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Abstract

This paper presents two sets of results on nonparametric identification. First, a nonparamet-

ric generalization of the quasi—differencing method is developed. A nonparametric panel data

model is shown to be identified using three time periods of data. An explicit characterization of

the structural function is obtained. The fixed effects and idiosyncratic errors are not separable

from the covariates and hence affect the marginal effects. The structural function is allowed to

vary over time in an arbitrary fashion. In addition, a new nonparametric panel transformation

model is introduced and is shown to be identified.

The first result is then used to establish nonparametric identification of several duration

models with multiple spells. The existing results are substantially extended by allowing for the

nonseparability of the unobserved heterogeneity and the covariates in the specification of the

hazard rate. As an important consequence, the paper demonstrates identification of a multiple

state duration model that treats unobserved heterogeneity as a fixed effect, rather than as a

random effect, as has been done in previous studies. Identification of duration models with

multivariate unobserved heterogeneity and censoring is also established.
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1 Introduction

The importance of taking latent individual characteristics into account is widely recognized by

the empirical economic analysis. Having multiple observations per individual, such as in panel

and in multiple spell duration models, greatly enhances researchers’ability to deal with individual

unobserved heterogeneity. The recent literature has recognized that standard models impose strong

and often unrealistic assumptions on the data. For example, in panel models additive separability

of unobserved heterogeneity implies homogeneity of the marginal effects, a property that is hard

to justify in economic models. In duration models, multiplicative separability of the unobserved

heterogeneity is similarly restrictive for economic modeling. In addition, parametric specification

of models may result in model misspecification and lead to inaccurate inference about the objects

of interest.

To overcome these issues the literature considers nonlinear and nonparametric models. Serious

diffi culties arise. For example, in panel models standard first differencing yields biased and

inconsistent estimates when the unobserved heterogeneity (fixed effect) is not additively separable.

A solution would be to use data with a large number of observations per individual. However,

many microeconometric panel and duration datasets contain just a few time periods and hence

new methods of analysis are needed.

This paper contributes to the literature on panel and duration data models in two ways. First,

this paper concerns itself with a nonparametric generalization of the quasi—differencing idea. The

paper presents a new nonparametric panel data model with nonseparable unobserved heterogeneity

and demonstrates its nonparametric identification using panel data with three or more time periods.

The effect of the unobserved heterogeneity on the outcome is allowed to vary over time. The

paper not only establishes identification of the structural functions, but also provides an explicit

characterization of these functions.

The paper’s second contribution consists of an analysis of duration models with multiple

spells. The quasi—differencing method can be used to identify a panel extension of the Generalized

Accelerated Failure Time (GAFT) model of Ridder (1990), as well as its special case, the Mixed

Proportional Hazard model. Honoré (1993) demonstrates that duration data with multiple spells

per an individual has strong identification power. As discussed by Van den Berg (2001), multiple

spell duration models yield more reliable inference than the more traditional single spell duration

models. Multiple spells permit more robust inference on duration models and, in particular,

allow identification when the unobserved heterogeneity and observed covariates are dependent.

Extending the existing literature, the duration models considered in this paper allow the effect of the

unobserved heterogeneity to differ between spells with different covariates. Another interpretation

of the obtained results is that the paper shows nonparametric identification of a multiple state

duration model, where the effect of the unobserved heterogeneity depends on the state (or the

values of the covariates), yet the unobserved heterogeneity can be arbitrarily correlated with the

covariates. Such models can be used for empirical analysis in many applications; several examples

are listed below.
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The results of this paper apply equally to the analysis of static panel data and grouped data.

Panel data contain a large number of observations on individuals i, such as persons or firms,

where for each individual the data are recorded for several time periods j = 1, . . . , J .1 Grouped

data contain records on a large number of groups i (e.g., families), where each group contains J

individual members. To simplify the discussion, in this paper I use the panel data terminology.

Consider the following panel transformation model with unobserved heterogeneity:

Λj (Yj , Xj) = m (Xj , A) + Uj , j = 1, . . . , J ≥ 3, (1)

where Yj ∈ R is the observed outcome and Xj ∈ X ⊂ Rp are the observed covariates. The

scalar random variables A and Uj are unobserved and represent individual-specific heterogeneity

and idiosyncratic disturbance, respectively.2 The functions Λj (·) and m (·) are unknown and are
modeled nonparametrically. It is assumed that the functions Λj (·) and m (·) are strictly increasing
in Yj and A, respectively. The transformation function Λj (·) is allowed to depend on the value of
the covariate, which is more general than what is usually allowed in the analysis of transformation

models.3 ,4 The unobserved heterogeneity A is allowed to be arbitrarily correlated with the covariates

but is assumed to be independent of the disturbances Uj , conditional on the covariates. The

disturbance terms Uj are assumed to be independent over j, conditional on the covariates. The

goal is to identify Λj (·), m (·), and the distribution of A and Uj conditional on the covariates.
To justify interest in model (1), consider the following special cases and interpretations of this

model.

First, take m (x, α) ≡ α and denote gj (x, ν) ≡ Λ−1
j (ν, x), where Λ−1

j (ν, x) is the inverse of

Λj (y, x) in the first argument. Then, equation (1) can be written as

Yj = gj (Xj , A+ Uj) , (2)

which is a nonparametric panel data model with nonseparable unobserved heterogeneity. In this

model, the derivative ∂gj (x, ν)/ ∂x depends on ν; thus the model allows for heterogeneous marginal

effects that depend on Vj = A + Uj . The structural function gj (·) is allowed to vary over time in
an arbitrary way. Note that the shocks Vj are correlated across time through A. Obviously, (2) is

a generalization of the linear model Yj = β′jXj + γjA+ Uj (with Uj = γjŨj).
5

1Time periods are indexed by j instead of the more traditional index t, because symbols t and T are reserved to
represent the lengths of duration spells.

2Here the subscript i is suppressed; Yj ≡ Yij , Xj ≡ Xij , Uj ≡ Uij , and A ≡ Ai, i = 1, 2, . . .
3Define Λ−1j (·, x) to be the inverse of the function Λj (·, x) in the first argument. Then equation (1) can also be

written as Yj = Λ−1j (m (Xj , A) + Uj , Xj), which does not contain covariates on the left-hand side but appears more
cumbersome.

4See (Horowitz 1996) for a review of the literature and a list of applications of transformation models.
5Another special case of model (2) is the transformation model extension of the nonparametric panel model of

Porter (1996)
λj (Yj) = ϕj (Xj) +A+ Uj ,

where ϕj (·) is an unknown regression function, and λj (·) is a strictly increasing unknown transformation function.
This model corresponds to specifying gj (x, v) = λ−1j

(
ϕj (x) + v

)
in (2).
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In addition, the transformation model (1) has a close connection to the duration analysis.

Model (1) can be seen as a Panel Generalized Accelerated Failure Time (PGAFT) model, which

extends the GAFT model of Ridder (1990). A very important special case of this model is the

Mixed Proportional Hazard (MPH) multiple spell duration model.6 Multiple spell duration analysis

has been used in a wide variety of empirical applications. These in particular include studies of

employment and unemployment durations (Heckman and Borjas, 1980; Flinn and Heckman, 1983;

Bonnal, Fougere, and Serandon, 1997), durations of the life span of siblings or twins in development

and health economics (Guo and Rodriguez, 1992; Hougaard, Harvald, and Holm, 1992), birth

intervals (Newman and McCulloch, 1984; Heckman, Hotz, and Walker, 1985), recurrences of an

illness or tumor (Wei, Lin, and Weissfeld, 1989; Lin, Sun, and Ying, 1999), and intervals between

purchasing a product (Gonul and Srinivasan, 1993; Allenby, Leone, and Jen, 1999); see Van den

Berg (2001) for other examples. In many of these applications, it is reasonable to expect the effect of

the unobserved heterogeneity to vary across spells with different states or covariates.7 For instance,

the effect of the unobserved ability on the durations of employment and unemployment may differ

non-proportionally; similarly, the effect of the unobserved fertility on the age at first birth and the

time between the birth of the first and the second child are likely to differ non-proportionally. At the

same time, it is often not plausible to assume independence between the unobserved heterogeneity

and the observed covariates. This paper provides an econometric framework for analysis of such

duration models.

For example, assume that the disturbances Uj are independent of the covariates and have a

cumulative distribution function (CDF) FUj |Xj (u|x) = 1 − exp (−eu). Then, model (1) can be

interpreted as an MPH model, where Tj ≡ Yj ≥ 0 is the length of spell j, Xj is the vector of

covariates (that are constant over the duration of a spell but may vary between spells), and A is

the unobserved heterogeneity that can be arbitrarily correlated with the covariates, i.e., is a fixed

effect.8 The hazard rate has the form:

θTj |Xj ,A (t|x, α) = hj (t, x) γ (x, α) , (3)

where hj (·) and γ (·) are positive functions, and γ (x, α) is strictly increasing in α for all x.9 Honoré

(1993) considers identification of a multiple spell duration model with the hazard rate of a more

6Duration distributions are usually studied in terms of their hazard rates. The hazard rate function of the
continuous positive random variable Tj ≡ Yj is defined as

θTj |Xj ,A (t|x, α) = lim
ε↘0

P {t ≤ Tj < t+ ε|Tj ≥ t,Xj = x,A = α}/ ε.

7A duration model with the hazard rate θYj (tj |xj , α) = hj (tj , xj)α implies that the ratio of hazard rates
θYj (tj |xj , α) /θYk (tk|xk, α) does not depend on α. In other words, hazard rates corresponding to different states
and/or covariate values are proportional. This assumption appears too restrictive since it requires the unobserved
heterogeneity to have a similar effect on the hazard rates corresponding to different states (e.g., employment and
unemployment).

8See Graham and Powell (2008) for a discussion of the "fixed effect" terminology.
9Here hj (y, x) ≡ (∂Λj (y, x) /∂y) exp (Λj (y, x)) and γ (x, α) ≡ exp (−m (x, α)). One needs to impose some

normalizations to uniquely identify functions hj (y, x) and γ (x, α). See Section 3.2 for details.
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restrictive form θ̃Tj |Xj ,A (t|x, α̃) = hj (t, x) α̃; i.e., the unobserved heterogeneity α is only allowed

to enter the specification of the hazard rate multiplicatively. Specification (3) has a more general

functional form that may be useful for economic modelling.10 For instance, duration specifications

implied by structural search models usually contain a (conditional) CDF as one of the elements

(e.g., CDF of wage offers), and this CDF may depend on the unobserved heterogeneity A (e.g.,

skill). However, it is not possible to model the dependence of the CDF on A using a multiplicative

specification, since the range of the CDF must be [0, 1]. In contrast, hazard rate specification (3)

allows modelling the unknown CDF that depends on the unobserved heterogeneity A.11

In addition, identification of model (3) has important implications for the analysis of duration

models with multiple states, e.g., Flinn and Heckman (1982, 1983) and the other examples listed

above. This paper demonstrates that such models can be identified treating the unobserved

heterogeneity as a fixed effect, rather than as a random effect, as was done in previous studies.

To fix ideas, consider a simple labor market model with two individual states Kj , (e)mployment

and (u)nemployment. The often used approach consists of estimating a one-factor multiple state

duration model

θTj |Xj ,Kj ,A (t|x, k, α) = zk (t) exp
{
δ′kx+ γkα

}
, (4)

where x and the state k ∈ {e, u} are the covariates, α is a random effect, and zk (·) and (δk, γk)k∈{e,u}
are the function and parameters to estimate. Identification of a nonparametric MPH version of

the model (4) follows from Theorem 2 in Honoré (1993) under the assumption of independence

between the covariates and the unobserved heterogeneity A. However, the semiparametric model

(4) is a special case of model (3). Therefore, model (4) can be identified and estimated allowing for

an arbitrary correlation between the covariates and the unobserved heterogeneity, i.e., treating A

as a fixed effect. Permitting dependence between the covariates and the unobserved heterogeneity

may be important for the empirical analysis.

Specification (3) is only one of the Mixed Proportional Hazard models considered in the paper.

Several duration models are proposed, and the difference between the assumptions identifying

the models is discussed. Although the PGAFT model requires J = 3 spells per individual for

identification, it is shown that one of the considered MPH models is identified using data on only

J = 2 spells.

