
1 Introduction

Polymers are large complex chain molecules made up of ‘small’, ‘simple’ sub-
units (monomers) [1, 2, 3, 4]. They come in a variety of shapes and sizes.
Linear polymers which are the most commonly studied and produced are
essentially a single open strand of monomers, but there has also been a lot
of research on the properties of polymers with different back-bone struc-
tures such as branched polymers, ring polymers. We shall be interested here
only in linear polymers. Polymers for which all the monomers are the same
we refer to as homopolymers and those with chemically different monomers
as hetero-polymers. In our discussion of polymers they will always be in
solution, i.e. dissolved in a liquid (solvent). When in solution, the poly-
mers can also be charged and are called polyelectrolytes (PEs). Applications
of polymers in solution are widespread - they are essential in the chemi-
cal industry and biopolymers are crucial for numerous biological processes
at the cellular scale [5]. Examples of polymers are polymethylmethacrylate
[CH2 − C(CH3)COOCH3]N which is used to make plexiglass or polyethy-
lene [CH2 − CH2]N which is what the plastic bags that one gets at the su-
permarket are made of. Polyelectrolyte gels have an important application
as super-absorbers. DNA, RNA are charged polymers of nucleotides present
in the cells of all living organisms as well as numerous polymeric cytoskeletal
proteins such as actin or microtubules.

Naturally, to understand the properties of polymeric materials or the func-
tioning of a complex intercellular process we must understand how many
polymers interacting with each other behave. Nonetheless we must begin first
to understand how one single polymer behaves before we can start studying
more complex scenarios.

There has been a lot of work on the properties of neutral (uncharged) poly-
mers on which there is a general consensus in the scientific community and
some rather good agreement between experiment and theory [2, 1]. Scaling
theories in polymer physics have been particularly successful [2]. A very use-
ful concept for the understanding of the behaviour of polymer solutions is
universality: one finds that polymers with very different microscopic (chemi-
cal) structure all have the same quantitative macroscopic behaviour, the only
difference between chemically different polymers being different pre-factors
in front of scaling functions. This is due to a separation of length-scales
(the microscopic or chemical length-scale and the size of the random coil).
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For neutral polymers scaling theories and renormalization group calculations
have worked hand in hand to produce some beautiful results.

Recently there has been renewed interest in the so-called non-universal as-
pects of polymer behaviour in particular with respect to biological applica-
tions and the effect of structure on physical properties and hence function [5].
The effect of rigidity i.e. resistance to bending and twisting of polymers has
been particularly well studied.

Another important aspect of polymer theory is the effect of electrostatics
on the behaviour of polymers in solutions as many useful industrial and bi-
ological polymers are charged. Charged polymers though long under study
have not been able to produce the agreement between experiment and theory
found for neutral polymers. There are a number of different but comparable
lengths in the polyelectrolyte system in typical aqueous solutions. As a result
it is difficult to find universal behaviour and construct unambiguous scaling
theories. Nonetheless prompted by experiment and the expanding capacity
of modern computers, the study of polyelectrolytes has become fashionable
again. Charge affects both the microscopic and macroscopic structure of
polymers so that electrostatics can lead to new universality classes of be-
haviour and new scaling theories.

Our plan is as follows: in the next section we review the properties of neutral
polymers in solution focusing on universal properties and scaling theories.
Several very good introductory texts [1, 2, 3, 4] have been used as the basis
for this introduction. In Sec 3 we describe the statistical physics of semi-
flexible polymers. We discuss some aspects of polyelectrolyte behaviour in
Sec ?? and to round up we make our conclusions in Sec. ??

2 Neutral Flexible Polymers

A linear polymer in solution on a large enough coarse-grained scale can be
pictured as essentially a random coil. All linear polymers, no matter what
their microscopic structure if they are long enough, can be considered to be
flexible polymers. At very low temperatures, T → 0 the polymer would be a
rigid rod but of course would not dissolve in the solvent. The coarse-gaining
procedure required to consider the polymer as a flexible coil is shown in Fig 1.
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2.1 Random Walk Models - Ideal Chains

2.1.1 Freely Jointed chain

As a start, we consider a polymer essentially as a random walk (RW) of
bonds between monomers [1]. Each bond’s orientation is totally uncorrelated
with all the other bonds. The RW consists of N bonds of length b0 joining
‘monomers’, positions {Rn} with the bond vectors {rn ≡ Rn−Rn−1}. There
are no interactions other than those between nearest neighbour bonds. In
Sec.3 we will associate b0 with the persistence length of the polymer. We
ignore interactions between the polymer segments for now. We generalise to
d dimensions not forgetting that we live in d = 3.

