Random Quantum Circuit Proposal
- 3 Non-Relativizing Techniques Will Be Needed for Strong Quantum Supremacy Theorems
- A glimpse on other results

イロト イヨト イヨト イヨ

Space-efficient algorithm for simulating quantum algorithm classically

- Given a *n* qubit and *m* gates circuit, how to simulate it classically and efficiently?
- "Schrodinger way":
 - Store the whole wave-function.
 - $O(m2^n)$ time and $O(2^n)$ space.
- "Feynman way":
 - Sum over paths.
 - $O(4^m 1)$ time and O(m + n) space.
- We show:
 - "Savitch way": $O((2d)^n)$ time and poly space, (d is the depth).
 - Can be further improved on circuit on grids.
 - Trade-off between space and time:
 - A *d* factor in time \Leftrightarrow a 2 factor in space.

1 vs $\Omega(n)$ Separation in query complexity

- Here we consider sampling problems in query complexity.
- The Fourier Sampling problem introduced by Aaronson and Ambainis [AA14], requires only 1 query for a quantum algorithm.
- It is also shown in [AA14] that it requires $\Omega(N/\log N)$ queries for classical randomized algorithms.
- We improve it by showing that Fourier Sampling requires $\Omega(\textit{N})$ queries in fact.
- Hence, in the world of query complexity, classical and quantum sampling algorithm has the maximum possible separation.

- We ask: is there an oracle \mathcal{O} in P/poly, such that BQP^{\mathcal{O}} \neq BPP^{\mathcal{O}}?
- An intermediate case between black-box (oracle separation) and non-black-box arguments (real world, no oracle) by requiring the oracle to "exist in real world".
- Previous works [Zha12, SG04] imply that the answer is YES when one-way function exist.
- We show that at least some computational assumptions are needed by proving that the answer is NO if SampBPP = SampBQP and NP \subseteq BPP.

Thank you

< □ > < □ > < □ > < □ > < □ >

S. Aaronson and A. Arkhipov.

The computational complexity of linear optics.

Theory of Computing, 9(4):143–252, 2013. Earlier version in Proc. ACM STOC'2011. ECCC TR10-170, arXiv:1011.3245.

- S. Aaronson and A. Ambainis.

Forrelation: a problem that optimally separates quantum from classical computing.

arXiv:1411.5729, 2014.

C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510-1523, 1997. quant-ph/9701001.

M. Bremner, R. Jozsa, and D. Shepherd. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. Roy. Soc. London, A467(2126):459-472, 2010.

arXiv:1005.1407.

Quantum supremacy through the quantum approximate optimization algorithm.

arXiv preprint arXiv:1602.07674, 2016.

- Richard Jozsa and Marrten Van den Nest. Classical simulation complexity of extended clifford circuits. Quantum Information & Computation, 14(7&8):633–648, 2014.
- Tomoyuki Morimae, Keisuke Fujii, and Joseph F Fitzsimons. Hardness of classically simulating the one-clean-qubit model. *Physical review letters*, 112(13):130502, 2014.
- Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan.
 An average-case depth hierarchy theorem for boolean circuits.
 In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1030–1048. IEEE, 2015.

Rocco A Servedio and Steven J Gortler. Equivalences and separations between quantum and classical learnability. SIAM Journal on Computing, 33(5):1067–1092, 2004.

・ロト ・回ト ・ヨト ・ヨ

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM J. Comput., 26(5):1484–1509, 1997. Earlier version in Proc. IEEE FOCS'1994. quant-ph/9508027.

B. M. Terhal and D. P. DiVincenzo.

Adaptive quantum computation, constant-depth circuits and Arthur-Merlin games.

 $\label{eq:Quantum Information and Computation, 4(2):134-145, 2004. \\ \ensuremath{\mathsf{quant-ph}}\xspace/0205133.$

Mark Zhandry.

How to construct quantum random functions.

In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 679–687. IEEE, 2012.

・ロト ・回ト ・ヨト ・ヨ