This paper demonstrates that model (1) can be nonparametrically identified using panel data

with at least three time periods. The identification method developed in this paper can be seen as

a nonparametric generalization of quasi—differencing (e.g., see Chamberlain, 1984). The main idea

of the identification strategy is easy to demonstrate using model (2). Consider first a linear panel

model without covariates Yj = γj · (A+ Uj), where γj 6= 0 are scalars, E [AUj ] = 0 for all j, and

10The conditional methods of Chamberlain (1985) and Ridder and Tunali (1999) do not identify the effect of
covariates in (3), because in this specification the covariates x are not separable from t and α.
11Van den Berg (2001) carefully investigates economic implications of separability assumptions in duration models

and presents examples where those do and do not hold.
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Uj are serially uncorrelated. Then, the following moment restriction identifies the ratio γ1/γ2:

E
[(
γ−1

1 Y1 − γ−1
2 Y2

)
Y3

]
= 0. (5)

Now consider a nonlinear panel model Yj = gj (A+ Uj) without covariates, where gj (·) : R → R
are strictly increasing functions. Assume U1, U2, U3, and A are mutually independent. Suppose

some strictly increasing functions Gj (·), j = 1, 2, satisfy the following independence condition

G1 (Y1)−G2 (Y2) ⊥ Y3. (6)

Obviously, the above condition holds if one takes the functions Gj (·) to be the inverse functions
g−1
j (·). Interestingly, Section 2 shows that no other strictly increasing functions Gj (·) can satisfy
condition (6); i.e., functions Gj (·) must be equal to the inverse functions g−1

j (·) up to a location
and scale normalization.12 Note that condition (5) is a mean independence quasi-difference

restriction. Condition (6) can be seen as a stronger version of (5), since it requires full independence.

Strengthening the condition on the unobservables from mean to full independence thus allows

nonparametric identification of the strictly increasing functions gj (·). Model (2) with covariates
can be identified by the same independence restriction (6), which holds conditional on the values

of covariates X.

The identifying independence restriction (6) is intuitive. An advantage of this restriction is that

it can be readily employed to estimate the functions Gj (·) and gj (·). This is discussed in Section
2.2 below.

The quasi—differencing identification approach does not require the structural functions gj (·)
and the distributions of Uj to be the same over time, because it does not rely on time homogeneity

for identification. The assumption of time homogeneity has been previously used for identification of

nonparametric panel data models. For example, Chernozhukov, Fernandez-Val, Hahn, and Newey

(2010), Evdokimov (2008), Graham and Powell (2008), and Hoderlein and White (2009) allow

additive and/or multiplicative time effects in their models, but otherwise require the structural

relationship between the covariates, unobserved heterogeneity, and outcomes to be stable (time

homogeneous) over time. The assumption of time homogeneity is powerful and relevant in many

economic applications. Yet, in some scenarios this assumption may fail, especially when the panel

covers a substantial period of calendar time. The nonparametric quasi—differencing method does

not rely on the time homogeneity assumption, thus extending the existing literature.

That quasi—differencing does not require the time homogeneity assumption comes at a price.

Even in the linear model, quasi—differencing requires at least three time periods of data. At the

same time, the standard first—differencing method in linear panels, as well as the methods of

Chernozhukov, Fernandez-Val, Hahn, and Newey (2010), Evdokimov (2008), Graham and Powell

(2008), and Hoderlein and White (2009), obtain results using just two time periods.

Two more issues are addressed in this paper. Duration data often suffer from censoring. Section

12One also needs to normalize one of the functions gj (·) to be strictly increasing or strictly decreasing.
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4.1 shows that the analysis of the multiple spell duration models above can be carried out under

the common assumptions on the mechanism of duration censoring.

Finally, the paper establishes identification of models with multivariate unobserved heterogene-

ity. For example, Section 4.2 establishes identification of a duration model with the following hazard

rate

θTj |Xj ,Wj ,B (t|x,w, β) = hj (t, x) γ
(
x, β′w

)
, (7)

where Xj and Wj are observable covariates that do not contain common elements. The random

time-invariant vector B ∈ Rq represents the multivariate unobserved heterogeneity. The elements
of B are allowed to be arbitrarily correlated with each other and with the covariates; i.e.,

they are treated as fixed effects. Covariates Wj can be seen as factor-loadings. The hazard

rate (7) is a generalization of the hazard rate (3) that allows for multivariate unobserved

heterogeneity. Identification of the nonparametric model (7) implies identification of a corresponding

semiparametric duration model with multivariate unobserved heterogeneity. Examples and details

on identification are presented in Section 4.2.

Let us conclude the introduction with a discussion of the related literature. Transformation

models have been used in econometrics and statistics at least since the seminal work of Box

and Cox (1964). In the cross-section settings, numerous papers have exploited the condition of

independence between an observable covariate and the unobservable error term for nonparametric

identification and estimation of the transformation function; an incomplete list includes Han (1987),

Ridder (1990), Abbring and Ridder (2010), Horowitz (1996), and Jacho-Chavez, Lewbel, and Linton

(2006). Chiappori and Komunjer (2008) use a related completeness condition for identification. In

contrast to these papers, the nonparametric quasi—differencing identification method exploits the

conditional independence between the unobservable individual-specific effects and the idiosyncratic

disturbances.

Van den Berg (2001) provides an excellent review of duration models, including the multiple

spell and multiple state duration models.13 Horowitz and Lee (2004) and Lee (2008) provide

estimation procedures for semi-nonparametric versions of Honoré’s (1993) multiple spell duration

model. Abbring and den Berg (2003) consider identification of treatment effects in duration

models, while Honoré and de Paula (2010) consider multiple spell duration models with strategic

interactions. Khan and Tamer (2007) and Woutersen (2000) develop estimators for analysis of

censored duration models. Abrevaya (1999) provides an estimator of the linear index coeffi cients

in a general semiparametric fixed-effects panel transformation model.

Holtz-Eakin, Newey, and Rosen (1988), Chamberlain (1992), Wooldridge (1997), Blundell, Grif-

fith, and Windmeijer (2002), and Bonhomme (2010) consider several semiparametric generalizations

of the idea of quasi—differencing, while Graham and Powell (2008) study a related correlated random

coeffi cient model with nonparametric specification of the coeffi cients. This paper extends the idea

of quasi—differencing in a different and fully nonparametric way.

The literature on nonlinear and nonparametric analysis of panel data is growing very rapidly.

13Van den Berg (2001) calls some of these models multivariate mixed proportional hazard models.
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Arellano and Honoré (2001) and Arellano and Hahn (2006) review the literature on semiparametric

nonlinear panel data models. Recent contributions on nonparametric panel data models include

Arellano and Bonhomme (2009), Altonji and Matzkin (2005), Bester and Hansen (2007),

Chernozhukov, Fernandez-Val, Hahn, and Newey (2010), Cunha, Heckman, and Schennach (2010),

Evdokimov (2008), Hoderlein and White (2009), and Hu and Shum (2008). The identification

strategies of these papers differ substantially from the nonparametric quasi—differencing method

proposed here. Moreover, none of these papers considers panel transformation models or multiple

spell duration models such as the PGAFT and MPH models discussed above.

The rest of the paper is organized as follows. For clarity of exposition, I first establish the

nonparametric identification of model (2) and of the corresponding MPH duration model in Sections

2.1 and 2.2. Then, identification of the transformation model (1) and of the duration model (3)

is considered in Sections 3.1 and 3.2. Sections 4.1 and 4.2 demonstrate identification of censored

duration models and models with multivariate unobserved heterogeneity. Section 5 concludes.

In what follows the notation Y ≡ (Y1, . . . , YJ), X ≡ (X1, . . . , XJ), and U = (U1, . . . , UJ) will

often be used.

2 Nonparametric Quasi—Differencing

2.1 Identification of Panel Model (2)

Identification of model (2) does not require that the covariates Xj have common support across

j. Moreover, their supports do not even need to overlap. Fix an x in the support of X2 and

define the set X1 = {x1 ∈ X : fX1,X2 (x1, x) > 0}; i.e., the set X1 is the support of X1 given the

event that X2 = x. The value of x should be chosen appropriately, so that the set X1 is not

empty; for instance, one may take x to be a mode of the distribution of X2. Here and everywhere

below f is the density function if Xj is continuously distributed, and a probability mass function

if Xj has a discrete distribution.14 For each x1 ∈ X1, define x̃3 (x1) to be an x3 ∈ X such that

fX1,X2,X3 (x1, x, x̃3 (x1)) > 0 (such a point x3 always exists due to the definition of the set X1).

Correspondingly, define the event G (x1) = {X = (x1, x, x̃3 (x1))}.
Model (2) requires some normalizations in order to identify its structural elements. Both a

location and a scale normalization are necessary, since the mean of A and the variances of A and

Uj are not restricted. The following assumption is a convenient normalization:

Assumption 1. g2 (x, 0) = 0 and g2 (x, 1) = 1.15

14More generally, fXj is the Radon-Nikodym derivative of the probability measure for Xj with respect to a product
measure of Lebesgue (for the continuously distributed components of Xj) and counting (for the discrete components
of Xj) measures.
15This normalization implicitly assumes that fY2|X2

(0|x) > 0 and fY2|X2
(1|x) > 0. This implicit assumption can

be trivially relaxed in this and the following sections at the expense of introducing more notation. One can always
find ya and yb, such that ya < yb, fY2|X2

(ya|x) > 0 and fY2|X2
(yb|x) > 0. Then one could normalize g2 (x, 0) = ya

and g2 (x, 1) = yb.
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Other normalizations are possible; for instance, one can assume that g2 (x, 0) = 0 and

∂g2 (x, 0) /∂v = 1.

Assumption 2. J = 3, {Y,X,U,A} are random, and Y is generated according to (2). In addition:

(i) the functions gj (x, v) are strictly increasing in v for all x and j = 1, 2, 3;

(ii) U1, U2, U3, and A are mutually independent, conditional on G (x1) for all x1 ∈ X1;

(iii) E [Uj |G (x1)] = 0 for all x1 ∈ X1 and j = 1, 2;

(iv) the conditional distribution of Uj is absolutely continuous with respect to Lebesgue measure,
and fUj (u|G (x1)) ≡ fUj |X1,X2,X3 (u|x1, x, x̃3 (x1)) > 0 for all u ∈ R, x1 ∈ X1, and j = 1, 2;

(v) for all x1 ∈ X1 the set of points where the conditional characteristic function φU3 (s|G (x1)) of

U3 is nonzero (i.e., the set
{
s ∈ R : φU3 (s|G (x1)) 6= 0

}
) is everywhere dense in R;16

(vi) for each x1 ∈ X1, there exist constants Cα1 > 0, Cα2 > 0, α0 ∈ R, and ε0 > 0, such that

the conditional cumulative distribution FA (α|G (x1)) is differentiable for all α ∈ Bε0 (α0) =

{α ∈ R : |α− α0| < ε0}, and Cα1 < ∂FA (α|G (x1)) /∂α < Cα2 for all α ∈ Bε0 (α0).

(vii) the functions gj (xj , v), fUj |X1,X2,X3 (u|x1, x2, x3), FA|X1,X2,X3 (α|x1, x2, x3), and x̃3 (x1) are

everywhere continuous in the continuous components of xj for all α ∈ R, u ∈ R, and j =

1, 2, 3.

A discussion of these assumptions is in order. Assumption 2(i) ensures the invertibility of

the function gj (xj , v) in the second argument. Note that the functions gj (x, v) do not need to

be continuous in v. The independence Assumption 2(ii) is strong; however, some independence

assumptions are usually needed for nonparametric identification of unknown functions with

nonseparable unobservables. Moreover, this assumption is naturally satisfied by the duration

model in Section 2.2. Location restriction of Assumption 2(iii) is standard. The full support

Assumption 2(iv) is imposed to simplify the presentation of the results but is not essential for the

identification strategy; see Remark 1 below. Assumption 2(v) is technical and is very weak; all

standard distributions satisfy this assumption; see also the discussion below. Assumption 2(vi)

implies that the conditional distribution of the unobserved heterogeneity A is continuous at least

in some small neighborhood. This assumption is necessary; when A has a discrete distribution,

the model is not identified; see Remark 2 below. Note that the researcher does not need to know

the values of α0, ε0, Cα1, or Cα2 for identification or estimation. Finally, Assumption 2(vii) is

needed only when the covariates Xj contain continuously distributed components. In this case the

conditioning event G (x1) has probability zero and a continuity assumption such as Assumption

2(vii) is needed.17

16For any event ϑ, φUj (s|ϑ) is the conditional characteristic function Uj , given ϑ, and is defined as φUj (s|ϑ) =

E [exp (isUj) |ϑ], where i=
√
−1.

