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Abstract— Big Data (as embodied by Hadoop clusters) and Big 
Compute (as embodied by MPI clusters) provide unique 
capabilities for storing and processing large volumes of data.  
Hadoop clusters make distributed computing readily accessible to 
the Java community and MPI clusters provide high parallel 
efficiency for compute intensive workloads.  Bringing the big 
data and big compute communities together is an active area of 
research.  The LLGrid team has developed and deployed a 
number of technologies that aim to provide the best of both 
worlds.  LLGrid MapReduce allows the map/reduce parallel 
programming model to be used quickly and efficiently in any 
language on any compute cluster.  D4M (Dynamic Distributed 
Dimensional Data Model) provided a high level distributed 
arrays interface to the Apache Accumulo database.  The 
accessibility of these technologies is assessed by measuring the 
effort to use these tools and is typically a few lines of code.  The 
performance is assessed by measuring the insert rate into the 
Accumulo database.  Using these tools a database insert rate of 
4M inserts/second has been achieved on an 8 node cluster.  
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I.  INTRODUCTION  
In recent years, the proliferation of sensor devices and the 

growth of the Internet, has created a deluge of data. When 
dealing with big data there are many hurdles: data capture, 
storage, search, sharing, analytics and visualization.  For 
database analysis efficient and high performance data ingest 
and query are very important.  Hadoop clusters [1] are a data 
oriented distributed computing environment.  As such, it is a 
good foundation for building distributed databases in Java and 
there are number of databases that have been built using 
Hadoop (e.g., HBase [2] and Accumulo [3]).  Likewise, MPI 
clusters [4] are a language agnostic parallel computing 
environment that are a good foundation for building efficient 
data analysis applications.  Bringing these two worlds together 
is an active area of research [5]. 

Uniting Hadoop clusters and MPI clusters requires 
addressing several technical differences.  First, Hadoop clusters 
are Java centric, while MPI clusters are multi-lingual.  Second, 
Hadoop clusters provide the map/reduce parallel programming 
model, while the MPI clusters supports all parallel 
programming models (map/reduce, message passing, 
distributed arrays).  Third, Hadoop clusters provide a Java API 
to data, while MPI clusters use operating system filesystem 
calls.  Fourth, Hadoop clusters manage their own jobs, while in 
MPI clusters jobs are managed by a scheduler. 

Based on our experiences with MIT Lincoln Laboratory 

Grid (LLGrid) [6], we (the LLGrid team) have identified four 
specific use cases where it would make sense to bring these 
worlds together: (1) applications written in any language that 
would like to use the map/reduce programming model and/or 
interact to a Hadoop database, (2) applications written in 
MATLAB/GNU Octave that need to interact with a Hadoop 
database, (3)  applications written in any language that need to 
access data stored in the Hadoop file system, and (4) Java 
applications written in Hadoop MapReduce that need to run on 
an MPI cluster. 

For each use case, the LLGrid team has developed or is 
testing a new technology.  For case (1), we have developed 
LLGrid MapReduce that allows any language to run the 
map/reduce parallel programming model on an MPI cluster.  
For case (2), we have developed D4M (Dynamic Distributed 
Dimensional Data Model) technology [7] to provide a 
mathematically rich interface to tuple stores and relational 
databases.  For case (3), we are testing Fuse  [8] operating 
system bindings to the Hadoop file system.  Finally, for case 
(4), we are testing Apache Hadoop integration with Grid 
Engine [9] that allows Hadoop map/reduce jobs to have their 
resources from a central scheduler. 

The remainder of this paper presents the details of LLGrid 
MapReduce and D4M and demonstrates how these tools can be 
used to support the use cases we identified important for 
LLGrid users. In addition, we discussed about the performance 
results obtained with each.  

II. LLGRID MAPREDUCE 
The map/reduce parallel programming model is the 

simplest of all parallel programming models, which is much 
easier to learn than message passing or distributed arrays.  The 
map/reduce parallel programming model consists of two user 
written programs: Mapper and Reducer.  The input to Mapper 
is a file and the output is another file.  The input to Reducer is 
the set of Mapper output files.  The output of Reducer is a 
single file.  Launching consists of starting many Mapper 
programs each with a different file.  When the Mapper 
programs have completed the Reduce program is run on the 
Maper outputs.   

