
Some Extensions of a Lemma of Kotlarski

Kirill Evdokimov∗

Princeton University
Halbert White†,‡

UC San Diego

July 25, 2011

Abstract

This note demonstrates that the conditions of Kotlarski’s (1967) lemma can be
substantially relaxed. In particular, the condition that the characteristic functions of
M , U1, and U2 are non-vanishing can be replaced with much weaker conditions: the
characteristic function of U1 can be allowed to have real zeros, as long as the derivative
of its characteristic function at those points is not also zero; that of U2 can have a
countable number of zeros; and that of M need satisfy no restrictions on its zeros.
We also show that Kotlarski’s (1967) lemma holds when the tails of U1 are no

thicker than exponential, regardless of the zeros of the characteristic functions of U1,
U2, or M .

1 Introduction

This note provides new regularity conditions ensuring that the conclusion of Kotlarski’s

(1967) lemma holds. Kotlarski’s result may be explained as follows. Suppose one observes

the joint distribution of two noisy measurements (Y1, Y2) = (M + U1,M + U2) of a ran-

dom variable M , where random variables U1 and U2 are measurement errors. Kotlarski

showed that when (M,U1, U2) are mutually independent, E[U1] = 0, and the character-

istic functions of M, U1, and U2 are non-vanishing, it is possible to recover the unknown

distributions of M , U1, and U2 from the joint distribution of (Y1, Y2).
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Kotlarski’s lemma has been applied to identify and estimate a wide variety of models

in economics, such as measurement error models (e.g., Li and Vuong 1998, Schennach

2004), auction models (e.g., Li et al. 2000, Krasnokutskaya 2011), panel data models (e.g.,

Arellano and Bonhomme 2009, Evdokimov 2008, 2010), and in various labor economics

applications (e.g., Bonhomme and Robin 2010, Kennan and Walker 2011).

Kotlarski’s lemma requires that the characteristic functions of the random variables

M , U1, and U2 do not have real zeros. This is restrictive; the characteristic functions

of many standard distributions have zeros (e.g. the uniform, the truncated normal, and

many discrete distributions). Thus, it is important to consider identification when the

characteristic functions may have real zeros.1 Our aim here is to provide less restrictive

alternative conditions for Kotlarski’s conclusions to still hold.

Instead of requiring that the characteristic functions ofM , U1, and U2 are non-vanishing,

we require that the sets of zeros of the characteristic function of U1 and its derivatives have

empty intersection and that the real zeros of the characteristic function of U2 are isolated.

We impose no restrictions on the zeros of the characteristic function of M .

We also show that the conclusion of Kotlarski’s lemma holds when U1 has tails that

are no thicker than exponential. This alternative result imposes strong restrictions on

the tails of one of the measurement errors, but does not require any assumptions on its

characteristic function, aiding economic interpretability. Further, the distributions of M

and U2 are completely unrestricted, apart from a first moment restriction.

Thus, we not only relax the assumption of nonvanishing characteristic functions of

the errors U1 and U2, but we also provide conditions that may have a direct economic

interpretation and that may thus be more appealing to researchers than those previously

imposed.

2 Main Results

Let φX denote the characteristic function of X , φX (s) ≡ E [exp(isX )] , s ∈ R, where
i ≡
√
−1. We write φ′X ≡ (∂/∂s)φX , and let λ denote Lebesgue measure. We impose the

following assumption:

Assumption A: (i) M , U1, and U2 are mutually independent ; and Y1 ≡ M + U1 and
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Y2 ≡ M + U2; (ii) E [|Y1|+ |Y2|] < ∞ and E(U1) = 0 ; (iii) the real zeros of φU1 and

φ′U1 are disjoint; and (iv) φU2 has only isolated real zeros.

Given A(i), the moment condition A(ii) implies E|M | < ∞ and E|U2| < ∞. Given
A(i) and E(U1) = 0, it suffi ces for E [|Y1|+ |Y2|] < ∞ that E |Y2| < ∞, but we write the
condition as we do to avoid obscuring the moment requirements on Y1 and Y2.