17 It is straightforward to allow the functions to be almost everywhere continuous. In this case the functions gj (x, v)
are identified at all points of continuity in x.
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Theorem 1. Suppose Assumptions 1 and 2 hold. Suppose some functions G1 (x1, y) and G2 (x, y)

(i) are strictly increasing in y for all y and all x1 ∈ X1, and (ii) for all x1 ∈ X1 satisfy the condition

G1 (x1, Y1)−G2 (x, Y2) ⊥ Y3|G (x1) . (8)

Then the following equalities hold for all x1 ∈ X1 and (Lebesgue) almost all points v ∈ R (in

particular, for all points of continuity in v)18

g1 (x1, v) = G−1
1 (x1, [G2 (x, 1)−G2 (x, 0)] v +G2 (x, 0) + ∆G,1 (x1)) and

g2 (x, v) = G−1
2 (x, [G2 (x, 1)−G2 (x, 0)] v +G2 (x, 0)) ,

where ∆G,1 (x1) = E [G1 (x1, Y1)−G2 (x, Y2) |G (x1)].

This theorem demonstrates identification of the function g1 (x1, ·) for all x1 ∈ X1 (and of the

function g2 (x2, ·) at the point x2 = x). Suppose the random vector (Y,X) was generated by model

(2) and the conditions of the theorem hold. The theorem then establishes that for any such random

vector (Y,X), there exist unique functions g1 (·) and g2 (x, ·) that can generate vector (Y,X) in

model (2). Indeed, suppose two different sets of functions {g1 (·) , g2 (x, ·)} and {g̃1 (·) , g̃2 (x, ·)}
satisfying Assumptions 1 and 2 correspond to the same distribution of (Y,X). Define functions

G1 (x1, y) ≡ g̃−1
1 (x1, y) and G2 (x, y) ≡ g̃−1

2 (x, y), where g̃−1
j (·) is the inverse function of g̃j (·) in

the second argument, which exists because g̃j (·) satisfies Assumption 2(i). Notice that G2 (x, 0) = 0

and G2 (x, 1) = 1 because g̃2 (·) satisfies the normalization Assumption 1. In addition, for these
functions Gj (·) the above-defined ∆G,1 (x1) satisfies ∆G,1 (x1) ≡ 0 for all x1 ∈ X1. Moreover, the

functions G1 (·) and G2 (x, ·) satisfy the independence condition (8) by construction. Thus, all the
conditions of Theorem 1 are satisfied and hence the conclusion of the theorem holds. Remember

that {g1 (·) , g2 (x, ·)} generates the same distribution of (Y,X). Thus for all x1 ∈ X1 we have

g1 (x1, v) = G−1
1 (x1, v) = g̃1 (x1, v) and

g2 (x, v) = G−1
2 (x, v) = g̃2 (x, v) ,

where in each line the first equality holds for Lebesgue almost all points v ∈ R by Theorem 1

and the second equality holds by construction of Gj (·). This shows that if two sets of structural
functions {g1 (·) , g2 (x, ·)} and {g̃1 (·) , g̃2 (x, ·)} generate the same distribution of vector (Y,X) in

model (2), then g1 (x1, v) = g̃1 (x1, v) and g2 (x, v) = g̃2 (x, v) for almost all v ∈ R.
The functions g2 (·) and g3 (·) can be identified by switching the roles of Y1, Y2, and Y3.

The proof of the theorem is given in the Appendix. Here I briefly discuss the idea of the proof.

First, fix any x1 ∈ X1 and suppress the conditioning on G (x1) as well as the arguments x1, x,

and x3 of functions Gj and gj . Define function Gj (·) = Gj (gj (·)) and note that the following
18Obviously, if the functions are assumed to be right- or left-continuous they are identified everywhere.
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statements are equivalent:

G1 (Y1)−G2 (Y2) ⊥ Y3 ⇐⇒

G1 (A+ U1)−G2 (A+ U2) ⊥ g3 (A+ U3) ⇐⇒

G1 (A+ U1)−G2 (A+ U2) ⊥ A+ U3 ⇐⇒

G1 (A+ U1)−G2 (A+ U2) ⊥ A,

where the second line follows from the definition of function Gj (·) and equation (2), the third line
follows from the strict monotonicity of function g3 (·) (Assumption 2(i)), and the fourth line follows
from Lemma 1 in the Appendix, which uses Assumptions 2(ii,v).

We would like to show that only linear functions G1 (·) and G2 (·) with the same slopes can
satisfy the above independence condition. This will imply that functions Gj (·) are the inverse
functions of gj (·) up to a location and scale normalization. Consider the function

κ (α, u1, u2) = G1 (α+ u1)−G2 (α+ u2)−
[
G1 (α0 + u1)−G2 (α0 + u2)

]
, (9)

where α0 is defined in Assumption 2(vi). The above chain of equivalent conditions together with

Assumption 2(ii) implies that κ (A,U1, U2) ⊥ A. Note also that κ (α0, u1, u2) = 0 for all (u1, u2) ∈
R× R by construction.

Take any ε > 0 and note that

P [|κ (A,U1, U2)| > ε] = limr↘0 P [|κ (A,U1, U2)| > ε|A ∈ (α0 − r, α0 + r)] = 0,

where the first equality holds because of the independence between κ (A,U1, U2) and A, while the

proof of the second equality is lengthy and uses Luzin’s theorem (e.g., Folland, 1999) and that

κ (α0, u1, u2) ≡ 0. Then, κ (α, u1, u2) = 0 for almost all (α, u1, u2) ∈ Bε0 (α0)× R× R, since ε > 0

can be taken arbitrarily small.

Thus, the left-hand side of (9) is zero for almost all (α, uj) ∈ Bε0 (α0)×R and j = 1, 2. We can

rewrite (9) as

G1 (α+ u1)−G1 (α0 + u1) = G2 (α+ u2)−G2 (α0 + u2) .

Since u1 and u2 vary independently it must be that

Gj (α+ uj)−Gj (α0 + uj) = c (α)

holds for some function c (·) that does not depend on uj . It is now intuitively clear that the only
way uj may cancel out on the left-hand side above for all α is when Gj (·) is a linear function. More
formally, note that c (α0) = 0 and define function η (ξ) ≡ c (ξ + α0). The proof in the Appendix

demonstrates that the function η (·) satisfies Cauchy’s functional equation. The only solution of
Cauchy’s equation in the class of measurable functions is the linear function. Thus, η (·) and Gj (·)
must be linear, i.e. Gj (v) = c0j + cv. Then, from the definition of the function Gj (v) it follows

11



that gj (v) = G−1
j (c0j + cv) and Assumptions 1 and 2(iii) can be used to determine the constants

c0j and c.

Remark 1. The full support Assumption 2(iv) is made only for simplicity of notation. It

is straightforward to relax it. Let HA (G (x1)) ⊂ R be an open set such that the derivative

∂FA (α|G (x1)) /∂α exists and is positive for all α ∈ HA (G (x1)). Also, let SU1 (x1) be the conditional

support of U1, given X1 = x1. Then, following the proof of Theorem 1, it is straightforward to show

that g1 (x1, v) is identified for all v ∈ {α+ u1 : α ∈ HA (G (x1)) and u1 ∈ SU1 (x1)}.

Remark 2. The identification strategy relies on A having a nondegenerate distribution. When A

has a degenerate distribution (i.e., P {A = const} = 1) the identification method fails, because the

independence condition 8 holds for all functions G1 (·) and G2 (·). However, this is not a problem,
since it is easy to detect and handle. Conditional on covariates, the dependence between Y1, Y2,

and Y3 comes only from A. When Y1, Y2, and Y3 are independent, conditional on covariates, one

should conclude that there is no common source of heterogeneity; i.e., there is no A in the model.

In that case the analysis can be performed separately for each time period, and each one period

model is the model studied in Matzkin (2003).

Note that the identification argument of Theorem 1 fails if A has a nondegenerate but discrete

distribution. Example 1 in the Appendix demonstrates that the independence restriction (8) does

not identify functions gj (·) when A has a discrete distribution. Arguably, economists are inclined

to think of unobserved heterogeneity as being continuously distributed, when present.19

Remark 3. The restrictions that identify the model are different from the completeness condition.

The model is shown to be identified even when the characteristic functions of Uj have real zeros

(possibly even an infinite number). However, it is well known (e.g., see Mattner, 1993) that Yj is not

complete (not even bounded complete) for A in the model Yj = gj (A+ Uj) when the characteristic

function of Uj has zeros; hence, an identification strategy based on completeness conditions would

fail to identify the model in this case.

Moreover, a simple suffi cient condition for Assumption 2(v) exists. When the density of U3

has tails that are no thicker than exponential, Assumption 2(v) holds; see page 3 of Paley and

Wiener (1934) and also (d’Haultfoeuille forthcoming).20 This suffi cient condition is restrictive.

The advantage of this condition is that it has an easy interpretation; in a number of economic

applications researchers may have some intuition or an economic model that implies Uj having thin

tails (or even bounded support).21

To identify the functions gj (x, v) for all j, one exchanges the roles of time indices j and

repeatedly applies Theorem 1. No further normalizations beyond Assumption 1 are needed; once

19Econometric models with discrete unobserved heterogeneity are often used in applied research. However, this
discrete distribution is usually seen as an approximation for the true underlying continuous distribution.
20Formally, Assumption 2(v) holds if there exist positive constants c1 and c2, such that for large u, fU3 (u|G (x1)) <

c1 exp (−c2u). In this case φU3 (s|G (x1)) is an analytic function, and hence Assumption 2(v) holds.
21 In contrast, I am not aware of any condition that would imply that the characteristic function of a random

variable has no real zeros and would have an economic interpretation.
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function g1 (·) is identified, it serves as a source of normalizations for the functions g2 (·) and g3 (·).
Note that the first use of Theorem 1 identifies function g1 (x, ·) for all x ∈ X1, but X1 depends on

the choice of x and may not include the whole support of X1. Then one may need to apply Theorem

1 several times, alternating the roles of time indices, to obtain identification of g1 (x, ·) for all x in
the support of X1.22 Formally, suppose all the components of Xj are continuously distributed and

define X̃ to be the set of all interior points of {(x1, x2, x3) : fX1,X2,X3 (x1, x2, x3) > 0}. Assume that
X̃ is a connected set. Then one can identify the structural functions {g1 (x1, ·) , g2 (x2, ·) , g3 (x3, ·)}
for all points (x1, x2, x3) in the closure of X̃ .23 When Xj contains discrete covariates, a similar

statement holds, but its formulation requires additional notation and is not presented to save space.

The conditional distributions of A and Uj are also identified. Take any (x1, x2) ∈ X 2

and define the event G = {(X1, X2) = (x1, x2)} to shorten the notation. First, notice that

conditional on the event G, the joint distribution of vector (A+ U1, A+ U2)′ is identified, since

(A+ U1, A+ U2) =
(
g−1

1 (x1, Y1) , g−1
2 (x2, Y2)

)
, where g−1

j (x, ·) denotes the inverse function of
gj (x, ·). Then, an extension of a lemma of Kotlarski (1967) identifies the distributions of A, U1,

and U2 using their conditional independence. The proof of the following Corollary is given in the

Appendix.

Corollary 2. Suppose that (i) the functions g1 (x1, v) and g2 (x2, v) are identified for almost all

v ∈ R, (ii) A, U1, and U2 are mutually independent, conditional on G, and (iii) E [U2|G] = 0.

Moreover, suppose that one of the following conditions holds:

(iv,a) E [|A|+ |U1|+ |U2| |G] < ∞; and for all s ∈ R and j = 1, 2, if φUj (s|G) = 0 then

∂φUj (s|G) /∂s 6= 0;

(iv,b) there exist positive constants c1 and c2, such that fUj (u|G) < c1 exp (−c2u) for large u and

j = 1, 2.

Then the distributions of A, U1, and U2, conditional on G, are identified.