LLGrid MapReduce enables map/reduce for any language 
using a simple one line command.  Although Hadoop provides 
a Java API for executing map/reduce programs and, through 
Hadoop Streaming, allows to run map/reduce jobs with any 
executables and scripts on files in the Hadoop file system, 
LLGrid MapReduce can use data from central storage 
filesystem or a FUSE-mounted Hadoop file system.  LLGrid 
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MapReduce identifies the input files to be processed by 
scanning a given input directory or reading a list from a given 
input file as shown in the step 1 in Fig. 1. Then, by accessing 
the scheduler at the step 2, it creates an array of many tasks, 
called an array job, which is noted as “Mapper Task 1”, 
“Mapper Task 2”, and so on. Modern schedulers such as the 
open source Grid Engine [10] provide an array job with an 
option to control how many tasks can be processed 
concurrently. Once the array job is created and dispatched for 
execution, each input file will be processed by one of the tasks 
with the specified application at the command line, noted as 
“Mapper” in Fig. 1.  The application can be any type of 
executable, such as a shell script, a Java program or any 
executable programs that are written in any languages.   

Figure 1.  An example diagram showing how LLGrid MapReduce works. 

Once all the input data are processed, there is an option to 
collect the results, if there are any, by creating a dependent task 
at the step 3, which is noted as “Reduce Task” in Fig. 1.  The 
reduce task will wait until all the mapper tasks are completed 
by setting a job dependency between the mapper and reduce 
tasks. The reduce application is responsible to scan the output 
from the mapper tasks at the step 4 and to merge them into the 
final results at the step 5. 

The LLGrid MapReduce command API is shown in Fig. 2. 
The map application has two input arguments, one for input 
filename and the other for the output filename. The reduce 
application takes one argument as input, the directory path 
where the results of the map tasks reside.  The reduce 
application scans and reads the output generated by the map 
tasks. 

Figure 2.  LLGrid MapReduce API 

One of the advantages using LLGrid MapReduce is that the 
number of concurrent map tasks are controlled by the user with 
the --np option.  This feature gives the user precise control of 
how many resources they are using and greatly reduces 
conflicts between users on the same system.  In addition, it 
make much simpler for the user to optimize their programs to 
determine what the optimal number of resources are to 
consume.  Allowing users to control and optimize their 

resource usage makes it possible for one cluster to support 
many more map/reduce users.  An important example of this 
phenomena is ingesting into a database where there is almost 
always a maximum ingest rate beyond which adding more 
ingestors will not help and can even degrade performance. 

Another advantage of LLGrid MapReduce is that there is 
no internal map/reduce API.  So the Mapper and Reducer 
programs can be written and debugged on the users’ 
workstation without any additional software. 

III. DYNAMIC DISTRIBUTED DIMENSIONAL DATA MODEL 
(D4M) 

The MATLAB/GNU Octave language, sometimes referred 
as M language, is the most popular language at the Lincoln 
Laboratory. We have developed several parallel computation 
technologies (e.g., pMatlab [11,12], MatlabMPI [4], and 
gridMatlab [6]) that allow efficient distribution of data across a 
parallel computer.  In addition, the LLGrid team has developed 
and deployed the D4M to allow these users to work naturally 
with databases. D4M allows linear algebra to be readily applied 
to databases.  Using D4M, it is possible to create composable 
analytics with significantly less effort than using traditional 
approaches.  Furthermore, with existing LLGrid technologies, 
D4M parallel MATLAB implementation can provide 
significant performance enhancement in database insertion and 
query. 

Figure 3.  D4M Matlab prototype architecture. At the top is the user 
application consisting of a series of query and analysis steps.  In the 
middle is the parallel library that hides the parallel mapping of the 
operations.  On the bottom are the databases (typically tuple stores) 
running on parallel computing hardware. 

