Strategy
Metacommunity:  N; = rN;[1 — N; — 3 ; AjN;] + D[(N;) — Nj]+ V2T Nimi(t),
Average

Hierarchy of moments: (N;) = (N;) — (N?) — > i A (NiNG)
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Integrate out fluctuations: (Ni) = f((N1), ..., (Ns))
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Strategy

Metacommunity:  N; = rN;[1 — N; — 3 ; AjN;] + D[(N;) — Nj]+ V2T Nimi(t),

‘Average

Hierarchy of moments: (N;) = (N;) — (N?) — > i A (NiNG)
‘D >r
Integrate out fluctuations: (N} = fi((Ny), ..., (Ns))
T < D/ \T >D
GLV 0-GLV
(low diversity) (high diversity iff T > 2D)
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The D > r adiabatic limit

N; = rNi[1 = N; = 32, AgNj] + DI(N) — Ni] + V2T Ny (t),
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The D > r adiabatic limit

N; = rNi[1 = N; = 32, AgNj] + DI(N) — Ni] + V2T Ny (t),

» Average over patches:

(i) = r [(NG) = (N2) = X2 Ag (N
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The D > r adiabatic limit

Ni = rN;[1 = N; = 3 ANj] + DI(N;) — Ni] + V2T Nimi(¢),
> Average over patches:
(Ni) = r [ (V) = (V) = 32 Ay (NiG) |
» Hierarchy of moments:

Oe(N7) =2D(N;)* = 2(D — T)(N?) + 2r[(N7) — (N?) — 3=, Ay (NZN;)],
Or(N;iNj) =2D ((N;)(N;) — (N;N;)) + O(r),
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The D > r adiabatic limit

Ni = rN;[1 = N; = 3 ANj] + DI(N;) — Ni] + V2T Nimi(¢),
» Average over patches:
(Ni) = r [ (Ng) = (V) = 5 Ag(NiNG)
» Hierarchy of moments:

Oe(N?) =2D(N;)* = 2(D — T)(NF) + 2r [(N7) — (N?) = 32; Ay (NZN;) ],
Fx(NiNj) =2D ({N;)(N;) = (NiNj)) + O(r),

» For D, T > r, second moments enslaved to slow-evolving means
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The D > r adiabatic limit

Ni = rN;[1 = N; = 3 ANj] + DI(N;) — Ni] + V2T Nimi(¢),
» Average over patches:
(Ni) = r [ (Ng) = (V) = 2y Ag(NiNG)
» Hierarchy of moments:

Oe(N?) =2D(N;)* = 2(D — T)(NF) + 2r [(N7) — (N?) = 32; Ay (NZN;) ],
Fx(NiNj) =2D ({N;)(N;) = (NiNj)) + O(r),

» For D, T > r, second moments enslaved to slow-evolving means:

(NiNjzi) = (N)(N) + O (5), (NF) = 527 (Ni)? + O(pL)-
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The D > r adiabatic limit

Ni = rN;[1 = N; = 3 ANj] + DI(N;) — Ni] + V2T Nimi(¢),
> Average over patches:
(Ni) = r [ (V) = (V) = 32 Ay (NiG) |
» Hierarchy of moments:

0:(N7) =2D(N;)* = 2(D — T){(N?) + 2r [(N7) — (N?) = 32, Aj(NZN;)],
Or(N;iNj) =2D ((N;)(N;) — (N;N;)) + O(r),

» For D, T > r, second moments enslaved to slow-evolving means:

(NiNjzi) = (N} (Np) + O (5), (NF) = 527(Ni)? + O(pL7).

Valid whenever D > r Valid only for T < D
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Effective GLV dynamics for 7 < D

> Effective equation for means (D — T > r):

Ot (N;)

r(N;)y|1— D? =(Ni) —ZAU<NJ>]

J#

Noise, T/r

05 1.0 1.5

20 25 3
Dispersal, D/r
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Effective GLV dynamics for 7 < D

> Effective equation for means (D — T > r):

57N~ ;AU<NJ>

= Standard GLV with renormalized carrying capacity
= S*c€01),0p=0V

8t<N,'> = I’<N,’> 1-— D :|

05 1.0 1.5

20 25 3
Dispersal, D/r
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Effective GLV dynamics for 7 < D

> Effective equation for means (D — T > r):

&
D <
Oe(Ni) = r(Ni) |1 = =——=(Ni) = > Aj(N;) 2
D-T . 3
J#i “
= Standard GLV with renormalized carrying capacity
" ]5.1051)611“:3‘1,23/7’2'5 -

= 5" c0(1),6=0V

Metacommunity (D =1, 7 =0.1): Effective GLV dynamics:

t 17/29




Effective GLV dynamics for 7 < D

=)

77

o

> Effective equation for means (D — T > r):

'S

00l = r(N) |1 = 520 = 5 Ay
2

Noise, T/r

—

= Standard GLV with renormalized carrying capacity
=57 ¢ 0(1)’ ¢=0v " ]5.1051)611“:3‘1,2‘1%/7’