Conditions (ii) and (iii) have already been imposed by Assumption 2. Condition (iv,a)

is technical and very weak and holds for all standard distributions, including normal, log-

22Consider the following example. Suppose Xj ∈ R and the joint support of (X1, X2, X3) ={
(ξ1, ξ2) : ξ21 + ξ22 ≤ 1

}
×{0}; i.e., the joint support of (X1, X2) is a ball of radius 1 in R2 with the center at the origin,

and for simplicity X3 is degenerate, X3 = 1 (this degeneracy does not violate any of the assumptions made above).
Suppose the researcher chooses x = 1/2. Then, X1 defined in the beginning of this section is X1 =

[
−
√

3/2,
√

3/2
]
,

and hence Theorem 1 identifies g1 (x1, v) for all x1 ∈
[
−
√

3/2,
√

3/2
]
and v ∈ R. Now we can identify g2 (·). For

any x2 ∈ [−1, 1] we have fX1,X2 (0, x2) > 0; hence, we can use the independence condition such as (8), but with
conditioning on the event {X1 = 0, X2 = x2} and identify g2 (x2, v) for all x2 ∈ [−1, 1] and v ∈ R. No further
normalizations are needed, since g1 (0, v) has already been identified. Then, one may observe that fX1,X2 (x1, 0) > 0
for all x1 ∈ [−1, 1], and use the independence condition like (8), conditional on the event {X1 = x1, X2 = 0}, and
identify g1 (x1, v) for all v ∈ R and all x1 ∈ [−1, 1], and not just for x1 ∈ X1. Of course, in this example one could
have taken x = 0 from the beginning and thus could have avoided the need for this chain argument. However, such
chaining may be necessary if the support of X has an irregular shape.
23 If set X̃ is not connected, one has to impose separate normalizations on the disconnected parts.
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normal, truncated-normal, Student-t, Uniform, Cauchy, and extreme value type-I, among others.24

Condition (iv,b), as was discussed earlier, is restrictive but has the virtue of having economic

interpretation. These conditions are used to extend Kotlarski’s lemma; more details are given in

Evdokimov and White (2010).

2.2 Duration Model

Let us study the connection between the panel model (2) and the multiple spell duration models.

Since functions gj (·) are invertible, we can write (2) as a transformation model

Λj (Yj , Xj) = A+ Uj , (10)

where Λj (·) is defined to be the inverse function of gj (·) in the second argument for j = 1, 2, 3. This

model corresponds to the model (1) with m (x, α) ≡ α for all x. This model can also be interpreted
as a multiple spell duration model. Let Tj ≡ Yj ≥ 0 be the length of the j-th spell, and consider

the conditional survival function for spell Tj with observed covariates Xj = x and the unobserved

heterogeneity A = α

F Tj |Xj ,A (t|x, α) = P (Tj > t|Xj = x,A = α)

= P (Λj (Tj , x) > Λj (t, x) |Xj = x,A = α)

= P (Uj > Λj (t, x)− α|Xj = x)

= FUj |Xj (Λj (t, x)− α|x) ,

where as usual F (·) ≡ 1−F (·), the second equality follows from Λj (t, x) being strictly increasing in

t, and the third equality follows from the assumption of independence between Uj and A conditional

on covariates Xj that was made earlier.

The above expression shows that the transformation model (1) can be seen as a panel extension

of the GAFT model. The hazard rate for this model takes the form

θTj |Xj ,A (t|x, α) = −
∂ lnF Tj |Xj ,A (t|x, α)

∂t
= −

∂ lnFUj |Xj (Λj (t, x)− α|x)

∂t
. (11)

As discussed by Ridder (1990), the hazard rate of the GAFT model in general does not have

the mixed proportional form. However, an MPH model with the following hazard rate is a special

case of (11)

θTj |Xj ,A (t|x, α) = hj (t, x)αrj(x) (12)

Here hj (t, x) and rj (x) are positive functions, i.e., hj (t, x) > 0 and rj (x) > 0 for all t ≥ 0,

x, and j = 1, 2, 3.25 For any functions hj (·) and rj (·) the MPH model (12) corresponds to the

24Obviously, condition (iv,a) holds when φUj (·|G) is nonvanishing, i.e., when φUj (s|G) 6= 0 for all s ∈ R. The
assumption of the nonvanishing characteristic function of measurement errors is routinely imposed in the analysis of
measurement error models.
25 In this specification we may also include the time period j among the covariates x and not index the functions
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transformation model (10) with

FUj |Xj (u|x) = exp
{
−erj(x)u/rj (x)

}
, and

Λj (t, x) =
1

rj (x)
ln

(
rj (x)

∫ t

0
hj (ξ, ) dξ

)
.

The above takes Uj to have conditional extreme value type-I distribution as in Ridder (1990) or

Horowitz (1996); however, this distribution is rescaled by rj (x).

The hazard rate (12) can be equivalently written as

θTj |Xj ,A (t|x, α) = hj (t, x) exp (rj (x) α̃) , α̃ = ln (α) .

This representation illustrates that model (12) allows covariate- and time-dependent factor loadings

in the MPH model. Theorem 2 in Honoré (1993) identifies a multiple state duration model where

the j-th duration spell has the hazard rate of the form θTj |Xj ,Vj (t|x, v) = λj (t)φj (x) v and the

random variables (V1, . . . , VJ) do not need to be independent from each other but are assumed to

be independent from the covariates (X1, . . . , XJ). There are clear trade-offs between this model of

Honoré (1993) and model (12). Theorem 2 in Honoré (1993) allows for multivariate unobserved

heterogeneity, while the results of this section permit only scalar unobserved heterogeneity.

However, the effect of this scalar unobserved heterogeneity varies across duration spells, since the

unobserved heterogeneity enters the hazard rate nonmultiplicatively through the term exp (rj (x) α̃),

which is a nonparametric generalization of the one-factor model of Flinn and Heckman (1982,

1983).26 Moreover, in contrast to the framework of Flinn and Heckman and to Theorem 2 of

Honoré (1993), the models of this paper allow for arbitrary dependence between the unobserved

heterogeneity and the covariates. Section 4.2 below demonstrates that the assumption of scalar

unobserved heterogeneity can be relaxed allowing for multiple-factor models.

The following assumption is imposed to identify model (12).

Assumption 3. For all j, conditional on Xj and A, the length of the spell Tj is independent of

the length of the other spells T(−j) and the covariates in the other time periods X(−j).

This assumption implies that the hazard rate has the form θTj |T1,...Tj−1,Tj+1,...TJ ,X1,...,XJ ,A =

θTj |Xj ,A. In the analysis, the covariates Xj are assumed to vary between spells but are considered

constant within each spell. Take x and G (x1) defined in Section 2.1, and consider the following

assumption:

Assumption 4. J = 3, {(T1, T2, T3) , X,A} are random, (T1, T2, T3) are generated according to the

duration model with the hazard rate (12), and for all j = 1, 2, 3:

h (·) and r (·) by j.
26Although the joint distribution of vector (V1, . . . , VJ) is identified by Theorem 2 in Honoré (1993), in practice,

researchers often estimate the one-factor model of Flinn and Heckman (1982, 1983) specifying Vj = aj+bjA, where aj
and bj are constants that vary over j, and A is a scalar random variable that does not vary over j and is independent
of covariates. This paper shows that this model is identified even when the unobserved heterogeneity A and the
covariates are dependent.

15



(i) hj (t, x) ≥ 0 and rj (x) > 0 for all x, t ≥ 0;

(ii) for all x ∈ X , functions λj (τ , x) =
∫ τ

0 hj (t, x) dt are defined for all τ ≥ 0 and

limτ→∞ λj (τ , x) =∞;

(iii) for each x1 ∈ X1, there are constants Cα1 > 0, Cα2 > 0, α0 ∈ R, and ε0 > 0, such that

the conditional cumulative distribution FA (α|G (x1)) is differentiable for all α ∈ Bε0 (α0) =

{α ∈ R : |α− α0| < ε0}, and Cα1 < ∂FA (α|G (x1)) /∂α < Cα2 for all α ∈ Bε0 (α0);

(iv) normalizations h2 (1, x) = 1 and r2 (x) = 1 hold;

(v) functions hj (t, x), rj (x), FA|X1,X2,X3 (α|x1, x2, x3), and x̃3 (x1) are everywhere continuous in

the continuously distributed components of x and xj for all t ∈ [0,∞), α ∈ [0,∞).

Assumptions 4(i,ii) ensure that Tj has a proper conditional distribution for all x and α.27

Assumption 4(iii) is the same as Assumption 2(vi)discussed above and requires that the unobserved

heterogeneity have a continuous distribution at least in some small neighborhood. Assumption

4(iv) is a normalization, while Assumption 4(v) is a technical smoothness restriction, similar to

Assumption 2(vii). As in Honoré (1993), no assumptions on the moments or tail behavior of the

density of the unobserved heterogeneity A are needed. The proof of the following theorem is given

in the Appendix:

Theorem 3. Suppose Assumptions 3 and 4 hold. Then in the duration model with the hazard rate
(12) the functions h1 (t, x), r1 (x), and h2 (t, x) are identified for all x ∈ X1 and almost all t ≥ 0.

The functions h2 (·), h3 (·), r2 (·), and r3 (·) can be identified by exchanging the roles of time
periods j; see also Remark 2.1. Once functions hj (·) and rj (·) are identified, we can write the
model in the form (2). Then, we can use Corollary 2 to identify the distribution of the unobserved

heterogeneity A.

Assumption 4(i) requires rj (x) > 0 so that θTj |Xj ,A (t|x, α) is strictly increasing in α. One can

imagine a multiple state duration model where the unobserved heterogeneity has opposite effects

on the spells corresponding to different states. Thus, one may be interested in the model where,

say, r1 (x) < 0 and r2 (x) > 0. In fact, Theorem 3 identifies such a model. The related Theorem

1 requires that gj (x, v) be strictly increasing in v. As can be immediately seen from the proofs,

"strictly increasing" may be replaced with "strictly monotone" and the identification result will

hold. One will, of course, need to impose a normalization, such as assume g2 (·) to be strictly
increasing in v, but no such restrictions on g1 (·) or g3 (·) will be needed. As a consequence, rj (x)

may be allowed to have different signs for different j, which implies that in the corresponding

semiparametric model (4) the signs of the parameters γk may vary over k.

Although this paper restricts its attention to the questions of identification, it is worth briefly

discussing possible estimation procedures for the models considered. Estimation of the panel

27Note that allowing hj (t, x) to be zero for some t implies that the corresponding function gj (·) may be
discontinuous, but this is allowed by Theorem 1.
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model (2) and of the related multiple spell duration model (12) can be based on the independence

restriction (8), conditional on covariates. One can use sieves to specifyGj (·), imposing monotonicity
restrictions on the sieve space. Then it is easy to specify a set of moment conditions identifying

the functions Gj (·). There is a continuum of moment conditions that the independence restriction

generates. Thus, there is a continuum of conditional moment restrictions. The work of Chen and

Pouzo (2008), although it does not immediately apply, can be extended to obtain the rates of

convergence of the estimator.

Importantly, estimating functions Gj (·) from the independence restriction (8) is easier to

implement than, for example, the nonparametric maximum likelihood. The procedure does not

require specification of the conditional distribution of (U1, U2, U3, A), which makes it not only easier

to implement, but also more robust as it leaves no room for misspecification of the distribution of

the unobservables.

Fully nonparametric estimation of the duration models may not be viable in many empirical

applications due to the limited sample sizes. A semiparametric model such as (4) may be of interest

in such cases. Use of the sieve estimation procedure has the advantage that it readily allows adding

semiparametric components to the model. Most empirical studies of durations consider discrete

covariates, which significantly simplifies the conditional independence restrictions. Suppose that

the function zk (t) in model (4) is written as zk (t) ≡ exp (ζk (t, βk)), where ζk (t, βk) is a piecewise

linear function of t, parameterized by vector βk. Then, one can obtain an analytical expression for

the corresponding transformation function Λj (·). This function is then used in the independence
restriction to estimate the model parameters (βk, δk, γk).

3 General PGAFT Model

3.1 Identification of the Transformation Model

The strategy of nonparametric identification of model (1) consists of two main steps. First, one

considers the model conditional on the event {X1 = X2 = x}, which implies that m (X1, A) =

m (X2, A) = m (x,A). Then, the logic of the nonparametric quasi—differencing analysis of the

previous section applies; the conditional independence restriction

Λ̃1 (Y1, x)− Λ̃2 (Y2, x) ⊥ Y3| {X1 = X2 = x,X3 = x3} (13)

holds if and only if functions Λ̃j (y, x) are equal to functions Λj (y, x) up to a location and scale

normalization. Importantly, the independence restriction is imposed conditional on the event that

the values of the covariates in time periods 1 and 2 are equal (i.e., on the event {X1 = X2 = x}); this
allows m (X1, A) and m (X2, A) to cancel out when and only when the transformation functions

Λ̃j (y, x) are equal to the true functions Λj (y, x), j = 1, 2. Note that this argument requires
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assuming f(X1,X2) (x, x) > 0 for all x ∈ X .28 Note that for any x ∈ X one can always choose x3

such that f(X1,X2,X3) (x, x, x3) > 0 if f(X1,X2) (x, x) > 0.