D4M uses layered implementation that allows each layer to 
address a specific challenge as shown in Fig. 3.  The top layer 
consists of composable associative arrays that provide a one-to-
one correspondence between database queries and linear 
algebra.  Associative arrays can be both the input and output of 
a wide range of database operations and allow complex 
operations to be composed with a small number of statements.  
Associative arrays are implemented in Java and M languages, 
approximately 12,000 lines of source code, which provide an 
easy way to create the interface to the middle and bottom 
layers. The middle layer consists of several parallel 
computation technologies (e.g., pMatlab [11,12], MatlabMPI 



 

 
  

[4], and gridMatlab [6]) that allow associative arrays to be 
distributed efficiently across a parallel computer.  Furthermore, 
the pieces of the associative array can be bound to specific 
parts of one more databases to optimize the performance of 
data insertion and query across a parallel database system.  The 
bottom layer consists of databases (e.g., Accumulo [3] or 
SQLServer) running on parallel computation hardware. D4M 
can fully exploit the power of databases that use an internal 
sparse tuple representation (e.g., a row/col/val triple store) to 
store all data regardless of type.  Constructing complex 
composable query operations can be expressed using simple 
array indexing of the associative array keys and values, which 
themselves return associative arrays.  For example 

 
A(’alice ’,:)       alice row 
A(’alice bob ’,:)       alice and bob rows 
A(’al* ’,:)       rows beginning with al 
A(’alice : bob ’,:)   rows alice to bob 
A(1:2,:)        first two rows 
A == 47.0         all entries equal to 47.0 
 
Finally, associative arrays can represent complex 

relationships in either a sparse matrix or a graph form.  
Associative arrays are thus a natural data structure for 
environments such as Matlab to perform both matrix and 
graph algorithms.   

IV. DATA INGESTION PERFORMANCE 
Ingest into a database is a good test of showing how easy to 

use the LLGrid MapReduce and D4M are for such a task.  This 
is also an important example of the kind of application that can 
take advantage of combining a Hadoop cluster and a MPI 
cluster. 

There are several approaches to ingest data into the 
databases. In the LLGrid environment, the LLGrid MapReduce 
command can deploy the data ingestion tasks to the LLGrid 
with minimum user efforts by using the underlying scheduler.  
It creates an array job for the given data set. The array job is 
made of many tasks and each task processes a given input data. 
The task can be used to ingest the results into the databases.  
LLGrid MapReduce allows to execute any programs that are 
using the appropriate database binding API commands.  
Through the scheduler’s feature with the array job, it can 
control how many ingestion tasks can be processed 
concurrently.   This allows users to specify the maximum 
number of concurrent ingestion tasks in order to optimize the 
database performance as well as controlling the number of 
compute resources in the pool.   

As a demonstration for LLGrid MapReduce, a Python 
script is launched by LLGrid MapReduce to parse a set of web 
proxy log files, stored in the tabular CSV formation and to 
ingest the results into the Accumulo database.  In this 
demonstration, the LLGrid MapReduce command creates an 
array job of 24 tasks that read and parse the input files of 3.8 
GBytes as shown in Fig. 4. The processing takes about 5 
minutes. The demonstration has been performed with two 
different configurations:  an Accumulo setup with 8 nodes (7 
tablet servers) and an Accumulo setup with 4 nodes (3 tablet 

servers).  Each tablet server handles requests such as ingestion 
and query for one or more tablets, which in turn form an 
Accumulo database table. [1]  Each node has 24 processing 
cores.  Both cases were able to achieve about 1.5 million and 
800,000 ingestion per second, respectively, in average.  

Figure 4.  LLGrid MapReduce for Accumulo data ingestion using a Python 
script. 

A similar but bigger set of web proxy log files are used for 
the ingestion scalability study as shown in Fig 5.  In this case, 
two different sets of data are used. The size of the smaller set 
was about 17 GBytes, which holds about 200 files, with sizes 
are ranging from 8 to 200 Mbytes. This set is used for the 
ingestion experiment with up to 64 processes.  With 128 and 
256 processes, we used another set of web proxy log files made 
up of about 1000 files, approximately 90GBytes. The database 
used for the study is Accumulo (version 1.3.5) with 8 nodes (7 
tablet servers). In this experiment, because of the nature of the 
row keys (base64-encoded hashes), we pre-split the table by the 
base64 characters to ensure 100% tablet coverage and even 
distribution across tablet servers. This, of course, requires 
secondary indices of relevant columns (i.e. the transpose of 
original table), where pre-spitting is done via decomposition of 
the value domain.  