2.5

3.0

Metacommunity (D =1, 7 =0.1): Effective GLV dynamics:
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Stationary abundance distribution in coexistence phase

Ni = N;[1 — N; — &] + DI(N;) — Nj] + V2T Nymi(t), &i(t) =) ApNi(t)
J#i
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Stationary abundance distribution in coexistence phase
Ni = N; [L = N; — &] + DI(N;) — Ni] + V2T Nimy(t), &(t) =D Aylj(t)
J#i
» Coexistence phase: Assume (N;) >0, (N;) € O(1/S)
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Stationary abundance distribution in coexistence phase

N;j = N; [1 = N; — &] + D[(N;) — Ni] + V2T Nimi(t), &i(t) =) ApNi(t)
J#i
» Coexistence phase: Assume (N;) >0, (N;) € O(1/S)
» Claim: for D > r, fluctuations of &; vanish at large S:
S—o0
E(1) == (&) = ) Ay(N))
JF#i

To show this:
1. Assume & = (£), find (&) self-consistently

2. Compute (N?)
3. Show lim (&%) =0
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Stationary abundance distribution in coexistence phase

Ni = N; [1 = N; — ()] + D[(N;) — Ni] + V2T N (¢)
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Stationary abundance distribution in coexistence phase

Ni = N; [1 = N; — ()] + D[(N;) — Ni] + V2T N (¢)

» Stationary probability density (5 =1/T):

pi(N) oc e PN APINI/NN= i =24 B(D + (&) — 1).
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Stationary abundance distribution in coexistence phase

N; = N;[L = N; — ()] + D[(N;) — Ni] + V2T Ny (t)

» Stationary probability density (5 =1/T):
pi(N) oc e PNe PPN N=Y v, =2 4 B(D + (&) — 1).
» Impose self-consistency:

B 00 _\/TN,-)KW_2<2L‘7\/W>
</Vi>—/0 dN N pi(N) = Ky-1(28y/DINY)
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Stationary abundance distribution in coexistence phase

N; = N;[L = N; — ()] + D[(N;) — Ni] + V2T Ny (t)

» Stationary probability density (5 =1/T):
pi(N) oc e PNe PPN N=Y v, =2 4 B(D + (&) — 1).
» Impose self-consistency:

. © _ \/WKw—2(2ﬂ\/W>
<NI> = /0 dNNPl(N) = Kw—1<25\/m) .

» Expand for small (N;) o< 1/S and solve for (¢):

[<£,-> =14+ O(5PP) | for all i.
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Power law distribution of abundances

T T
@ Simulation
— Theory

» Result:
All species follow the same power law

pi(N) oc e BN e=BDN)/N p=2=5D

» Power laws observed in natural ecosystems:
(Locey and Lennon, 2016; Ser-Giacomi, 2018; etc.)
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Power law distribution of abundances

T T
@ Simulation
| — Theory

» Result:
All species follow the same power law

pi(N) o e BN = BDMN)/N p=2-6D

i

» Power laws observed in natural ecosystems:
(Locey and Lennon, 2016; Ser-Giacomi, 2018; etc.)

» Consequence:
Anomalous scaling of moments
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Anomalous scaling of moments

» For small (N) o< 1/S:

(N2) ~ (N2 [1+(.) (NP1 + 0 ((M)?)

D-T
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Anomalous scaling of moments

» For small (N) o< 1/S:

D
2N
V=57

(N2 [1+(.) (NP1 + 0 ((M)?)

» Transition at T = D (Swartz et al. 2022, Ottino-L&ffler & Kardar 2020):

N;)? T<D
N2 < 1/ )
(N7 o< { (N8 T > D,
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Anomalous scaling of moments

» For small (N) o< 1/S:

D
2N
W) =57

(N2 [1+(.) (NP1 + 0 ((M)?)

» Transition at T = D (Swartz et al. 2022, Ottino-L&ffler & Kardar 2020):

N;)? T<D
N2 < 1/ )
(N7 o< { (N8P T > D,

> Taylor’'s power law (1961): (N?). oc (N;)1+?

Widely verified in ecological data, nonuniversal exponent (Taylor 1961; Eisler et al. 2008)
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Anomalous scaling of moments in the coexistence phase

T Pl T T
® 3D =04
® 8D =033
® 5D =025
1+ 8D
o (N 4
T =] -’
a2 10 F N~
= D
~ o‘/-/

10™

Simulations support (N?) oc (N;)1+PD in coexistence phase.
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Anomalous scaling of moments in the coexistence phase

T
®BD=04

® 8D =033

® 3D =025

1+3D
— o (Ny) i
—4

SS107 2
Z @)
~ o‘/- >

10™

Simulations support (N?) oc (N;)1+PD in coexistence phase.