Once functions Λj (y, x) are identified for j = 1, 2, denote Ỹj = Λj (Yj , Xj) and consider the

model

Ỹj = m (Xj , A) + Uj , j = 1, 2. (14)

This is the model considered in Evdokimov (2008). The nonparametric distributional first—

differencing analysis developed in that paper can now be applied. Since the method is thoroughly

studied in Evdokimov (2008), here I present only a concise description of the idea. Essentially, one

first uses Corollary 2 to identify the distribution of the idiosyncratic errors Uj . Then, one uses

conditional deconvolution to remove the effect of Uj from Yj and hence obtains the distribution of

m (Xj , A) given the covariates. In particular, for any (x1, x2) one obtains Fm(X1,A)|X1,X2 (ω|x1, x2)

and Fm(X1,A)|X1,X2 (ω|x1, x2). Since the fixed effect A is time invariant, the difference between

these cumulative distribution functions has to be attributed to the difference between m (x1, ·) and
m (x2, ·), which allows identification of the structural function m (·). These arguments are made
precise in the proof of Theorem 4.

The assumptions needed to identify model (1) are a strengthened version of Assumptions 1 and

2 and also allow the nonparametric first—differencing analysis. Let X be the support of X1. For all

(x1, x2) ∈ X 2, define the event G (x1, x2) = {X = (x1, x2, x̃3 (x1, x2))}, where x̃3 (x1, x2) is defined

in Assumption 6(vii) below.

Assumption 5. The following normalizations hold: (i) Λ2 (0, x) = 0 and Λ2 (1, x) = 1 for all

x ∈ X ; (ii) for some fixed x, m (x, α) = α for all α ∈ R.

Assumption 6. J = 3, {Y,X,U,A} are random, and Y is generated according to (1). In addition:

(i) for all x ∈ X and j = 1, 2, 3, the functions Λj (y, x) and m (x, α) are strictly increasing in y

and α, respectively;

(ii) fUj |Xj ,A,X(−j),U(−j)
(
uj |xj , α, x(−j), u(−j)

)
= fUj |Xj (uj |xj) for all

(
uj , xj , α, x(−j), u(−j)

)
∈ R ×

X×R×X 2×R2 and j = 1, 2, 3;29

(iii) E [Uj |G (x1, x2)] = 0 for all (x1, x2) ∈ X 2 and j = 1, 2;

(iv) fUj (u|G (x1, x2)) > 0 for all u ∈ R, (x1, x2) ∈ X 2, and j = 1, 2;

(v) for all (x1, x2) ∈ X 2, E [|m (x1, A)|+ |U1|+ |U2| |G (x1, x2)] is bounded, and for all s ∈ R and
j = 1, 2, if φUj (s|G (x1, x2)) = 0 then ∂φUj (s|G (x1, x2)) /∂s 6= 0;

(vi) for all (x1, x2) ∈ X 2 the set
{
s ∈ R : φU3 (s|G (x1, x2)) 6= 0

}
is everywhere dense;

28The above independence restriction also includes conditioning on X3 = x3. This is because the analysis of model
(2) requires the independence between A and Uj , which is ensured by Assumption 6(ii) below conditional on X3 = x3.
29 Index (−j) stands for the "other than j" time periods.
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(vii) fX1,X2 (x1, x2) > 0 for all (x1, x2) ∈ X 2; also take x̃3 (x1, x2) to be an x3 ∈ X such that

fX1,X2,X3 (x1, x2, x̃3 (x1, x2)) > 0;

(viii) A has a continuous distribution, conditional on G (x1, x2) for all (x1, x2) ∈ X 2;

(ix) SA {(X1, X2) = (x, x)} = SA {X1 = x} for all x ∈ X , where SA {ϑ} is the support of A,
conditional on the event ϑ;

(x) the functions Λj (y, x), m (x, α), fUj |Xj (u|x), fA|X1,X2,X3 (α|x1, x2, x3), and x̃3 (x1, x2) are

everywhere continuous in the continuous components of x and xj for all y ∈ R, α ∈ R,
u ∈ R, and j = 1, 2, 3.

Assumption 5 is a normalization; one needs to impose a location and scale normalization on

function Λj (·, x) at each point x for some j, since the distribution of Uj and the functional form of

m (·) are not restricted. One also needs a normalization on the function m (·) since the distribution
of A is left unrestricted. Assumption 6(ii) requires that Uj ⊥

(
A,X(−j), U(−j)

)
|Xj and is satisfied,

for example, if Uj = σj (Xj) ξj , where the random variables ξj are i.i.d. and independent of

Xj , X(−j), and A. Thus, Assumption 6(ii) in particular permits contemporaneous conditional

heteroskedasticity. The technical Assumption 6(v) is the same as condition (v,a) of Corollary 2; it

is needed to ensure that a Kotlarski type result holds and was discussed earlier. Assumption 6(v)

can be replaced by the condition (iv,b) of Corollary 2. Assumption 6(viii) can be weakened, but

the continuity of the distribution of A at least in some neighborhood is necessary, as demonstrated

by Example 1. Assumptions similar to Assumptions 6(iii,iv,vi,x) were previously imposed to prove

identification of model (2) and were discussed in the previous section.

As was discussed above and is demonstrated formally in the proof in the Appendix, to

identify the model Ỹj = m (Xj , A) +Uj one uses the nonparametric distributional first—differencing

approach and conditions on the event (X1, X2) = (x, x). Assumption 6(ix) ensures that the

"extra" conditioning on x does not reduce the support of A, so that the nonparametric first—

differencing analysis for α ∈ SA {(X1, X2) = (x, x)} in fact covers all possible values of α, i.e., all
α ∈ SA {X1 = x}. One obtains useful identification results even when Assumption 6(ix) does not
hold. Conditioning on the event {(X1, X2) = (x, x)} might remove some extreme values of A from
consideration, yet one can still use the nonparametric first—differencing for the "not too extreme"

quantiles of the unobserved heterogeneity A. Note that Assumption 6(ix) is not needed to identify

the functions Λj (·).
Assumption 6(vii) is a restriction on observables and can be substantially relaxed, although the

condition fX1,X2 (x, x) > 0 for all x ∈ X still needs to hold. As can be seen from the proof, the

value of the structural function m (x, ·) is obtained by comparing the CDFs Fm(x,A)|X1,X2 (w|x, x)

and Fm(x,A)|X1,X2 (w|x, x) where x is our choice of normalization. The condition fX1,X2 (x, x) > 0

is needed to perform this comparison. However, if this condition does not hold, it may be possible

to find an intermediate point x̃ such that fX1,X2 (x̃, x) > 0 and fX1,X2 (x, x̃) > 0 and first obtain

the value of m (x̃, ·) and then use it to obtain m (x, ·). One may also use a sequence of such
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intermediate points. Thus, we would like to assume that the points of X are connected. For

example, if the covariates Xj have a continuous distribution, define X̃ to be the set of all interior

points of {(x1, x2) : fX1,X2 (x1, x2) > 0}. Assume that this set is a connected set. Then one can
identify the structural function m (x, ·) for all points x in the closure of X̃ .

The proof of the following theorem is presented in the Appendix:

Theorem 4. Suppose Assumptions 5 and 6 hold. Then functions Λj(y,x), m(x,α), fA|Xj(α|x) and

fUj |Xj(u|x) in the model (1) are identified for all x ∈ X , y ∈ R, α ∈ SA {X1 = x}, u ∈ R, and
j = 1, 2.

Function Λ3 (y, x) can be identified by switching the roles of Y1 and Y3. Note that model (1)

can be seen as the transformation model extension of Evdokimov’s (2008) model.

3.2 Duration Model

Similar to model (2), the transformation model (1) can be used for the duration analysis. Following

the steps in Section 2.2, it is easy to derive the conditional survival function corresponding to model

(1):

F
PGAFT
Tj |Xj ,A (t|x, α) = FUj |Xj (Λj (t, x)−m (x, α) |x) ,

as well as the hazard rate function:

θPGAFTTj |Xj ,A (t|x, α) = −
∂ lnF Tj |Xj ,A (t|x, α)

∂t
= −

∂ lnFUj |Xj (Λj (t, x)−m (x, α) |x)

∂t
. (15)

These functions are similar to the corresponding functions in Section 2.2, except α is replaced with

m (x, α).

Making the standard assumption FUj |Xj (u|x) = 1 − exp (−eu) (e.g., Ridder, 1990; Horowitz,

1996) one obtains the hazard rate (3):

θTj |Xj ,A (t|x, α) = hj (t, x) γ (x, α) ,

where hj (t, x) ≡ (∂Λj (t, x) /∂t) exp (Λj (t, x)) and γ (x, α) ≡ exp (−m (x, α)).30

It is important to distinguish the following two cases: the case when for a subpopulation of

individuals the covariate does not change between spells, and the case when there is no such

subpopulation; i.e., the covariates necessarily change between the spells for every individual. To

secure identification of the transformation model (1), it was important to impose Assumption 6(vii),

which corresponds to the former case. This assumption in particular implies that fX1,X2 (x, x) > 0

for all x ∈ X .
It turns out that the assumption fX1,X2 (x, x) > 0 for all x ∈ X permits identification of model

(3) using data on just two duration spells. In contrast, identification of the PGAFT model required

30Analogously to Section 2.2, one can also identify the slightly more general MPH model with the hazard rate
θTj |Xj ,A (t|x, α) = hj (t, x) γ (x, α)rj(x).
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three periods of data. There is no contradiction here. The theorems in the previous sections make

no parametric assumptions about the conditional distributions of Uj , while the duration model (3)

implies that Uj has a known distribution that has some special properties. Identification of model

(3) using two duration spells per individual combines the ideas of Honoré (1993) and Evdokimov

(2008) and consists of two main steps. First, the functions hj (t, x) are identified by conditioning on

the event {X1 = X2 = x} and then using the method of Honoré (1993). Identification of functions
hj (t, x) then implies identification of functions Λj (t, x). Now, denote Ỹj = Λj (Tj , Xj) and write

Ỹj = m (Xj , A) + Uj . The logic of the identification proof in Evdokimov (2008) can then be used

to identify the function m (x, α), which corresponds to the function γ (x, α). Theorem 5 below

establishes identification of the duration model (3) using the following assumption:

Assumption 7. J = 2 and fX1,X2 (x1, x2) > 0 for all (x1, x2) ∈ X 2.

Assumption 7 is similar to Assumption 6(vii) and the ways of relaxing it were considered in

the previous section. It is useful to discuss the empirical relevance of this assumption before

Theorem 5 is presented. Assumption 7 in particular implies that for a subpopulation of individuals

the covariates do not change over time (fX1,X2 (x, x) > 0 for all x ∈ X ). For instance, such an
assumption might hold in a study of employment durations Tj , when the covariate Xj is marital

status. Alternatively, the assumption may hold if Tj is the age of the j-th twin sister (j = 1, 2) at

the time of the birth of her first child, and the covariate Xj is the number of years of education of

the j-th sister.

On the other hand, in many multiple spell or multiple state duration models the assumption

fX1,X2 (x, x) > 0 does not hold (here we include the state as one of the covariates Xj). For example,

consider a study of fertility (such as Heckman, Hotz, and Walker (1985)) where the spell T1 denotes

the age of the woman at the time of the birth of her first child, and for the subsequent spells, Tj is the

time between the births of the j-th and (j − 1)-th child. In such a study, the number of previously

born children (j− 1) will be one of the covariates Xj and hence the condition fX1,X2 (x, x) > 0 and

Assumption 7 are not satisfied.

Obviously, Assumption 7 does not allow individual age, calendar time, or time index j to be

among the covariates Xj . Thus, model (3) requires time-homogeneity of the effect of unobserved

heterogeneity, although this effect may be changed by the observed covariates. In contrast, model

(12) allows the effect of the unobserved heterogeneity to vary over time. For example, one may

expect that the distribution of duration of employment on the first job is intrinsically different from

the distribution of duration of employment on all the subsequent jobs.

