
3.3 Brownian Motion

To better understand some of features of force and motion at cellular and sub cellular scales,
it is worthwhile to step back, and think about Brownian motion. With a simple microscope,
in 1827 Robert Brown observed that pollen grains in water move in haphazard manner. From
a Newtonian perspective, this is surprising as force is required to initiate motion and cause
changes in direction. Where does this force come from; could it be that the observed particles
are in some sense active and ‘alive,’ generating their own motion? The classic 1905 paper by
Albert Einstein demonstrates that no active mechanism is necessary, and that the random
forces generated by the thermally excited water molecules can account for the motion of the
grains. This explanation was confirmed by Jean Perrin in 1908, for which he was awarded
the Nobel prize in 1926.

Let us for simplicity indicate the position of the particle by a one-dimensional coordinate
x (e.g. its vertical position); extension to more coordinates is trivial. According to Newtonian
dynamics, the particle accelerates in response to forces it experience. When the particle at
x is immersed in fluid, this includes in addition to external potential forces (e.g. due to
gravity), a frictional force due to the fluid viscosity. The deterministic equation governing
motion is them

mẍ = −
∂V

∂x
−

1

µ
ẋ . (3.35)

For a sphere of radius a, the viscous drag (and corresponding mobility µ) is given by

µ =
1

6πaη
, (3.36)

where η is the specific viscosity of the fluid.
It is important to have a measure of the relative importance of the inertial and viscous

terms in the above equation. Let us consider an object (not necessarily a solid sphere) of
typical size a and density ρ, moving with velocity v in a fluid. The inertial force necessary
to bring to rapidly change its velocity, e.g. to bring it to rest over a distance of the order of
its size, is Finertial ∼ mv(v/a) ∼ ρa2v2. The dissipative force due to the fluid viscosity is of
order Fviscous ∼ ηav. The relative importance of the two forces is captured by the Reynolds

number

Re =
Finertial

Fviscous
=

ρav

η
. (3.37)

Our physical experiences of motion in fluids relate to the realm of large Reynolds number:
We are mostly interested in water and room temperature, which has a kinematic viscosity

of η/ρ ≈ 10−6m2s−1; and for an animal swimming in water Re ≈ 1m× 1ms−1/10−6m2s−1 =
106 ≫ 1. Even if the motive force is stopped, the animal will continue to move in the
fluid due to its inertia. By contrast, cell and subcellular motion belong to the realm of low
Reynolds numbers. For example, a typical bacterium is a few microns is size, and moves
at velocities of around 30µs−1, translating to a Reynolds number of around 10−4 ≪ 1. For
molecular motors, relevant length scales are of the order of 10nm, with velocities of order of
1µs−1, leading to even smaller Re ≈ 10−8. The classic paper “Life at Low Reynolds Number”
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[Am. J. Phys. 45(1), 1977] by Purcell contains many interesting observations about this
limit.

At such small Reynolds numbers we can neglect the left-hand side of Eq. (3.35), conclud-
ing that velocity is proportional to external force:

ẋ = F = −µ
∂V

∂x
.

Of course, by the time we get down to the short scales of microns and below, we should no
longer treat water as a continuous fluid; rather, its particulate nature comes into play. The
water molecules are constantly moving due to thermal fluctuations, and their impacts on
the larger immersed objects results in a random force η(t), leading the stochastic equation
of motion

ẋ = −µ
∂V

∂x
+ η(t). (3.38)

A random impacts from all around an immersed object should average to zero over time,
but there will be instantaneous fluctuations. We expect the random forces experienced over
times longer than typical intervals between collisions to be uncorrelated, leading to

〈η(t)〉 = 0, (3.39)

〈η(t)η(t′)〉 = 2Dδ(t− t′). (3.40)

Since the force is the outcome of summing over many impacts, it is reasonable to expect the
central limit theorem to hold, leading to Gaussian statistics, i.e.

p[η(t)] ∝ exp

[

−
1

2D

∫ t

η(t′)2dt′
]

. (3.41)

In the absence of external force, the position of the particle evolves as

x(t) = x(0) +

∫ t

0

dt′η(t′).

