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Table Z Acute Toxicity of Di-n-butyl Phthalate to Four Species of 
Fish 

Temperature TLso* (f.!g/1.) 
Species (OC) 24 h 48 h 96 h 

Fathead minnow 
(Pimephales promelas) 17 1,490 1,300 

Bluegill 
(Lepomis macrochirus) 17 1,230 731 731 

Channel catfish 
(Ictalurus puncta/us) 17 3,720 2,910 2,910 

Rainbow trout 
(Salmo gairdneri) 12 6,470 

Toxicity was measured by standard static bioassay. 
*The tolerance limit is the concentration in which 50% of fish 

survive for a specified time. 

centration (0.1 flg/1.), respectively, within 14 days. Only 6% 
of residual di-2-ethylhexyl phthalate remained in the scud 
after 10 days in fresh water. 

Di-2-ethylhexyl phthalate was examined for reproductive 
effects in zebra fish (Brachydanio rerio) and guppies (Poecilia 
reticulata) by dietary exposure. Zebra fish were fed diets con­
taining 50 and 100 !Lg/g of food and guppies were fed 100 flgfg. 
Up to 88.5% of the zebra fish fry died before foraging began as 
compared with a 50% mortality in control fish. All the dying 
fry exposed to di-2-ethylhexyl phthalate died in tetany, which 
suggests that this compound may alter normal calcium metabol­
ism. However, tetany did not occur in the dying controls. 
Intraperitoneal injections of di-2-ethylhexyl phthalate (3 !Lg/kg) 
increased serum calcium, decreased serum potassium, but did 
not affect serum sodium and chloride in coho salmon ( Oncorhyn­
chus kisutch). All of the adult guppies fed di-2-ethylhexyl 
phthalate became lethargic after 2 months of exposure and an 
8% incidence of abortions was noted in this group. Continuous 
exposure of waterfleas (Daphnia magna) to 3 !Lg/1. of di-2-
ethylhexyl phthalate significantly (P < 0.05) reduced re~roduc­
tion by 60%. Details of these studies will be published 
separately. 

The incidence of phthalate esters in fish seemed to be greater 
in aquatic areas associated with industrial and heavily popu­
lated regions, although hatchery and farmed fish fed diets 
contaminated with the esters also contained residues. Dietary 
contamination was probably a consequence of the use of 
contaminated fish products in feeds. Residues of phthalate 
esters previously reported in milk• and bovine tissues"· 10 may 
have resulted from dietary intake of phthalate esters. Phthalate 
esters have also been found in deep sea jellyfish11 and soil12

• 

The actual amounts and distribution of these pollutants in 
the environment have not been fully investigated, but a recent 
report of 100 mg/1. phthalate esters in a water sample from 
the Ohio River, West Virginia, was not anticipated (R. 
Sandridge, personal communication). 

The acute toxicity of phthalate esters seems relatively 
insignificant, but there are indications that these compounds 
can be detrimental to aquatic organisms at low chronic con­
centrations. They are produced in large amounts, they are in 
wide use as plasticizers, and, by some means, they are entering 
aquatic ecosystems. Thus, these compounds should be con­
sidered as environmental pollutants and a more detailed 
evaluation of toxicological effects of phthalate esters is essential 
to elucidate their impact on these systems. 
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GENERAL 

Will a Large Complex System 
be Stable! 
Gardner and Ashby1 have suggested that large complex systems 
which are assembled (connected) at random may be expected 
to be stable up to a certain critical level of connectance, and 
then, as this increases, to suddenly become unstable. Their 
conclusions were based on the trend of computer studies of 
systems with 4, 7 and 10 variables. 

Here I complement Gardner and Ashby's work with an 
analytical investigation of such systems in the limit when the 
number of variables is large. The sharp transition from 
stability to instability which was the essential feature of their 
paper is confirmed, and I go further to see how this critical 
transition point scales with the number of variables n in the 
system, and with the average connectance C and interaction 
magnitude a between the various variables. The object is 
to clarify the relation between stability and complexity in 
ecological systems with many interacting species, and some 
conclusions bearing on this question are drawn from the model. 
But, just as in Gardner and Ashby's work, the formal develop­
ment of the problem is a general one, and thus applies to the 
wide range of contexts spelled out by these authors. 

Specifically, consider a system with n variables (in an 
ecological application these are the populations of the n 
interacting species) which in general may obey some quite 
nonlinear set of first-order differential equations. The stability 
of the possible equilibrium or time-independent configurations 
of such a system may be studied by Taylor-expanding in the 
neighbourhood of the equilibrium point, so that the stability 
of the possible equilibrium is characterized by the equation 

dx/dt=Ax (1) 

Here in an ecological context x is the n x 1 column vector of 
the disturbed populations x1, and the n x n interaction matrix 
A has elements a1k which characterize the effect of species k 
on species j near equilibrium2

•
3

• A diagram of the trophic 
web immediately determines which a1k are zero (no web link), 
and the type of interaction determines the sign and magnitude 
of aJk· 

Following Gardner and Ashby, suppose that each of the n 
species would by itself have a density dependent or otherwise 
stabilized form, so that if disturbed from equilibrium it would 
return with some characteristic damping time. To set a time­
scale, these damping times are all chosen to be unity: a11 = -1. 
Next the interactions are "switched on", and it is assumed 
that each such interaction element is equally likely to be 
positive or negative, having an absolute magnitude chosen 
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from some statistical distribution. That is, each of these 
matrix elements is assigned from a distribution of random 
numbers, and this distribution has mean value zero and mean 
square value a. (For a fuller account of such a formulation, 
see refs. 2 and 3.) a may be thought of as expressing the 
average interaction "strength", which average is for simplicity 
common to all interactions. In short, 

A=B-1 (2) 

where B is a random matrix, and I the unit matrix. Thus we 
have an unbounded ensemble of models, one for each specific 
choice of the interaction matrix elements drawn individually 
from the random number distribution. 