Let Z0 denote the set of real zeros of φY1−Y2 . Also, define the characteristic function
φY1,Y2 (s1, s2) = E [exp(is1Y1 + is2Y2)], the set of singular points S0 ≡ {s ∈ Z0 : lim supξ→s∣∣∣ (∂/∂s1)φY1,Y2 (ξ,−ξ)φY1,Y2 (ξ,−ξ)

∣∣∣ =∞}, and the function

ψ (s) ≡
{

(∂/∂s1)φY1,Y2 (s,−s)
φY1,Y2 (s,−s)

, if s 6∈ Z0;
0, if s ∈ Z0.

Below we show that A implies that all elements of Z0 are isolated (and hence are
countable). Since S0 is a subset of Z0, we can enumerate all positive elements of S0.
Placing these in increasing order, for k > 0 we let s0 (k) be the kth smallest positive

element of S0. Similarly, for k < 0, we let s0 (k) be the −kth largest negative element of
S0. Thus, S0 = {. . . , s0 (−2) , s0 (−1) , s0 (1) , s0 (2) , . . .} , and s0 (k) < s0 (l) for all k < l.

In addition, for notational convenience, denote s0 (0) = 0. For all s ≥ 0 let k0 (s) be the

largest k such that s0 (k) ≤ s. Thus k0 (s) = 0 for all s ∈ [0, s0 (1)), k0 (s) = 1 for all

s ∈ [s0 (1) , s0 (2)) and so on. We extend Kotlarski’s (1967) lemma as follows.

Lemma 1

(a) Let (L, V1, V2) be random, and let (Z1, Z2) ≡ (L + V1, L + V2), with (V1, V2) dis-

tributed identically to (U1, U2). If A(i) holds for both (M,U1, U2) and (L, V1, V2), then Z0
is also the zero set of φZ1−Z2. If A(i, ii) hold for (M,U1, U2) and λ(Z0) > 0, then A (iii)

or A (iv) fail for (M,U1, U2) and there exist (L, V1, V2) such that φZ1,Z2 = φY1,Y2 but

φL 6= φM .

(b) if A(i)− (iv) hold, then, with µ1 ≡ E(Y1), for all s ∈ R+\S0

φU1(s) = exp[−isµ1] lim
ε↘0

(−1)k0(s)
∏

0<k≤k0(s)

exp

{∫ s0(k)−ε

s0(k−1)+ε
ψ (ξ) dξ

}
×exp

{∫ s

s0(k0(s))+ε
ψ (ξ) dξ

}.
(1)
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A similar formula holds2 for all s ∈ R−\S0. Then φM (s) = φY1 (s) /φU1(s) and φU2 (−s) =

φY1,Y2 (s,−s) /φU1(s) for all s 6∈ Z0. Moreover, the functions φM (·), φU1(·), and φU2(·) are
continuous on R and hence can be uniquely extended from R\Z0 to R.

Proof: We begin with some simple but useful Facts:

(1) Given A(i), we have

φY1,Y2(s1, s2) = E[exp(i(s1 + s2)M + is1U1 + is2U2)]

= φM (s1 + s2)φU1(s1)φU2(s2).

Letting s1 = s and s2 = −s gives φY1,Y2(s,−s) = φY1−Y2(s) = φM (0)φU1(s)φU2(−s) =

φU1(s)φ̄U2(s), as φM (0) = 1 and φU2(−s) = φ̄U2(s). Thus, the zero set Z0 of φY1−Y2 is the
union of the zero sets Z01 of φU1 and Z̄02 of φ̄U2 . As the zeros of φ̄U2 are identical to the
zeros of φU2 , say Z02, we have Z̄02 = Z02. Thus, A(i) implies Z0 = Z01 ∪ Z02.

(2) A(i, ii) imply E [|M |+ |U1|+ |U2|] < ∞, which in turn implies that the functions
φY1,Y2 , φU1 , φU2 , and φM are continuously differentiable.

(3) A (i) − (iii) imply that Z01 has no limiting points; hence, all elements of Z01
are isolated (in R) and Z01 is a countable set. To prove this, suppose there exists a

sequence of points {ξk}∞k=1, such that ξk 6= ξ0 for all k, ξ0 = limk→∞ ξk, and φU1 (ξk) = 0

for all k. By Fact (2), the function φU1 is continuously differentiable. Then φU1 (ξ0) =

limk→∞ φU1 (ξk) = 0, and φ′U1 (ξ0) = limk→∞
(
φU1 (ξk)− φU1 (ξ0)

)
/ (ξk − ξ0) = 0, which

contradicts A (iii).