We can define a normalized bond distribution function

ψ(r) =
1

Ωdb
d−1
0

δd(|r| − b0) (1)

where Ωd = 2πd/2/Γ(d/2) is the surface area of a unit radius d-dimensional
hyper-sphere and from that the polymer distribution function

Ψ[{rn}] =
N∏

n=1

ψ(rn) , (2)

from which we can calculate averages 〈F [{rn}]〉 =
∫ ∏N

n=1 d
drnF [{rn}] Ψ[{rn}]

such as that of the the end-to-end distance R = RN −R0,

〈R2〉 = Nb2
0 (3)

Similarly, the end-to-end distribution function, P (2)(R, N) which is defined
as P (2)(R, N) = 〈δd(RN −R0 −R)〉 is

P (2)(R, N) =
∫ ddk

(2π)d
eik·R

(
Ωd−1

Ωd

∫ 1

−1
dx(1− x2)(d−3)/2 exp{ikb0x}

)N
(4)

2.2 The Gaussian model

If we consider the limit of a long chain N →∞ the integral in eqn. (4) will
be dominated by the regime k → 0 and after performing an expansion in k
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and rexponentiating we obtain

lim
N→∞

P (2)(R, N) '
(

d

2πNb2
0

)d/2
exp

[
−dR2

2Nb2
0

]
(5)

This is an example of the Central Limit Theorem (CLT) which states that all
distributions tend to become more and more Gaussian if samples are taken
over larger and larger sets. As a result of the CLT, other random chain
models with only short range interactions along the backbone all give the
same distribution but with a different effective bond length [1]. We refer to
all such chains as ideal.

This allows us to make a technical simplification: rather than use the freely
jointed chain we work with a monomer distribution function which is al-
ready Gaussian (and technically easy to handle) which gives the same dis-
tribution as the freely jointed chain (and all other random chain models)
in the long chain limit. We can consider a monomer distribution function

ψg(r) =
(

d
2πb20

)d/2
exp

(
−dr2

2b20

)
and as a result a polymer distribution function

Ψg[{Rn}] =
(

d
2πb20

)dN/2
exp

[
− d

2b20

∑N
n=1(Rn −Rn−1)2

]
. We can take the limit

of continuous n
∑
n →

∫
dn ⇒ Ψg[{R(n)}] ∝ exp

[
− 3

2b2

∫N
0 dn

(
∂R(n)
∂n

)2
]

The statistical mechanics of a Gaussian polymer is described by a partition
function Z and Free Energy F

exp{−βF} = Z =
∫
D[R(s)] exp{−βHp[R]} (6)

where

βHp =
d

2b2
0

∫ N

0
ds|∂sR(s)|2 (7)

and where ∂sA = ∂A/∂s and β = 1/kBT

Another useful quantity is the average radius of gyration, Rg defined by

R2
g ≡

1

2N2

N∑

i,j=1

〈(Ri −Rj)
2〉 . (8)

For the Gaussian chain

Rg ∼
1√
6
bN1/2 . (9)
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2.3 Experiments

Scattering experiments (see Fig. 2) are a good way to measure the structure
of the polymer chain. Using X-rays, neutrons, or visible light one can obtain
information about the structure on different length scales [2, 6].

The scattering function is calculated,

g(k) ≡ 1

N

N∑

i,j=1

〈exp[ik · (Ri −Rj)]〉 (10)

One of most measured quantities in dilute solution is the radius of gyration
of single polymers. Rg is obtained from the small k region of g(k); g(k) '
g(0)(1− k2

3
R2
g + . . .)

Using measurements of the viscosity of dilute solutions one can determine a
‘hydrodynamic radius’, Rη,

η = ηs

[
1 + 2.5

4πc

3n
R3
η + . . .

]
(c→ 0) (11)

The diffusion constant, D of the polymers in solution is obtained from dy-
namic light scattering experiments and defines another estimate of the coil
size RD,

D =
T

6πηsRD
(12)

All these experiments measure typically R ∼ N 0.57 → N0.60 so we can con-
clude after comparison with eqns. (3,9) that most polymers are not ideal
chains. A possible reason is discussed in Sec. 2.4 below : repulsion of the
monomers on the chain.