It is then easy to check that
〈x(t)− x(0)〉 = 0, (3.42)

while the mean-squared dispersion is given by

〈

[x(t)− x(0)]2
〉

=

∫ t

0

dt′1dt
′
2 〈η(t

′
1)η(t

′
2)〉 = 2Dt. (3.43)

The above equation thus relates the various of the force to the observed diffusion coefficient
of the particle in the fluid.

The stocastic Eq. (3.38) is the Langevin equation for the coordinate x. Different realiza-
tions of the force η(t) lead to different values of x(t); we can also construct a corresponding
Fokker-Planck equation governing the evolution of the probability p(x, t). In the absence
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of a potential (as discussed above), this is simply the diffusion equation, with a diffusive
probability current JD = −D∂p/∂x. More generally, we can write the continuity equation

∂p(x, t)

∂t
= −

∂J

∂x
, (3.44)

where J now includes an additional drift term such that

J = v(x)p(x, t)−D
∂p

∂x
, (3.45)

with v(x) = µF = −µ∂V /∂x. The probability thus satisfies the Fokker-Planck equation:

∂tp(x, t) = −∂x(v(x)p)−D∂2
xp . (3.46)

We are discussed the steady state solution for drift-diffusion processes, which in this case
leads to

p∗(x) ∝ exp
(

−
µ

D
V (x)

)

. (3.47)

However, in the particle is in thermal equilibrium at a temperature T , its steady state prob-
ability must be related to the potential through Boltzmann weight

p∗ ∝ exp

(

−
H

kBT

)

∝ exp

(

−
V (x)

kBT

)

. (3.48)

. This implies that the diffusion constant (and hence the variance of the random force) is
given by

D = µkBT. (3.49)

This important Einstein equation relates noise at microscopic level (D) to macroscopic dis-
sipation (µ) in equilibrium at a temperature T . Its violation could for example indicate that
the microscopic trajectory of a particle observed in water is not Brownian, possibly hinting
at a live entity. Indeed, since the Hamiltonian in Eq. (3.48) may include several degrees of
freedom (other coordinates, kinetic and rotational energies), it can in principle be used to
discriminate between passive (equilibrium) and active (non-equilibrium) processes.
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3.4 Cell Membranes

Biological cells are enclosed by a membrane, separating various internal molecules and or-
ganelles from the outside world. However, the outside world provides the necessary nutri-
tional elements and survival signals that must be transported to the inside. The chief com-
ponent of the cell membrane is a bilayer of lipid molecules. These phospholipid molecules
have a long fatty tail that is hydrophobic, and polar heads that are hydrophobic. In water,
such amphiphilic molecules spontaneous self-assemble to form bilayer surfaces, as well as
enclosed vesicles. Biological membranes contain many more components, including various
proteins involved in transport and signaling. However, we shall initially focus on describing
shapes and fluctuations of simple lipid bilayers. The thickness of a bilayer is around 5nm,
considerably less than the dimension of the cell. To discuss the shapes and fluctuations of
the membrane at large scales, we can regard it as a continuous surface. This is akin to
describing DNA as a worm-like chain.

The first topic we need to address is how we describe a curved membrane. Once we
have an energy function (or functional), we can use it to address several intriguing topics,
including the reason red blood cells have their characteristic double-dimpled shape. This
level of description is equally applicable to any surface, such as a soap bubble, and is best
achieved using tools of differential geometry.