= | (M) = (N2) = X5, AyNiy) | ==

(Ni) = (NP0 — 57 AN (V)
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f-logistic Generalized Lotka-Volterra Equation

> Effective equation for means (6 = 5D)

(Ni) = (Ni) [1 = (N;)® = > AN |, (6-GLV).
J#i

» Sometimes called @-logistic self-regulation (Hatton et al.).
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f-logistic Generalized Lotka-Volterra Equation

> Effective equation for means (6 = 5D)
(Ni) = (Ni) [1 = (N;)® = > AN |, (6-GLV).
JF#i
> Sometimes called @-logistic self-regulation (Hatton et al.).

Metacommunity (D =2, T =6) Effective 0-GLV

10 T T T

1 1 1
0 100 200 300

0 100 200 300
t
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f-logistic Generalized Lotka-Volterra Equation

> Effective equation for means (6 = 5D)

(Ni) = (Ni) [1 = (N;)® = > AN |, (6-GLV).
J#i

» Sometimes called @-logistic self-regulation (Hatton et al.).

ot

0-GLV

'S

Noise, T/r

N

—

1.0 15 25 3.(

0.5 2.0
Dispersal, D/r

Metacommunity (D =2, T =6) Effective 6-GLV

10 T T T 10

1 1 1
100 200 300
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Fixed points of the /-GLV model
0= (N;)|1—(N;)? — ZAU<M> ; Aj = p, AjAr = 020
J#i

» Two solutions: (N;) =0or (N;) =(1— Zj Aij<Nj>)1/0
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Fixed points of the 6-GLV model

0= (N;) |1 — (N;)" = > Ay(N;)

J#i

; Aij = i, AjAre = 0?60

» Two solutions: (N;) =0or (N;) =(1— Zj /‘\ij</\/j>)1ﬂ9

> Cavity method: replace }_;,; Aj(N;) with mean + Gaussian fluctuations:

1/6
(N) = max <O,1—,u5(l\l>—a 5<N>QZ> , Z ~ N(0,1).

with (N), (N)2 determined self-consistently.
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Fixed points of the 6-GLV model

0= (N;) |1 — (N;)" = > Ay(N;)

J#i

; Aij = i, AjAre = 0?60

» Two solutions: (N;) =0or (N;) =(1— Zj /‘\ij</\/j>)1ﬂ9

> Cavity method: replace }_;,; Aj(N;) with mean + Gaussian fluctuations:

1/6
(N) = max <O,1—,u5(l\l>—a 5<N>QZ> , Z ~ N(0,1).

with (N), (N)2 determined self-consistently.

» Survival fraction ¢ = P[(N) > 0]
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Fixed points of the 6-GLV model

0= (N;)|1—(N;)? — ZAU<IVJ> ; Ajj = 1t AjAr = 020

J#i

» Two solutions: (N;) =0or (N;) =(1— Zj /‘\ij</\/j>)1ﬂ9

> Cavity method: replace }_;,; Aj(N;) with mean + Gaussian fluctuations:

1/6
(N) = max <O,1—,u5(l\l>—a 5<N>QZ> , Z ~ N(0,1).

with (N), (N)2 determined self-consistently.

» Survival fraction ¢ = P[(N) > 0]
> Solve using large-S ansatz: (N) ~ S~ (N)2 ~ S™7 ¢ — 1
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Cavity solution of the /-GLV model

0= (N, [1 — (N;)? — >z Aii(Nj)

107 7 T T T
Results:
» There is a coexistence solution (¢ = 1) iff 6 < % T
6=0.75
200 500
100 T T T T
10 2F .
10t R
6= 0.25
—6 L1 1 1 1
107% 200 400 600

t
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Cavity solution of the /-GLV model

ot

0= (N;) [1— (N =32 A (N;) 6<1/2
Results:
» There is a coexistence solution (¢ = 1) iff 6 < %

Using 6 = 8D, this implies T, = 2D

=

Noise, T/r

—_

fe=l

05 10 15 20 25 3.
Dispersal, D/r
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Cavity solution of the /-GLV model

0= (N;) [1 — (N)? = 3 AN
Results:

» There is a coexistence solution (¢ = 1) iff 6 < %

Using 6 = 8D, this implies T, = 2D

» In coexistence phase:

W2~

(N) ~

= mean abundances € O(1/5).

1
ps’ H2s?

Noise, T/r
w = wt [=>}

Do

0.5

0<1/2

10 15 20 25 3.
Dispersal, D/r

10 7

(Y- ——

101

0 =025

10

200 400 600
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Cavity solution of the /-GLV model

0= (N;) [1 — (N)? = 3 AN
Results:

» There is a coexistence solution (¢ = 1) iff 6 < %

Using 6 = 8D, this implies T, = 2D

» In coexistence phase:

(N) ~

W2~

= mean abundances € O(1/5).

> As S—00, (N)2 = (N}
= disorder becomes irrelevant.

1
ps’ H2s?

Noise, T/r

10

1072

10

10

(=2}

ot

=

w

N

0.5 1.0

Dispersal, D/r

0<1/2

2.5

0=10.25

400

600
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