The osmotic pressure Π of polymer solutions is another often measured quan-
tity. Naively one expects Π ∼ c where c is the concentration of polymers for
low concentrations of polymer [4, 7]. This is known as Van’t Hoff’s law
(VH). Big deviations from VH are obtained for very low concentrations of
long polymers.

2.4 Excluded Volume Interaction

If a chain is in solution, because the monomers have a finite volume we expect
that chain will be self-repelling. Therefore monomers far from each other
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along the chain will repel each other. Whilst short range interactions (along
the chain backbone) do not change the scaling behaviour of Rg, long range
ones do! The random coil will become swollen. As a result, R(0)

g ∼ b
√
N will

be changed to Rg(N)

A simple argument due to Flory gives a very good estimate of this effect [3].
To model this one must include the interaction energy of each monomer with
all the other monomers. If each monomer has a volume v0, the free energy,
F can be written

F = EI − T∆S = v0 N

(
N

Rd
g

)
+

3kBT

2b2N
(R2

g) (13)

The free energy is minimised w.r.t. Rg to obtain

Rg =

(
v0db

2

3kBT

)1/(d+2)

N3/(d+2) (14)

with the Flory exponent νF (d) = 3/(d+ 2) which is exact in d = 1, 2, 4 and
very good in d = 3. Experiments obtain ν ' 0.57 − 0.60 very close to the
νF = 0.6 for d = 3.

2.5 Simulations

Many problems in polymer physics are analytically intractable. Numerical
simulations are very often a very good way to check if one has understood the
underlying physics of the problem. There are essentially two types of simula-
tion techniques widely used for studying the properties of flexible polymers.

2.5.1 Monte-Carlo

The technique of Monte Carlo simulation [8] is a very useful way of determin-
ing the equilibrium properties of the system. One can consider the ubiquitous
Metropolis algorithm as an illustration [9]. The energy, Ei of the system is
calculated using the effective Hamiltonian. Using the accepted library of dy-
namical moves, an attempt is made to put the system in a new state and
the new energy, Ef of the system is calculated. If ∆E = Ef − Ei ≤ 0, then
the system stays in the new state. If on the other hand, ∆E > 0, a random
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number between 0 and 1 is generated; if the random number is greater than
the Boltzmann factor, p = exp (−∆E/kBT ), where T is the temperature and
kB Boltzmann’s constant, then the system stays in the new state. If the
random number is less than the Boltzmann factor then the system goes back
to the original state. We always respect the principle of detailed balance. By
exploring the phase space this way, one eventually arrives at the equilibrium
condition. This can be a very efficient way to find the equilibrium configura-
tions of complex systems. There is usually no way to relate the parameters
of the model directly to real parameters and so it is useful only in describing
the qualitative behaviour of the system. The advantage is that generally, one
can find the equilibrium [10].

2.5.2 Molecular dynamics

In Molecular Dynamics simulation, one implements the interaction between
monomers using potentials [11]. The forces are given by the gradient of the
potentials and by numerically integrating Newton’s second Law - the system
slowly evolves in a physical way towards its equilibrium state. In this picture,
the simulation results can be related to ‘real’ measured parameters. The sim-
ulations can also be performed using explict solvent molecules. The disadvan-
tage of this approach is that it is computationally very expensive, requiring
long execution times. With present day computers, one can normally only
simulate nanoseconds making equilibrium configurations extremely difficult
to calculate. For studying dynamical problems it is the best way to proceed.
One numerically solves the classical solutions of Newton’s equations for the
‘monomers’ positions and velocities {Ri,vi} with a force on the monomers
due to their potentials U [Rj] given by fij = ∇jU(|Ri − Rj|) = −fji. To
model the chain connectivity a commonly used potential is a bead-spring
model such as the Finitely Extensible Non-linear Elastic (FENE) model

Ubs(|ri|) =
a

2

(
R

σ

)2

ln

[
1−

(
ri
R

)2
]

; σ ≡ monomer size (15)

Between all the monomers the excluded volume interaction is modeled by a
Lennard-Jones potential (rc = 21/6σ).

Uex(|Ri −Rj|) = 4ε



(

σ

|Ri −Rj|

)12

−
(

σ

|Ri −Rj|

)6

 (16)
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To model a finite temperature, the system is coupled to a heat bath

mi
d2Ri

dt2
= fji − Γvi + Wi(t) (17)

where 〈Wi〉 = 0 and 〈Wi(t)Wj(t
′)〉 = 6ΓkBTδ(t− t′)δij

2.6 Solvent Quality

The size of a polymer in solution depends strongly on the solvent quality.
In a good solvent the polymer tends be expand (due to the excluded vol-
ume interaction) whilst in a bad solvent the polymer shrinks into a compact
structure. The effect of solvent quality may be easily described by the simple
model below [4].