(4) By Fact (3) and A (iv) , Z0 = Z01 ∪ Z02 is countable. The Lebesgue measure of a
countable set is zero, so Assumption A implies λ(Z0) = λ(Z01) = λ(Z02) = 0.

We are now ready to prove the lemma:

(a) Because (U1, U2) and (V1, V2) are identically distributed, φU1 = φV1 and φU2 = φV2 ,

so the zero sets of φV1 and φV2 are Z01 and Z02, respectively. Given this and A(i), Fact (1)

ensures that Z0 is the zero set of both φY1−Y2 and φZ1−Z2 . If A(i, ii) hold and λ(Z0) > 0

then A(iii) or A (iv) must fail due to Fact (4). The proof is completed by the example

of Kotlarski (1967, p.72), which specifies two random triplets having the given properties

with λ(Z0) > 0 and with φZ1,Z2 = φY1,Y2 but φL 6= φM .
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(b) (1) By Fact (2), (∂/∂s1)φY1,Y2 exists and

(∂/∂s1)φY1,Y2(s1, s2) = φ′M (s1 + s2)φU1(s1)φU2(s2) + φM (s1 + s2)φ
′
U1(s1)φU2(s2); so

(∂/∂s1)φY1,Y2(s,−s) = φ′M (0)φU1(s)φU2(−s) + φ′U1(s)φU2(−s).

Suppose s 6∈ Z0. Then

ψ(s) =
(∂/∂s1)φY1,Y2(s,−s)

φY1,Y2(s,−s)
=
φ′M (0)φU1(s)φU2(−s) + φ′U1(s)φU2(−s)

φU1(s)φU2(−s)
= iµ1 +

φ′U1(s)

φU1(s)
.

(2)

Note that for s 6∈ Z0 we can write ψ(s) = (∂/∂s1) lnφY1,Y2(s,−s). Also note that for
s ∈ S0, lim supξ→s |ψ(ξ)| is infinite, which implies that φU1 (s) = 0, because the function

φU2 is bounded and the function φ
′
U1 is locally bounded away from both zero and infinity.

Thus φU1 (s) = 0 for all s ∈ S0.
The proof now proceeds by induction. First, for all s ∈ [0, s0 (1)), i.e., all s such that

k0 (s) = 0, the right hand side of expression (1) simplifies to

exp[−isµ1] lim
ε↘0

exp

{∫ s

ε
ψ (ξ) dξ

}
= exp[−isµ1] lim

ε↘0
exp

{∫ s

ε

(
iµ1 +

φ′U1(ξ)

φU1(ξ)

)
dξ

}
= lim

ε↘0
exp[−iεµ1] exp

{∫ s

ε

∂

∂s
ln
(
φU1(ξ)

)
dξ

}
= φU1(s),

where ln
(
φU1(ξ)

)
is the principal value of the logarithm and is well defined since φU1(ξ) 6=

0 for all ξ ∈ [0, s0 (1)) and φU1 (0) = 1. Hence, formula (1) is shown to hold for all

s ∈ [0, s0 (1)).

Now suppose (1) holds for all s such that k0 (s) ≤ K, i.e., it holds for all s ∈
∪1≤k≤K (s0 (k − 1) , s0 (k)). We now show that this implies that (1) also holds for all

s ∈ (s0 (K) , s0 (K + 1)). Write ŝ ≡ (s0 (K) + s0 (K − 1))/2. Since φU1(ŝ) 6= 0 and (1)
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holds for ŝ, for any s ∈ (s0 (K) , s0 (K + 1)) we can write the right hand side of (1) as

φU1(ŝ) exp[−i (s− ŝ)µ1] lim
ε↘0

[
(−1) exp

{∫ s0(K)−ε

ŝ
ψ (ξ) dξ

}
× exp

{∫ s

s0(K)+ε
ψ (ξ) dξ

}]

= φU1(ŝ) lim
ε↘0

[
exp[−2iεµ1] (−1)

φU1 (s0 (K)− ε)
φU1 (ŝ)

φU1 (s)

φU1 (s0 (K) + ε)

]
= φU1 (s) lim

ε↘0

[
exp[−2iεµ1]