Within this framework, configurations of a surface are characterized as follows: Pick a
point O on the film, and draw the plane tangent to the surface at O. Choose a pair of
coordinates (x1, x2) on the tangent plane. In the close vicinity of O, the tangent plane and
the surface coincide. How do the surface and the tangent plane separate as we move away
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from O? We measure the “height” h(x1, x2) between the tangent plane and the surface
along the normal vector at point O. Expanding h(x1, x2), the first terms that can appear
are quadratic, i.e.

h(x1, x2) =
1

2

2
∑

i,j=1

cijxixj +O(x3) , (3.50)

where the matrix cij, given by

cij =
∂2h

∂xi∂xj

∣

∣

∣

∣

x=0

, (3.51)

is the 2× 2 curvature tensor.

This is not the most ideal description of the curvature, because it depends the choice of
coordinate axes. We are thus encouraged to look for properties of cij which are invariant
under changes of coordinates. One such property is the trace of the tensor, i.e. the sum over
its diagonal elements,

tr C = c11 + c22 =
1

R1

+
1

R2

≡ 2H. (3.52)

Note that each element of the matrix has dimensions of inverse length. We have denoted
the eigenvalues of the tensor as 1/R1 and 1/R2, known as the principal radii of curvature.
Their average, indicated above by H , is known as the mean curvature. Another invariant of
the matrix is its determinant

det C = c11c22 − c12c21 =
1

R1

·
1

R2

≡ K, (3.53)

which is known as the Gaussian curvature.

Physically we expect that deformations of the surface are accompanied by an energy cost.
The energy cost should certainly not depend on the coordinate system chosen to parametrize
the surface, and must thus be a function of shape invariants such as the curvatures identified
above. In the spirit of Hooke’s law for elasticity of a spring, we expand the energy cost up to
quadratic order in deformations. The Gaussian curvature K is already quadratic; H is linear,
and we would include an H2 term. There is also a leading term, akin to the natural length of
the spring, which measure the area of the surface. Including a corresponding surface tension
cost, the energy function up to quadratic terms is

E =

∫

dA
[

γ +
κ

2
(H −H0)

2 + κ̄K
]

. (3.54)

In Eq. (3.54), γ parameterizes the surface tension, κ is the “bending rigidity,” and H0 is the
“spontaneous curvature.” (Such a spontaneous curvature requires an asymmetry between
the two sides of the membrane, and could be an effect of different concentrations of various
molecules in the two leafs of the bilayer.) The parameter κ̄ is called the “Gaussian rigidity.”

Note that while the energy functional in Eq. (3.54) provides an excellent description of
a soap bubble, and to some extent for lipid bilayers, it is not applicable to a piece of paper,
or to a rubber balloon. The reason is that the soap film, and most membranes can be
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regarded as two dimensional fluids: their constituent molecules move freely relative to each
other relaxing any external shear stress. By contrast the molecules in a sheet of paper, or in
a balloon are permanently linked opposing shear stresses. Thus there is a additional shear
energy cost which must be included for rubber, which is practically infinite for a piece of a
paper.

We usually do need need all the parameters in Eq. (3.54) in a physical situation. For
example, the Gauss-Bonnet theorem states that for all shapes topologically equivalent to a
sphere,

∫

dAK = 4π, .

Thus as a sphere wiggles, expands and contracts, there is no contribution to energy cost
coming from κ̄. More generally, for any closed surface

∫

dAK = 4πχE , (3.55)

where the Euler characteristic χE is a topological invariant related to the number of holes
(e.g. for a donut χE = 0). Furthermore, in many cases involving lipid bilayers, γ ≈ 0.
The reason is that the phospholipid layers are typically immersed in a solution containing
phospholipid molecules, allowing exchanges to take place. (The exact mechanism here is
subject to debate; the observation that γ ≈ 0 can be taken as an experimental fact.)