We consider a lattice of coordination number z whose sites are occupied
either with monomers or with solvent molecules of volume v0. A schematic
is drawn in Fig. 3. The interaction energy between monomers is given by
−εpp, monomer and solvent −εps, and solvent molecules −εss where since
they are due to Van der Waals type interactions εij ∝ αiαj > 0 where αi is
the electrical polarizability of species j.

The number of neighbouring monomer pairsN (i)
pp , solvent pairsN (i)

ss , monomer-

solvent pairs N (i)
ps respectively. From this we calculate the total interaction

energy Ei = −N (i)
pp εpp −N (i)

ss εss −N (i)
ps εps. We can define the volume fraction

φ = Nv0/R
d
g which is the probability lattice site is occupied.

The average number of pairs is given by 〈N (i)
pp 〉 ' zNφ/2, 〈N (i)

ps 〉 ' zN(1−φ)

〈N (i)
ss 〉 ' N (0)

ss − zNφ/2 − zN(1 − φ) and (at a mean field level where we
have ignored the interconnectivity of the chain) hence the average interaction
energy

〈Ei〉 ' −
zv0N

2

Rd
g

∆ε ; ∆ε =
1

2
(εpp + εss)− εps . (18)

The free energy is given by

F = v0(1− 2χ) N

(
N

Rd
g

)
+

3kBT

2b2N
(R2

g) (19)

with the χ parameter defined by

χ =
z∆ε

kBT
(20)
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By comparison to the free energy in eqn. (13) we can then identify a tem-
perature, Θ for which the chains are ideal, i.e. behave like Gaussian chains
given by Θ = 2z∆ε

kB
. For T > Θ the chain is swollen or extended (coil) and is

referred to as being in a good solvent whilst for T < Θ the chain is compact
(globule) and is said to be in a bad solvent. At T = Θ it is evidently in an
ideal solvent.

2.7 Renormalization group calculations

In the scaling theories above we used the ν exponent of the excluded vol-
ume chain to calculate the scaling behaviour of a host of physical quantities.
Whilst the Flory exponent is a good approximation to the behaviour it is
incorrect. A much better approximation to the exponent can be calculated
using renormalization group techniques at the expense of slightly more in-
volved calculations.

2.7.1 The Edwards model

The continuum model of neutral polymers in a good solvent was introduced
by Edwards [14] and is the starting point of modern polymer theory with a
partition function

Z = TrRe
−βHE [R] =

∫
[DR] exp[−βHE[R(s)]] (21)

where

βHE[R(s)] =
3

2b2

∫ N

0
ds |∂sR|2 + v0

∫ N

0
ds′

∫ N

0
ds δd[R(s)−R(s′)] (22)

The short range repulsion between all the monomers is described by a δ-
function potential. We can rescale the size all the monomers by a factor 1/λ
so that s→ λs ; R(s)→ λνR(s) ; δd[R(s)−R(s′)]→ λ−νdδd[R(s)−R(s′)].
If the chain is Gaussian(ν = 1/2) then we find that the short range interaction
becomes ‘relevant’ (i.e. scales with at least the same power of λ as the
Gaussian part) for dimensions d ≤ 4. We can also recover the Flory theory
by demanding that both terms grow under rescaling in the same way.
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2.7.2 Mapping to spin model

De Gennes pointed out that the critical properties of a spin model de-
scribed also the scaling behaviour of long chains [15]. The Laplace trans-
form G(2)(R, t) =

∫∞
0 dN exp[−tN ]P (2)(R, N) of the two point distribution

function P (2)(R, N) ≡ 〈δd[R − (R(N) − R(0))]〉 is equal to the correlation
function of a n = 0 component spin model

G̃(2)(R, τ) = 〈S1(R)S1(0)〉 =
∫

[DS]e−h[S]S1(R)S1(0) (23)

where

h[S] =
1

2

∫
ddr

[
|∇S|2 + τS2 + u

∣∣∣S2
∣∣∣
2
]
, (24)

where S is a n = 0 component field. The scaling properties of the correlation
function can be calculated (near τ = τc the correlation length of the spin
model diverges like ξ ∼ |τ − τc|ν) and

〈R2〉 =
dP (2)(k, N)

dk2

∣∣∣∣∣
k=0

∼ b2N2ν , (25)

where P (2)(k, N) =
∫

ddreik·RP (2)(R, N). The exponents are calculated us-
ing standard RG techniques [16] and in d = 3, ν = 0.588. Using this value
of ν we can calculate better estimates of all the scaling quantities above.
The most accurate values of the exponents have been calculated using this
method.