0− φU1 (s0 (K)− ε)
φU1 (s0 (K) + ε)− 0

]
= φU1 (s) lim

ε↘0

[
exp[−2iεµ1]

φ′U1 (ξ1) ε

φ′U1 (ξ2) ε

]
= φU1 (s) ,

where ξ1 ∈ (s0 (K)− ε, s0 (K)), ξ2 ∈ (s0 (K) , s0 (K) + ε). The second equality holds

because φU1 (s0 (K)) = 0 and because φU1(ŝ) can be cancelled out, since φU1(ŝ) 6= 0 by

construction of ŝ. The third equality follows from the mean value theorem applied to

φU1 (s0 (K)) = 0, and the last equality holds by φ′U1 (s0 (K)) 6= 0 and the continuity of

φ′U1 from Fact (2). Thus, we have shown that (1) holds for k0 (s) = K + 1, i.e. for all

s ∈ ∪1≤k≤K+1 (s0 (k − 1) , s0 (k)). The proof by induction is therefore complete.

The above establishes identification of φU1 (s) for all s ∈ R\Z0. Then we also identify
φM (s) = φY1 (s) /φU1 (s) and φU2 (s) = φY2−Y1 (s) /φU1 (−s) for all s ∈ R\Z0. Finally, the
continuity of φM , φU1 , and φU2 implies the uniqueness of their continuous extension from

R\Z0 to R. �

Remark 1: When the characteristic function φY1−Y2 has no zeros, eq. (1) becomes

φU1(s) = exp[−isµ1] exp

{∫ s

0
ψ (ξ) dξ

}
= exp[−isµ1] exp

{∫ s

0

(∂/∂s1)φY1,Y2 (ξ,−ξ)
φY1,Y2 (ξ,−ξ) dξ

}
,

(3)

which is exactly the expression obtained in Evdokimov (2008), who assumes that the char-

acteristic functions φU1 and φU2 are nonvanishing. Similar to Evdokimov (2008), Lemma

1 relaxes Kotlarski’s condition that the characteristic function φM is nonvanishing.

Remark 2: In Lemma 1, we essentially recover φU1 (s) by observing ψ(s) − iµ1, which
equals the ratio φ′U1 (s) /φU1 (s) = (∂/∂s) ln

(
φU1 (s)

)
, and by imposing the initial condi-

tion φU1 (0) = 1. When φU1 (s) is nonzero, solving the differential equation (2) immedi-

ately yields eq. (3). Nevertheless, we run into obvious problems when φU1 (s0) = 0 for
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some s0. Here, A(iii) is very important; for a small ε > 0 we can write φU1 (s0 + ε) =

φU1 (s0 − ε) + 2φ′U1 (s0) ε+ o (ε) and hence "jump" through the singular point s0. This ex-

pression is uninformative unless φ′U1 (s0) 6= 0. For example, the functions φA (s) = (1− s)2

and φB (s) = (1− s) |1− s| for s ≥ 0 (although not proper characteristic functions) have

φ′A (1) = φA (1) = φ′B (1) = φB (1) = 0 and thus violate A(iii). Indeed, one cannot

distinguish between these two functions based on φ′ (s) /φ (s) because for both functions

ψ (s)− µ1 = φ′A (s) /φA (s) = φ′B (s) /φB (s) = 2/ (s− 1) for s ≥ 0.

Remark 3: If the zeros of φU1 and φ
′
U1 are not disjoint, identification may be obtained by

considering higher-order derivatives, say φ(n)U1
, n > 1. For example, suppose that φU1 (ξ0) =

φ′U1 (ξ0) = 0, but φ′′U1 (= φ
(2)
U1

) exists and is continuous (so that U1 has finite second

moment), and that φ′′U1 (ξ0) 6= 0, so that the zeros of φ′U1 and φ
′′
U1 are disjoint at ξ0. If so,

a similar argument delivers identification. If φ′′U1 (ξ0) = 0, one can consider the next higher

derivative, and so on. That is, identification continues to hold, given that the characteristic

function φU1 is suffi ciently continuously differentiable and its higher-order derivatives have

suitably disjoint zeros. The (−1) factor in equation (1) appears only when n is even, with

φ
(n+1)
U1

(ξ0) 6= φ
(n)
U1

(ξ0) = 0. A suffi cient (but not necessary) condition for A(iv) is the

disjointness of the zeros of φU2 and φ
′
U2 , since φ

′
U2 exists by Fact (2). This holds by the

argument of Fact (3). Just as for U1, the properties of higher-order derivatives of φU2 can

also ensure A(iv).