Both nonparametric models (12) and (3) have the semiparametric model (4) as a special

case. However, the two nonparametric models correspond to two different ways of identifying

the semiparametric model, depending on the assumptions the researcher is willing to impose on the

economic and econometric models.31

Theorems 3 and 5 (below) establish identification of the multiple spell duration models (12)

and (3), respectively. For model (3), Assumption 7 allows first concentrating on the duration spells
31Note that with J ≥ 3, Theorem 3 allows the factor loading coeffi cient γ to depend on j.
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with repeated covariates (e.g., two unemployment spells). For such spells γ (X1, A) = γ (X2, A)

is time-invariant and can be treated as a fixed effect, and hence we identify the functions hj (t, x)

in a way that is reminiscent of identification of the time effects ηj (x) for j > 1 in the model

Yj = m (Xj , A)+ηj (Xj)+Uj as ηj (x) = E [Yj − Y1|Xj = X1 = x] with the normalization η1 (·) ≡ 0.

Once hj (t, x) are known, the nonparametric within-variation is used to obtain γ (x,A). However,

the first step of this strategy fails if either the effect of the unobserved heterogeneity varies over

time (as in specification (12)), or if Assumption 7 does not hold and it is not possible to consider

the spells with repeated covariates, i.e., the subpopulation with Xj = X1. Theorem 3 establishes

identification in a different way. Similar to the discussion of identification of model (2) in the

introduction, to identify model (12) one seeks to find transformations of the dependent variables

that would allow canceling out the effect of unobserved heterogeneity. Of course, the problem of

identifying the duration models (3) and (12) is, in fact, harder than identification of standard panel

data models. This is because one does not actually observe the conditional hazard rates on the

left-hand sides of equations (3) and (12).

The following assumption is used for identification of model (3):

Assumption 8. J = 2, {(T1, T2) , X,A} are random, and (T1, T2) are generated according to the

duration model with the hazard rate (3). In addition, for all j = 1, 2:

(i) hj (t, x) ≥ 0, γ (x, α) > 0, and γ (x, α) is strictly increasing in α for all x ∈ X , t ≥ 0, and

α ≥ 0;

(ii) for all x ∈ X , functions λj (τ , x) =
∫ τ

0 hj (t, x) dt are defined for all τ ≥ 0 and

limτ→∞ λj (τ , x) =∞;

(iii) A has a continuous distribution, conditional on {X = (x1, x2)} for all (x1, x2) ∈ X 2;

(iv) SA {(X1, X2) = (x, x)} = SA {X1 = x} for all x ∈ X , where SA {ϑ} is the support of A,
conditional on the event ϑ;

(v) the following normalizations hold: (a) h2 (1, x) = 1 for all x ∈ X ; (b) γ (x, α) = α for some

x ∈ X and for all α ∈ SA {X1 = x};

(vi) the functions hj (t, x), γ (x, α), and fA|X1,X2 (α|x1, x2) are everywhere continuous in the

continuously distributed components of x and xj for all t ∈ [0,∞), α ∈ [0,∞), and j = 1, 2.

Assumptions 8(i,ii) are similar to Assumptions 4(i,ii) and ensure that Tj has a proper conditional

distribution for all x and α. Assumptions 7 and 8(iii,iv) are the same as Assumptions 6(vii-ix) and

were discussed above. Assumption 8(v) is a normalization, while Assumption 8(vi) is a technical

smoothness restriction, similar to Assumptions 4(v) and 6(x). The proof of the following theorem

is given in the Appendix:

Theorem 5. Suppose Assumptions 3, 7, and 8 hold. Then, the multiple spell duration model with
the hazard rate (3) is identified, i.e., functions hj (t, x), γ (x, α), and fA|Xj (α|x) are identified for

all x ∈ X , t ∈ [0,∞), α ∈ SA {X1 = x}, and j = 1, 2.
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As discussed earlier, model (12) is not a special case of model (3); the conditions of Theorem 5

require that γ (x, α) be time invariant (does not depend on j) and they impose restrictions on the

support of Xj , while Theorem 3 allows the function rj (x) to vary arbitrarily over j and does not

constrain the support of Xj .

4 Extensions

This section considers two extensions of the obtained results. Section 4.1 shows that the censoring

can be taken into account, so that the above identification results also apply to the multiple spell

duration models when the duration data are censored. Section 4.2 discusses identification of models

with multivariate unobserved heterogeneity.

4.1 Censoring

The previous analysis of duration models assumed that the observed durations were uncensored.

In practice, one often has to deal with censoring of duration spells. Below, I show that the joint

distribution of the uncensored duration spells can be recovered from the joint distribution of the

censored duration spells under standard assumptions. The theorems of the previous section then

apply to the joint distribution of uncensored spells to obtain identification of the respective multiple

spell duration models.

Consider first the case when the duration spells are sequential, such as employment spells,

gaps between recurrences of illnesses, or spells between giving birth to children. Assume that the

individual is observed for censoring time C; that is, one observes only the length of duration spells

that happened to an individual over the time C. Then one observes L ≥ 0 completed durations,

where T1 + · · · + TL ≤ C, but T1 + · · · + TL + TL+1 > C, so that the realizations of Tj for j > k

are unobserved. Assume that C is random with full support on R+ and that C is independent

of {Tj , j = 1, . . .}, conditional on the covariates. This assumption has been previously used by
Horowitz and Lee (2004), Khan and Tamer (2007), and Lee (2008) for estimation of semiparametric

multiple spell duration models.32 The distribution of C can depend on the covariates, allowing for

covariate dependent censoring. In the data the econometrician observes realizations of the random

triplet
(
C,L, {Tj , Xj}Lj=1

)
, where L ≥ 0 is the number of completed duration spells and is such

that T1 + . . . + TL ≤ C. To identify the PGAFT and the MPH duration models of the previous

sections we need to identify FT1,...,TJ |X (·), where J = 3 for Theorems 3 and 4, and J = 2 for

Theorem 5. The conditional cumulative distribution function FC|X (·) is identified directly from
32Visser (1996), Wang and Wells (1998), and Lee (2008) note that although conditional on covariates C and T1 are

independent, C and T2 are not independent given T1, since T2 is censored by (C − T1) 1 {C > T1}.
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the data. Denote xJ = (x1, . . . , xJ). Then, for any xJ , similar to Lee (2008),

E

[
1 {C ≥ T1 + . . .+ TJ} 1 {T1 ≤ t1, . . . , TJ ≤ tJ}

1− FC|X (T1 + . . .+ TJ |X)

∣∣∣∣X = xJ
]

= E

[
E

[
1 {C ≥ T1 + . . .+ TJ} 1 {T1 ≤ t1, . . . , TJ ≤ tJ}

1− FC|X (T1 + . . .+ TJ |X)

∣∣∣∣ (T1, . . . , TJ) , X

]∣∣∣∣X = xJ
]

= E
[
E [1 {T1 ≤ t1, . . . , TJ ≤ tJ}| (T1, . . . , TJ) , X]|X = xJ

]
= FT1,...,TJ |X

(
t1, . . . , tJ |xJ

)
,

where the first and the third equalities follow by the law of iterated expectations, and the second

equality follows by the conditional independence between C and (T1, . . . , TJ). Thus, we can identify

the joint conditional distribution of spells (T1, . . . , TJ) and hence can use Theorems 4, 5, and 4 to

identify the corresponding duration models.

Now consider the case of parallel duration spells, for instance, life spells of siblings or twins. In

this case each of the duration spells Tj is censored by an individual censoring variable Ct. Assume

that one observes realizations of the random tuple
{
T̃j , Xj , Cj , Dj

}J
j=1
, where Dj is 1 when the j-th

duration spell is censored and is zero otherwise. Here T̃j = Tj1 {Dj = 0}+ Cj1 {Dj = 1}. Assume
that the censoring times (C1, . . . , CJ) are independent of the duration spell lengths (T1, . . . , TJ)

given the covariates, although (C1, . . . , CJ) do not need to be independent of each other or

covariates. The joint conditional distribution function FC1,...,CJ |X (·) is identified directly from
data. Then, similar to the above, FT1,...,TJ |X1,...,XJ (t1, . . . , tJ |X1, . . . , XJ) is identified:

E

[
1 {C1 ≥ T1, . . . , CJ ≥ TJ} 1 {T1 ≤ t1, . . . , TJ ≤ tJ}

1− FC1,...,CJ |X (T1, . . . , TJ |X)

∣∣∣∣X = xJ
]

= E

[
E

[
1 {C1 ≥ T1, . . . , CJ ≥ TJ} 1 {T1 ≤ t1, . . . , TJ ≤ tJ}

1− FC1,...,CJ |X (T1, . . . , TJ |X)

∣∣∣∣ (T1, . . . , TJ) , X

]∣∣∣∣X = xJ
]

= E
[
E [1 {T1 ≤ t1, . . . , TJ ≤ tJ}| (T1, . . . , TJ) , X]|X = xJ

]
= FT1,...,TJ |X

(
t1, . . . , tJ |xJ

)
.

The above derivations together with Theorems 3, 4, and 5 establish nonparametric identification

of the corresponding multiple spell duration models. It is worth noting that for the semiparametric

duration models the expressions above may substantially simplify, as can be seen in Horowitz and

Lee (2004), Khan and Tamer (2007), Lee (2008), and Woutersen (2000).

4.2 Multiple Sources of Unobserved Heterogeneity

The results of the previous sections consider models with scalar unobserved heterogeneity. This

section demonstrates that these results can be extended to allow for multivariate unobserved

heterogeneity as long as it enters the model specification as a single index. Arbitrary dependence

between the covariates and the unobserved heterogeneity is permitted. Allowing multivariate

unobserved heterogeneity may be particularly important for the duration analysis. This section

demonstrates that the identification results of the previous sections can be extended to allow for a
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multiple factor model.

For concreteness, I will illustrate the method using model (2), although it can be applied to all

the other models in the paper. Consider the following model

Yj = gj
(
Xj , B

′Wj + Uj
)

(16)

where Xj ∈ Rp and Wj ∈ Rq are observable time-varying covariates that do not contain common
elements.33 The random time-invariant vector B ∈ Rq represents the multivariate unobserved
heterogeneity. For instance, B may represent a person’s different skills, such as cognitive and non-

cognitive abilities. Then, Br represents the level of skill r of an individual, and Wjr may represent

the intensity of use of skill r on job j. The elements of B can be arbitrarily correlated with each

other and with the covariates (X,W ). The goal is to identify the structural functions hj (·) and
γ (·), and the distribution of B.

Identification of this model will require that J ≥ max {q, 3}; i.e., there are at least as many
time periods as there are elements of the vector B. Identification of model (16) consists of two

main steps. First, one takes some w and considers the event {W1 = W2 = w}. Conditional on this
event, one can define univariate unobserved heterogeneity A = B′Wj = B′w, which does not vary

over j = 1, 2. Then, the model becomes the panel model (2) and Theorem 1 can be applied to

identify the functions gj (·). Once these functions are identified, one can define Ṽj = g−1
j (Xj , Yj)

and note that Ṽj = B′Wj + Uj . Then, similar to step 2 of the proof of Theorem 4, one can obtain

the joint distribution of (B′W1, . . . , B
′WJ), given (X,W ) =

(
xJ , wJ

)
for any values of

(
xJ , wJ

)
,

where W = (W1, . . . ,WJ), xJ = (x1, . . . , xJ), and wJ = (w1, . . . , wJ). Then, taking the values of

wJ so that the rank of the matrix wJ equals q, it is possible to obtain the conditional distribution

of B given (X,W ) =
(
xJ , wJ

)
. To see this, note that identification of the conditional distribution

of (B′W1, . . . , B
′WJ) means that the characteristic function

φ(B′w1,...,B′wJ )|X,W
(
s1, . . . , sJ |xJ , wJ

)
= E

[
exp

{
i
(
s1B

′w1 + . . .+ sJB
′wJ
)}
| (X,W ) =

(
xJ , wJ

)]
is identified for all (s1, . . . , sJ) ∈ RJ . Then, it is easy to see that

φ(B′w1,...,B′wJ )|X,W
(
s1, . . . , sJ |xJ , wJ

)
= E

[
exp

(
iB

(∑J

j=1
sjwj

))∣∣∣∣ (X,W ) =
(
xJ , wJ

)]
= φB|X,W

(∑J

j=1
sjwj1,

∑J

j=1
sjwj2, . . . ,

∑J

j=1
sjwjq

∣∣∣∣xJ , wJ) ,
where wjk stands for the k-th component of the vector wj . Since Rank

(
wJ
)

= q, the above equation

identifies φB|X,W
(
s1, . . . , sq|xJ , wJ

)
for all (s1, . . . , sq) ∈ Rq. Thus, the conditional density function

fB|Z
(
β|xJ , wJ

)
is identified.