2.7.3 Direct RG

This method was pioneered by des Cloizeaux [17] and here one performs
directly a perturbation expansion of Eqn. (21) in v0 which is then reorganised
using the RG to obtain the same exponent and scaling behaviour [6, 16].

3 Semiflexible Polymers

If we look at a polymer on intermediate length-scales, the chain structure
becomes important. One of the most simple structural properties that affects
the macroscopic behaviour of polymer solutions is the rigidity or stiffness of
a polymer.
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3.1 Worm-like Chain

The simplest model is the worm-like chain (WLC) model of Kratky and
Porod [18]. The polymer can be considered locally to behave like a rigid
rod [19]. We have a potential energy which places a penalty on any local
bending of the polymer. A continuum model can be written for a chain of
length L.

Zwlc =
∑

conf

exp[−βHwlc] =
∫
D[R] exp{−βHwlc[t(s)]} (26)

where

Hwlc[t(s)] =
κ

2

∫ L

0
ds

(
∂t

∂s

)2

; `p =
κ

kBT
, (27)

with t(s) the unit tangent vector to the chain at point s (see Fig 7).

t(s) =

(
∂R

∂s

)
; |t(s)|2 = 1 . (28)

Note that from the Frenet-Seret formulae [20], |∂st|2 = K2 where K(s) is the
‘curvature’ of the chain at point s. The potential uses the simplest quadratic
form (by symmetry it must be at least quadratic) that places a penalty on
bending.

We can write a restricted 2-point probability distribution function of the
polymer having a tangent T at s = L given a tangent vector T0 at s = 0,

P [T, L; T0, 0] =
∫

[Dt]t2=1δ(T− t(L))δ(T0 − t(0)) exp[−βHwlc] , (29)

and w.l.g. we can set T0 = (0, 0, 1). This corresponds to diffusion on a sphere
(or Quantum Mechanics of a spinning sphere) t(s) = (sin θ(s) cosφ(s), sin θ(s) sinφ(s), cosφ(s))

∂P

∂s
=

1

2`p
∇2

t̂P , (30)

where ∇t̂ is the gradient operator on a sphere. We can write the solution in
terms of Spherical harmonics

P (θ, φ, s) =
∑

n,m

Ynm(θ, φ)Ynm(0, 0) exp

[
−n(n + 1)s

2`p

]
. (31)
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This gives a tangent correlation function

〈t(s).t(s′)〉 = exp{−s/`p} (32)

and consequently the mean square end-to-end distance R = R(L)−R(0)

〈R2〉 =
∫ L

0
ds
∫ L

0
ds′〈t(s).t(s′)〉 =

`2
p

2
(exp[−2L/`p]− 1 + 2L/`p) (33)

interpolates (illustrated in Fig 8) between a rod 〈R2〉 ∼ L2 and a ‘flexible
coil’ (RW) 〈R2〉 ∼ `pL with `p taking the role of ‘monomer size’ in Sec 2. We
can identify `p as the persistence length, which is the length-scale over which
the WLC is rod-like (i.e. retains memory of it’s orientation).

3.2 Semi-dilute/Concentrated solutions

We are often interested in systems with many interacting polymers rather
than a single isolated chain. A useful concept is that of the overlap concen-
tration c∗ (see Fig. 4) which is the concentration at which the chains begin
to interact with one another. It can be defined

c∗Rd
g

N
∼ 1⇒ c∗ ∼ b−dN1−dν (34)

Using the Flory exponent we obtain c∗ ∼ N−4/5 so we find that long chain
polymers N → ∞ are almost always interacting and can hardly ever be
considered isolated. One of the quantities most calculated is the osmotic
pressure of a polymer solution.

To study the behaviour of concentrated solutions of polymers the mean-field
model of Flory and Huggins is used [3, 2, 4]. The derivation of the Flory-
Huggins free energy is only sketched below but may be found in detail several
standard texts [2, 4].

