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⟨Ṅi ⟩ = ⟨Ni ⟩ − ⟨N2
i ⟩ −

∑
j ̸=i Aij⟨NiNj⟩Hierarchy of moments:

Average
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The D ≫ r adiabatic limit

Ṅi = rNi

[
1− Ni −

∑
j ̸=i AijNj

]
+ D[⟨Ni ⟩ − Ni ] +

√
2TNiηi (t),

▶ Average over patches:

˙⟨Ni ⟩ = r
[
⟨Ni ⟩ − ⟨N2

i ⟩ −
∑

j ̸=i Aij⟨NiNj⟩
]
,

▶ Hierarchy of moments:

∂t⟨N2
i ⟩ =2D⟨Ni ⟩2 − 2(D − T )⟨N2

i ⟩+ 2r
[
⟨N2

i ⟩ − ⟨N3
i ⟩ −

∑
j Aij⟨N2

i Nj⟩
]
,

∂t⟨NiNj⟩ =2D (⟨Ni ⟩⟨Nj⟩ − ⟨NiNj⟩) +O(r),

▶ For D,T ≫ r , second moments enslaved to slow-evolving means

:

⟨NiNj ̸=i ⟩ = ⟨Ni ⟩⟨Nj⟩+O
(
r
D

)
, ⟨N2

i ⟩ = D
D−T ⟨Ni ⟩2 +O( r

D−T ).

Valid whenever D ≫ r Valid only for T < D
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Effective GLV dynamics for T < D

▶ Effective equation for means (D − T ≫ r):

∂t⟨Ni ⟩ = r⟨Ni ⟩
[
1− D

D − T
⟨Ni ⟩ −

∑
j ̸=i

Aij⟨Nj⟩
]

⇒ Standard GLV with renormalized carrying capacity
⇒ S∗ ∈ O(1), ϕ = 0 ✓

Metacommunity (D = 1,T = 0.1): Effective GLV dynamics:
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Stationary abundance distribution in coexistence phase

Ṅi = Ni [1− Ni − ξi ] + D[⟨Ni ⟩ − Ni ] +
√
2TNiηi (t), ξi (t) ≡

∑
j ̸=i

AijNj(t)

▶ Coexistence phase: Assume ⟨Ni ⟩ > 0, ⟨Ni ⟩ ∈ O(1/S)

▶ Claim: for D ≫ r , fluctuations of ξi vanish at large S :

ξi (t)
S→∞−−−→ ⟨ξi ⟩ ≡

∑
j ̸=i

Aij⟨Nj⟩

To show this:

1. Assume ξ = ⟨ξ⟩, find ⟨ξ⟩ self-consistently
2. Compute

〈
N2

i

〉
3. Show lim

S→∞

〈
ξ2
〉
c
= 0

18 / 29
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Stationary abundance distribution in coexistence phase

Ṅi = Ni [1− Ni − ⟨ξi ⟩] + D[⟨Ni ⟩ − Ni ] +
√
2TNiηi (t)

▶ Stationary probability density (β ≡ 1/T ):

pi (N) ∝ e−βNe−βD⟨Ni ⟩/NN−γi , γi ≡ 2 + β(D + ⟨ξi ⟩ − 1).

▶ Impose self-consistency:

⟨Ni ⟩ =
∫ ∞

0
dN N pi (N) =

√
D⟨Ni ⟩Kγ−2

(
2β
√

D⟨Ni ⟩
)

Kγ−1

(
2β
√

D⟨Ni ⟩
) .

▶ Expand for small ⟨Ni ⟩ ∝ 1/S and solve for ⟨ξ⟩:

⟨ξi ⟩ = 1 +O(S−βD) for all i .
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Power law distribution of abundances

▶ Result:
All species follow the same power law

pi (N) ∝ e−βNe−βD⟨Ni ⟩/NN−2−βD ,

▶ Power laws observed in natural ecosystems:
(Locey and Lennon, 2016; Ser-Giacomi, 2018; etc.)

▶ Consequence:
Anomalous scaling of moments
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Anomalous scaling of moments

▶ For small ⟨N⟩ ∝ 1/S :

〈
N2

〉
≃ D

D − T
⟨N⟩2

[
1 + (. . . ) ⟨N⟩βD−1

]
+O

(
⟨N⟩2

)

▶ Transition at T = D (Swartz et al. 2022, Ottino-Löffler & Kardar 2020):

⟨N2
i ⟩ ∝

{
⟨Ni ⟩2, T < D,

⟨Ni ⟩1+βD , T > D.

▶ Taylor’s power law (1961): ⟨N2
i ⟩c ∝ ⟨Ni ⟩1+θ

Widely verified in ecological data, nonuniversal exponent (Taylor 1961; Eisler et al. 2008)
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Anomalous scaling of moments in the coexistence phase

Simulations support ⟨N2
i ⟩ ∝ ⟨Ni ⟩1+βD in coexistence phase.

=⇒ ⟨Ni ⟩ − ⟨N2
i ⟩ −

∑
j Aij⟨NiNj⟩ D≫r−−−→ ⟨Ni ⟩ − ⟨Ni ⟩1+θ −∑

j Aij⟨Ni ⟩⟨Nj⟩
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θ-logistic Generalized Lotka-Volterra Equation

▶ Effective equation for means (θ ≡ βD)

⟨Ṅi ⟩ = ⟨Ni ⟩
[
1− ⟨Ni ⟩θ −

∑
j ̸=i

Aij⟨Nj⟩
]
, (θ-GLV).

▶ Sometimes called θ-logistic self-regulation (Hatton et al.).

GLV

θ-GLV

Metacommunity (D = 2,T = 6) Effective θ-GLV
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Fixed points of the θ-GLV model

0 = ⟨Ni ⟩
[
1− ⟨Ni ⟩θ −

∑
j ̸=i

Aij⟨Nj⟩
]
, Aij = µ, AijAkℓ = σ2δikδjℓ.

▶ Two solutions: ⟨Ni ⟩ = 0 or ⟨Ni ⟩ = (1−∑
j Aij⟨Nj⟩)1/θ

▶ Cavity method: replace
∑

j ̸=i Aij⟨Nj⟩ with mean + Gaussian fluctuations:

⟨N⟩ = max

(
0, 1− µS⟨N⟩ − σ

√
S⟨N⟩2 Z

)1/θ

, Z ∼ N (0, 1).

with ⟨N⟩, ⟨N⟩2 determined self-consistently.

▶ Survival fraction ϕ = P[⟨N⟩ > 0]

▶ Solve using large-S ansatz: ⟨N⟩ ∼ S−α, ⟨N⟩2 ∼ S−γ , ϕ → 1
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▶ Solve using large-S ansatz: ⟨N⟩ ∼ S−α, ⟨N⟩2 ∼ S−γ , ϕ → 1
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Cavity solution of the θ-GLV model

0 = ⟨Ni ⟩
[
1− ⟨Ni ⟩θ −

∑
j ̸=i Aij⟨Nj⟩

]
Results:

▶ There is a coexistence solution (ϕ = 1) iff θ < 1
2

Using θ = βD, this implies Tc = 2D

▶ In coexistence phase:

⟨N⟩ ≃ 1

µS
, ⟨N⟩2 ≃ 1

µ2S2
.

⇒ mean abundances ∈ O(1/S).

▶ As S→∞, ⟨N⟩2 → ⟨N⟩2
⇒ disorder becomes irrelevant.
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