Figure 5.  Total ingestion rate versus number of processes when running 7 
tablet servers on an Accumulo cluster. 

The result, shown in Fig. 5, shows that the ingestion rate 
scales superlinearly in the beginning and then, linearly up to 64 
processes.  With 128 and 256 cores, we were able to achieve 
average tablet server loads between 500K and 600K ingestion 
per second. However, beyond 64 processes, the total ingestion 
rate starts diminishing as the number of processes are growing.  
This indicates that peak ingestion rate has been achieved. In 
fact,  with 7 tablet servers, using 128 processes produces 
significantly higher ingest performance per unit of load than 
using 256 processes.  With 256 processes, the total ingestion 



 

 

  

rate was increased up to 4 million inserts per second. This is 
100x performance improvement over the single ingestion 
process.  The observed performance is considered to be a 
significant achievement when comparing the ingestion rate 
reported by a YCSB++ benchmark [13] although their cluster 
configuration and  ingested data are quite different. 

Another demonstration for data ingestion into the 
Accumulo has been performed using a D4M parallel MATLAB 
implementation on LLGrid. In this case, we have used the 
Graph500 benchmark [14] to generate the input data.  A 
pMatlab application constructs a D4M associative array in 
parallel and ingests the associative array using the D4M put 
method, which binds to the Accumulo database API.  By 
parallelizing the code with the parallel MATLAB, we can 
control the number of concurrent processes for data ingestion.  
Similar to LLGrid MapReduce example, the parallel MATLAB 
processes are executed on the LLGrid cluster (HPC compute 
nodes) and each process communicates with the Accumulo 
database directly. 

Fig. 6 shows the average data insertion performance with 
multiple nodes when one or six tablet servers running in the 
Accumulo cluster (each node has 2 cores).  The Accumulo 
database cluster is made of one Hadoop name node, which is 
also the master server for the Accumulo, and six Hadoop data 
nodes, which are also running the Accumulo tablet servers.   

Figure 6.  Total data insertion rate versus number of nodes when one or six 
tablet servers are running in the Accumulo cluster. 

In this case, only one MATLAB process is running per 
node and each node is inserting about 2 million entries at a time 
and repeating it 8 times, which is total of 16 million entries per 
each MATLAB process. Since we fixed the ingestion data per 
each MATLAB process, as the number of MATLAB processes 
grows, so the size of the ingested data grows linearly. For a 
single tablet server case, as increasing the number of clients, 
the ingestion rate increases linearly initially, up to 4 clients and 
then, flattened out beyond 8 clients.  When using 8 MATLAB 
clients, the ingestion rate peaked at about 105K entries/second 
and then decreased with 16 clients.  However, if 6 tablet 
servers (one tablet server per each Hadoop HDFS data node) 
are running, the ingestion rate continues to scale well up to 32 
clients.  

Fig. 7 and 8 show the ingestion performance history with a 
single and six tablet servers in the Accumulo cluster, 
respectively.  In both cases, 16 MATLAB clients are ingesting 
data into the Accumulo. Fig. 7 shows that the ingestion rate is 
topped out around 100K entries/second. It appears that the 
single tablet server was busy with 16 MATLAB clients all the 
time and reached its maximum ingestion rate with the current 
configuration. 

Figure 7.  Time history of the data ingest rate when a single tablet server is 
running in the Accumulo cluster. 

Figure 8.  Time history of the data ingest rate when six tablet servers are 
running in the Accumulo cluster. 

However, as shown in Fig. 8, when running six tablet 
servers (one tablet server per each Hadoop HDFS data node) 
there are still more rooms to accommodate incoming data 
ingestion requests and its peak ingestion rate becomes more 
than 250K entries/second. This is approximately 2.5 times 
greater than the case with a single tablet server.  Although the 
ingestion rate does not scale linearly with the number of tablet 
servers, for ingestion performance, it is desirable to run one 
tablet server per each Hadoop data node. 