Remark 4: When A(i) holds, the assumptions E [|Y1|+ |Y2|] <∞, A(iii), and A(iv) can

be checked for any given φY1,Y2 .

Remark 5: Although the uniform distribution is not a common measurement error distri-

bution, it nicely illustrates the power of A(iii). If U1 ∼ U [−a, a] then for any value of a > 0

the functions φU1 and φ
′
U1 have real zeros, but these zeros never coincide. Thus, the original

result of Kotlarski (1967) as well as the lemmas of Li and Vuong (1998), Schennach (2004),

and Evdokimov (2008) do not apply, yet our Lemma 1 does guarantee identification.

The assumptions of Lemma 1 are weak and hold for all standard probability distrib-

utions. However, they are stated in terms of characteristic functions. Economic models

rarely impose restrictions on characteristic functions; hence any assumptions stated in
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terms of characteristic functions might lack an economic interpretation. To address this

issue, we introduce an alternative assumption and identification lemma.

Assumption B: A(i) and A(ii) hold, and (iii) there exist positive constants c1 and c2

such that the density of U1 satisfies fU1 (u) < c1 exp (−c2 |u|) for large u.

Lemma 2 Let Assumption B hold. Then the distributions of M, U1, and U2 are identified.

Proof: The characteristic functions φU1 and φU2 are continuous, and φU1 (0) = φU2 (0) = 1.

Thus, there is an s > 0 such that
∣∣∣φUj (s)

∣∣∣ > 1/2 for all s ∈ [−s, s] and j = 1, 2. Then∣∣φY1,Y2 (s,−s)
∣∣ =

∣∣φU1 (s)φU2 (−s)
∣∣ > 1/4 for all s ∈ [−s, s] . Thus, B ensures that equation

(3) applies for all s ∈ [−s, s] , identifying φU1 (s) on this interval.

B(iii) implies that φU1 is analytic on R; see page 3 of Paley and Wiener (1934). Then,
by the properties of analytic functions, φU1 is identified not only on the interval [−s, s]
but also on the whole real line. Moreover, functions analytic on R may only have isolated
real zeros, and hence φM (s) = φY1 (s) /φU1 (s) for all points s ∈ R, except for at most a
countable number of the isolated zeros of φU1 . Then, by continuity, φM is identified on the

whole real line. We identify φU2 in a similar way as φU2 (s) = φY2−Y1 (s) /φU1 (−s). �

Remark 6: Here, Assumption B(iii) replaces A(iii), and it makes A(iv) unnecessary.

Clearly, B(iii) is strong for U1. The advantage of this assumption is its potential economic

interpretability; in a variety of economic applications, researchers may have some intuition

or economic model that implies that one of the measurement errors, U1, has thin tails

(or even bounded support). Apart from the requirement that U2 has finite first moment

(implied by B(ii)), its distribution is completely unrestricted.

Remark 7: The key property of φU1 ensured by B(iii) is its analyticity on R. Although
economically interpretable conditions are more compelling, any other condition ensuring

this analyticity can replace B(iii) to deliver the same conclusion.

Remark 8: Lemma 2 is not a corollary of Lemma 1, as B(iii) (or analyticity of φU1) does

not imply A(iii), and it says nothing about φU2 .
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Remark 9: An interesting topic for future research is whether our approach can be applied

or adapted to models identified using generalized functions and their Fourier transforms,

as in Schennach (2007) and Zinde-Walsh (2010).

Notes

1Note that when the distribution of the error term is known, deconvolution can be
performed even when the characteristic function of the distribution of the error has real
zeros; see Devroye (1989) and Carrasco and Florens (forthcoming).

2For all s ≤ 0 let k0 (s) be the smallest k such that s0 (k) ≥ s. Then for all s ∈ R−\S0,

φU1(s) = exp[−isµ1] lim
ε↘0

(−1)k0(s)
∏

k0(s)≤k<0
exp

{∫ s0(k)+ε

s0(k+1)−ε
ψ (ξ) dξ

}
×exp

{∫ s

s0(k0(s))−ε
ψ (ξ) dξ

}.
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