For small deformations around a flat surface, we use the so-called “Monge” representation.
Over a reasonably-sized patch, we can describe the surface by a function h(x1, x2), and
Eq. (3.54) (for H0 = 0) then leads to

E =

∫

dx1dx2

√

1 +

(

∂h

∂x1

)2

+

(

∂h

∂x2

)2
[

γ +
κ

2
(∇2h)2

]

≈ A+
γ

2

∫

dx1dx2(∇h)2 +
κ

2

∫

dx1dx2(∇
2h)2 . (3.56)

We shall assume that γ ≈ 0, in which case the leading term comes from ∇h, which is in fact
related to the mean curvature since

∇2

(

1

2

∑

i,j

cijxixj

)

= c11 + c22

= 2H.

Deformations of the surface are best described as superposition of normal modes (undu-
lations) obtained through the Fourier transform

h(~x) =
∑

~q

ei~q·~xh̃q , (3.57)
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and correspondingly

∇2h =
∑

~q

(−q2)ei~q·~xh̃q. (3.58)

The energy is then a sum of contributions from normal modes as

E =
∑

~q

κ

2
q4|h̃q|

2 . (3.59)

Employing the Boltzmann weight, we conclude that each mode is independently distributed
as a Gaussian of zero mean, and variance

〈

|h̃q|
2
〉

=
kBT

κq4
. (3.60)

Since the energy cost of an undulation decreases with wavenumber q = 2π/λ, it is easy quite
easy to excite long wavelength modes, whose typical amplitude diverges as 1/q2.

The overall height fluctuations of the surface at any point are obtained by summing the
contributions of all Fourier modes, resulting in

w2 =
∑

q

〈

|h̃q|
2
〉

=
kBT

κ

∫

d3~q

(2π)2
1

q4

=
kBT

2πκ

∫ π/a

π/L

dq

q3
.

The upper and lower limits of the integral are reflect respectively L, the linear size of the
membrane patch, and a, its thickness. the integral is clearly dominated by its lower cutoff,
leading to a width that grows with the size of the patch as

w2 =
kBT

4πκ
·
L2

π2
. (3.61)

For typical membranes κ ranges between 2 to 20 kBT , leading to w ≈ L/20; i.e. for a patch
of size L = 2 µm, we expect height fluctuations of around w ≈ 0.1 µm.
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We earlier asked the question of “how straight is a polymer?” We can similarly inquire
about if we can define a persistence length over which a membrane remains flat despite
thermal fluctuations. As in the case of polymers we can examine the decay of orientation
fluctuations (e.g. by looking at n̂(x) · n̂(x′) where n̂(x) is the unit surface normal at point x.
Alternatively, we can look at tangent correlations, 〈∇h(x) · ∇h(x′)〉. Using Eq. (3.60) it is
possible to show that these correlations decay exponentially with separation |x− x′|, with a
correlation length given by

ξP ≈ a exp

(

cκ

kBT

)

. (3.62)

3.4.1 Transport Across Membranes

Hydrophobic molecules such as O2, CO2, N2 and benzene can pass through a lipid bilayer,
but smaller ions such as H+, Na+ and K+ cannot. This is due to an electrostatic barrier.

In water, an ion “feels” a dielectric constant around 80, but within the lipid bilayer, the
dielectric constant is of order 1. This creates an energy barrier of almost two orders of
magnitude, making it unfavorable for ions to enter (and thereby pass through) the cell
membrane. In cases where it is biologically necessary for ions to be transported across the
membrane, nature must provide special arrangements to do so.

One such device is a passive ion channel, essentially protein with a channel decorated by
polar elements creating a low energy environment for ions to pass through. However, passive
motion cannot be the only means for ions to go in and out of a cell, as the concentrations
of many common ions are radically out of balance between the inside and the outside of
the cell. To achieve transport against the chemical potential that encourages uniformity of
concentrations, there must be agents that consume energy to actively maintain a chemical
gradient.

The concentration differences of these charged ions lead to membrane potentials, de-
scribed by the Nernst equation

φ =
kBT

ez
log

(

n1

n2

)

. (3.63)

The order of magnitude is set by kBT/e, which is around 25 mV.

81