3.2.1 Lattice Model: Flory-Huggins

We have np polymers with N ‘monomers’ on a lattice of coordination number
z (see Fig 3). Ω ≡ total number of lattice sites, and hence the number of
solvent sites ns = Ω − npN . We define a volume fraction φ = npN/Ω .
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The partition function is given by Z =
∑
conf exp [−βEconf ] Assuming small

density fluctuations, we can replace Econf by its average 〈Econf〉/(Ωz) '
−1

2
φ2εpp + φ(1− φ)εps + 1

2
(1− φ)2εss

The mean field approximation ignores the connectivity of the chain and con-
siders a smeared out uniform chain density. The partition function is then ap-
proximated by Z ' W exp[−β〈Econf〉] where W is the number of ways of ar-
ranging np chains. W = 1

np!

∏np
j=1wj, and wi is the number of ways of arrang-

ing the ith chain, The first chain can be placed w1 = Ωz(z− 1)N−2 ways and
subsequently the j + 1-th chain wj+1 ' (Ω−Nj) [(z − 1) (1−Nj/Ω)]N−1 '
Ω(z−1)N−1

(
1− Nj

Ω

)N
ways. The free energy is given by F (Ω, φ) = −kBT lnW+

〈Econf〉 and we use the fact that lnW =
∑np
j=1 ln(wj/j) '

∫ np
0 dj (lnwj − ln j)

The free energy of mixing Fm is calculated from the free energy F by sub-
tracting the part that is due to just polymer or just solvent i.e., Fm(Ω, φ) =
F (Ω, φ) − F (Ωφ, 1) − F (Ω(1 − φ), 0) giving the Flory-Huggins free en-
ergy [3, 2, 4] of mixing per site fm = βFm/Ω

fm(φ) ' φ

N
lnφ+ (1− φ) ln(1− φ) + χφ(1− φ) (35)

3.2.2 Osmotic pressure

The Gibbs free energy is given by G(np, ns, p, T ) = F +pV = F +pv0(npN +
ns) from which we can calculate the solvent chemical potential which is the
change in the Gibbs free energy upon adding one solvent molecule to the
system µs(φ, p.T ) ≡ G(np, ns+1, p, T )−G(np, ns, p, T ) Using the expressions

for F, np, ns we find µs(φ, p, T ) =
(
∂F
∂Ω

)
φ,T

(
∂Ω
∂ns

)
np

+
(
∂F
∂φ

)
Ω,T

(
∂φ
∂ns

)
np

+pv0 and

hence the osmotic pressure Π which is defined as the pressure required to keep
the chemical potential constant (i.e. equilibrium) across a semipermeable
membrane, µs(φ, p+ Π, T ) = µs(0, p, T ) giving

Π =
kBT

v0

(
φ
∂fm
∂φ
− fm

)
(36)

Using eqns. (35,36) and making an expansion for φ small we obtain

Π =
kBT

v0

[
φ

N
+
(

1

2
− χ

)
φ2 +

φ3

3
+ . . .

]
(37)
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showing big deviations from ‘ideal gas’ (Van’t-Hoff’s law) behaviour even
for low concentrations. VH is only true for very small volume fractions
φ << 1

(1/2−χ)N
. This deviation had long puzzled polymer scientists but it is

now accepted that the mean-field model above captures the essential physics.
We see that at the Θ-temperature the second virial coefficient of the osmotic
pressure vanishes. This is often used in experiments to determine the Θ-
temperature.

3.3 Scaling Theories

3.3.1 Osmotic pressure

The mean-field approach above explains qualitatively the big deviations from
Van’t Hoff’s law at even very low monomer concentrations but experiments
show deviation from the mean field behaviour in semi-dilute solutions, Π(c) ∼
cα ; α > 2 showing that fluctuations and the chain connectivity which were
ignored in the mean field approach are important. A dimensional argument
due to des Cloizeaux [12] gives Π(c, N) = ckBTf(cb3, N). Using c∗ as a
scaling variable we find Π(c, N) = ckBTf( c

c∗ ) where limx→0 f(x) = 1+x+ . . .
Now Π is independent of N for c >> c∗ as many short chains entangled will
have the same behaviour as one long chain as long as the monomer density
is the same.

lim
c→∞ f ∼

(
c

c∗

)1/(dν−1)

(38)

with the Flory exponent νF (d = 3) = 3/5 one obtains Π ∼ c9/4

3.3.2 Screening length (Mesh Size)

In concentrated solutions excluded volume does not swell the chain because
there is no free energy gain in being swollen because of all the other chains
around. In short the other chains screen or reduce the self-repulsion of the
chain. We can define a screening length above which the excluded volume
interaction does not have an effect. The screening length of the concentrated
solution (or mesh size) will be of the order of the mean separation of the
chains (see Fig 5) and can be estimated using a scaling argument [2].
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The correlation length ξ is given by ξ = Rgg
(
c
c∗