It is important to note that randomness only enters in the 
initial choice of the coefficients a1k, which then define a parti­
cular model. Once the dice have been rolled to get a specific 
system, the subsequent analysis is purely deterministic. 

The system (I) is stable if, and only if, all the eigenvalues of 
A have negative real parts. For a specified system size n and 
average interaction strength a, it may be asked what is the 
probability P(n,a) that a particular matrix drawn from the 
ensemble will correspond to a stable system. For large n, 
analytic techniques developed for treating large random 
matrices may be used to show* that such a matrix will be 
almost certainly stable (P-+-1) if 

a< (n)-1'2 (3) 

and almost certainly unstable (P---+0) if 

a>(n)-112 (4) 

The transition from stability to instability as a increases from 
the regime (3) into the regime (4) is very sharp for n~1; 
indeed the relative width of the transition region scales a~ 
n-1.13. 

Such a precise answer for any model in the ensemble in the 
limit n~ 1 is a consequence of the familiar statistical fact that, 
although individual matrix elements are liable to have any 
value, by the time one has an n x n matrix with n2 such statis­
tical elements, the total system has relatively well defined 
properties. 

Next we introduce Gardner and Ashby's connectance, C, 
which expresses the probability that any pair of species will 
interact. It is measured as the percentage of non-zero elements 
in the matrix, or as the ratio of actual links to topologically 
possible links in the trophic web. The matrix elements in B 
now either, with probability C, are drawn from the previous 
random number distribution, or, with probability 1 - C, are 
zero. Thus each member of the ensemble of matrices A 
corresponds to a system of individually stable parts, connected 
so that each part is affected directly by a fraction C of the 
other parts. For large n, a 2 C plays the role previously played 
by a 2

, and we find the system (l) is almost certainly stable 
(P(n, a, C)-+-1) if 

a<(nC)-112 (5) 

and almost certainly unstable (P---+0) if 

a>(nC)-112 (6) 

" From equation (2) it is obvious that the eigenvalues of A are 
A.-1, where A. are those of B. The "semi-circle law" distribution for 
the eigenvalues of a particular random matrix ensemble was first 
obtained by Wigner4 , and subsequently generalized by him to a 
very wide class of random matrices whose elements all have the 
same mean square value5 • Although the matrix 8 does not in 
general possess the hermiticity property required for most of these 
results to be directly applicable, the present results for the largest 
eigenvalue and its neighbourhood can be obtained by using Wigner's4 

original style of argument on (B)N(BT)N where N is very large. 
Indirectly relevant is Mehta5 and Ginibre6

• 

NATURE VOL. 238 AUGUST 18 1972 

It is interesting to compare the analytical results with 
Gardner and Ashby's computer results for smallish n. (Their 
choice of A differs slightly from ours, but in essence they 
have the fixed value a 2 = 1/3, and diagonal elements intrinsically 
-0.55 rather than -1.) Although our methods are based on 
the assumption that n is large, and are therefore only approxi­
mations when applied to n=4, 7, 10, the two approaches in 
fact agree well when compared, being not more than 30% 
discrepant even for n = 4. 

The central feature of the above results for large systems 
is the very sharp transition from stable to unstable behaviour 
as the complexity (as measured by the connectance and the 
average interaction strength) exceeds a critical value. This 
accords with Gardner and Ashby's conjecture. 

Applied in an ecological context, this ensemble of very 
general mathematical models of multi-species communities, in 
which the population of each species would by itself be stable, 
displays the property that too rich a web connectance (too 
large a C) or too large an average interaction strength (too 
large an a) leads to instability. The larger the number of 
species, the more pronounced the effect. 

Two corollaries are worth noting, although they should not 
be taken to have more than qualitative significance. 

First, notice that two different systems of this kind, with 
average interaction strengths and connectances a 1 , C1 and 
a2, Cz respectively, have similar stability character if 

(7) 

Roughly speaking, this suggests that within a web species 
which interact with many others (large C) should do so weakly 
(small a), and conversely those which interact strongly should 
do so with but a few species. 'rhis is indeed a tendency in 
many natural ecosystems, as noted, for example, by Margalef': 
"From empirical evidence it seems that species that interact 
feebly with others do so with a great number of other species. 
Conversely, species with strong interactions are often part of 
a system with a small number of species .... " 

A second feature of the models may be illustrated by using 
Gardner and Ashby's computations (which are for a particular 
a) to see, for example, that 12-species communities with 15% 
connectance have probability essentially zero of being stable, 
whereas if the interactions be organized into three separate 
4 x 4 blocks of 4-species communities, each with a consequent 
45% connectance, the "organized" 12-species models will be 
stable with probability 35%. That is, of the infinite ensemble 
of these particular 12-species models, essentially none of the 
general ones are stable, whereas 35% of those arranged into 
three "blocks" are stable. Such examples suggest that our 
model multi-species communities, for given average interaction 
strength and web connectance, will do better if the interactions 
tend to be arranged in "blocks"-again a feature observed in 
many natural ecosystems. 
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