This method of identification is similar to the proof of the Cramer-Wald device. Independently

of this paper, Arellano and Bonhomme (2009) use similar manipulation of the characteristic function

of B′W to identify a linear panel model with multivariate unobserved heterogeneity. In contrast to

33The vector Wj may include a constant.
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this paper, Arellano and Bonhomme (2009) do not consider any nonlinear or duration models.

This strategy identifies the distribution of B, conditional on W = wJ , only for wJ that satisfy

the restriction that the rank of wJ is equal to q. This explains the need to have at least as many

time periods as there are elements of B, i.e., J ≥ q. When Wj has a continuous distribution and

the conditional density fB|X,W
(
β|xJ , wJ

)
is continuous in wJ , the identification result holds for

all wJ by continuity. When the vector Wj contains discrete components, the ability to consider

only wJ with Rank
{
wJ
}

= q is restrictive, although natural. For instance, if Wj = (1, Dj), where

Dj is a dummy variable, Dj ∈ {0, 1}, we identify the distribution of B only for the subpopulation

of those who change the covariate at least once over the periods of observation. The distribution

of B2 is not identified for the subpopulation with D = (0, . . . , 0), since B2 is never observed for

this subpopulation. Similarly, for the subpopulation with D = (1, . . . , 1), one only identifies the

distribution of the sum B1+B2. Thus, in the model with multivariate unobserved heterogeneity and

discrete covariates, the marginal effects for the whole population may not be identified, although

one might be able to obtain bounds for it. This non-identification result for discrete covariates is

well known; e.g., see Chamberlain (1982).

This identification method can be used for other models in the paper. The following MPH

model, corresponding to model (16), is identified

θTj |Xj ,Wj ,B (t|x,w, β) = hj (t, x)
(
β′w

)rj(x,w)
.

The PGAFT model (1) can be extended similarly to (16). Such an extension will correspond to

the MPH model (7).

5 Conclusion

This paper proposes several new nonparametric panel transformation and multiple spell duration

models. These models are identified using a new method of nonparametric identification, which

can be seen as a nonparametric generalization of the quasi—differencing idea. This new method

allows identification of nonparametric panel data models with time-varying structural functions and

nonseparable unobserved heterogeneity. The obtained characterization of the structural functions

naturally suggests a way of estimating the model.

An important area of application of these results is duration analysis with multiple spells.

This paper introduces the Panel Generalized Accelerated Failure Time model and establishes its

nonparametric identification. In addition, several new Mixed Proportional Hazard models are

introduced. In contrast to the existing literature, these models allow the unobserved heterogeneity

to enter the hazard rate non-multiplicatively and nonseparably.

This paper also opens the possibility of analysis of multiple state duration models when the

covariates and the unobserved heterogeneity are dependent.
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6 Appendix

In all proofs C is a generic positive constant that may vary between uses. The following lemma is

used to prove Theorem 1.

Lemma 1. Suppose U , A, and B are scalar random variables that satisfy: (a) U ⊥ (A,B), (b)

the characteristic function φU of U is non-zero on a dense set in R. Then A ⊥ B if and only if

A+ U ⊥ B.

Proof of Lemma 1. When A+ U ⊥ B,

φA+U,B (s1, sB) = φA+U (s1)φB (sB) = φA (s1)φU (s1)φB (sB) ,

where the last equality follows from (a). At the same time, using (a),

φA+U,B (s1, sB) = φA,B,U (s1, sB, s1) = φA,B (s1, sB)φU (s1) .

Equating the two expressions for φA+U,B (s1, sB) we obtain

φA (s1)φU (s1)φB (sB) = φA,B (s1, sB)φU (s1) .

The characteristic functions φA (s1) and φB (sB) are bounded and continuous. Hence, using (b) we

obtain φA (s1)φB (sB) = φA,B (s1, sB) for all (s1, sB) ∈ R2, which implies that A ⊥ B.
Proof in the other direction is obvious. �

Proof of Theorem 1. 1. As explained in the main text, conditioning on G (x1) will be made

implicit and Xj will be omitted in the notation. When the covariates Xj are discrete this causes no

concerns. However, when Xj contains continuously distributed components, the conditioning event

G (x1) has zero probability and care must be taken when dealing with the expectations, conditional

on this event. It can be shown that Assumption 2(vii) is suffi cient to guarantee that the manipula-

tions below are valid conditional on G (x1). Instead of the event G (x1), one can consider a sequence

of events Gn(x1) =
{
X∈

(
x1−n−1, x1+n−1

)
×
(
x−n−1, x+n−1

)
×
(
x̃3 (x1)−n−1, x̃3 (x1)+n−1

)}
.

These events have a positive probability for any finite n; hence, one can perform all of the analyses

below, conditional on Gn (x1). As n tends to infinity, the continuity Assumption 2(vii) can be

used to establish the results we obtain below. Since this argument is relatively standard while the

arguments below are not, for clarity, the proof below proceeds conditioning implicitly on the event

G (x1).34 The same comment applies to all the other proofs below. The reader is encouraged to

think of the case of discrete covariates Xj (and hence of Pr {G (x1)} > 0) at first reading.

2. The main text shows that the condition (8) implies

κ (A,U1, U2) ⊥ A. (17)

34For an example of a proof handling such conditioning on a probability zero event, see Section 6.3 in Evdokimov
(2008).
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For all r > 0 define Br (α0) ≡ (α0 − r, α0 + r)Then, for any r > 0 and any ε > 0 we have

P [|κ (A,U1, U2)| > ε] = P [|κ (A,U1, U2)| > ε|A ∈ Br (α0)] .

We are going to use the above equality to show that P [|κ (A,U1, U2)| > 0] = 0. Note that for

all ε > 0 there exists M (ε) > 0 such that for all r > 0

P [|U1 + α0| > M (ε) or |U2 + α0| > M (ε) |A ∈ Br (α0)] < ε,

because the distribution of (U1, U2) does not depend on A by Assumption 2(ii).

Define the set VM(ε) = [−M (ε)− ε0,M (ε) + ε0], where ε0 is defined in Assumption 2(vi).

For j = 1, 2, function Gj (v) : VM(ε) → R is measurable; hence, by Luzin’s theorem, for any

ε > 0 there is a measurable compact set Vεj,M(ε) ⊂ VM(ε) such that restriction of the function

Gj to Vεj,M(ε), Gj (v) : Vεj,M(ε) → R, is continuous and Leb
(
VM(ε)\Vεj,M(ε)

)
< ε.35 Define the set

VεM(ε) = Vε1,M(ε) ∩ V
ε
2,M(ε) and note that Leb

(
VM(ε)\VεM(ε)

)
< 2ε. Moreover, by Assumption 2(iv),

there is a function ρ (ε) : R+ → R+ with limε↘0 ρ (ε) = 0 such that for all α ∈ Bε0 (α0) and j = 1, 2

P
[
Uj + α ∈ VεM(ε)

]
≥ P

[
Uj + α ∈ VM(ε)

]
− ρ (ε) (18)

= P [|Uj + α0 + (α− α0)| < M (ε) + ε0]− ρ (ε)

≥ P [|Uj + α0| < M (ε)]− ρ (ε)

≥ 1− ε− ρ (ε) ,

where the first equality and the last inequality follow by the definitions of VM(ε) and M (ε),

respectively. Define the set

Ξε ≡
{

(α, u1, u2) : α ∈ [−ε0/2, ε0/2] , u1 + α ∈ VεM(ε), u2 + α ∈ VεM(ε)

}
,

and note that for any δ ∈ (0, ε0/2)

P [(A,U1, U2) ∈ Ξε|A ∈ Bδ (α0)] (19)

= E
[
P
[
U1 +A ∈ VεM(ε), U2 +A ∈ VεM(ε)

∣∣∣A]∣∣∣A ∈ Bδ (α0)
]

= E
[
P
[
U1 ∈ VεM(ε) −A

]
P
[
U2 ∈ VεM(ε) −A

]∣∣∣A ∈ Bδ (α0)
]

≥ 1− C (ε+ ρ (ε)) ,

where the first equality follows by the law of iterated expectations, the second equality follows from

Assumption 2(ii), and the inequality follows from (18).

The function κ (α, u1, u2) is uniformly continuous on Ξε and κ (α0, u1, u2) for all (u1, u2) by

definition. Thus, there is a δ (ε) > 0, such that |κ (α, u1, u2)| < ε for any such point (α, u1, u2) ∈ Ξε

that there is a point (α0, ũ1, ũ2) ∈ Ξε with ‖(α− α0, u1 − ũ2, u2 − ũ2)‖ < 2δ (ε). By construction

of Ξε, if (α, u1, u2) ∈ Ξε then (α0, u1 + α− α0, u2 + α− α0) ∈ Ξε. Therefore, |κ (α, u1, u2)| < ε for

all (α, u1, u2) ∈ Ξε ∩
(
Bδ(ε) (α0)× R× R

)
.

35For any set S, let Leb (S) denote its Lebesgue measure.
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To shorten the notation, define the event X (ε) = {|κ (A,U1, U2)| > ε}. Combining the above

P [|κ (A,U1, U2)| > ε]

= P
[
|κ (A,U1, U2)| > ε|A ∈ Bδ(ε)(α0)

]
≤ P

[
|κ (A,U1, U2)| > ε|A ∈ Bδ(ε)(α0), (A,U1, U2) ∈ Ξε

]
P
[
(A,U1, U2) ∈ Ξε|A ∈ Bδ(ε)(α0)

]
+P
[
(A,U1, U2) 6∈ Ξε|A ∈ Bδ(ε)(α0)

]
≤ 0 + C (ε+ ρ (ε)) ,

where the equality follows from (17), the first inequality is by the law of total probability, and the

second inequality follows from the properties of Ξε, definition of δ (ε), and (19). Since ε > 0 can be

taken to be arbitrarily small, we conclude that P [|κ (A,U1, U2)| > 0] = 0.

The main technical diffi culties in the above proof arise because functions Gj (·) in general
are not continuous and may have an infinite number of discontinuities. However, Luzin’s

theorem establishes that functions Gj (·) behave almost like continuous functions, because they
are measurable.

3. Thus, we proved that P [κ (A,U1, U2) = 0] = 1, which implies that

κ (α, u1, u2) = 0

for (Lebesgue) almost all (α, u1, u2) ∈ Bε0 (α0)× R× R. Rewrite this as

G1 (α+ u1)−G1 (α0 + u1) = G2 (α+ u2)−G2 (α0 + u2) .

The left-hand side of the equation does not depend on u1, while the right-hand side of the equation

does not depend on u2. This implies that for j = 1, 2

Gj (α+ u)−Gj (α0 + u) = c (α) for almost all (α, u) ∈ Bε0 (α0)× R, (20)

where c (α) is a measurable function that depends only on α, but does not depend on u1, u2, or u.

4. Consider α and α̃, such that α ∈ Bε0 (α0), α̃ ∈ Bε0 (α0), |α̃− α| < ε0. Then, for almost all

such α, α̃, and almost all u1 ∈ R the following chain of equalities holds

c (α) = G1 (α+ u1)−G1 (α0 + u1) (21)

= G1 (α+ u1)−G1 (α̃+ u1) +G1 (α̃+ u1)−G1 (α0 + u1)

= G1 (α+ u1)−G1 (α0 + (u1 + α̃− α0)) + c (α̃)

= G1 (α+ α0 − α̃+ ũ1)−G1 (α0 + ũ1) + c (α̃)

= c (α+ α0 − α̃) + c (α̃) ,

where ũ1 = u1 + α̃ − α0, and the third and the fifth equalities follow from the definition of c (α).

Define function η (·) = c (·+ α0) and note that c (·) and η (·) are measurable. Then (21) can be
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written as

η (α− α0) = η (α− α̃) + η (α̃− α0) or, equivalently,

η (ξa + ξb) = η (ξa) + η (ξb) , (22)

where ξa = α − α̃ and ξb = α̃ − α0. Equality (22) holds for almost all ξa and ξb such that

max{|ξa|, |ξb|, |ξa + ξb|} < ε0.