)
where Rg ∼ Nνb. As above

it must be independent of chain length for c > c∗

ξ ∼ Rg

(
c

c∗

)−ν/(dν−1)

(39)

Using the flory exponent ξF ∼ c−3/4. It is interesting to see that the osmotic
pressure is then given by

Π ' kBT

ξ3
(40)

3.3.3 Blobs

The idea of the blob introduced by Pincus [13] is a very useful concept for
understanding the physics of polymer solutions (see Fig. 6). The polymer
chain is in an expanded coil (excluded volume or good solvent statistics) until
it interacts with other chains after which the excluded volume interaction
becomes screened. The blob is the unit of chain which is swollen. We define
g ≡ number of monomers per blob and ξ ≡ blob size. The blob size is given
by

ξ ' bgν ⇒ g ' (ξ/b)1/ν (41)

The polymer makes a random walk of N/g blobs of size ξ

R2
g '

N

g
ξ2 ∼ Nb2c(1−2ν)/(dν−1) (42)

Using the Flory value for ν in d = 3 we obtain Rg ∼ b5/4N1/2c−1/8.

References

[1] M. Doi and S.F. Edwards, Theory of Polymer Dynamics, (Oxford Uni-
versity Press, Oxford, 1986).

[2] P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univer-
sity Press, Ithaca, NY, 1970).

[3] P.J. Flory, Principles of Polymer Chemistry, (Cornell University Press,
Ithaca, NY, 1953).

15



[4] M. Doi, Introduction to Polymer Physics, (Oxford University Press, Ox-
ford, 1995).

[5] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson,
Molecular Biology of the Cell (Garland, New York, 1994).

[6] J. des Cloizeaux and G. Jannink Polymers in Solution (Oxford Univer-
sity Press, Oxford) (1989).

[7] I. Noda, N. Kato, T. Kitano and M. Nagasawa, Macromolecules 16,
(1981), 668.

[8] K. Binder and D.W. Heermann Monte Carlo Simulation in Statistical
Physics, (Springer-Verlag, Berlin 1988).

[9] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E.
Teller J. Chem. Phys., 21, 1087 (1953).

[10] K. Binder in Computational Modelling of Polymers, ed. J. Bicerano,
(Marcel Dekker, New York 1992).

[11] K. Kremer in Monte Carlo and Molecular Dynamics Simulations in
Polymer Science, ed. K. Binder, (Oxford University Press, Oxford,
1995).

[12] J. des Cloizeaux, J. Phys. (Paris), 36, (1975) 281.

[13] P. Pincus, Macromolecules, 9 (1976), 386.

[14] S.F. Edwards, Proc. Phys. Soc.(London), 85 (1965), 613.

[15] P.G. de Gennes Phys. Lett. 38A (1972) 339.

[16] K. Freed Renormalization group theory of Macromolecules (John Wiley
and Sons, New York) (1987); E. Eisenriegler Polymers near Surfaces
(World Scientific, Singapore) (1993).

[17] J. des Cloizeaux, J. Phys. (Paris), 43, (1981) 635.

[18] O. Kratky and G. Porod Rec. Trav. Chim. 68 (1949) 1106.

[19] L.D. Landau and E.M. Lifshitz, Theory of Elasticity, (Pergamon Press,
Oxford, 1986).

16



[20] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern Geometry -
Methods and Applications Part I: The Geometry of Surfaces, Transfor-
mation groups and Fields, (GTM Springer-Verlag, New York, 1984).

[21] C. Bouchiat and M. Mezard, Phys. Rev. Lett., 80 (1998) 1556;
D. Moroz and P. Nelson, Macromolecules 31 (1998) 6333

[22] S. Smith, L. Finzi and C.Bustamante Science , 258, (1992), 1122.

[23] J.F. Marko and E.D. Siggia, Macromolecules 27 (1994) 981; J.F. Marko
and E. D. Siggia Macromolecules, 28, (1995) 8759.

[24] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J-L Viovy, D. Chatenay, and
F. Caron Science 271 (1996) 792; S.B. Smith, Y. Cui, and C. Busta-
mante Science 271 (1996 795 T.R. Strick, J.-F. Allemand, D. Bensimon,
A. Bensimon, and V. Croquette Science 271 (1996) 1835.

[25] R. Everaers, R. Bundschuh and K. Kremer Europhys. Lett. 29 (1995)
263.