V. DATABASE QUERY PERFORMANCE 
Using appropriate query commands, the desired 

information can be extracted from databases.  Accumulo is 
designed to search large amounts of data. We have studied how 
well it scales under various conditions.  In this study, we used 
the D4M parallel MATLAB implementation of the Graph500 
Benchmark to demonstrate a multi-node query.  With D4M, the 
query operation is accomplished via an array indexing, which 
simplifies coding significantly. 

In this study, we selected an arbitrary vertex in the graph 
and queried any column or row entries associated with it. The 
times for a couple of queries in the column and row direction, 
respectively, were measured and compared in Fig. 9 and 10.  
As expected, the column query times are 3 to 4 orders of 
magnitude larger than those of the row query.  As increasing 
the number of the concurrent query clients, the column query 
time increases significantly where as the row query time is 



 

 

 

 

 

 

remained almost same although there is some abnormal 
deviation when running 8 MATLAB clients with a single tablet 
server as shown in Fig. 10. Fig. 9 also shows that the query 
takes a lot longer time to perform with one tablet server  as 
compared to 6 tablet servers.  

 

Figure 9.  The column query times with respect to various number of 
concurrent query clients to the Accumulo database when running a single and 
six tablet servers, respectively. 

Figure 10.  The row query times with respect to various number of concurrent 
query clients to the Accumulo database when running a single and six tablet 
servers, respectively. 

Fig. 11 and 12 show the time history of the scan rate at the 
beginning and at the end of the query operations, which were 
requested by 16 concurrent MATLAB clients while only a 
single tablet server was running in the Accumulo cluster.  The 
scan rate indicates how fast the scanner are able to retrieve the 
value associated with a given key. It also provides an insight of 
how many of the Accumulo tablets and tablet servers are being 
used and how busy they are for the given query. As shown in 
Fig. 11, over the period of the query time, its scan rate 
fluctuated significantly.  

In Fig. 11, during the first 10 minutes, the scan rate was 
quite small as compared to the rest of the history.  This could 
be caused by the fact that the test code does not have a barrier 
to synchronize the process between the ingestion and the query 
steps. Another interesting thing is that the scan rate was 
changed as a multiple of approximately 250K ingestions per 

second.  Since in this simulation, only one tablet server is 
running in the Accumulo cluster, it indicates that the number of 
active tablets are varied over the time, which caused the scan 
rate changes as a step fashion. 

Figure 11.  The scan rate history at the beginning of the query operation by 16 
concurrent MATLAB clients while only a single tablet server is running. 

Figure 12.  The scan rate history at the end of the query operation by 16 
concurrent MATLAB clients while only a single tablet server is running. 

Fig. 13 and 14 show a similar scan rate history graphs when 
6 tablet servers (one per each data node) were running. These 
scan rate history graphs show that they are highly fluctuating 
with time. However, when comparing the peak scan rate, the 
scan rate with 6 tablet servers is about twice faster as compared 
to the scan rate with a single tablet server. 

Figure 13.  The scan rate history at the beginning of the query operation by 16 
concurrent MATLAB clients while six tablet servers (one per data node) are 
running. 

Figure 14.  The scan rate history at the end of the query operation by 16 
concurrent MATLAB clients while six tablet servers (one per data node) are 

running. 



The performance of the scan rate fluctuates significantly 
with time when using 6 tablet servers because it depends on 
how many active Hadoop data nodes are participated at a given 
time in addition to the number of active tablets.   With 6 tablet 
servers, since the scan operation is spread out among 6 tablet 
servers, the rate change becomes more volatile than what was 
observed with a single tablet server. As expected, overall query 
time is much shorter with 6 tablet servers:  approximately two 
hours (6 tablet servers) and approximately four hours (single 
tablet server). 

VI. SUMMARY 
We have demonstrated that an MPI cluster environment can 

be used efficiently with a Hadoop cluster envrionment.  
LLGrid MapReduce and D4M along with pMATLAB 
technologies make it easy to write the big data applications.  
Both cases show that the data insertion and query scales well 
with the increasing the number of clients and nodes while 
running fully configured Accumulo clusters. 
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