Equation (22) is the Cauchy’s functional equation. Its only solution in the class of measurable

functions is η (ξ) = cξ for some constant c. Thus, we proved that c (α) = c (α− α0) for almost all

α. Hence, for j = 1, 2, almost all α ∈ Bε0 (α0) and almost all uj ∈ R:

Gj (α+ uj)−Gj (α0 + uj) = c (α− α0)

This implies that the function Gj (·) is linear everywhere, except possibly a set of measure zero.
For any j ∈ {1, 2} take any va ∈ R and vb ∈ R. Without loss of generality assume that va < vb and

take a positive integer k such that (vb − va) /k < ε0. Then

Gj (vb)−Gj (va) =
k∑
j=1

(
Gj

(
j

k
(vb − va) + va

)
−Gj

(
j − 1

k
(vb − va) + va

))

=
k∑
j=1

c
vb − va
k

= c (vb − va) ,

where the second equality holds for almost all va and vb. Thus, Gj (v) = c0j + cv for almost all

points v ∈ R. Note that c > 0 since G2 (v) is strictly increasing.

5. Finally, one obtains gj (v) = G−1
j (c0j + cv) for almost all v. Now, we use the

normalizations imposed in Assumption 1 to determine the constants c0j and c. Note that

E
[
G1 (A+ U1)−G2 (A+ U2)

]
= E [c01 − c02 + c (U1 − U2)] = c01 − c02, hence c01 = c02 +

E
[
G1 (Y1)−G2 (Y2)

]
. In addition, 0 = g2 (0) = G−1

2 (c02) and 1 = g2 (1) = G−1
2 (c02 + c); hence,

c02 = G2 (0) and c = G2 (1)−G2 (0), which concludes the proof. �

Example 1 (of identification failure with discretely distributed A). Consider model (2) without
covariates. Suppose gj (v) ≡ v, Uj have nondegenerate normal distributions, A is a Bernoulli

random variable with parameter p = 1/2, and (U1, U2, U3, A) are mutually independent. We are

going to see that in this case there are strictly increasing nonlinear functions Gj (·) that satisfy the
identification restriction (8) (or (6), since there are no covariates). The existence of such functions

means that the independence condition (8) fails to identify the true structural functions in the

model (2) when A has discrete distribution.

Consider functions Gj (y) = 2πy+sin (2πy) for j = 1, 2. These functions are strictly increasing.
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Moreover, these functions satisfy the independence restriction (6) since in this case

G1 (Y1)−G2 (Y1) = G1 (A+ U1)−G2 (A+ U1)

= 2π (U1 − U2) + sin (2πA+ 2πU1)− sin (2πA+ 2πU2)

= 2π (U1 − U2) + sin (2πU1)− sin (2πU2) ,

where the last equality follows from sine being a periodic function with period 2π and A taking

values 0 and 1 only. Thus G1 (Y1) − G2 (Y1) is independent of A and hence these functions Gj (·)
satisfy the independence condition (6). However, Gj (·) are not linear, while g−1

j (y) = y are. This

example demonstrates that Assumption 2(vi) is necessary for the independence condition (8) to be

able to identify the functions gj (·). �

Proof of Corollary 2. As explained in the main text, the conditional distribution of the vector
(A+ U1, A+ U2)′ given the event G is identified. Then, a Kotlarski-type lemma identifies the

distributions the conditional distributions of A, U1, and U2. Here I use the extensions of Kotlarski’s

result by Evdokimov and White (2010). Conditions (i-iii) and (iv,a) (or (iv,b)) imply that Lemma

1 (or Lemma 2) of Evdokimov and White (2010) applies and identifies A, U1, and U2. �

Proof of Theorem 3. It is straightforward to check that taking

FUj |X,U,A (u| (x1, x2, x3) , (u1, u2, u3) , α) = FUj |Xj (uj |xj) = exp
{
−erj(xj)(uj−γ̄)/rj (xj)

}
,

Λj (t, xj) =
1

rj (xj)
ln

(
rj (xj)

∫ t

0
hj (ξ, xj) dξ

)
,

equation (15) implies the hazard rate

θ̃Tj (t|xj , α) = hj (t, xj) [exp (−α− γ̄)]rj(xj) ,

and redefining the unobserved heterogeneity exp
(
−Ã− γ̄

)
7→ A we obtain (12). Here E [Uj |Xj ] = 0

and γ̄ denotes the Euler—Mascheroni constant.

Assumption 2 holds by the definitions of Λj (·) and FUj |X,A (·), and by Assumptions 3 and 4(i-
iii,v). Thus, Theorem 1 identifies functions Λj (·) and FUj |X,A (·), and hence functions hj (·) and
rj (·), up to normalizations, which are provided by Assumption 4(iv). �

Proof of Theorem 4. 1. For any x ∈ X , condition on the event G (x, x) =

{X1 = X2 = x,X3 = x3 (x, x)}, which is possible due to Assumption 6(vii). Then, the model

becomes

Yj = Λ−1
j (Xj , θ + Uj) ,

where θ ≡ m (x,A), and Theorem 1 identifies the functions Λj (y, x) using Assumption 5(i). In

addition, for all x ∈ X , u ∈ R, and j = 1, 2, Corollary 2 identifies the conditional densities

fUj |X1,X2,X3 (u|x, x, x3 (x, x)) = fUj |Xj (u|x) ,

where the equality follows from Assumption 6(ii).
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2. Consider just the first two time periods. Denote Ỹj = Λj (Yj , Xj) and note that the

distribution of Ỹj is identified. Now we follow Evdokimov (2008); repeatedly using Assumption

6(ii) we obtain

φ
Ỹ1|X1,X2 (s|x, x) = E

[
exp{isỸ1}| (X1, X2) = (x, x)

]
= E [exp {is (m (x,A) + U1)} | (X1, X2) = (x, x)]

= φm(x,A)|X1,X2 (s|x, x)φU1|X1,X2 (s|x, x)

= φm(x,A)|X1,X2 (s|x, x)φU1|X1 (s|x) .

Conditioning on the event (X1, X2) = (x, x) is possible by Assumption 6(vii). Using Assumption

6(v) we can rewrite the above as

φm(x,A)|X1,X2 (s|x, x) =
φ
Ỹ1|X1,X2 (s|x, x)

φU1|X1 (s|x)
,

for all points s except the set Ξ1 (x) =
{
s ∈ R : φU1|X1 (s|x) = 0

}
, which contains at most a

countable number of elements due to Assumption 6(v). Since the right-hand side is identified,

we identify the conditional characteristic function φm(x,A)|X1,X2 (s|x, x) of m (x,A), given the event

{(X1, X2) = (x, x)}, for all s 6∈ Ξ1 (x). Moreover, characteristic functions are continuous and Ξ1 (x)

is at most countable, hence, by continuity φm(x,A)|X1,X2 (s|x, x) is identified for all s ∈ R. In exactly
the same way we identify the conditional distribution of m (x,A) from

φm(x,A)|X1,X2 (s|x, x) =
φ
Ỹ2|X1,X2 (s|x, x)

φU2|X2 (s|x)
.

3. Having identified the conditional characteristic functions of m (x,A) and m (x,A) we also

identify the corresponding conditional distributions and conditional quantiles. Notice that

Qm(x,A)|X1,X2 (q|x, x) = m
(
x,QA|X1,X2 (q|x, x)

)
,

Qm(x,A)|X1,X2 (q|x, x) = QA|X1,X2 (q|x, x) ,

where the first equality follows from the monotonicity Assumption 6(i) and the second equality

follows from the normalization Assumption 5(ii). Thus, the function m (x, α) is identified, since

m (x, α) = Qm(x,A)|X1,X2
(
FA|X1,X2 (α|x, x) |x, x

)
.

The above establishes that the function m (x, α) is identified for all α ∈ SA {(X1, X2) = (x, x)}.
Moreover, m (x, α) is identified for all α ∈ SA {X1 = x} when Assumption 6(ix) holds. �

Proof of Theorem 5. Write the joint survival function of T1 and T2, for the duration model with

the hazard function (3):

F T1,T2|X1,X2 (t1,t2|x1,x2)=

∫
e−

∫ t1
0 h1(ζ1,x1)γ(x1,α)dζ1−

∫ t2
0 h2(ζ2,x2)γ(x2,α)dζ2dFA|X1,X2(α|x1, x2) ,

and note that the left-hand side is identified. Take any x ∈ X , and consider the event
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{X1 = X2 = x}, which is possible by Assumption 7. Similar to Honoré (1993), the ratio

ρ (t1, t2, x) =
∂F T1,T2|X1,X2 (t1, t2|x, x) /∂t1

∂F T1,T2|X1,X2 (t1, t2|x, x) /∂t2
=
h1 (t1, x)

h2 (t2, x)
.

is identified for all (t1, t2) ∈ R+ × R+ and x ∈ X . Thus, h1 (t1, x) is identified by

using Assumption 8(v(a)) as h1 (t1, x) = ρ (t1, 1, x) for all t1 ∈ R+. Hence, the func-

tion h2 (t2, x) is also identified. Then, one can obtain functions Λj (t, x) by integration:

Λj (t, x) = ln
(∫ t

0 hj (ξ, x) dξ + Cj (x)
)
for some Cj (x) ≥ 0 and all t ∈ [0,+∞), x ∈ X , and j = 1, 2.

Moreover, Cj (x) ≡ 0 since F Tj |Xj ,A (0|x, α) = 1 for all x and α and hence exp (Λj (0, x)) = 0 should

hold for all x.

As explained in the main text, we can now write the duration model in the form (1) with

two time periods, where the functions Λj (t, x), j = 1, 2 were already identified by the previous

arguments, and the density of the idiosyncratic errors is taken to be

fUj |Xj ,A,X(−j),U(−j)
(
uj |xj , α, x(−j), u(−j)

)
= eu exp (−eu)

for all
(
uj , xj , α, x(−j), u(−j)

)
∈ R×X×R×X×R and j = 1, 2. Note that the characteristic function

of the idiosyncratic errors Uj is everywhere nonvanishing. Note also that the moment Assumption

6(v) does not need to hold (and is not imposed) for the transformation model (1) corresponding to

(3), because we do not use Kotlarski’s lemma to identify the distribution of Uj .

Define Ỹj = Λj (Tj , Xj) and note that for any x ∈ X the conditional characteristic function of

Ỹj can be written as

φ
Ỹ1|X1,X2 (s|x, x) = φm(x,A)|X1,X2 (s|x, x)φU1 (s) and

φ
Ỹ2|X1,X2 (s|x, x) = φm(x,A)|X1,X2 (s|x, x)φU2 (s) ,

where φUj (s) do not depend on X and are known. Moreover, φUj (s) 6= 0 for all s. Then, we

identify the conditional characteristic functions φm(x,A) (s|X = (x, x)) and φm(x,A) (s|X = (x, x)).

Identification of these characteristic functions is equivalent to identification of the corresponding

distributions. Therefore, we identify the distributions of −m (x,A) and −m (x,A), conditional on

the event X = (x, x). Note that the function −m (x, α) ≡ ln (γ (x, α)) is strictly increasing in α

for all x due to Assumption 8(i), and that α ∈ (0,∞) due to Assumptions 8(i,v(b)). Then, for all

α ∈ (0,∞) we obtain

exp
{
Q−m(x,A)|X1,X2

(
F−m(x,A)|X1,X2 (ln {α} |x, x) |x, x

)}
= Qexp(−m(x,A))|X1,X2

(
Fexp(−m(x,A))|X1,X2 (α|x, x) |x, x

)
= Qγ(x,A)|X1,X2

(
Fγ(x,A)|X1,X2 (α|x, x) |x, x

)
= γ

(
x,QA|X1,X2

(
FA|X1,X2 (α|x, x) |x, x

))
= γ (x, α) ,

where the first equality follows by the properties of quantiles and CDFs, the second equality follows

from γ (x, α) = exp (−m (x, α)), the third equality follows by the property of quantiles and the
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normalization of Assumption 8(v(b)), and the last equality follows by Assumption 8(iii). When

Assumption 8(iv) holds, function γ (x, α) is identified for all x and all α ∈ SA {X = (x, x)} =

SA {X1 = x}, which concludes the proof. �
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