[26] T.B. Liverpool, R. Golestanian and K. Kremer Phys. Rev. Lett. 80
(1998) 405.

[27] M.G. Bawendi and K.F. Freed J. Chem. Phys. 83 (1985 2491; J.B.
Lagowski, J. Noolandi and B. Nickel J. Chem. Phys. 95 (1991) 1266;
A.M. Gupta and S.F. Edwards J. Chem. Phys. 98 (1993) 1588; T.B.
Liverpool and S.F. Edwards J. Chem. Phys. 103 (1995) 6716.

[28] T. Burkhardt, J. Phys. A: Math. Gen. 30 (1997) L167; T. Odijk, Macro-
molecules 19 (1986) 2313; W. Helfrich and W. Harbich, Chem. Scr. 25
(1985) 32; A.R. Khoklov and A.N. Semenov, Physica 112A (1982) 605.

[29] R. Golestanian and T.B. Liverpool, Phys. Rev. E (submitted).

[30] R.M. Hornreich, R. Liebmann, H.G. Schuster, and W. Selke, Z. Phys.
B 35 (1979) 91.

[31] F. Oosawa Polyelectrolytes (Marcel Dekker, New York), (1971).

[32] J-L. Barrat and J-F. Joanny Adv. Chem. Phys. 94 (1996) 1; S. Forster
and M. Schmidt Adv. Poly. Sci. 120 (1995) 51.

17



[33] R. Golestanian and M. Kardar (this volume).

[34] R.R. Netz and H. Orland, Eur. Phys. J., B8 , (1999) 81.

[35] T. Odjik, J. Poly. Sci, Poly. Phys. Ed., 15, (1977), 477; J. Skolnick and
M. Fixman, Macromolecules, 10, (1977), 944.

[36] P. Pfeuty, R.M. Velasco and P.G. de Gennes J. Phys. (Paris) Lett. 37
(1977) L5; P. Pfeuty J. Phys. (Paris) Colloque. C2 (1978) 39.

[37] G. Jug and G. Rickayzen J. Phys. A: Math. Gen. 14 (1981) 1357; G.
Jug Ann. Phys. (NY) 142 (1982) 140.

[38] J-P. Bouchaud, M. Mezard, G. Parisi and J.S. Yedidia, J. Phys. A:
Math. Gen., 24 , (1991) L1025.

[39] Y. Kantor and M. Kardar, Europhys. Lett., 9 , (1989) 53; Y. Kantor
and M. Kardar,Phys. Rev. Lett., 83 , (1999) 745.

[40] T.B. Liverpool and M. Stapper Europhys. Lett. 40 (1997) 485.

[41] T.B. Liverpool and M. Stapper, Eur. Phys. J., B (submitted).

[42] N. Goldenfeld, Lectures on Phase Transitions and the Renormaliza-
tion Group, (Addison-Wesley, Reading Mass, 1992); P. Chaikin and T.
Lubensky, Principles of Condensed Matter Physics, (CUP, Cambridge,
1995).

[43] J. Zinn-Justin Quantum Field Theory and Critical Phenomena (Oxford
University Press, Oxford) (1996; D. Amit Field Theory, the Renormal-
ization Group and Critical Phenomena (World Scientific, Singapore),
(1984).

[44] U. Micka and K. Kremer Phys. Rev. E. 54 (1996) 2653; Europhys. Lett.
38 (1997) 279.

[45] R. Everaers, F. Julicher, A. Ajdari and A. Maggs, Phys. Rev. Lett. 82
(1999) 3717.

18



Figure 1: DNA on microscopic and on a macroscopic scale. An example of a
coarse-grained polymer as a random coil

π sinλk = 4 
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k  scattering wave vector

 wavelength

θ

Figure 2: Scattering from a polymer solution
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monomer

solvent molecule

Figure 3: The solvent-monomer lattice model.

c < c* c > c*c ~ c*

Rg

Figure 4: The overlap concentration c∗
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ξ

Figure 5: The mesh size or screening length of polymer solution. We show
just the mean path of the polymers whose conformations will be much more
convoluted paths around their mean.
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ξ

Figure 6: The blobs of a semi-dilute solution of polymers
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Figure 7: The orthonormal trihedron of vectors describing the rod-like chain.
For the worm-like chain we keep track of only the tangent vector t(s)

lp
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Figure 8: The ratio of L to `p.
flexible semiflexible Rigid
L >> `p >> b L ∼ `p >> b `p >> L >> b.
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